1
|
Rai A, Jakob U. Polyphosphate: a cellular Swiss army knife. Curr Opin Biotechnol 2025; 93:103303. [PMID: 40222262 DOI: 10.1016/j.copbio.2025.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous biopolymer whose functional repertoire has rapidly expanded over the past few years. How polyP controls these seemingly unrelated functions, which range from stress resistance, motility, and DNA damage control in bacteria to blood clotting, cancer and neurodegeneration in mammals, remains largely unknown. Here, we review what is known about its synthesis and degradation pathways in mammalian cells, provide an overview over the cell compartment-specific roles of polyP, and focus on recent studies, which showed that many of polyP's activities appear to be mediated by its ability to either solubilize, scaffold, or phase separate proteins. Future studies will show how polyP achieves these vastly different effects on proteins and hence controls its many functions.
Collapse
Affiliation(s)
- Akash Rai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhou M, Han Y, Zhuo Y, Pu B, Li L, Liu Y, Peng D. Bioinduced phosphorus precipitation in granular sludge undergoing denitrifying biological phosphorus removal: Phosphorus recovery from sewage as hydroxyapatite. WATER RESEARCH 2025; 281:123590. [PMID: 40187148 DOI: 10.1016/j.watres.2025.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Recovering phosphorus from mainstream wastewater treatment systems by leveraging microbial metabolism without the addition of extra chemicals effectively streamlines the steps involved in phosphorus recovery from low-strength wastewater, thereby increasing the economic feasibility of the phosphorus recovery process. Hydroxyapatite (HAP, Ca5(PO4)3OH) can be formed directly via bioinduction in biological treatment systems, serving as a potential substitute for phosphate rock. HAP formation in sewage with low phosphate and Ca2+ concentrations is challenging. Denitrifying polyphosphate-accumulating organisms (DPAOs) can regulate phosphate ions and pH to facilitate HAP formation in sewage. In this study, the denitrifying biological phosphorus removal (DPR) system was established, achieving phosphorus and nitrate removal efficiencies of 99.3 % and 45.1 %, respectively. In the anaerobic and anoxic sections, the saturation index for HAP was greater than zero, indicating favourable conditions for HAP formation. Inorganic cores, identified as HAP through chemical composition and structural features, were formed in the DPR granular sludge, contributing approximately 66 % to phosphorus removal. The HAP‒DPR granular sludge, located at the bottom of the reactor, consisted of 80 wt % inorganic matter and 15.4 wt % total phosphorus, 86.1 % of which was chemical phosphorus precipitation. Microstructural analysis of HAP cores revealed poly-pellet structures with nanoscale wires. The growth of HAP minerals was not inhibited by intracellular polyphosphates. The presence of HAP cores promoted a differentiated spatial distribution of granular sludge and contributed to a differentiated microbial community structure. DPAOs were located mainly in small-sized granular sludge (Type A), whereas denitrifying glycogen-accumulating organisms were found mainly in large-sized granular sludge (Type B), where HAP formation primarily occurred. Granular sludge with higher inorganic and chemical phosphorus contents (Type C) likely originated from the disintegration of Type B. In conclusion, the HAP‒DPR system has potential for phosphorus recovery in the form of HAP directly from low-strength wastewater.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Bingyu Pu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Lingyun Li
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yi Liu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
3
|
Ru J, Xu X, Cheng Y, Luo N, Tan S, Chen X, Chen F, Lu BQ. Influence of Polyphosphate on the Mineralization Balance of Tooth Enamel. ACS OMEGA 2025; 10:10162-10172. [PMID: 40124016 PMCID: PMC11923674 DOI: 10.1021/acsomega.4c09093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025]
Abstract
Dental minerals are in an equilibrium state of demineralization and remineralization, which can be disrupted by pathogenic bacteria to cause dental caries. While the inorganic polymer polyphosphate (polyP) is ubiquitous in living organisms and is also widely involved in mineralization regulations, its specific influence on the mineralization balance of teeth remains unclear. As a concept-and-proof study, the effects of polyP on the demineralization and remineralization of teeth are investigated on dental enamel (the highly mineralized outer covering tissue of teeth) from the perspective of mineralization balance. We found that a high concentration (containing 1.0-20 mM P element, comparable to and higher than the free phosphate ions in body fluids) of polyP has the capability to demineralize enamel in the aqueous solution, yet this effect is absent in the simulated biological environments including simulated body fluid and MEM (α-minimum essential medium) solutions. More importantly, polyP with a very low concentration (containing ≥5.0 μM P) is able to inhibit enamel mineralization significantly. This suggests that polyP could impact the mineralization balance of enamel by preferentially inhibiting the remineralization process, thereby disrupting the equilibrium necessary for maintaining enamel health.
Collapse
Affiliation(s)
- Jing Ru
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, Anhui 232000, P. R. China
| | - Xiaochen Xu
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Yuxuan Cheng
- Yuncheng
Center for Disease Control and Prevention, Yuncheng, Shanxi 044300, P. R. China
| | - Nan Luo
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Shuo Tan
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xi Chen
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Chen
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, Anhui 232000, P. R. China
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Shanghai
Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai
Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201102, P.R. China
| | - Bing-Qiang Lu
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
4
|
Buyukyilmaz G, Koca SB, Turhan B, Adiguzel KT, Goren R, Uzdogan A, Aksu AU, Boyraz M. Benign transient hyperphosphatasemia in the pediatric population: a single center cohort study. J Pediatr Endocrinol Metab 2024; 37:622-629. [PMID: 38800840 DOI: 10.1515/jpem-2024-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES Alkaline phosphatase (ALP) can be increased in a benign condition known as benign-transient hyperphosphatasemia (BTH). We aimed to evaluate the demographic, and clinical characteristics of infants and children with BTH. METHODS In our retrospective study, infants and children diagnosed with BTH between September 2019 and September 2023 were included. RESULTS Of 249 children with elevated ALP levels, 95 (38.1 %) had BTH. The mean age at diagnosis of children with BTH was 2.4 ± 1.3 years (min 0.6 - max 6.2 years). ALP mean value was 2,587 ± 1252 U/L (min 972 - max 5757 U/L). ALP value was an average 7.4 ± 3.6 times higher than the corresponding upper limit of normal. The second measurement was made after an average of 13.2 ± 6 days, and a statistically significant difference was detected compared to the first value, with a decrease of 61 ± 23 % in the ALP value (p<0.001). ALP value returned to normal in an average of 44 ± 29.2 days. Elevated ALP was detected during infection in 49 (51.6 %) children. When the sample was divided into those under 2 years of age and aged 2 and over, no statistical difference was observed in ALP levels in the time it took for ALP levels to return to the normal range (p=0.480). CONCLUSIONS BTH should be kept in mind if high serum ALP is detected in children without clinical or laboratory suspicion of bone or liver disease. In the follow up detecting a significant decrease trend compared to the first value may be guiding for BTH.
Collapse
Affiliation(s)
- Gonul Buyukyilmaz
- Department of Pediatric Endocrinology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Serkan Bilge Koca
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Kayseri City Hospital, Kayseri, Türkiye
| | - Banu Turhan
- Department of Pediatric Endocrinology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Keziban Toksoy Adiguzel
- Department of Pediatric Endocrinology, Dr. Burhan Nalbantoğlu State Hospital, Nicosia, Northern Cyprus
| | - Refika Goren
- Department of Pediatric Endocrinology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Andac Uzdogan
- Department of Medical Biochemistry, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Aysel Unlusoy Aksu
- Department of Pediatric Gastroenterology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Mehmet Boyraz
- Department of Pediatric Endocrinology, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
5
|
Garcés P, Amaro A, Montecino M, van Zundert B. Inorganic polyphosphate: from basic research to diagnostic and therapeutic opportunities in ALS/FTD. Biochem Soc Trans 2024; 52:123-135. [PMID: 38323662 DOI: 10.1042/bst20230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Inorganic polyphosphate (polyP) is a simple, negatively charged biopolymer with chain lengths ranging from just a few to over a thousand ortho-phosphate (Pi) residues. polyP is detected in every cell type across all organisms in nature thus far analyzed. Despite its structural simplicity, polyP has been shown to play important roles in a remarkably broad spectrum of biological processes, including blood coagulation, bone mineralization and inflammation. Furthermore, polyP has been implicated in brain function and the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease and Parkinson's disease. In this review, we first address the challenges associated with identifying mammalian polyP metabolizing enzymes, such as Nudt3, and quantifying polyP levels in brain tissue, cultured neural cells and cerebrospinal fluid. Subsequently, we focus on recent studies that unveil how the excessive release of polyP by human and mouse ALS/FTD astrocytes contributes to these devastating diseases by inducing hyperexcitability, leading to motoneuron death. Potential implications of elevated polyP levels in ALS/FTD patients for innovative diagnostic and therapeutic approaches are explored. It is emphasized, however, that caution is required in targeting polyP in the brain due to its diverse physiological functions, serving as an energy source, a chelator for divalent cations and a scaffold for amyloidogenic proteins. Reducing polyP levels, especially in neurons, might thus have adverse effects in brain functioning. Finally, we discuss how activated mast cells and platelets also can significantly contribute to ALS progression, as they can massively release polyP.
Collapse
Affiliation(s)
- Polett Garcés
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Armando Amaro
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, U.S.A
| |
Collapse
|
6
|
Liu W, Wang J, Comte‐Miserez V, Zhang M, Yu X, Chen Q, Jessen HJ, Mayer A, Wu S, Ye S. Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 2023; 42:e113320. [PMID: 37066886 PMCID: PMC10183816 DOI: 10.15252/embj.2022113320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
The eukaryotic vacuolar transporter chaperone (VTC) complex acts as a polyphosphate (polyP) polymerase that synthesizes polyP from adenosine triphosphate (ATP) and translocates polyP across the vacuolar membrane to maintain an intracellular phosphate (Pi ) homeostasis. To discover how the VTC complex performs its function, we determined a cryo-electron microscopy structure of an endogenous VTC complex (Vtc4/Vtc3/Vtc1) purified from Saccharomyces cerevisiae at 3.1 Å resolution. The structure reveals a heteropentameric architecture of one Vtc4, one Vtc3, and three Vtc1 subunits. The transmembrane region forms a polyP-selective channel, likely adopting a resting state conformation, in which a latch-like, horizontal helix of Vtc4 limits the entrance. The catalytic Vtc4 central domain is located on top of the pseudo-symmetric polyP channel, creating a strongly electropositive pathway for nascent polyP that can couple synthesis to translocation. The SPX domain of the catalytic Vtc4 subunit positively regulates polyP synthesis by the VTC complex. The noncatalytic Vtc3 regulates VTC through a phosphorylatable loop. Our findings, along with the functional data, allow us to propose a mechanism of polyP channel gating and VTC complex activation.
Collapse
Affiliation(s)
- Wei Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
| | - Jiening Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | | | - Mengyu Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Qingfeng Chen
- School of Life SciencesYunnan UniversityKunmingChina
| | - Henning Jacob Jessen
- Institute of Organic ChemistryUniversity of FreiburgFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Andreas Mayer
- Département d'ImmunobiologieUniversité de LausanneEpalingesSwitzerland
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Gholami Bahnemiri M, Mirabedini S, Mohammadi P, Barmaki H, Qaffaripour Z, Rezapour M, Alijanpour M. Determination of serum alkaline phosphatase reference in healthy children aged 1-18 years. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:749-756. [PMID: 36420337 PMCID: PMC9659844 DOI: 10.22088/cjim.13.4.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 12/25/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The growth and development of children affect biochemical variables. This population-based study was designed to evaluate the reference interval for alkaline phosphatase (ALP) routinely measured in the clinical laboratory. METHODS For this examination, 873 cases were selected among the healthy children and adolescents aged 1-18 years who referred to the endocrinology clinic of Amirkola Children's Hospital for growth evaluation. After overnight fasting, early morning blood samples were obtained to measure the ALP level and other biochemical parameters using an automatic biochemical analyzer. Subjects were categorized by age, sex, and body mass index (BMI) values. The age groups were categorized as follows: 1-4 years, 5-8 years, 9-13 years, and 14-18 years. RESULTS There was a significant difference among the age and sex categories; on the contrary, there was no meaningful variation between the two groups categorized by BMI. The reference range for ALP was 474.14-517.71 U/L for children aged 1-4 years, 273.47-871.44 U/L for 5-8 years, 215.04-893.69 U/L for 9-13 years, and 228.9-739.22 U/L for 14-18 years. Also, significant positive correlation was found between ALP with length (P=0.000, r=0.134), weight (=0.04, r=0.073), phosphorus (P) (P=0.001, r=0.122), and alanine aminotransferase (SGPT) (P=0.000, r=0.142) respectively. CONCLUSION This project's data established a reference interval for ALP in healthy children and adolescents, which will prepare a basis for diagnosis and monitoring liver- or bone-related disorders.
Collapse
Affiliation(s)
- Mehdi Gholami Bahnemiri
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran ,These authors contributed equally to this work
| | - Shivasadat Mirabedini
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of MedicalSciences, Sari, Iran,These authors contributed equally to this work
| | - Parisa Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haniyeh Barmaki
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Iran
| | - Zohreh Qaffaripour
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Masomeh Rezapour
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Morteza Alijanpour
- Non-Communicable Pediatric Disease Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran ,Correspondence: Morteza Alijanpour, Non-Communicable Pediatric Diseases Research Center, No 19, Amirkola Children’s Hospital, Amirkola, Babol, Mazandaran Province, 47317-41151, Iran. E-mail: , Tel: 0098 32346963, Fax: 0098 32346963
| |
Collapse
|
8
|
Kahil K, Weiner S, Addadi L, Gal A. Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate. J Am Chem Soc 2021; 143:21100-21112. [PMID: 34881565 PMCID: PMC8704196 DOI: 10.1021/jacs.1c09174] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Minerals are formed by organisms in all of the kingdoms of life. Mineral formation pathways all involve uptake of ions from the environment, transport of ions by cells, sometimes temporary storage, and ultimately deposition in or outside of the cells. Even though the details of how all this is achieved vary enormously, all pathways need to respect both the chemical limitations of ion manipulation, as well as the many "housekeeping" roles of ions in cell functioning. Here we provide a chemical perspective on the biological pathways of biomineralization. Our approach is to compare and contrast the ion pathways involving calcium, phosphate, and carbonate in three very different organisms: the enormously abundant unicellular marine coccolithophores, the well investigated sea urchin larval model for single crystal formation, and the complex pathways used by vertebrates to form their bones. The comparison highlights both common and unique processes. Significantly, phosphate is involved in regulating calcium carbonate deposition and carbonate is involved in regulating calcium phosphate deposition. One often overlooked commonality is that, from uptake to deposition, the solutions involved are usually supersaturated. This therefore requires not only avoiding mineral deposition where it is not needed but also exploiting this saturated state to produce unstable mineral precursors that can be conveniently stored, redissolved, and manipulated into diverse shapes and upon deposition transformed into more ordered and hence often functional final deposits.
Collapse
Affiliation(s)
- Keren Kahil
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Steve Weiner
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lia Addadi
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Gal
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
9
|
Du Y, Wang X, Han Z, Hua Y, Yan K, Zhang B, Zhao W, Wan C. Polyphosphate Kinase 1 Is a Pathogenesis Determinant in Enterohemorrhagic Escherichia coli O157:H7. Front Microbiol 2021; 12:762171. [PMID: 34777317 PMCID: PMC8578739 DOI: 10.3389/fmicb.2021.762171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The ppk1 gene encodes polyphosphate kinase (PPK1), which is the major catalytic enzyme that Escherichia coli utilizes to synthesize inorganic polyphosphate (polyP). The aim of this study was to explore the role of PPK1 in the pathogenesis of Enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). An isogenic in-frame ppk1 deletion mutant (Δppk1) and ppk1 complemented mutant (Cppk1) were constructed and characterized in comparison to wild-type (WT) EHEC O157:H7 strain EDL933w by microscope observation and growth curve analysis. Survival rates under heat stress and acid tolerance, both of which the bacteria would face during pathogenesis, were compared among the three strains. LoVo cells and a murine model of intestinal colitis were used as the in vitro and in vivo models, respectively, to evaluate the effect of PPK1 on adhesion and invasion during the process of pathogenesis. Real-time reverse-transcription PCR of regulatory gene rpoS, adhesion gene eae, and toxin genes stx1 and stx2 was carried out to corroborate the results from the in vitro and in vivo models. The ppk1 deletion mutant exhibited disrupted polyP levels, but not morphology and growth characteristics. The survival rate of the Δppk1 strain under stringent environmental conditions was lower as compared with WT and Cppk1. The in vitro assays showed that deletion of the ppk1 gene reduced the adhesion, formation of attaching and effacing (A/E) lesions, and invasive ability of EHEC O157:H7. Moreover, the virulence of the Δppk1 in BALB/c mice was weaker as compared with the other two strains. Additionally, mRNA expression of rpoS, eae, stx1 and stx2 were consistent with the in vitro and in vivo results. In conclusion: EHEC O157:H7 requires PPK1 for both survival under harsh environmental conditions and virulence in vivo.
Collapse
Affiliation(s)
- Yanli Du
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Xiangyu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zongli Han
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kaina Yan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Ferrucci V, Kong DY, Asadzadeh F, Marrone L, Boccia A, Siciliano R, Criscuolo G, Anastasio C, Quarantelli F, Comegna M, Pisano I, Passariello M, Iacobucci I, Monica RD, Izzo B, Cerino P, Fusco G, Viscardi M, Brandi S, Pierri BM, Borriello G, Tiberio C, Atripaldi L, Bianchi M, Paolella G, Capoluongo E, Castaldo G, Chiariotti L, Monti M, De Lorenzo C, Yun KS, Pascarella S, Cheong JH, Kim HY, Zollo M. Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Sci Signal 2021; 14:14/690/eabe5040. [PMID: 34230209 PMCID: PMC8432949 DOI: 10.1126/scisignal.abe5040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long-chain, inorganic polyphosphates (polyPs), which are found in many cells in the blood, have cytoprotective and antiviral activities, particularly against HIV-1 infection. Ferrucci et al. tested the effects of polyPs of various lengths on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Molecular docking and binding analyses showed that polyPs bound to the host receptor ACE2, which facilitates viral entry, and a viral RNA polymerase required for replication. Both proteins underwent proteasomal degradation in cells incubated with polyP120, the optimal species tested, resulting in inhibition of SARS-CoV-2 replication and a reduced inflammatory response. Given that polyPs have low toxicity, these results suggest that their potential therapeutic use should be further explored. Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO43−) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano– LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2–infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.
Collapse
Affiliation(s)
- Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Dae-Young Kong
- Ginxen Co., Ltd., 2F, Daewoong Building, Seocho-gu, Seoul, South Korea
| | | | - Laura Marrone
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Angelo Boccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | | | - Giuseppina Criscuolo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | | | | | - Marika Comegna
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Ida Pisano
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Margherita Passariello
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Ilaria Iacobucci
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Department of Chemical Sciences, University "Federico II", Via Cinthia 4, Naples 80125, Italy
| | | | - Barbara Izzo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | | | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Claudia Tiberio
- U.O.C. di Patologia Clinica Ospedale D. Cotugno, Azienda Sanitaria Ospedali dei Colli, Naples 80131, Italy
| | - Luigi Atripaldi
- U.O.C. di Patologia Clinica Ospedale D. Cotugno, Azienda Sanitaria Ospedali dei Colli, Naples 80131, Italy
| | - Martina Bianchi
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Ettore Capoluongo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera "Federico II", Naples 80131, Italy
| | - Giuseppe Castaldo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Department of Chemical Sciences, University "Federico II", Via Cinthia 4, Naples 80125, Italy
| | - Claudia De Lorenzo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Kyong-Seop Yun
- HaimBio Co. Ltd, Industrial Park, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Hong-Yeoul Kim
- Ginxen Co., Ltd., 2F, Daewoong Building, Seocho-gu, Seoul, South Korea. .,HaimBio Co. Ltd, Industrial Park, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera "Federico II", Naples 80131, Italy
| |
Collapse
|
11
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Nakamura M, Aizawa H, Kawabata H, Sato A, Watanabe T, Isobe K, Kitamura Y, Tanaka T, Kawase T. Platelet adhesion on commercially pure titanium plates in vitro III: effects of calcium phosphate-blasting on titanium plate biocompatibility. Int J Implant Dent 2020; 6:74. [PMID: 33215329 PMCID: PMC7677422 DOI: 10.1186/s40729-020-00270-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) is often used to improve surface biocompatibility. We previously found that platelets rapidly adhere to plain commercially pure titanium (cp-Ti) plates in the absence, but not in the presence, of plasma proteins. To further expand on these findings, in the present study, we switched titanium plates from a plain surface to a rough surface that is blasted with calcium phosphate (CaP) powder and then examined platelet adhesion and activation. METHODS Elemental distribution in CaP-blasted cp-Ti plates was analyzed using energy-dispersive X-ray spectroscopy. PRP samples prepared from anticoagulated blood samples of six healthy, non-smoking adult male donors were loaded on CaP-blasted cp-Ti plates for 1 h and fixed for examination of platelet morphology and visualization of PDGF-B and platelet surface markers (CD62P, CD63) using scanning electron microscopy and fluorescence microscopy. Plain SUS316L stainless steel plates used in injection needles were also examined for comparison. RESULTS Significant amounts of calcium and phosphate were detected on the CaP-blasted cp-Ti surface. Platelets rapidly adhered to this surface, leading to higher activation. Platelets also adhered to the plain stainless surface; however, the levels of adhesion and activation were much lower than those observed on the CaP-blasted cp-Ti plate. CONCLUSIONS The CaP-blasted cp-Ti surface efficiently entraps and activates platelets. Biomolecules released from the activated platelets could be retained by the fibrin matrix on the surface to facilitate regeneration of the surrounding tissues. Thus, PRP immersion could not only eliminate surface air bubbles but also improve the biocompatibility of the implant surface.
Collapse
Affiliation(s)
| | | | | | - Atsushi Sato
- Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
| | | | | | | | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
14
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
15
|
Naqvi SM, Panadero Pérez JA, Kumar V, Verbruggen ASK, McNamara LM. A Novel 3D Osteoblast and Osteocyte Model Revealing Changes in Mineralization and Pro-osteoclastogenic Paracrine Signaling During Estrogen Deficiency. Front Bioeng Biotechnol 2020; 8:601. [PMID: 32656194 PMCID: PMC7326002 DOI: 10.3389/fbioe.2020.00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro studies have revealed that the mechanobiological responses of osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency. However, these two-dimensional (2D) cell culture studies do not account for in vivo biophysical cues. Thus, the objectives of this study are to (1) develop a three-dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and (2) apply this model to investigate whether estrogen deficiency leads to changes in osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded in media supplemented with estrogen (17β-estradiol). These cells were encapsulated in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen supplementation. Constructs were placed in gas permeable and water impermeable cell culture bags and maintained at 5% CO2 and 37°C. These bags were either mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained under static conditions (control). We report that osteocyte differentiation, characterized by the presence of dendrites and staining for osteocyte marker dentin matrix acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal (EW) compared to under continuous estrogen treatment (day 21). Mineralization [bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium] and gene expression associated with paracrine signaling for osteoclastogenesis [receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio] were significantly increased in estrogen deficient and mechanically stimulated cells. Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively, which play a role in regulation of biomineralization. Furthermore, the increase in pro-osteoclastogenic signaling may be explained by altered mechanoresponsiveness of osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen deficiency on bone cell function and provide a novel in vitro model to investigate the mechanisms underpinning changes in bone cells after estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Laoise M. McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Hao Q, Liu Z, Lu L, Zhang L, Zuo L. Both JNK1 and JNK2 Are Indispensable for Sensitized Extracellular Matrix Mineralization in IKKβ-Deficient Osteoblasts. Front Endocrinol (Lausanne) 2020; 11:13. [PMID: 32117051 PMCID: PMC7028708 DOI: 10.3389/fendo.2020.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrix mineralization is critical for osteogenesis, and its dysregulation could result in osteoporosis and vascular calcification. IKK/NF-κB activation inhibits differentiation of osteoblasts, and reduces extracellular matrix mineralization, however the underlying mechanisms are poorly understood. In this study, we used CRISPR/Cas9 system to permanently inactivate IKKβ in preosteoblast cells and confirmed that such cells displayed dramatic increase in extracellular matrix mineralization associated with JNK phosphorylation. Such observation was also found in our study using IKKβ-deficient primary murine osteoblasts. Interestingly, we found that in Ikbkb-/-Mapk8-/- or Ikbkb-/-Mapk9-/- double knockout cells, the enhanced mineralization caused by IKKβ deficiency was completely abolished, and deletion of either Mapk8 or Mapk9 was sufficient to dampen c-Jun phosphorylation. In further experiments, we discovered that absence of JNK1 or JNK2 on IKKβ-deficient background resulted in highly conserved transcriptomic alteration in response to osteogenic induction. Therefore, identification of the indispensable roles of JNK1 and JNK2 in activating c-Jun and promoting osteoblast differentiation on IKKβ-deficient background provided novel insights into restoring homeostasis in extracellular matrix mineralization.
Collapse
Affiliation(s)
- Qianyun Hao
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Zhuangzhuang Liu
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Liaoxun Lu
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Lichen Zhang
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China
- *Correspondence: Li Zuo
| |
Collapse
|
17
|
Al-Hamed FS, Mahri M, Al-Waeli H, Torres J, Badran Z, Tamimi F. Regenerative Effect of Platelet Concentrates in Oral and Craniofacial Regeneration. Front Cardiovasc Med 2019; 6:126. [PMID: 31552270 PMCID: PMC6733887 DOI: 10.3389/fcvm.2019.00126] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
Platelet concentrates (PCs) are biological autologous products derived from the patient's whole blood and consist mainly of supraphysiologic concentration of platelets and growth factors (GFs). These GFs have anti-inflammatory and healing enhancing properties. Overall, PCs seem to enhance bone and soft tissue healing in alveolar ridge augmentation, periodontal surgery, socket preservation, implant surgery, endodontic regeneration, sinus augmentation, bisphosphonate related osteonecrosis of the jaw (BRONJ), osteoradionecrosis, closure of oroantral communication (OAC), and oral ulcers. On the other hand, no effect was reported for gingival recession and guided tissue regeneration (GTR) procedures. Also, PCs could reduce pain and inflammatory complications in temporomandibular disorders (TMDs), oral ulcers, and extraction sockets. However, these effects have been clinically inconsistent across the literature. Differences in study designs and types of PCs used with variable concentration of platelets, GFs, and leucocytes, as well as different application forms and techniques could explain these contradictory results. This study aims to review the clinical applications of PCs in oral and craniofacial tissue regeneration and the role of their molecular components in tissue healing.
Collapse
Affiliation(s)
| | - Mohammed Mahri
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Haider Al-Waeli
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Jesus Torres
- Faculty of Dentistry, Universidad Complutense, Madrid, Spain
| | - Zahi Badran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Periodontology (CHU/Rmes Inserm U1229/UIC11), Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a Target for Interference With Inflammation and Thrombosis. Front Med (Lausanne) 2019; 6:76. [PMID: 31106204 PMCID: PMC6499166 DOI: 10.3389/fmed.2019.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Activated platelets and mast cells expose the inorganic polymer, polyphosphate (polyP) on their surfaces. PolyP initiates procoagulant and proinflammatory reactions and the polymer has been recognized as a therapeutic target for interference with blood coagulation and vascular hyperpermeability. PolyP content and chain length depend on the specific cell type and energy status, which may affect cellular functions. PolyP metabolism has mainly been studied in bacteria and yeast, but its roles in eukaryotic cells and mammalian systems have remained enigmatic. In this review, we will present an overview of polyP functions, focusing on intra- and extracellular roles of the polymer and discuss open questions that emerge from the current knowledge on polyP regulation.
Collapse
Affiliation(s)
- Reiner K W Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorena Hänel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikel Allende
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Mikami Y, Omagari D, Mizutani Y, Hayatsu M, Ushiki T, Tsuda H. Dual effect of polyphosphate on mineralization of rat osteoblast ROS17/2.8 cells in a dose-dependent manner. J Pharmacol Sci 2018; 138:209-213. [DOI: 10.1016/j.jphs.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
|
20
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Bentley-DeSousa A, Downey M. From underlying chemistry to therapeutic potential: open questions in the new field of lysine polyphosphorylation. Curr Genet 2018; 65:57-64. [PMID: 29881919 DOI: 10.1007/s00294-018-0854-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Polyphosphorylation is a newly described non-enzymatic post-translational modification wherein long chains of inorganic phosphates are attached to lysine residues. The first targets of polyphosphorylation identified were S. cerevisiae proteins Nsr1 and Top1. Building on this theme, we recently exploited functional genomics tools in yeast to identify 15 new targets, including a conserved network of nucleolar proteins implicated in ribosome biogenesis. We also described the polyphosphorylation of six human proteins, suggesting that this unique post-translational modification could be conserved throughout eukaryotes. The study of polyphosphorylation seems poised to uncover novel modes of protein regulation in pathways spanning diverse biological processes. In this review, we establish a framework for future work by outlining critical questions related to the biochemistry of polyphosphorylation, its therapeutic potential, and everything in between.
Collapse
Affiliation(s)
- Amanda Bentley-DeSousa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, KIH 8M5, Canada.
| |
Collapse
|
22
|
Kato K, Morita K, Hirata I, Doi K, Kubo T, Kato K, Tsuga K. Enhancement of calcification by osteoblasts cultured on hydroxyapatite surfaces with adsorbed inorganic polyphosphate. In Vitro Cell Dev Biol Anim 2018; 54:449-457. [PMID: 29766357 DOI: 10.1007/s11626-018-0257-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022]
Abstract
Inorganic polyphosphate has been expected to accelerate bone regeneration. However, there are limited evidences to prove that polyphosphate adsorbed on the surface of a hydroxyapatite plate enhances calcification of cultured osteoblasts. In this study, we examined the effect of polyphosphate adsorbed onto the surface of a hydroxyapatite plate on the attachment, proliferation, differentiation, and calcification of osteoblasts. After hydroxyapatite plates were soaked in solutions of polyphosphate, the plate surfaces were analyzed by scanning electron microscopy and toluidine blue staining to confirm adsorption of polyphosphate. The hydroxyapatite plates were further subjected to the measurements of surface roughness, water contact angle, and the binding capacity of calcium ions. Cell culture experiments were carried out using MC3T3-E1 pre-osteoblastic cells. It was found that soaking a hydroxyapatite plate in a polyphosphate solution gave rise to an increase in surface roughness and reduction in water contact angle in a concentration-dependent manner, suggesting the adsorption of polyphosphate onto the surface of a hydroxyapatite plate. It was further observed that surface-adsorbed polyphosphate exhibited an inhibitory effect on cell adhesion and proliferation. In contrast, cell differentiation was promoted on hydroxyapatite plates with adsorbed polyphosphate, when assessed from expression of differentiation marker genes including alkaline phosphatase, osteopontin, and osteocalcin. In addition, calcification of the culture was enhanced on hydroxyapatite plates with relatively low density of adsorbed polyphosphate. Our results as a whole provided an evidence to show that there is a narrow window with regard to the surface density of adsorbed polyphosphate for the enhancement of osteoblast calcification.
Collapse
Affiliation(s)
- Kan Kato
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Koji Morita
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Isao Hirata
- Department of Biomaterials, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuya Doi
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takayasu Kubo
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
23
|
Tassinary JAF, Lunardelli A, Basso BDS, Dias HB, Catarina AV, Stülp S, Haute GV, Martha BA, Melo DADS, Nunes FB, Donadio MVF, Oliveira JRD. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake. ULTRASONICS 2018; 84:290-295. [PMID: 29182945 DOI: 10.1016/j.ultras.2017.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1 MHz frequency, 0.2 W/cm2 intensity and 20% duty cycle for 30 min. The analyses were carried out up to 336 h (14 days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-β1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192 h after LIPUS exposure. However, alkaline phosphatase and TGF-β1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation.
Collapse
Affiliation(s)
- João Alberto Fioravante Tassinary
- Univates, Lajeado, Rio Grande do Sul, Brazil; Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Adroaldo Lunardelli
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; Centro Universitário Ritter dos Reis (UniRitter), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno de Souza Basso
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Bregolin Dias
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Anderson Velasque Catarina
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Gabriela Viegas Haute
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca Andrade Martha
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bordignon Nunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Zeng X, Feng Q, Zhao F, Sun C, Zhou T, Yang J, Zhan X. Puerarin inhibits TRPM3/miR-204 to promote MC3T3-E1 cells proliferation, differentiation and mineralization. Phytother Res 2018; 32:996-1003. [DOI: 10.1002/ptr.6034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangwei Zeng
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Qian Feng
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Fengming Zhao
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Chao Sun
- The First Clinical Medical School; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Tao Zhou
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Jing Yang
- The First Clinical Medical School; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Xiuqin Zhan
- School of Medicine and Life Sciences; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| |
Collapse
|
25
|
Badran Z, Abdallah MN, Torres J, Tamimi F. Platelet concentrates for bone regeneration: Current evidence and future challenges. Platelets 2017. [DOI: 10.1080/09537104.2017.1327656] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zahi Badran
- Department of Periodontology (CHU/Rmes Inserm U1229/UIC11), Faculty of Dental Surgery, University of Nantes, Nantes, France
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mohamed-Nur Abdallah
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Jesus Torres
- Faculty of Dentistry, Universidad Complutense, Madrid, Spain
| | - Faleh Tamimi
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Bae WJ, Auh QS, Kim GT, Moon JH, Kim EC. Effects of sodium tri- and hexameta-phosphate in vitro osteoblastic differentiation in Periodontal Ligament and Osteoblasts, and in vivo bone regeneration. Differentiation 2016; 92:257-269. [DOI: 10.1016/j.diff.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
|
27
|
Zhou H, Hou S, Zhang M, Yang M, Deng L, Xiong X, Ni X. Deposition of calcium phosphate coatings using condensed phosphates (P 2 O 7 4− and P 3 O 10 5− ) as phosphate source through induction heating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:337-42. [DOI: 10.1016/j.msec.2016.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 12/23/2022]
|
28
|
TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization. Sci Rep 2016; 6:37885. [PMID: 27883077 PMCID: PMC5121659 DOI: 10.1038/srep37885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta receptor II interacting protein 1 (TRIP-1), a predominantly intracellular protein is localized in the ECM of bone. TRIP-1 lacks a signal peptide, therefore, in this study, we provide evidence that intracellular TRIP-1 can be packaged and exported to the ECM via exosomes. Overexpression of TRIP-1 in MC3T3-E1 cells resulted in increased matrix mineralization during differentiation and knockdown resulted in reduced effects. In vivo function of TRIP-1 was studied by an implantation assay performed using TRIP-1 overexpressing and knockdown cells cultured in a 3-dimmensional scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells showed higher calcium and phosphate deposits, arranged collagen fibrils and increased expression of Runx2 and alkaline phosphatase. Nucleation studies on demineralized and deproteinized dentin wafer is a powerful tool to determine the functional role of noncollagenous proteins in matrix mineralization. Using this system, we provide evidence that TRIP-1 binds to Type-I collagen and can promote mineralization. Surface plasmon resonance analysis demonstrated that TRIP-1 binds to collagen with KD = 48 μM. SEM and TEM analysis showed that TRIP-1 promoted the nucleation and growth of calcium phosphate mineral aggregates. Taken together, we provide mechanistic insights of this intracellular protein in matrix mineralization.
Collapse
|
29
|
Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles. Biochem Soc Trans 2016; 44:234-9. [PMID: 26862210 DOI: 10.1042/bst20150213] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.
Collapse
|
30
|
Osorio R, Sauro S, Watson TF, Toledano M. Polyaspartic acid enhances dentine remineralization bonded with a zinc-doped Portland-based resin cement. Int Endod J 2015; 49:874-883. [DOI: 10.1111/iej.12518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/08/2015] [Indexed: 11/29/2022]
Affiliation(s)
- R. Osorio
- Dental Materials; School of Dentistry; University of Granada; Granada Spain
| | - S. Sauro
- Dental Biomaterials and Minimally Invasive Dentistry; Departamento de Odontología; Facultad de Ciencias de la Salud; CEU-Cardenal Herrera University; Valencia Spain
| | - T. F. Watson
- Biomaterials; Biomimetics & Biophotonics; King's College London Dental Institute at Guy's Hospital; London UK
| | - M. Toledano
- Dental Materials; School of Dentistry; University of Granada; Granada Spain
| |
Collapse
|
31
|
Müller WEG, Tolba E, Schröder HC, Wang X. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration. Macromol Biosci 2015; 15:1182-1197. [DOI: 10.1002/mabi.201500100] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
- Biomaterials Department; Inorganic Chemical Industries Division; National Research Center; Doki Cairo; 11884 Egypt
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| |
Collapse
|
32
|
Kootala S, Tokunaga M, Hilborn J, Iwasaki Y. Anti-Resorptive Functions of Poly(ethylene sodium phosphate) on Human Osteoclasts. Macromol Biosci 2015. [PMID: 26222677 DOI: 10.1002/mabi.201500166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoporosis involves hyperactive osteoclasts. A large number of current drugs result in side effects affecting their efficacy in the clinic. Polyphosphoesters are unique polymeric biomaterials because of their biocompatibility, biodegradability, and bone affinity. We studied the viability and ability of human osteoclasts to resorb bone when dosed with poly(ethylene sodium phosphate) (PEP·Na). This did not trigger any change in osteoblast cell viability, however the polymer diminished human osteoclasts and their ability to resorb bone at concentrations as low as 10(-4) m · mL(-1). This is the first report to validate the possibility of using polyphosphoesters for selective inhibition of human osteoclast functions, indicating its potential to be used as an effective polymer prodrug for treatment of osteoporosis.
Collapse
Affiliation(s)
- Sujit Kootala
- Department of Chemistry, Polymer Chemistry, Uppsala University, Ångström Laboratory, S-75121 Uppsala, Sweden
| | - Masahiro Tokunaga
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Jöns Hilborn
- Department of Chemistry, Polymer Chemistry, Uppsala University, Ångström Laboratory, S-75121 Uppsala, Sweden.
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| |
Collapse
|
33
|
Ariganello MB, Omelon S, Variola F, Wazen RM, Moffatt P, Nanci A. Osteogenic cell cultures cannot utilize exogenous sources of synthetic polyphosphate for mineralization. J Cell Biochem 2015; 115:2089-102. [PMID: 25043819 DOI: 10.1002/jcb.24886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 07/10/2014] [Indexed: 11/08/2022]
Abstract
Phosphate is critical for mineralization and deficiencies in the regulation of free phosphate lead to disease. Inorganic polyphosphates (polyPs) may represent a physiological source of phosphate because they can be hydrolyzed by biological phosphatases. To investigate whether exogenous polyP could be utilized for mineral formation, mineralization was evaluated in two osteogenic cell lines, Saos-2 and MC3T3, expressing different levels of tissue non-specific alkaline phosphatase (tnALP). The role of tnALP was further explored by lentiviral-mediated overexpression in MC3T3 cells. When cells were cultured in the presence of three different phosphate sources, there was a strong mineralization response with β-glycerophosphate (βGP) and orthophosphate (Pi) but none of the cultures sustained mineralization in the presence of polyP (neither chain length 17-Pi nor 42-Pi). Even in the presence of mineralizing levels of phosphate, low concentrations of polyP (50 μM) were sufficient to inhibit mineral formation. Energy-dispersive X-ray spectroscopy confirmed the presence of apatite-like mineral deposits in MC3T3 cultures supplemented with βGP, but not in those with polyP. While von Kossa staining was consistent with the presence or absence of mineral, an unusual Alizarin staining was obtained in polyP-treated MC3T3 cultures. This staining pattern combined with low Ca:P ratios suggests the persistence of Ca-polyP complexes, even with high residual ALP activity. In conclusion, under standard culture conditions, exogenous polyP does not promote mineral deposition. This is not due to a lack of active ALP, and unless conditions that favor significant processing of polyP are achieved, its mineral inhibitory capacity predominates.
Collapse
Affiliation(s)
- Marianne B Ariganello
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, P.O. Box 6128 Station Centre-Ville, Montréal Québec, Canada, H3C 3J7
| | | | | | | | | | | |
Collapse
|
34
|
Müller WEG, Neufurth M, Huang J, Wang K, Feng Q, Schröder HC, Diehl-Seifert B, Muñoz-Espí R, Wang X. Nonenzymatic Transformation of Amorphous CaCO3into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo Hydroxyapatite Bone Formation. Chembiochem 2015; 16:1323-32. [DOI: 10.1002/cbic.201500057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/11/2022]
|
35
|
Miyamoto S, Miyamoto Y, Shibata Y, Yoshimura K, Izumida E, Suzuki H, Miyazaki T, Maki K, Kamijo R. In situ quasi-static and dynamic nanoindentation tests on calcified nodules formed by osteoblasts: Implication of glucocorticoids responsible for osteoblast calcification. Acta Biomater 2015; 12:216-226. [PMID: 25448350 DOI: 10.1016/j.actbio.2014.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023]
Abstract
The functional requirements of regenerated calcified tissues are that they enable the tissues to bear a variety of imposed stress and consequent contact-induced strain without substantial fracture. Here we demonstrate the effects of glucocorticoid hormones such as dexamethasone and hydrocortisone on the nanomechanical properties of calcified nodules formed by mouse osteoblastic MC3T3-E1 cells in differentiation-inducing medium containing ascorbic acid and β-glycerophosphate. Neither cell proliferation nor calcium deposition, evaluated using alizarin red and von Kossa staining, was affected by dexamethasone. On the other hand, calcified nodules formed in the presence of dexamethasone were significantly harder and stiffer than those formed in their absence. In particular, a series of nanoindentation tests revealed that the calcified nodules formed in the presence of dexamethasone showed enhanced stiffness against dynamic strain as compared to a quasi-static load. Furthermore, Raman spectroscopy revealed that dexamethasone and hydrocortisone increased the apatite/matrix ratio and lowered that of carbonate in the nodules. Our results suggest that glucocorticoids are required for in vitro formation by osteoblasts of more mature calcified nodules containing apatite/phosphate.
Collapse
|
36
|
Stähli C, Shah Mohammadi M, Waters KE, Nazhat SN. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption. Acta Biomater 2014; 10:3317-26. [PMID: 24681371 DOI: 10.1016/j.actbio.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023]
Abstract
Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions.
Collapse
|
37
|
Cini N, Ball V. Polyphosphates as inorganic polyelectrolytes interacting with oppositely charged ions, polymers and deposited on surfaces: fundamentals and applications. Adv Colloid Interface Sci 2014; 209:84-97. [PMID: 24529970 DOI: 10.1016/j.cis.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 12/01/2022]
Abstract
Polyphosphates are important but neglected polyelectrolytes that play a major role in biology and in surface science for the stabilization of colloids against flocculation and for the preservation of food. They are also known as "Calgon" ® and intensively used as additives in washing powders. This review aims to review recent developments in which linear polyphosphates are used for the design of new functional coatings using sol-gel processes and layer-by-layer deposition methods. All these methods rely on the high charge density of polyphosphates as inorganic polyelectrolytes, therefore the structure and properties of these molecules are also reviewed. New perspectives will also been given for the design of stimuli responsive coatings at the tiny frontier between biology and materials science.
Collapse
Affiliation(s)
- N Cini
- Technical University of Istanbul, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak Istanbul, Turkey
| | - V Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 Place de l'Hôpital, 67000 Strasbourg, France; Institut National de la santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France.
| |
Collapse
|
38
|
Gerasimaitė R, Sharma S, Desfougères Y, Schmidt A, Mayer A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 2014; 127:5093-104. [DOI: 10.1242/jcs.159772] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles has been unknown. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, showed that cytosolic polyP cannot be imported whereas polyP produced by the VTC complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which likely constitute the translocation channel, block not only polyP translocation but also synthesis. Since they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP may be one reason for the existence of acidocalcisomes in eukaryotes.
Collapse
|
39
|
Dorvee JR, Veis A. Water in the formation of biogenic minerals: peeling away the hydration layers. J Struct Biol 2013; 183:278-303. [PMID: 23791831 DOI: 10.1016/j.jsb.2013.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/14/2013] [Accepted: 06/09/2013] [Indexed: 12/31/2022]
Abstract
Minerals of biogenic origin form and crystallize from aqueous environments at ambient temperatures and pressures. The in vivo environment either intracellular or intercellular, contains many components that modulate both the activity of the ions which associate to form the mineral, as well as the activity and structure of the crowded water. Most of the studies about the mechanism of mineralization, that is, the detailed pathways by which the mineral ions proceed from solution to crystal state, have been carried out in relatively dilute solutions and clean solutions. These studies have considered both thermodynamic and kinetic controls. Most have not considered the water itself. Is the water a passive bystander, or is it intimately a participant in the mineral ion densification reaction? A wide range of experiments show that the mineralization pathways proceed through a series of densification stages with intermediates, such as a "dense liquid" phase and the prenucleation clusters that form within it. This is in contrast to the idea of a single step phase transition, but consistent with the Gibbs concept of discontinuous phase transitions from supersaturated mother liquor to crystal. Further changes in the water structure at every surface and interface during densification guides the free energy trajectory leading to the crystalline state. In vertebrates, mineralization takes place in a hydrated collagen matrix, thus water must be considered as a direct participant. Although different in detail, the crystallization of calcium phosphates, as apatite, and calcium carbonates, as calcite, are mechanistically identical from the viewpoint of water.
Collapse
Affiliation(s)
- Jason R Dorvee
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|