1
|
Zhang S, Liu W, Zheng M, Qiu Y. Noninvasive Detection of Arytenoid Cartilage Calcification Using Computed Tomography and Prediction of Prognosis in Laryngeal Contact Granuloma. J Voice 2024; 38:466-471. [PMID: 34629228 DOI: 10.1016/j.jvoice.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Laryngeal contact granuloma (LCG) is a relatively uncommon disease with chronic inflammatory stimulation, and long-term reflux irritation is a vital factor for arytenoid cartilage calcification. Our investigation compared the severity of ipsilateral arytenoid cartilage calcification with the frequency of recurrence of LCG after surgical treatment. METHODS A retrospective chart review of prospectively gathered data over five years from 327 patients, including 153 subjects without laryngeal lesions, were age- and sex-matched normal controls, 103 patients with various other vocal cord lesions were in the laryngeal lesion group and 71 LCG patients met the diagnostic criteria pathologically. All subjects underwent laryngeal high-resolution computed tomography (HRCT) prior to therapeutic interventions. The computed tomography (CT) value and arytenoid cartilage calcification were obtained using image data before surgery, and their clinical significance was further analyzed. RESULTS Seventy-one patients with LCG, including sixty-two males, were enrolled in the study. Among these cases, there were 67 patients with unilateral vocal cord lesions. Of the 103 eligible patients in the laryngeal lesion group, 87 had unilateral lesions, which including eighty-seven men. Of the 153 average subjects, 105 were male. The rate of arytenoid cartilage calcification in the LCG group was dramatically higher in the lesion side than in the laryngeal lesions and normal group (P < 0.01). Furthermore, the CT value (P < 0.01) and range of calcification (P < 0.01) were significantly higher in patients with LCG than in those with laryngeal lesions. Importantly, patients with high CT values and the calcification range of lesions in the arytenoid cartilage displayed a greater lesion size and recurrence rate than patients with low CT values and lesion areas (P < 0.01). CONCLUSION Our results suggest that most patients with LCG present with calcification of the arytenoid cartilage. The more severe the calcification in the arytenoid cartilage, the greater the risk of granuloma size and recurrence in LCG after surgical treatment. CT and bone density testing of the arytenoid cartilage may be an essential method to evaluate the prognosis of LCG.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wenguang Liu
- Department of Radiology, XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiu Zheng
- Department of Child Care, Changsha Maternal and Child Health Care Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
2
|
Brzezinski ET, Hubbe M, Hunter RL, Agnew AM. Sex differences in workload in medieval Poland: Patterns of asymmetry and biomechanical adaptation in the upper limb at Giecz. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24886. [PMID: 38130087 DOI: 10.1002/ajpa.24886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study characterizes sexual dimorphism in skeletal markers of upper limb mechanical loading due to lateralization as evidence of division of labor in medieval Giecz, Poland. METHODS Twenty-six dimensions for paired humeri, clavicles, and radii representing adult males (n = 89) and females (n = 53) were collected from a skeletal sample from the cemetery site Gz4. Percent directional asymmetry (DA) and absolute asymmetry (AA) for each dimension were compared among bones, osteometric subcategories, and sex. Additionally, side bias and sex differences were assessed in degenerative joint disease (DJD) and entheseal changes (ECs). RESULTS Nearly all measurements revealed significant asymmetry favoring the right side. Asymmetry was most pronounced in midshaft dimensions with few sex differences. There were more correlations among dimensions within elements than between elements, mainly in the midshaft. No laterality in DJD frequencies was noted for either sex, but females demonstrated significantly lower odds of having DJD than males in most joints. Most ECs demonstrated a right-bias and association with DA with no sex-specific patterns except the biceps brachii insertion, where females were ~5 times more likely to be scored "right" than males. DISCUSSION The general lack of sex differences in asymmetry and ECs suggests similarly demanding workloads for females and males, with the exception of sex-specific functional loading differences in the forearm. Further, DJD data suggest males engaged in more intensive activities involving the upper limb. These results enhance understanding of workload in this important historical period and provide a comparison for asymmetry in past populations.
Collapse
Affiliation(s)
- Emma T Brzezinski
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
- Skeletal Biology Research Lab, The Ohio State University, Columbus, Ohio, USA
| | - Mark Hubbe
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Randee L Hunter
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
- Skeletal Biology Research Lab, The Ohio State University, Columbus, Ohio, USA
| | - Amanda M Agnew
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
- Skeletal Biology Research Lab, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Whittier DE, Bevers MSAM, Geusens PPMM, van den Bergh JP, Gabel L. Characterizing Bone Phenotypes Related to Skeletal Fragility Using Advanced Medical Imaging. Curr Osteoporos Rep 2023; 21:685-697. [PMID: 37884821 PMCID: PMC10724303 DOI: 10.1007/s11914-023-00830-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Summarize the recent literature that investigates how advanced medical imaging has contributed to our understanding of skeletal phenotypes and fracture risk across the lifespan. RECENT FINDINGS Characterization of bone phenotypes on the macro-scale using advanced imaging has shown that while wide bones are generally stronger than narrow bones, they may be more susceptible to age-related declines in bone strength. On the micro-scale, HR-pQCT has been used to identify bone microarchitecture phenotypes that improve stratification of fracture risk based on phenotype-specific risk factors. Adolescence is a key phase for bone development, with distinct sex-specific growth patterns and significant within-sex bone property variability. However, longitudinal studies are needed to evaluate how early skeletal growth impacts adult bone phenotypes and fracture risk. Metabolic and rare bone diseases amplify fracture risk, but the interplay between bone phenotypes and disease remains unclear. Although bone phenotyping is a promising approach to improve fracture risk assessment, the clinical availability of advanced imaging is still limited. Consequently, alternative strategies for assessing and managing fracture risk include vertebral fracture assessment from clinically available medical imaging modalities/techniques or from fracture risk assessment tools based on clinical risk factors. Bone fragility is not solely determined by its density but by a combination of bone geometry, distribution of bone mass, microarchitecture, and the intrinsic material properties of bone tissue. As such, different individuals can exhibit distinct bone phenotypes, which may predispose them to be more vulnerable or resilient to certain perturbations that influence bone strength.
Collapse
Affiliation(s)
- Danielle E Whittier
- McCaig Institute for Bone and Joint Health and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada.
| | - Melissa S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Piet P M M Geusens
- Subdivision of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research In Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Subdivision of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leigh Gabel
- McCaig Institute for Bone and Joint Health and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Cosman MN, MacLatchy LM, Schlecht SH, Devlin MJ. Intraspecific variation of long bone cross-sectional properties in Pan troglodytes troglodytes and Gorilla gorilla gorilla. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:69-81. [PMID: 37504383 DOI: 10.1002/ajpa.24823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Morphological intraspecific variation is due to the balance between skeletal plasticity and genetic constraint on the skeleton. Osteogenic responses to external stimuli, such as locomotion, have been well documented interspecifically across the primate order, but less so at the intraspecific level. Here, we examine the differences in cross-sectional variability of the femur, humerus, radius, and tibia in Pan troglodytes troglodytes versus Gorilla gorilla gorilla. We investigate whether there are sex, species, bone, and trait differences in response to variable body size and locomotion. MATERIALS AND METHODS Adult male and female P. t. troglodytes and G. g. gorilla long bones from the Cleveland Museum of Natural History were scanned with a peripheral quantitative computer tomography system. Scans were taken at the midshaft of each bone according to functional bone length. Coefficients of variation were used to provide a size-independent measure of variation. We applied a Bonferroni correction to account for the multiple pairwise tests. RESULTS There were limited significant differences between males and females, however, females tended to be more variable than males. Variation in Gorilla, when significant, was greater than in Pan, although significant differences were limited. There were no differences between bone variability in male and female Gorilla, and female Pan. DISCUSSION Increased female variability may be due to more variable locomotor behavior, particularly during periods of pregnancy, lactation, and caring for an offspring compared to consistent locomotion over the life course by males. Body size may be a contributing factor to variability; more work is needed to understand this relationship.
Collapse
Affiliation(s)
| | - Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
MacLatchy LM, Cote SM, Deino AL, Kityo RM, Mugume AAT, Rossie JB, Sanders WJ, Cosman MN, Driese SG, Fox DL, Freeman AJ, Jansma RJW, Jenkins KEH, Kinyanjui RN, Lukens WE, McNulty KP, Novello A, Peppe DJ, Strömberg CAE, Uno KT, Winkler AJ, Kingston JD. The evolution of hominoid locomotor versatility: Evidence from Moroto, a 21 Ma site in Uganda. Science 2023; 380:eabq2835. [PMID: 37053310 DOI: 10.1126/science.abq2835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Living hominoids are distinguished by upright torsos and versatile locomotion. It is hypothesized that these features evolved for feeding on fruit from terminal branches in forests. To investigate the evolutionary context of hominoid adaptive origins, we analyzed multiple paleoenvironmental proxies in conjunction with hominoid fossils from the Moroto II site in Uganda. The data indicate seasonally dry woodlands with the earliest evidence of abundant C4 grasses in Africa based on a confirmed age of 21 million years ago (Ma). We demonstrate that the leaf-eating hominoid Morotopithecus consumed water-stressed vegetation, and postcrania from the site indicate ape-like locomotor adaptations. These findings suggest that the origin of hominoid locomotor versatility is associated with foraging on leaves in heterogeneous, open woodlands rather than forests.
Collapse
Affiliation(s)
- Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M Cote
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alan L Deino
- Berkeley Geochronology Center, Berkeley, CA 94709, USA
| | - Robert M Kityo
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Amon A T Mugume
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
- Uganda National Museum, Department of Museums and Monuments, Ministry of Tourism, Wildlife and Antiquities, Kampala, Uganda
| | - James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - William J Sanders
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miranda N Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven G Driese
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - David L Fox
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - April J Freeman
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Rutger J W Jansma
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Kirsten E H Jenkins
- Department of Social Sciences, Tacoma Community College, Tacoma, WA 98466, USA
| | - Rahab N Kinyanjui
- Earth Sciences Department, National Museums of Kenya, Nairobi, Kenya
- Max Planck Institute for Geoanthropology, Jena D-07743, Germany
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - William E Lukens
- Department of Geology & Environmental Science, James Madison University, Harrisonburg, VA 22807, USA
| | - Kieran P McNulty
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alice Novello
- CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, INRAE, Aix en Provence, France
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Caroline A E Strömberg
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Kevin T Uno
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Alisa J Winkler
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
- Section of Anatomy, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D Kingston
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Walker MM, Oxenham MF, Vlok M, Matsumura H, Thi Mai Huong N, Trinh HH, Minh TT, Miszkiewicz JJ. Human femur morphology and histology variation with ancestry and behaviour in an ancient sample from Vietnam. Ann Anat 2023; 247:152054. [PMID: 36696927 DOI: 10.1016/j.aanat.2023.152054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND There is a genetic component to the minimum effective strain (MES)-a threshold which determines when bone will adapt to function-which suggests ancestry should play a role in bone (re)modelling. Further elucidating this is difficult in living human populations because of the high global genetic admixture. We examined femora from an anthropological skeletal assemblage (Mán Bạc, Vietnam) representing distinct ancestral groups. We tested whether femur morphological and histological markers of modelling and remodelling differed between ancestries despite their similar lifestyles. METHODS Static histomorphometry data collected from subperiosteal cortical bone of the femoral midshaft, and gross morphometric measures of femur robusticity, were studied in 17 individuals from the Mán Bạc collection dated to 1906-1523 cal. BC. This assemblage represents agricultural migrants with affinity to East Asian groups, who integrated with the local hunter-gatherers with affinity to Australo-Papuan groups during the mid-Holocene. Femur robusticity and histology data were compared between groups of 'Migrant' (n = 8), 'Admixed' (n = 4), and 'Local' (n = 5). RESULTS Local individuals had more robust femoral diaphyses with greater secondary osteon densities, and relatively large secondary osteon and Haversian canal parameters than the migrants. The Migrant group showed gracile femoral shafts with the least dense bone made up of small secondary osteons and Haversian canals. The Admixed individuals fell between the Migrant and Local categories in terms of their femoral data. However, we also found that measures of how densely bone is remodelled per unit area were in a tight range across all three ancestries. CONCLUSIONS Bone modelling and remodelling markers varied with ancestral histories in our sample. This suggests that there is an ancestry related predisposition to bone optimising its metabolic expenditure likely in relation to the MES. Our results stress the need to incorporate population genetic history into hierarchical bone analyses. Understanding ancestry effects on bone morphology has implications for interpreting biomechanical loading history in past and modern human populations.
Collapse
Affiliation(s)
- Meg M Walker
- School of Archaeology and Anthropology, Australian National University, 0200 Canberra, ACT, Australia.
| | - Marc F Oxenham
- School of Archaeology and Anthropology, Australian National University, 0200 Canberra, ACT, Australia; Department of Archaeology, University of Aberdeen, AB24 3FX Aberdeen, UK
| | - Melandri Vlok
- Sydney Southeast Asia Centre, The University of Sydney, Camperdown 2050, NSW, Australia
| | | | - Nguyen Thi Mai Huong
- Anthropological and Palaeoenvironmental Department, The Institute of Archaeology of Vietnam, Hanoi, Viet Nam
| | - Hoang Hiep Trinh
- Institute of Archaeology, Vietnam Academy of Social Science, 61 Phan Chu Trinh, Hanoi, Viet Nam
| | - Tran T Minh
- Anthropological and Palaeoenvironmental Department, The Institute of Archaeology of Vietnam, Hanoi, Viet Nam
| | - Justyna J Miszkiewicz
- School of Archaeology and Anthropology, Australian National University, 0200 Canberra, ACT, Australia; School of Social Science, University of Queensland, 4072 St Lucia, QLD, Australia.
| |
Collapse
|
7
|
Whitney DG, Rabideau ML, McKee M, Hurvitz EA. Preventive Care for Adults With Cerebral Palsy and Other Neurodevelopmental Disabilities: Are We Missing the Point? Front Integr Neurosci 2022; 16:866765. [PMID: 35464602 PMCID: PMC9021436 DOI: 10.3389/fnint.2022.866765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Preventive care techniques are cornerstones of primary care for people with neurodevelopmental disabilities such as cerebral palsy (CP). However, well-established methods evaluating health constructs may not be applied in the same way for adults with CP, as compared to the general population, due to differences in anatomy/physiology, leading to missed opportunities for interventions, medication modifications, and other primary/secondary prevention goals. One barrier to care prevention comes from misinterpretation of values to capture health constructs, even when measurements are accurate. In this Perspective, we emphasize the need for differential interpretation of values from commonly used clinical measures that assess for well-known medical issues among adults with CP obesity risk, bone health, and kidney health. We provide technical, but simple, evidence to showcase why the underlying assumptions of how some measures relate to the health construct being assessed may not be appropriate for adults with CP, which may apply to other neurodevelopmental conditions across the lifespan.
Collapse
Affiliation(s)
- Daniel G. Whitney
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Daniel G. Whitney
| | - Michelle L. Rabideau
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Michael McKee
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Edward A. Hurvitz
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Henyš P, Kuchař M, Hájek P, Hammer N. Mechanical metric for skeletal biomechanics derived from spectral analysis of stiffness matrix. Sci Rep 2021; 11:15690. [PMID: 34344907 PMCID: PMC8333423 DOI: 10.1038/s41598-021-94998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
A new metric for the quantitative and qualitative evaluation of bone stiffness is introduced. It is based on the spectral decomposition of stiffness matrix computed with finite element method. The here proposed metric is defined as an amplitude rescaled eigenvalues of stiffness matrix. The metric contains unique information on the principal stiffness of bone and reflects both bone shape and material properties. The metric was compared with anthropometrical measures and was tested for sex sensitivity on pelvis bone. Further, the smallest stiffness of pelvis was computed under a certain loading condition and analyzed with respect to sex and direction. The metric complements anthropometrical measures and provides a unique information about the smallest bone stiffness independent from the loading configuration and can be easily computed by state-of-the-art subject specified finite element algorithms.
Collapse
Affiliation(s)
- Petr Henyš
- grid.6912.c0000000110151740Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Michal Kuchař
- grid.4491.80000 0004 1937 116XDepartment of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Petr Hájek
- grid.4491.80000 0004 1937 116XDepartment of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Niels Hammer
- grid.11598.340000 0000 8988 2476Department of Macroscopic and Clinical Anatomy, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria ,grid.9647.c0000 0004 7669 9786Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany ,grid.461651.10000 0004 0574 2038Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany
| |
Collapse
|
9
|
Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nat Commun 2021; 12:3408. [PMID: 34099702 PMCID: PMC8184749 DOI: 10.1038/s41467-021-23649-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics. Osteoporosis GWAS faces two challenges, causal gene discovery and a lack of phenotypic diversity. Here, the authors use the Diversity Outbred mouse population to inform human GWAS using networks and map genetic loci for 55 bone traits, identifying new potential bone strength genes.
Collapse
|
10
|
Rudolph SE, Caksa S, Gehman S, Garrahan M, Hughes JM, Tenforde AS, Ackerman KE, Bouxsein ML, Popp KL. Physical Activity, Menstrual History, and Bone Microarchitecture in Female Athletes with Multiple Bone Stress Injuries. Med Sci Sports Exerc 2021; 53:2182-2189. [PMID: 33831898 PMCID: PMC8440446 DOI: 10.1249/mss.0000000000002676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone stress injuries (BSIs) occur in up to 20% of runners and military recruits and those with a history of BSI have a 5-fold higher risk for a subsequent BSI. Yet, little is known about prior training, menstrual status and bone structure in runners who experience multiple BSIs. PURPOSE To determine differences in health and physical activity history, bone density, microarchitecture, and strength among female athletes with a history of multiple BSI, athletes with ≤1 BSI, and non-athletes. METHODS We enrolled 101 women (ages 18-32 years) for this cross-sectional study: non-athlete controls (n=17) and athletes with a history of ≥ 3 BSIs (n=21) or ≤1 BSI (n=63). We collected subjects' health and training history and measured bone microarchitecture of the distal tibia via high-resolution peripheral quantitative computed tomography (HR-pQCT) and areal bone mineral density (aBMD) of the hip and spine by dual-energy X-ray absorptiometry (DXA). RESULTS Groups did not differ according to age, BMI, age at menarche, aBMD, or tibial bone microarchitecture. Women with multiple BSIs had a higher prevalence of primary and secondary amenorrhea (p<0.01) compared to other groups. Total hours of physical activity in middle school were similar across groups; however, women with multiple BSIs performed more total hours of physical activity in high school (p=0.05), more hours of uniaxial loading in both middle school and high school (p=0.004, p=0.02) and a smaller proportion of multiaxial loading activity compared to other groups. CONCLUSION These observations suggest that participation in sports with multiaxial loading and maintaining normal menstrual status during adolescence and young adulthood may reduce the risk of multiple bone stress injuries.
Collapse
Affiliation(s)
- Sara E Rudolph
- Massachusetts General Hospital, Boston, MA United States Army Research Institute of Environmental Medicine, Natick MA Harvard Medical School, Boston MA Spaulding Rehabilitation Hospital, Cambridge MA Boston Children's Hospital, Boston MA Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mathis NJ, Adaniya EN, Smith LM, Robling AG, Jepsen KJ, Schlecht SH. Differential changes in bone strength of two inbred mouse strains following administration of a sclerostin-neutralizing antibody during growth. PLoS One 2019; 14:e0214520. [PMID: 30947279 PMCID: PMC6448823 DOI: 10.1371/journal.pone.0214520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/14/2019] [Indexed: 12/02/2022] Open
Abstract
Administration of sclerostin-neutralizing antibody (Scl-Ab) treatment has been shown to elicit an anabolic bone response in growing and adult mice. Prior work characterized the response of individual mouse strains but did not establish whether the impact of Scl-Ab on whole bone strength would vary across different inbred mouse strains. Herein, we tested the hypothesis that two inbred mouse strains (A/J and C57BL/6J (B6)) will show different whole bone strength outcomes following sclerostin-neutralizing antibody (Scl-Ab) treatment during growth (4.5–8.5 weeks of age). Treated B6 femurs showed a significantly greater stiffness (S) (68.8% vs. 46.0%) and maximum load (ML) (84.7% vs. 44.8%) compared to A/J. Although treated A/J and B6 femurs showed greater cortical area (Ct.Ar) similarly relative to their controls (37.7% in A/J and 41.1% in B6), the location of new bone deposition responsible for the greater mass differed between strains and may explain the greater whole bone strength observed in treated B6 mice. A/J femurs showed periosteal expansion and endocortical infilling, while B6 femurs showed periosteal expansion. Post-yield displacement (PYD) was smaller in treated A/J femurs (-61.2%, p < 0.001) resulting in greater brittleness compared to controls; an effect not present in B6 mice. Inter-strain differences in S, ML, and PYD led to divergent changes in work-to-fracture (Work). Work was 27.2% (p = 0.366) lower in treated A/J mice and 66.2% (p < 0.001) greater in treated B6 mice relative to controls. Our data confirmed the anabolic response to Scl-Ab shown by others, and provided evidence suggesting the mechanical benefits of Scl-Ab administration may be modulated by genetic background, with intrinsic growth patterns of these mice guiding the location of new bone deposition. Whether these differential outcomes will persist in adult and elderly mice remains to be determined.
Collapse
Affiliation(s)
- Noah J. Mathis
- School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily N. Adaniya
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lauren M. Smith
- School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl J. Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen H. Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
13
|
Miszkiewicz JJ, Mahoney P. Histomorphometry and cortical robusticity of the adult human femur. J Bone Miner Metab 2019; 37:90-104. [PMID: 29332195 DOI: 10.1007/s00774-017-0899-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/27/2017] [Indexed: 01/29/2023]
Abstract
Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.
Collapse
Affiliation(s)
- Justyna Jolanta Miszkiewicz
- Skeletal Biology and Forensic Anthropology Research Group, School of Archaeology and Anthropology, Australian National University, Canberra, ACT, 2601, Australia.
- Human Osteology Research Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK.
| | - Patrick Mahoney
- Human Osteology Research Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| |
Collapse
|
14
|
Lacoste Jeanson A, Santos F, Villa C, Banner J, Brůžek J. Architecture of the femoral and tibial diaphyses in relation to body mass and composition: Research from whole-body CT scans of adult humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:813-826. [DOI: 10.1002/ajpa.23713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Alizé Lacoste Jeanson
- Laboratory of 3D Imaging and Analytical Methods, Faculty of Natural Sciences, Department of Anthropology and Human Genetics; Charles University; Praha 2 Czech Republic
| | - Frédéric Santos
- PACEA, UMR 5199, CNRS; Université de Bordeaux, Bâtiment B8; Talence Allée Geoffroy Saint Hilaire, CS 50023, Talence France
| | - Chiara Villa
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Ø Denmark
| | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Ø Denmark
| | - Jaroslav Brůžek
- Laboratory of 3D Imaging and Analytical Methods, Faculty of Natural Sciences, Department of Anthropology and Human Genetics; Charles University; Praha 2 Czech Republic
- PACEA, UMR 5199, CNRS; Université de Bordeaux, Bâtiment B8; Talence Allée Geoffroy Saint Hilaire, CS 50023, Talence France
| |
Collapse
|
15
|
Yingling VR, Ferrari-Church B, Strickland A. Tibia functionality and Division II female and male collegiate athletes from multiple sports. PeerJ 2018; 6:e5550. [PMID: 30221092 PMCID: PMC6138042 DOI: 10.7717/peerj.5550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
Background Bone strength is developed through a combination of the size and shape (architecture) of a bone as well as the bone's material properties; and therefore, no one outcome variable can measure a positive or negative adaptation in bone. Skeletal robusticity (total area/ bone length) a measure of bones external size varies within the population and is independent of body size, but robusticity has been associated with bone strength. Athletes may have similar variability in robusticity values as the general population and thus have a wide range of bone strengths based on the robustness of their bones. Therefore, the purpose of this study was to determine if an athlete's bone strength and cortical area relative to body size was dependent on robusticity. The second aim was to determine if anthropometry or muscle function measurements were associated with bone robusticity. Methods Bone variables contributing to bone strength were measured in collegiate athletes and a reference group using peripheral quantitative computed tomography (pQCT) at the 50% tibial site. Bone functionality was assessed by plotting bone strength and cortical area vs body size (body weight x tibial length) and robustness (total area/length) vs body size. Bone strength was measured using the polar strength-strain index (SSIp). Based on the residuals from the regression, an athlete's individual functionality was determined, and two groups were formed "weaker for size" (WS) and "stronger for size" (SS). Grip strength, leg extensor strength and lower body power were also measured. Results Division II athletes exhibited a natural variation in (SSIp) relative to robusticity consistent with previous studies. Bone strength (SSIp) was dependent on the robusticity of the tibia. The bone traits that comprise bone strength (SSIp) were significantly different between the SS and WS groups, yet there were minimal differences in the anthropometric data and muscle function measures between groups. A lower percentage of athletes from ball sports were "weaker for size" (WS group) and a higher percentage of swimmers were in the WS group. Discussion A range of strength values based on robusticity occurs in athletes similar to general populations. Bones with lower robusticity (slender) were constructed with less bone tissue and had less strength. The athletes with slender bones were from all sports including track and field and ball sports but the majority were swimmers. Conclusions Athletes, even after optimal training for their sport, may have weaker bones based on robusticity. Slender bones may therefore be at a higher risk for fracture under extreme loading events but also yield benefits to some athletes (swimmers) due to their lower bone mass.
Collapse
Affiliation(s)
- Vanessa R Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA, United States of America
| | - Benjamin Ferrari-Church
- Department of Kinesiology, California State University, East Bay, Hayward, CA, United States of America
| | - Ariana Strickland
- Department of Kinesiology, California State University, East Bay, Hayward, CA, United States of America
| |
Collapse
|
16
|
Xin F, Smith LM, Susiarjo M, Bartolomei MS, Jepsen KJ. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy002. [PMID: 29732168 PMCID: PMC5920333 DOI: 10.1093/eep/dvy002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals.
Collapse
Affiliation(s)
- Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Smith
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY14642, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Lacoste Jeanson A, Santos F, Dupej J, Velemínská J, Brůžek J. Sex-specific functional adaptation of the femoral diaphysis to body composition. Am J Hum Biol 2018; 30:e23123. [DOI: 10.1002/ajhb.23123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/19/2018] [Accepted: 02/24/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Alizé Lacoste Jeanson
- Department of Anthropology and Human Genetics, Faculty of Natural Sciences; Charles University - Viničná 7; 128 43 Prague 2 Czech Republic
| | - Frédéric Santos
- PACEA, UMR 5199, CNRS, Université de Bordeaux - Bâtiment B8, Allée Geoffroy Saint Hilaire, CS 50023; F-33 400 Talence France
| | - Ján Dupej
- Department of Anthropology and Human Genetics, Faculty of Natural Sciences; Charles University - Viničná 7; 128 43 Prague 2 Czech Republic
- Department of Software and Computer Science Education, Faculty of Mathematics and Physics; Charles University - Malostranske Namestí 25, 118 00 Prague 1, Czech Republic; Prague Czech Republic
| | - Jana Velemínská
- Department of Anthropology and Human Genetics, Faculty of Natural Sciences; Charles University - Viničná 7; 128 43 Prague 2 Czech Republic
| | - Jaroslav Brůžek
- Department of Anthropology and Human Genetics, Faculty of Natural Sciences; Charles University - Viničná 7; 128 43 Prague 2 Czech Republic
- Department of Software and Computer Science Education, Faculty of Mathematics and Physics; Charles University - Malostranske Namestí 25, 118 00 Prague 1, Czech Republic; Prague Czech Republic
| |
Collapse
|
18
|
Liu Z, Han T, Werner H, Rosen CJ, Schaffler MB, Yakar S. Reduced Serum IGF-1 Associated With Hepatic Osteodystrophy Is a Main Determinant of Low Cortical but Not Trabecular Bone Mass. J Bone Miner Res 2018; 33:123-136. [PMID: 28902430 PMCID: PMC5771972 DOI: 10.1002/jbmr.3290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Hepatic osteodystrophy is multifactorial in its pathogenesis. Numerous studies have shown that impairments of the hepatic growth hormone/insulin-like growth factor-1 axis (GH/IGF-1) are common in patients with non-alcoholic fatty liver disease, chronic viral hepatitis, liver cirrhosis, and chronic cholestatic liver disease. Moreover, these conditions are also associated with low bone mineral density (BMD) and greater fracture risk, particularly in cortical bone sites. Hence, we addressed whether disruptions in the GH/IGF-1 axis were causally related to the low bone mass in states of chronic liver disease using a mouse model of liver-specific GH-receptor (GHR) gene deletion (Li-GHRKO). These mice exhibit chronic hepatic steatosis, local inflammation, and reduced BMD. We then employed a crossing strategy to restore liver production of IGF-1 via hepatic IGF-1 transgene (HIT). The resultant Li-GHRKO-HIT mouse model allowed us to dissect the roles of liver-derived IGF-1 in the pathogenesis of osteodystrophy during liver disease. We found that hepatic IGF-1 restored cortical bone acquisition, microarchitecture, and mechanical properties during growth in Li-GHRKO-HIT mice, which was maintained during aging. However, trabecular bone volume was not restored in the Li-GHRKO-HIT mice. We found increased bone resorption indices in vivo as well as increased basal reactive oxygen species and increased mitochondrial stress in osteoblast cultures from Li-GHRKO and the Li-GHRKO-HIT compared with control mice. Changes in systemic markers such as inflammatory cytokines, osteoprotegerin, osteopontin, parathyroid hormone, osteocalcin, or carboxy-terminal collagen cross-links could not fully account for the diminished trabecular bone in the Li-GHRKO-HIT mice. Thus, the reduced serum IGF-1 associated with hepatic osteodystrophy is a main determinant of low cortical but not trabecular bone mass. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhongbo Liu
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology New York University College of Dentistry New York, NY 10010-4086
| | - Tianzhen Han
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology New York University College of Dentistry New York, NY 10010-4086
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology New York University College of Dentistry New York, NY 10010-4086
| |
Collapse
|
19
|
Jepsen KJ, Kozminski A, Bigelow EM, Schlecht SH, Goulet RW, Harlow SD, Cauley JA, Karvonen-Gutierrez C. Femoral Neck External Size but not aBMD Predicts Structural and Mass Changes for Women Transitioning Through Menopause. J Bone Miner Res 2017; 32:1218-1228. [PMID: 28084657 PMCID: PMC5466474 DOI: 10.1002/jbmr.3082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 01/23/2023]
Abstract
The impact of adult bone traits on changes in bone structure and mass during aging is not well understood. Having shown that intracortical remodeling correlates with external size of adult long bones led us to hypothesize that age-related changes in bone traits also depend on external bone size. We analyzed hip dual-energy X-ray absorptiometry images acquired longitudinally over 14 years for 198 midlife women transitioning through menopause. The 14-year change in bone mineral content (BMC, R2 = 0.03, p = 0.015) and bone area (R2 = 0.13, p = 0.001), but not areal bone mineral density (aBMD, R2 = 0.00, p = 0.931) correlated negatively with baseline femoral neck external size, adjusted for body size using the residuals from a linear regression between baseline bone area and height. The dependence of the 14-year changes in BMC and bone area on baseline bone area remained significant after adjusting for race/ethnicity, postmenopausal hormone use, the 14-year change in weight, and baseline aBMD, weight, height, and age. Women were sorted into tertiles using the baseline bone area-height residuals. The 14-year change in BMC (p = 0.009) and bone area (p = 0.001) but not aBMD (p = 0.788) differed across the tertiles. This suggested that women showed similar changes in aBMD for different structural and biological reasons: women with narrow femoral necks showed smaller changes in BMC but greater increases in bone area compared to women with wide femoral necks who showed greater losses in BMC but without large compensatory increases in bone area. This finding is opposite to expectations that periosteal expansion acts to mechanically offset bone loss. Thus, changes in femoral neck structure and mass during menopause vary widely among women and are predicted by baseline external bone size but not aBMD. How these different structural and mass changes affect individual strength-decline trajectories remains to be determined. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Kozminski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Erin Mr Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert W Goulet
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
20
|
Murach MM, Kang YS, Goldman SD, Schafman MA, Schlecht SH, Moorhouse K, Bolte JH, Agnew AM. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk. Ann Biomed Eng 2017; 45:2159-2173. [PMID: 28547660 DOI: 10.1007/s10439-017-1850-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022]
Abstract
The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p < 0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.
Collapse
Affiliation(s)
- Michelle M Murach
- Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Yun-Seok Kang
- Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Samuel D Goldman
- Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Michelle A Schafman
- Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Biomedical Sciences Research Building, Ann Arbor, MI, 48109, USA
| | - Kevin Moorhouse
- National Highway Traffic and Safety Administration, Vehicle Research and Test Center, East Liberty, OH, 43074, USA
| | - John H Bolte
- Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Amanda M Agnew
- Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Schlecht SH, Smith LM, Ramcharan MA, Bigelow EM, Nolan BT, Mathis NJ, Cathey A, Manley E, Menon R, McEachin RC, Nadeau JH, Jepsen KJ. Canalization Leads to Similar Whole Bone Mechanical Function at Maturity in Two Inbred Strains of Mice. J Bone Miner Res 2017; 32:1002-1013. [PMID: 28177139 PMCID: PMC5413428 DOI: 10.1002/jbmr.3093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 11/10/2022]
Abstract
Previously, we showed that cortical mineralization is coordinately adjusted to mechanically offset external bone size differences between A/J (narrow) and C57BL/6J (wide) mouse femora to achieve whole bone strength equivalence at adulthood. The identity of the genes and their interactions that are responsible for establishing this homeostatic state (ie, canalization) remain unknown. We hypothesize that these inbred strains, whose interindividual differences in bone structure and material properties mimic that observed among humans, achieve functional homeostasis by differentially adjusting key molecular pathways regulating external bone size and mineralization throughout growth. The cortices of A/J and C57BL/6J male mouse femora were phenotyped and gene expression levels were assessed across growth (ie, ages 2, 4, 6, 8, 12, 16 weeks). A difference in total cross-sectional area (p < 0.01) and cortical tissue mineral density were apparent between mouse strains by age 2 weeks and maintained at adulthood (p < 0.01). These phenotypic dissimilarities corresponded to gene expression level differences among key regulatory pathways throughout growth. A/J mice had a 1.55- to 7.65-fold greater expression among genes inhibitory to Wnt pathway induction, whereas genes involved in cortical mineralization were largely upregulated 1.50- to 3.77-fold to compensate for their narrow diaphysis. Additionally, both mouse strains showed an upregulation among Wnt pathway antagonists corresponding to the onset of adult ambulation (ie, increased physiological loads). This contrasts with other studies showing an increase in Wnt pathway activation after functionally isolated, experimental in vivo loading regimens. A/J and C57BL/6J long bones provide a model to develop a systems-based approach to identify individual genes and the gene-gene interactions that contribute to trait differences between the strains while being involved in the process by which these traits are coordinately adjusted to establish similar levels of mechanical function, thus providing insight into the process of canalization. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lauren M Smith
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Melissa A Ramcharan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Erin Mr Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bonnie T Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Noah J Mathis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amber Cathey
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eugene Manley
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Seton M. Review: Breaking From Bisphosphonates. Arthritis Rheumatol 2017; 69:494-498. [DOI: 10.1002/art.39967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Margaret Seton
- Brigham and Women's Hospital and Massachusetts General Hospital; Boston
| |
Collapse
|
23
|
Skedros JG, Mears CS, Burkhead WZ. Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio. Bone Joint Res 2017; 6:1-7. [PMID: 28057631 PMCID: PMC5227054 DOI: 10.1302/2046-3758.61.bjr-2016-0145.r1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 12/04/2022] Open
Abstract
Objectives This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri. Materials and Methods A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio. Results The three new parameters showed the following correlations with ultimate fracture load: areal cortical index (r = 0.56, p < 0.001); canal-to-calcar ratio (r = 0.38, p = 0.03); and medial cortical ratio (r = 0.49, p < 0.005). These correlations were weaker when compared with those that we previously reported: mean cortical thickness of the proximal diaphysis versus ultimate fracture load (r = 0.71; p < 0.001); and mean density in the central humeral head versus ultimate fracture load (r = 0.70; p < 0.001). Conclusion Simple-to-measure radiographic parameters of the proximal humerus reported previously are more useful in predicting ultimate fracture load than are areal cortical index, canal-to-calcar ratio, and medial cortical ratio. Cite this article: J. G. Skedros, C. S. Mears, W. Z. Burkhead. Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio. Bone Joint Res 2017;6:1–7. DOI: 10.1302/2046-3758.61.BJR-2016-0145.R1
Collapse
Affiliation(s)
- J G Skedros
- The W.B. Carrell Memorial Clinic, Dallas, Texas, USA
| | - C S Mears
- Department of Orthopaedics and Utah Orthopaedic Specialists, University of Utah, Salt Lake City, Utah, USA
| | - W Z Burkhead
- The W.B. Carrell Memorial Clinic, Dallas, Texas, USA
| |
Collapse
|
24
|
Yingling VR, Mitchell KA, Lunny M. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model. PeerJ 2016; 4:e1575. [PMID: 26793427 PMCID: PMC4715452 DOI: 10.7717/peerj.1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity. Methods. Female rats (25 days old) were assigned to a control (C) group (n = 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n = 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n = 15) and (G-R) (n = 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n = 15) and (G-OVX) (n = 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed. Results. GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the GnRH-a group compared to C, a similar deficit in BV/TV was also measured following recovery and post-OVX. The trabecular number and thickness were lower in the GnRH-a group compared to control. Conclusion. These data suggest that following a transient delay in pubertal onset, trabecular bone volume was significantly lower and no restoration of bone volume occurred following recovery or post-OVX surgery. However, cortical bone strength was maintained through architectural adaptations in the cortical bone envelope. An increase in the polar moment of inertia offset increased bone resorption. The current data are the first to suppress trabecular bone during growth, and then add an OVX protocol at maturity. Trabecular bone and cortical bone differed in their response to hypothalamic suppression during development; trabecular bone was more sensitive to the negative effects of hypothalamic suppression.
Collapse
Affiliation(s)
- Vanessa R Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA, United States; Department of Kinesiology, Temple University, Philadelphia, PA, United States; Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, United States
| | - Kathryn A Mitchell
- Department of Kinesiology, Temple University , Philadelphia, PA , United States
| | - Megan Lunny
- Department of Kinesiology, Temple University , Philadelphia, PA , United States
| |
Collapse
|
25
|
Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men. Clin Orthop Relat Res 2015; 473:2530-9. [PMID: 25690167 PMCID: PMC4488191 DOI: 10.1007/s11999-015-4184-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. QUESTIONS/PURPOSES We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? METHODS Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). RESULTS Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; p<0.001, GLM). Likewise, the femurs of white women had 12% less cortical area compared with those of white men after adjusting for body size and bone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; p<0.001, GLM). In contrast, female and male femora from recombinant inbred mouse strains showed the opposite trend; femurs from female mice had a 4% larger cortical area compared with those of male mice after adjusting for body size and bone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). CONCLUSIONS Female femurs are not simply a more slender version of male femurs. Women acquire substantially less mass (cortical area) for their body size and bone size compared with men. Our analysis questions whether mouse long bone is a suitable model to study human sexual dimorphism. CLINICAL RELEVANCE Identifying differences in the way bones are constructed may be clinically important for developing sex-specific diagnostics and treatment strategies to reduce fragility fractures.
Collapse
|
26
|
Schlecht SH, Bigelow EMR, Jepsen KJ. How Does Bone Strength Compare Across Sex, Site, and Ethnicity? Clin Orthop Relat Res 2015; 473:2540-7. [PMID: 25739343 PMCID: PMC4488216 DOI: 10.1007/s11999-015-4229-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The risk of fragility fractures in the United States is approximately 2.5 times greater among black and white women compared with their male counterparts. On average, men of both ethnicities have wider bones of greater cortical mass compared with the narrower bones of lower cortical mass among women. However, it remains uncertain whether the low cortical area observed in the long bones of women is consistent with their narrower bone diameter or if their cortical area is reduced beyond that which is expected for the sex differences in body size and external bone size. QUESTIONS/PURPOSES We asked (1) do black and white women consistently have narrower bones of less strength across long bones compared with black and white men; and (2) do all long bones of black and white women have reduced cortical area compared with black and white men? METHODS Peripheral quantitative CT was used to quantify bone strength and cross-sectional morphology from the major long bones of 125 white and 115 black adult men and women (20-35 years of age). Regression analyses were used to test for differences in bone strength and cortical area after for adjusting for either body size, bone size, or both. RESULTS After adjusting bone strength for body size, regression analyses showed that black women had lower bone strength compared with black men (women: mean=298.7-25,522 mg HA mm4, 95% confidence interval [CI], 270-27,692 mg HA mm4; men: mean = 381.6-30,945 mg HA mm4, 95% CI, 358.2-32,853 mg HA mm4; percent difference=12%-38%, p=0.06-0.0001). Similarly, white women also had lower bone strength compared with white men (women: mean=229.5-22,892 mg HA mm4, 95% CI, 209.3-24,539 mg HA mm4; men: mean=314.3-29,986 mg HA mm4, 95% CI, 297.3-31,331 mg HA mm4; percent difference=27%-49%, p=0.0001). All long bones of women for both ethnicities showed lower cortical area compared with men. After accounting for both body size and external bone size, black women (women: mean=43.25-357.70 mm2, 95% CI, 41.45-367.52 mm2; men: mean=48.06-400.10 mm2, 95% CI, 46.67-408.72; percent difference=6%-25%, p=0.02-0.0001) and white women (women: mean=38.53-350.10 mm2, 95% CI, 36.99-359.80 mm2; men: mean=42.06-394.30 mm2, 95% CI, 40.95-402.10 mm2; percent difference=6%-22%, p=0.02-0.0001) were shown to have lower cortical area than their male counterparts. Therefore, the long bones of women are not only more slender than those of men, but also show a reduced cortical area that is 6% to 25% greater than expected for their external size, depending on the bone being considered. CONCLUSIONS The long bones of females are not just a more slender version of male long bones. Women have less cortical area than expected for their body size and bone size, which in part explains their reduced bone strength when compared with the more robust bones of men. CLINICAL RELEVANCE The outcome of this assessment may be clinically important for the development of diagnostics and treatment regimens used to combat fractures. Future work should look at how the relationship among parameters reported here translates to the more fracture-prone metaphyseal regions.
Collapse
Affiliation(s)
- Stephen H. Schlecht
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, Room 2148 BSRB, Ann Arbor, MI 48109 USA
| | - Erin M. R. Bigelow
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, Room 2148 BSRB, Ann Arbor, MI 48109 USA
| | - Karl J. Jepsen
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, Room 2148 BSRB, Ann Arbor, MI 48109 USA
| |
Collapse
|
27
|
Stewart MC, Goliath JR, Stout SD, Hubbe M. Intraskeletal Variability of Relative Cortical Area in Humans. Anat Rec (Hoboken) 2015; 298:1635-43. [PMID: 26058578 DOI: 10.1002/ar.23181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/26/2015] [Accepted: 04/20/2015] [Indexed: 11/11/2022]
Abstract
Histomorphometric and cross-sectional geometric studies of bone have provided valuable information about age at death, behavioral and activity patterns, and pathological conditions for past and present human populations. While a considerable amount of exploratory and applied research has been completed using histomorphometric and cross-sectional geometric properties, the effects of intraskeletal variability on interpreting observed histomorphometric data have not been fully explored. The purpose of this study is to quantify intraskeletal variability in the relative cortical area of long bones and ribs from modern humans. To examine intraskeletal variability, cross-sections of the femur, tibia, fibula, humerus, radius, ulna, and rib when present, were examined within individuals from a cadaveric collection (N = 34). Relative cortical area was compared within individuals using a repeated measurements General Linear Model, which shows significant differences between bones, particularly between the rib and the remaining long bones. Complementarily, correlations between bones' relative cortical area values suggest an important allometric component affecting this aspect of long bones, but not of the rib. This study highlights the magnitude of intraskeletal variability in relative cortical area in the human skeleton, and because the relative cortical area of any particular bone is affected by a series of confounding factors, extrapolation of relative cortical area values to infer load history for other skeletal elements can be misleading.
Collapse
Affiliation(s)
- Marissa C Stewart
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Jesse R Goliath
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Sam D Stout
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Mark Hubbe
- Department of Anthropology, The Ohio State University, Columbus, Ohio.,Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, San Pedro de Atacama, Chile
| |
Collapse
|
28
|
Schlecht SH, Bigelow EMR, Jepsen KJ. Mapping the natural variation in whole bone stiffness and strength across skeletal sites. Bone 2014; 67:15-22. [PMID: 24999223 PMCID: PMC4786740 DOI: 10.1016/j.bone.2014.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this 'complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p<0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7-2.3 times less stiff and strong in men and 1.3-2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility.
Collapse
Affiliation(s)
- Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Biomedical Sciences Research Building, Ann Arbor, MI 48109, USA.
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Biomedical Sciences Research Building, Ann Arbor, MI 48109, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Biomedical Sciences Research Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Smith LM, Bigelow EMR, Nolan BT, Faillace ME, Nadeau JH, Jepsen KJ. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice. Bone 2014; 67:130-8. [PMID: 25003813 PMCID: PMC4413452 DOI: 10.1016/j.bone.2014.06.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/19/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J-Chr(A/J)/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i=the substituted chromosome) showed changes in mechanical function on the order of -26.6 to +11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function.
Collapse
Affiliation(s)
- Lauren M Smith
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | - Bonnie T Nolan
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA
| | | | | | - Karl J Jepsen
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA.
| |
Collapse
|
30
|
Donnelly E, Lane JM, Boskey AL. Research perspectives: The 2013 AAOS/ORS research symposium on Bone Quality and Fracture Prevention. J Orthop Res 2014; 32:855-64. [PMID: 24700449 PMCID: PMC4716655 DOI: 10.1002/jor.22626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/05/2014] [Indexed: 02/04/2023]
Abstract
Bone fracture resistance is determined by the amount of bone present ("bone quantity") and by a number of other geometric and material factors grouped under the term "bone quality." In May 2013, a workshop was convened among a group of clinicians and basic science investigators to review the current state of the art in Bone Quality and Fracture Prevention and to make recommendations for future directions for research. The AAOS/ORS/OREF workshop was attended by 64 participants, including two representatives of the National Institutes of Arthritis and Musculoskeletal and Skin Diseases and 13 new investigators whose posters stimulated additional interest. A key outcome of the workshop was a set of recommendations regarding clinically relevant aspects of both bone quality and quantity that clinicians can use to inform decisions about patient care and management. The common theme of these recommendations was the need for more education of clinicians in areas of bone quality and for basic science studies to address specific topics of pathophysiology, diagnosis, prevention, and treatment of altered bone quality. In this report, the organizers with the assistance of the speakers and other attendees highlight the major findings of the meeting that justify the recommendations and needs for this field.
Collapse
Affiliation(s)
- Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York,Hospital for Special Surgery, New York, New York
| | | | | |
Collapse
|
31
|
Havill LM, Coan HB, Mahaney MC, Nicolella DP. Characterization of complex, co-adapted skeletal biomechanics phenotypes: a needed paradigm shift in the genetics of bone structure and function. Curr Osteoporos Rep 2014; 12:174-80. [PMID: 24756406 PMCID: PMC4010686 DOI: 10.1007/s11914-014-0211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genetic architecture of skeletal biomechanical performance has tremendous potential to advance our knowledge of the biological mechanisms that drive variation in skeletal fragility and osteoporosis risk. Research using traditional approaches that focus on specific gene pathways is increasing our understanding of how and to what degree those pathways may affect population-level variation in fracture susceptibility, and shows that known pathways may affect bone fragility through unsuspected mechanisms. Non-traditional approaches that incorporate a new appreciation for the degree to which bone traits co-adapt to functional loading environments, using a wide variety of redundant compensatory mechanisms to meet both physiological and mechanical demands, represent a radical departure from the dominant reductionist paradigm and have the potential to rapidly advance our understanding of bone fragility and identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- L M Havill
- Genetics, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA,
| | | | | | | |
Collapse
|
32
|
Are we taking full advantage of the growing number of pharmacological treatment options for osteoporosis? Curr Opin Pharmacol 2014; 16:64-71. [PMID: 24747363 DOI: 10.1016/j.coph.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/23/2022]
Abstract
We are becoming increasingly aware that the manner in which our skeleton ages is not uniform within and between populations. Pharmacological treatment options with the potential to combat age-related reductions in skeletal strength continue to become available on the market, notwithstanding our current inability to fully utilize these treatments by accounting for an individual's unique biomechanical needs. Revealing new molecular mechanisms that improve the targeted delivery of pharmaceuticals is important; however, this only addresses one part of the solution for differential age-related bone loss. To improve current treatment regimes, we must also consider specific biomechanical mechanisms that define how these molecular pathways ultimately impact whole bone fracture resistance. By improving our understanding of the relationship between molecular and biomechanical mechanisms, clinicians will be better equipped to take full advantage of the mounting pharmacological treatments available. Ultimately this will enable us to reduce fracture risk among the elderly more strategically, more effectively, and more economically. In this interest, the following review summarizes the biomechanical basis of current treatment strategies while defining how different biomechanical mechanisms lead to reduced fracture resistance. It is hoped that this may serve as a template for the identification of new targets for pharmacological treatments that will enable clinicians to personalize care so that fracture incidence may be globally reduced.
Collapse
|