1
|
Perepletchikova D, Kuchur P, Basovich L, Khvorova I, Lobov A, Azarkina K, Aksenov N, Bozhkova S, Karelkin V, Malashicheva A. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Cell Commun Signal 2025; 23:100. [PMID: 39972367 PMCID: PMC11841332 DOI: 10.1186/s12964-025-02096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Angiogenesis and osteogenesis are closely interrelated. The interaction between endothelial and bone-forming cells, such as osteoblasts, is crucial for normal bone development and repair. Juxtacrine and paracrine mechanisms play key roles in cell differentiation towards the osteogenic direction, assuming the direct effect of endothelium on osteogenic differentiation. However, the mechanisms of this interplay have yet to be thoroughly studied. METHODS Isolated endothelial cells (EC) from human umbilical vein and human osteoblasts (OB) from the epiphysis of the femur or tibia were cultured in direct and indirect (separated by membrane) contact in vitro under the osteogenic differentiation conditions. Osteogenic differentiation was verified by RT-PCR, and alizarin red staining. Shotgun proteomics and RNA-sequencing were used to compare both EC and OB under different co-culture conditions to assess the mechanisms of EC-OB interplay. To verify the role of Notch signaling, experiments with Notch modulation in EC were performed by EC lentiviral transduction with further co-cultivation with OB. Additionally, the effect of Notch modulation in EC was assessed by RNA-sequencing. RESULTS EC have opposite effects on osteogenic differentiation depending on the co-culture conditions with OB. In direct contact, EC enhance osteogenic differentiation, but in indirect cultures, EC suppress it. Our proteotranscriptomic analysis revealed that the osteosuppressive effect is related to the action of paracrine factors secreted by EC, while the osteoinductive properties of EC are mediated by the Notch signaling pathway, which can be activated only upon a physical contact of EC with OB. Indeed, in the direct co-culture, the knockdown of Notch1 and Notch3 receptors in EC has an inhibitory effect on the OB osteogenic differentiation, whereas activation of Notch by intracellular domain of either Notch1 or Notch3 in EC has an inductive effect on the OB osteogenic differentiation. CONCLUSION The data indicate the dual role of the endothelium in regulating osteogenic differentiation and highlight the unique role of the Notch signaling pathway in inducing osteogenic differentiation during cell-to-cell interactions. The findings of the study emphasize the importance of intercellular communication in the regulation of osteoblast differentiation during bone development and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Svetlana Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | - Vitaliy Karelkin
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | | |
Collapse
|
2
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
3
|
Wang L, Wang S, Dai X, Yue G, Yin J, Xu T, Shi H, Liu T, Jia Z, Brömme D, Zhang S, Zhang D. Salvia miltiorrhiza in osteoporosis: a review of its phytochemistry, traditional clinical uses and preclinical studies (2014-2024). Front Pharmacol 2024; 15:1483431. [PMID: 39421672 PMCID: PMC11484006 DOI: 10.3389/fphar.2024.1483431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Osteoporosis becomes a global public health concern due to its rising prevalence and substantial impact on life quality. Salvia miltiorrhiza Bunge (Salviae Miltiorrhizae Radix et Rhizoma, SM) has been firstly recorded in Shen Nong's Herbal Classic, and is frequently prescribed in conjunction with other herbs for the management of osteoporosis. This systematic review aims to comprehensively analyze the recent advances of SM on osteoporosis in traditional Chinese clinical uses and preclinical investigations. Literature encompassing pertinent studies were systematically retrieved across multiple databases, including the PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese VIP Database, and Chinese Biomedical Literature Database. Original investigations spanning from February 2014 to March 2024, including traditional Chinese medicine (TCM) clinical trials and preclinical studies, were employed to analyze the effects and actions of SM on osteoporosis. Thirty-eight TCM clinical trials were identified to employ SM in combination with other herbs for the management of primary and secondary osteoporosis. The overall efficacy was between 77% and 96.67%. Forty preclinical studies were identified to investigate the effects and actions of SM and/or its ingredients on osteoporosis. The anti-osteoporosis actions of this herb may be attributed to inhibit osteoclastogenesis/bone resorption and promote osteoblastogenesis/osteogenesis. The ethanol extracts and its ingredients (tanshinones) inhibit osteoclastogenesis/bone resorption by inhibiting the MAPK/NF-κB/NFATc1 signaling pathway and cathepsin K-induced collagen degradation. Both ethanol extracts (tanshinones) and water extracts (Sal B and tanshinol) contribute to osteoblastogenesis by promoting osteogenesis and angiogenesis via activation of the Wnt/β-catenin/VEGF and ERK/TAZ pathways, and eliminating ROS production targeting Nrf2/ARE/HO-1 pathway. In conclusions, SM may offer a novel strategy for osteoporosis management. Well-designed clinical trials are still needed to evaluate the actions of this herb and its ingredients on bone remodeling.
Collapse
Affiliation(s)
- Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaiyue Yue
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanhong Jia
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Shuofeng Zhang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
5
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Yılmaz D, Marques FC, Fischer Y, Zimmermann S, Hwang G, Atkins PR, Mathavan N, Singh A, de Souza PP, Kuhn GA, Wehrle E, Müller R. Elucidating the mechano-molecular dynamics of TRAP activity using CRISPR/Cas9 mediated fluorescent reporter mice. Heliyon 2024; 10:e32949. [PMID: 39021958 PMCID: PMC11252717 DOI: 10.1016/j.heliyon.2024.e32949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Osteoclasts are essential for bone remodeling by adapting their resorptive activity in response to their mechanical in vivo environment. However, the molecular mechanisms underlying this process remain unclear. Here, we demonstrated the role of tartrate-resistant acid phosphatase (TRAP, Acp5), a key enzyme secreted by osteoclasts, in bone remodeling and mechanosensitivity. Using CRISPR/Cas9 reporter mice, we demonstrated bone cell reporter (BCRIbsp/Acp5) mice feature fluorescent TRAP-deficient osteoclasts and examined their activity during mechanically driven trabecular bone remodeling. Although BCRIbsp/Acp5 mice exhibited trabecular bone impairments and reduced resorption capacity in vitro, RNA sequencing revealed unchanged levels of key osteoclast-associated genes such as Ctsk, Mmp9, and Calcr. These findings, in conjunction with serum carboxy-terminal collagen crosslinks (CTX) and in vivo mechanical loading outcomes collectively indicated an unaltered bone resorption capacity of osteoclasts in vivo. Furthermore, we demonstrated similar mechanoregulation during trabecular bone remodeling in BCRIbsp/Acp5 and wild-type (WT) mice. Hence, this study provides valuable insights into the dynamics of TRAP activity in the context of bone remodeling and mechanosensation.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Gaonhae Hwang
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Penny R. Atkins
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, USA
| | | | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Pedro P.C. de Souza
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Lu M, Zhu M, Wu Z, Liu W, Cao C, Shi J. The role of YAP/TAZ on joint and arthritis. FASEB J 2024; 38:e23636. [PMID: 38752683 DOI: 10.1096/fj.202302273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."
Collapse
Affiliation(s)
- Mingcheng Lu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Mengqi Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Zuping Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Wei Liu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Chuwen Cao
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jiejun Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, Hangzhou, China
| |
Collapse
|
8
|
Cheng MF, Abdullah FS, Buechler MB. Essential growth factor receptors for fibroblast homeostasis and activation: Fibroblast Growth Factor Receptor (FGFR), Platelet Derived Growth Factor Receptor (PDGFR), and Transforming Growth Factor β Receptor (TGFβR). F1000Res 2024; 13:120. [PMID: 38988879 PMCID: PMC11234085 DOI: 10.12688/f1000research.143514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor β receptor (TGFβR) on fibroblast cell states.
Collapse
Affiliation(s)
- Maye F. Cheng
- Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | |
Collapse
|
9
|
Xia L, Lin H, Cao H, Lian J. Tenascin C as a novel zinc finger protein 750 target regulating the immunogenicity via DNA damage in lung squamous cell carcinoma. BMC Cancer 2024; 24:561. [PMID: 38711034 PMCID: PMC11071264 DOI: 10.1186/s12885-024-12285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.
Collapse
Affiliation(s)
- Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, CN, China.
| | - Hexin Lin
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, CN, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, CN, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, 361000, CN, China.
| | - Jiabian Lian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, CN, China.
| |
Collapse
|
10
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
11
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
12
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
13
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Wen X, Hu G, Xiao X, Zhang X, Zhang Q, Guo H, Li X, Liu Q, Li H. FGF2 positively regulates osteoclastogenesis via activating the ERK-CREB pathway. Arch Biochem Biophys 2022; 727:109348. [PMID: 35835230 DOI: 10.1016/j.abb.2022.109348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor 2 (FGF2) plays crucial roles in the growth and development of several tissues. However, its function in bone homeostasis remains controversial. Here, we found that exogenous FGF2 supplementation inhibited the mineralization of bone marrow stromal cells (BMSCs), at least partially, via up-regulating the gene expression of osteoclastogenesis. The FGF receptor (FGFR) allosteric antagonist SSR128129E modestly, whereas the FGFR tyrosine kinase inhibitor AZD4547 significantly antagonized the effects of FGF2. Mechanistically, FGF2 stimulated ERK phosphorylation, and the ERK signaling inhibitor PD325901 strongly blocked FGF2 enhancement of osteoclastogenesis. Moreover, the phosphorylation of CREB was also activated in response to FGF2, thereby potentiating the interaction of p-CREB with the promoter region of Rankl gene. Notably, FGF2-deficient BMSCs exhibited higher mineralization capability and lower osteoclastogenic gene expression. Correspondingly, FGF2-knockout mice showed increased bone mass and attenuated expression of osteoclast-related markers, which were associated with moderate inhibition of the ERK signaling. In conclusion, FGF2 positively regulates osteoclastogenesis via stimulating the ERK-CREB pathway. These findings establish the importance of FGF2 in bone homeostasis, hinting the potential use of FGF2/ERK/CREB specific inhibitors to fight against bone-related disorders, such as osteoporosis.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Xiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
15
|
Cho JH, Lee JH, Lee KM, Lee CK, Shin DM. BMP-2 Induced Signaling Pathways and Phenotypes: Comparisons Between Senescent and Non-senescent Bone Marrow Mesenchymal Stem Cells. Calcif Tissue Int 2022; 110:489-503. [PMID: 34714366 DOI: 10.1007/s00223-021-00923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The use of BMP-2 in orthopedic surgery is limited by uncertainty surrounding its effects on the differentiation of mesenchymal stem cells (MSCs) and how this is affected by cellular aging. This study compared the effects of recombinant human BMP-2 (rhBMP-2) on osteogenic and adipogenic differentiation between senescent and non-senescent MSCs. Senescent and non-senescent MSCs were cultured in osteogenic and adipogenic differentiation medium containing various concentrations of rhBMP-2. The phenotypes of these cells were compared by performing a calcium assay, adipogenesis assay, staining, real-time PCR, western blotting, and microarray analysis. rhBMP-2 induced osteogenic differentiation to a lesser extent (P < 0.001 and P = 0.005 for alkaline phosphatase activity and Ca2+ release) in senescent MSCs regardless of dose-dependent increase in both cells. However, the induction of adipogenic differentiation by rhBMP-2 was comparable between them. There was no difference between these two groups of cells in the adipogenesis assay (P = 0.279) and their expression levels of PPARγ were similar. Several genes such as CHRDL1, NOG, SMAD1, SMAD7, and FST encoding transcription factors were proposed to underlie the different responses of senescent and non-senescent MSCs to rhBMP-2 in microarray analyses. Furthermore, inflammatory, adipogenic, or cell death-related signaling pathways such as NF-kB or p38-MAPK pathways were upregulated by BMP-2 in senescent MSCs, whereas bone forming signaling pathways involving BMP, SMAD, and TGF- ß were upregulated in non-senescent MSCs as expected. This phenomenon explains bone forming dominance by non-senescent MSCs and possible frequent complications such as seroma, osteolysis, or neuritis in senescent MSCs during BMP-2 use in orthopedic surgery.
Collapse
Affiliation(s)
- Jae Hwan Cho
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-Gu, Seoul, Republic of Korea.
| | - Kyung Mee Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Choon-Ki Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
17
|
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in Bone and Cartilage Biology. Front Cell Dev Biol 2022; 9:788773. [PMID: 35059398 PMCID: PMC8764375 DOI: 10.3389/fcell.2021.788773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.
Collapse
Affiliation(s)
- Mylène Zarka
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Eric Haÿ
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Martine Cohen-Solal
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
18
|
Lu P, Shen YM, Hua T, Pan T, Chen G, Dai T, Shi KQ. Overexpression of FGF2 delays the progression of osteonecrosis of the femoral head activating the PI3K/Akt signaling pathway. J Orthop Surg Res 2021; 16:613. [PMID: 34663382 PMCID: PMC8522004 DOI: 10.1186/s13018-021-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of the current study was to explore the role and underlying mechanism of FGF-2 in dexamethasone (DEX)-induced apoptosis in MC3T3-E1 cells. METHODS GSE21727 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) by the limma/R package. MC3T3-E1 cells were exposed to DEX at different concentrations (0, 10-8, 10-7, 10-6, 10-5 and 10-4 mol/L), and cell viability, flow cytometry and TUNEL assay were used to detect cell proliferation and apoptosis. An FGF-2-pcDNA3 plasmid (oe-FGF-2) was used to overexpress FGF-2, and western blotting was conducted to detect protein expression. RESULTS We found that FGF-2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX downregulated FGF-2 gene and protein expression, inhibited viability and induced MC3T3-E1 cell apoptosis. Overexpression of FGF-2 reversed DEX-induced apoptosis in MC3T3-E1 cells. FGF-2-mediated anti-apoptosis was impaired by inactivating the PI3K/AKT pathway with LY294002. Moreover, overexpression of FGF2 delayed the progression of DEX-induced osteonecrosis of the femoral head (ONFH) animal model by regulation PI3K/Akt signaling pathway. CONCLUSION In conclusion, FGF-2 is effective at inhibiting DEX-induced MC3T3-E1 cell apoptosis through regulating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Pei Lu
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Yi-Min Shen
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Ting Hua
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Ting Pan
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Gang Chen
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Teng Dai
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China
| | - Ke-Qin Shi
- Department of Orthopaedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi City, 214000, Jiangsu Province, China.
| |
Collapse
|
19
|
Jiang L, Lin J, Zhao S, Wu J, Jin Y, Yu L, Wu N, Wu Z, Wang Y, Lin M. ADAMTS5 in Osteoarthritis: Biological Functions, Regulatory Network, and Potential Targeting Therapies. Front Mol Biosci 2021; 8:703110. [PMID: 34434966 PMCID: PMC8381022 DOI: 10.3389/fmolb.2021.703110] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 01/16/2023] Open
Abstract
ADAMTS5 is involved in the pathogenesis of OA. As the major aggrecanase-degrading articular cartilage matrix, ADAMTS5, has been regarded as a potential target for OA treatment. We here provide an updated insight on the regulation of ADAMTS5 and newly discovered therapeutic strategies for OA. Pathophysiological and molecular mechanisms underlying articular inflammation and mechanotransduction, as well as chondrocyte hypertrophy were discussed, and the role of ADAMTS5 in each biological process was reviewed, respectively. Senescence, inheritance, inflammation, and mechanical stress are involved in the overactivation of ADAMTS5, contributing to the pathogenesis of OA. Multiple molecular signaling pathways were observed to modulate ADAMTS5 expression, namely, Runx2, Fgf2, Notch, Wnt, NF-κB, YAP/TAZ, and the other inflammatory signaling pathways. Based on the fundamental understanding of ADAMTS5 in OA pathogenesis, monoclonal antibodies and small molecule inhibitors against ADAMTS5 were developed and proved to be beneficial pre-clinically both in vitro and in vivo. Recent novel RNA therapies demonstrated potentials in OA animal models. To sum up, ADAMTS5 inhibition and its signaling pathway–based modulations showed great potential in future therapeutic strategies for OA.
Collapse
Affiliation(s)
- Lejian Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiachen Lin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqian Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yu
- Department of Operating Room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Liu Y, Wang Z, Ju M, Zhao Y, Jing Y, Li J, Shao C, Fu T, Lv Z, Li G. Modification of COL1A1 in Autologous Adipose Tissue-Derived Progenitor Cells Rescues the Bone Phenotype in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2021; 36:1521-1534. [PMID: 33950576 DOI: 10.1002/jbmr.4326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a congenital genetic disorder mainly manifested as bone fragility and recurrent fracture. Mutation of COL1A1/COL1A2 genes encoding the type I collagen are most responsible for the clinical patients. Allogenic mesenchymal stem cells (MSCs) provide the potential to treat OI through differentiation into osteoblasts. Autologous defective MSCs have not been utilized in OI treatment mainly because of their impaired osteogenesis, but the latent mechanism has not been well understood. Here, the relative signaling abnormality of adipose-derived mesenchymal stem cells (ADSCs) isolated from OI type I mice (Col1a1+/-365 mice) was explored. Autologous ADSCs transfected by retrovirus carrying human COL1A1 gene was first utilized in OI therapy. The results showed that decreased activity of Yes-associated protein (YAP) due to hyperactive upstream Hippo kinases greatly contributed to the weakened bone-forming capacity of defective ADSCs. Recovered collagen synthesis of autologous ADSCs by COL1A1 gene modification normalized Hippo/YAP signaling and effectively rescued YAP-mediated osteogenesis. And the COL1A1 gene engineered autologous ADSCs efficaciously improved the microstructure, enhanced the mechanical properties and promoted bone formation of Col1a1+/-365 mice after femoral bone marrow cavity delivery and might serve as an alternative source of stem cells in OI treatment. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Mingyan Ju
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Kegelman CD, Collins JM, Nijsure MP, Eastburn EA, Boerckel JD. Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Curr Osteoporos Rep 2020; 18:526-540. [PMID: 32712794 PMCID: PMC8040027 DOI: 10.1007/s11914-020-00605-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.
Collapse
Affiliation(s)
- Christopher D Kegelman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Eastburn
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
23
|
Rumiński S, Kalaszczyńska I, Lewandowska-Szumieł M. Effect of cAMP Signaling Regulation in Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Cells 2020; 9:E1587. [PMID: 32629962 PMCID: PMC7408391 DOI: 10.3390/cells9071587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
The successful implementation of adipose-derived mesenchymal stem cells (ADSCs) in bone regeneration depends on efficient osteogenic differentiation. However, a literature survey and our own experience demonstrated that current differentiation methods are not effective enough. Since the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and adipocytes can be regulated by cyclic adenosine monophosphate (cAMP) signaling, we investigated the effects of cAMP activator, forskolin, and inhibitor, SQ 22,536, on the early and late osteogenic differentiation of ADSCs cultured in spheroids or in a monolayer. Intracellular cAMP concentration, protein kinase A (PKA) activity, and inhibitor of DNA binding 2 (ID2) expression examination confirmed cAMP up- and downregulation. cAMP upregulation inhibited the cell cycle and protected ADSCs from osteogenic medium (OM)-induced apoptosis. Surprisingly, the upregulation of cAMP level at the early stages of osteogenic differentiation downregulated the expression of osteogenic markers RUNX2, Osterix, and IBSP, which was more significant in spheroids, and it is used for the more efficient commitment of ADSCs into preosteoblasts, according to the previously reported protocol. However, cAMP upregulation in a culture of ADSCs in spheroids resulted in significantly increased osteocalcin production and mineralization. Thus, undifferentiated and predifferentiated ADSCs respond differently to cAMP pathway stimulation in terms of osteogenesis, which might explain the ambiguous results from the literature.
Collapse
Affiliation(s)
- Sławomir Rumiński
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Małgorzata Lewandowska-Szumieł
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
24
|
Shen YS, Chen XJ, Wuri SN, Yang F, Pang FX, Xu LL, He W, Wei QS. Polydatin improves osteogenic differentiation of human bone mesenchymal stem cells by stimulating TAZ expression via BMP2-Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2020; 11:204. [PMID: 32460844 PMCID: PMC7251742 DOI: 10.1186/s13287-020-01705-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Polydatin (PD), extracted from Polygonum cuspidatum, has shown potential therapeutic applications due to its antiosteoporotic and anti-inflammatory activities. Our previous study suggested that PD promotes the osteogenesis of human bone marrow stromal cells (hBMSCs) via the BMP2-Wnt/β-catenin pathway. The aim of our present study was to further explore the role of PD-mediated regulation of Tafazzin (TAZ), a transcriptional coactivator with a PDZ-binding motif, in osteogenesis. MATERIALS AND METHODS hBMSCs were isolated and treated with PD at various concentrations. Alizarin red staining and RT-qPCR were performed to identify calcium complex deposition in hBMSCs as well as the expression of specific osteoblast-related markers, respectively, in each group. Next, TAZ-silenced hBMSCs were generated by lentivirus-produced TAZ shRNA. After treatment with PD, the osteogenic abilities of the TAZ-silenced and control hBMSCs were estimated by ALP activity assay, and expression of the TAZ protein was detected by Western blot analysis and immunofluorescence staining. In vitro, an ovariectomized (OVX) mouse model was established and used to evaluate the effect of PD on bone destruction by micro-CT, immunohistochemistry, and ELISA. RESULTS In vitro, 30 μM PD significantly improved the proliferation and calcium deposition of hBMSCs and markedly stimulated the expression of the mRNAs RUNX2, Osteopontin, DLX5, β-catenin, TAZ, and Osteocalcin (OCN). Osteogenic differentiation induced by PD was blocked by lentivirus-mediated TAZ shRNA. Furthermore, Noggin (a regulator of bone morphogenic protein 2 (BMP2)) and DKK1 (an inhibitor of the Wnt/β-catenin pathway) were found to inhibit the increase in TAZ expression induced by PD. In vivo, PD prevented estrogen deficiency-induced bone loss in the OVX mouse model. CONCLUSION Taken together, our findings suggest that PD improved the osteogenic differentiation of hBMSCs and maintained the bone matrix in the OVX mouse model through the activation of TAZ, a potential target gene of the BMP2-Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying-Shan Shen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiao-Jun Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sha-Na Wuri
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fan Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Feng-Xiang Pang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang-Liang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Hip Preserving Ward, No. 3 Orthopaedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- No. 3 Orthopaedic Region and Institute of the Hip Joint, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiu-Shi Wei
- Hip Preserving Ward, No. 3 Orthopaedic Region, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- No. 3 Orthopaedic Region and Institute of the Hip Joint, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Institute of orthopedics of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Zhang L, Wang Z, Das J, Labib M, Ahmed S, Sargent EH, Kelley SO. Potential‐Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angew Chem Int Ed Engl 2019; 58:14519-14523. [DOI: 10.1002/anie.201907817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Libing Zhang
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Zongjie Wang
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
- Institute for Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Department of Electrical and Computer Engineering Faculty of Engineering University of Toronto Toronto Ontario M5S 3G4 Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering Faculty of Engineering University of Toronto Toronto Ontario M5S 3G4 Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
- Institute for Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Department of Chemistry University of Toronto Toronto Ontario M5S 1A8 Canada
| |
Collapse
|
26
|
Zhang L, Wang Z, Das J, Labib M, Ahmed S, Sargent EH, Kelley SO. Potential‐Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Libing Zhang
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Zongjie Wang
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
- Institute for Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Department of Electrical and Computer Engineering Faculty of Engineering University of Toronto Toronto Ontario M5S 3G4 Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering Faculty of Engineering University of Toronto Toronto Ontario M5S 3G4 Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario M5S 3M2 Canada
- Institute for Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Department of Chemistry University of Toronto Toronto Ontario M5S 1A8 Canada
| |
Collapse
|
27
|
Ding Q, Gao J, Zheng J, Wang A, Jing S. Astragaloside IV attenuates inflammatory injury and promotes odontoblastic differentiation in lipopolysaccharide-stimulated MDPC-23 cells and rat pulpitis. J Oral Pathol Med 2019; 48:951-958. [PMID: 31318999 DOI: 10.1111/jop.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/14/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Astragaloside IV (AS-IV), a natural herbal compound from Astragalus membranaceus, has inhibitory effects on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, and RANKL signal helps to regulate odontoblast differentiation. However, whether and how AS-IV affects odontoblastic differentiation remains unclear. METHODS Lipopolysaccharide (LPS)-stimulated MDPC-23 cells and rat pulpitis were treated with AS-IV, cell viability, and LDH leakage was analyzed by CCK-8 assay and LDH Leakage assay. The production of TNF-α and IL-6 was determined by ELISA and qRT-PCR assay. The expression of alkaline phosphatase (ALP) was detected using an ALP assay kit, and the expression of dentin sialophos-phoprotein (DSPP), dentin matrix protein-1 (DMP1), basic fibroblast growth factor (FGF2), and phosphorylated extracellular signal-regulated kinase (p-ERK) was determined by western blot. RESULTS AS-IV dose dependently increased in cell viability and decreased the overproduction of TNF-α and IL-6 in LPS-stimulated MDPC-23 cells. AS-IV also counteracted LPS-induced downregulation of ALP, DSPP, and DMP1 in MDPC-23 cells. Furthermore, AS-IV significantly decreased the expression of FGF2 and p-ERK in LPS-stimulated MDPC-23 cells. More important, the addition of FGF2 partly neutralized AS-IV-mediated inhibition of FGF2/ERK signaling, abolished AS-IV-induced reduction of TNF-α and IL-6, and counteracted AS-IV-induced upregulation of DSPP and DMP-1 in these cells. Meanwhile, AS-IV inhibited the excessive production of TNF-α and IL-6, suppressed the downregulation of DSPP and DMP1, and disturbed the up-regulation of FGF2 and p-ERK in the pulp tissues of rat pulpitis model. CONCLUSIONS AS-IV exerted anti-inflammatory and pro-differentiation effects in LPS-stimulated MDPC-23 cells and rat pulpitis via inhibiting the FGF2/ERK signaling pathway.
Collapse
Affiliation(s)
- Qun Ding
- Department of Endodontics, Baoji Stomatological Hospital, Baoji, China
| | - Jinyu Gao
- Department of Orthodontics, Affiliated Stomatological Hospital of Yan'an University, Yan'an, China
| | - Jing Zheng
- Department of Endodontics, Baoji Stomatological Hospital, Baoji, China
| | - An Wang
- Department of Endodontics, Baoji Stomatological Hospital, Baoji, China
| | - Shuanrang Jing
- Department of Endodontics, Baoji Stomatological Hospital, Baoji, China
| |
Collapse
|
28
|
Differential gene expression in articular cartilage between rheumatoid arthritis and endemic Kashin-Beck disease. Biosci Rep 2019; 39:BSR20190188. [PMID: 31196963 PMCID: PMC6597849 DOI: 10.1042/bsr20190188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 01/14/2023] Open
Abstract
Kashin-beck disease (KBD) is endemic chronic osteoarthrosis and its pathogenesis is still unclear. The present study aimed to explore differential gene expression in articular cartilage between patients with rheumatoid arthritis (RA) and KBD. Articular cartilages were collected from KBD and RA patients, and differentially expressed genes (DEGs) were analyzed by RNA-seq. The signaling pathway and biological process (BP) of the DEGs were identified by enrichment analysis. The protein-protein interaction (PPI) network of DEGs and the key genes of KBD were identified by network analysis with STRING and cytoscape software. We identified 167 immune-related DEGs in articular cartilage samples from KBD patients compared with RA. The up-regulation of MAPK signaling pathway and the down-regulation of signaling pathways such as toll-like receptor, janus kinase-signal transducers and activators of transcription, leukocyte migration, T-cell receptor and chemokine, and antigen processing and presentation were involved in KBD. We identified 137 genes nodes related with immune and mapped the PPI network diagram. BP analysis revealed that immune response, calcium ion homeostasis, blood vessel morphogenesis, inflammatory response, lymphocyte proliferation, and MAPK activation were involved in KBD. In conclusion, gene expression profiling can be used to identify the different mechanism of pathogenesis between KBD and RA.
Collapse
|
29
|
Wang N, Li Y, Li Z, Liu C, Xue P. Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis through MEK-ERK pathway. J Cell Mol Med 2019; 23:3683-3695. [PMID: 30907511 PMCID: PMC6484321 DOI: 10.1111/jcmm.14272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Salvianolic acid B (Sal B), a major bioactive component of Chinese herb, was identified as a mediator for bone metabolism recently. The aim of this study is to investigate the underlying mechanisms by which Sal B regulates osteogenesis and adipogenesis. We used MC3T3-E1 and 3T3-L1 as the study model to explore the changes of cell differentiation induced by Sal B. The results indicated that Sal B at different concentrations had no obvious toxicity effects on cell proliferation during differentiation. Furthermore, Sal B facilitated osteogenesis but inhibited adipogenesis by increasing the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Accordingly, TAZ knock-down offset the effects of Sal B on cell differentiation into osteoblasts or adipocytes. Notably, the Sal B induced up-expression of TAZ was blocked by U0126 (the MEK-ERK inhibitor), rather than LY294002 (the PI3K-Akt inhibitor). Moreover, Sal B increased the p-ERK/ERK ratio to regulate the TAZ expression as well as the cell differentiation. In summary, this study suggests for the first time that Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis by activating MEK-ERK signalling pathway, which provides evidence for Sal B to be used as a potential therapeutic agent for the management of bone diseases.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Ziyi Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Chang Liu
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| |
Collapse
|
30
|
Abstract
Deviations from the precisely coordinated programme of human head development can lead to craniofacial and orofacial malformations often including a variety of dental abnormalities too. Although the aetiology is still unknown in many cases, during the last decades different intracellular signalling pathways have been genetically linked to specific disorders. Among these pathways, the RAS/extracellular signal-regulated kinase (ERK) signalling cascade is the focus of this review since it encompasses a large group of genes that when mutated cause some of the most common and severe developmental anomalies in humans. We present the components of the RAS/ERK pathway implicated in craniofacial and orodental disorders through a series of human and animal studies. We attempt to unravel the specific molecular targets downstream of ERK that act on particular cell types and regulate key steps in the associated developmental processes. Finally we point to ambiguities in our current knowledge that need to be clarified before RAS/ERK-targeting therapeutic approaches can be implemented.
Collapse
|
31
|
Hwang JH, Han U, Yang M, Choi Y, Choi J, Lee JM, Jung HS, Hong J, Hong JH. Artificial cellular nano-environment composed of collagen-based nanofilm promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2019; 86:247-256. [PMID: 30594632 DOI: 10.1016/j.actbio.2018.12.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022]
Abstract
In regenerative medicine, the generation of therapeutic stem cells and tissue engineering are important for replacing damaged tissues. Numerous studies have attempted to produce cellular components that mimic the native tissue for gaining optimal function. Particularly, the extracellular matrix (ECM) composition plays an important role in cellular functions including determining the fates of mesenchymal stem cells (MSCs). Here, we evaluated the osteogenic effects of a nanofilm in which oppositely charged polyelectrolytes were alternately adsorbed onto the cell surface to create an artificial ECM environment for single MSCs. Interestingly, nanofilm composed of collagen (Col) and alginate (AA) showed relatively high stiffness and MSCs coated with the Col/AA nanofilm showed increased osteogenic differentiation efficiency compared to other nanofilm-coated MSCs. Further analysis revealed that the Col/AA nanofilm coating stimulated osteogenesis by activating transcriptional coactivators with the PDZ binding motif through extracellular signal-related kinase and p38 MAPK signaling. This nano-sized cellular coating will facilitate the development of nanotechnology for controlling cellular functions and advance stem cell-based clinical applications for regenerative medicine. STATE OF SIGNIFICANCE: In this study, we developed an artificial cellular nano-environment formed by multilayer nanofilms. We demonstrated that the nanofilms introduced to mesenchymal stem cells (MSCs) stimulate osteogenic differentiation by regulating intracellular signaling. Among the various nanofilm combinations, the induction of osteogenic gene transcription in collagen (Col) and alginate (AA) film-coated MSCs was the most pronounced compared to that on other nanofilms. A minimum number of Col/AA nanofilm bilayers (n = 2) was required for effective induction of MSC osteogenic differentiation. In addition, we observed the correlation between the promoting effect of osteogenic differentiation and stiffness of the nanofilm. Our results may be useful for developing a cell coating model system widely applicable in bioengineering and regenerative medicine.
Collapse
|
32
|
Petridis X, Beems BP, Tomson PL, Scheven B, Giepmans BNG, Kuipers J, van der Sluis LWM, Harmsen MC. Effect of Dentin Matrix Components on the Mineralization of Human Mesenchymal Stromal Cells. Tissue Eng Part A 2018; 25:1104-1115. [PMID: 30444193 DOI: 10.1089/ten.tea.2018.0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPACT STATEMENT This research has been conducted with the aim to contribute to the development of treatment modalities for the reconstruction of lost/damaged mineralized tissues. Currently, determining the most appropriate stromal cell population and signaling cues stands at the core of developing effective treatments. We provide new insights into the effect of innate inductive cues found in human dentin matrix components, on the osteogenic differentiation of various human stromal cell types. The effects of dentin extracellular matrix components on umbilical cord mesenchymal stromal cells have not been investigated before. The findings of this study could underpin translational research based on the development of techniques for mineralized tissue engineering and will be of great interest for the readership of Tissue Engineering Part A.
Collapse
Affiliation(s)
- Xenos Petridis
- 1Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bas P Beems
- 1Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Phillip L Tomson
- 2School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ben Scheven
- 2School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ben N G Giepmans
- 3Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- 3Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luc W M van der Sluis
- 1Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin C Harmsen
- 4Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Kamalakar A, Oh MS, Stephenson YC, Ballestas-Naissir SA, Davis ME, Willett NJ, Drissi HM, Goudy SL. A non-canonical JAGGED1 signal to JAK2 mediates osteoblast commitment in cranial neural crest cells. Cell Signal 2018; 54:130-138. [PMID: 30529759 DOI: 10.1016/j.cellsig.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
Abstract
During craniofacial development, cranial neural crest (CNC) cells migrate into the developing face and form bone through intramembranous ossification. Loss of JAGGED1 (JAG1) signaling in the CNC cells is associated with maxillary hypoplasia or maxillary bone deficiency (MBD) in mice and recapitulates the MBD seen in humans with Alagille syndrome. JAGGED1, a membrane-bound NOTCH ligand, is required for normal craniofacial development, and Jagged1 mutations in humans are known to cause Alagille Syndrome, which is associated with cardiac, biliary, and bone phenotypes and these children experience increased bony fractures. Previously, we demonstrated deficient maxillary osteogenesis in Wnt1-cre;Jagged1f/f (Jag1CKO) mice by conditional deletion of Jagged1 in maxillary CNC cells. In this study, we investigated the JAG1 signaling pathways in a CNC cell line. Treatment with JAG1 induced osteoblast differentiation and maturation markers, Runx2 and Ocn, respectively, Alkaline Phosphatase (ALP) production, as well as classic NOTCH1 targets, Hes1 and Hey1. While JAG1-induced Hes1 and Hey1 expression levels were predictably decreased after DAPT (NOTCH inhibitor) treatment, JAG1-induced Runx2 and Ocn levels were surprisingly constant in the presence of DAPT, indicating that JAG1 effects in the CNC cells are independent of the canonical NOTCH pathway. JAG1 treatment of CNC cells increased Janus Kinase 2 (JAK2) phosphorylation, which was refractory to DAPT treatment, highlighting the importance of the non-canonical NOTCH pathway during CNC cells osteoblast commitment. Pharmacologic inhibition of JAK2 phosphorylation, with and without DAPT treatment, upon JAG1 induction reduced ALP production and, Runx2 and Ocn gene expression. Collectively, these data suggest that JAK2 is an essential component downstream of a non-canonical JAG1-NOTCH1 pathway through which JAG1 stimulates expression of osteoblast-specific gene targets in CNC cells that contribute to osteoblast differentiation and bone mineralization.
Collapse
Affiliation(s)
| | - Melissa S Oh
- Department of Otolaryngology, Emory University, Atlanta, GA, USA.
| | | | | | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Hicham M Drissi
- Department of Cell biology, Emory University, Atlanta, GA, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Department of Otolaryngology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Park JS, Kim M, Song NJ, Kim JH, Seo D, Lee JH, Jung SM, Lee JY, Lee J, Lee YS, Park KW, Park SH. A Reciprocal Role of the Smad4-Taz Axis in Osteogenesis and Adipogenesis of Mesenchymal Stem Cells. Stem Cells 2018; 37:368-381. [PMID: 30444564 PMCID: PMC7379966 DOI: 10.1002/stem.2949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-β signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.
Collapse
Affiliation(s)
- Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jun-Hyeong Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jaewon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Youn Sook Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
35
|
Niu M, Feng X, Zhou L. The role of the ERK1/2 pathway in simvastatin-loaded nanomicelles and simvastatin in regulating the osteogenic effect in MG63 cells. Int J Nanomedicine 2018; 13:8165-8178. [PMID: 30584296 PMCID: PMC6287536 DOI: 10.2147/ijn.s182998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives The present study aimed to clarify the role of the ERK1/2 pathway in simvastatin (SV)-loaded nanomicelles (SVNs)- and SV-mediated promotion of cell osteogenic differentiation and explore the molecular mechanisms by which SVNs exhibited a greater efficacy in promoting osteogenic differentiation than SV. Materials and methods SVNs were synthesized using a dialysis method. MG63 cells were treated with 2.5, 0.25, and 0.025 μmol/L of the drug. The optimal drug dosage was determined by examining the proliferative activity and ALP activity of the MG63 cells. Subsequently, Western blot analysis was performed to analyze the levels of the phosphorylated ERK1/2 proteins in each experimental group at various time points. Finally, the inhibitor PD98059 was used to effectively inhibit the ERK1/2 pathway. The resulting changes in the proliferative activity of MG63 cells and the osteogenesis-related markers were analyzed. Results The SVNs synthesized in the present study had a mean diameter of 27 nm. The encapsulation and drug-loading efficiencies were 52.03% ± 4.05% and 9.42% ± 0.66%, respectively. SVNs and SV exhibited optimum osteogenesis-promoting effects when the drugs were administered at a concentration of 0.25 μmol/L. The drug-induced activation of the ERK1/2 pathway reached a peak at 15 minutes after administration and then declined rapidly. From 24 hours to 7 days, SVNs and SV exerted an inhibitory effect on the ERK1/2 pathway rather than an activating effect. Throughout the whole experimental process, the regulatory effect of SVNs on the ERK1/2 pathway was significantly greater than that of SV. Inhibition of the ERK1/2 pathway by PD98059 markedly reduced the proliferative activity of the cells in all experimental groups. In addition, the ALP activity and the expression levels of the osterix (OSX) and osteocalcin (OC) proteins were drastically increased. Conclusion SVNs significantly increased the effect of SV-induced osteogenic differentiation by strongly inhibiting the ERK1/2 pathway.
Collapse
Affiliation(s)
- Mao Niu
- Department of Stomatology, School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xianling Feng
- Department of Pathology, School of Medical, Shenzhen University, Shenzhen, 518060, China
| | - Lei Zhou
- Center of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China,
| |
Collapse
|
36
|
Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y, Xu X. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering. Stem Cells Dev 2018; 27:1634-1645. [PMID: 30234437 DOI: 10.1089/scd.2018.0119] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered promising tools for tissue engineering and regenerative medicine. However, the optimal cell source for bone regeneration remains controversial. To better identify seed cells for bone tissue engineering, we compared MSCs from seven different tissues, including four from dental origins, dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), gingival MSCs (GMSCs), and dental follicle stem cells (DFSCs); two from somatic origins, bone marrow-derived MSCs (BM-MSCs) and adipose-derived stem cells (ADSCs); and one from birth-associated perinatal tissue umbilical cord (UCMSCs). We cultured the cells under a standardized culture condition and studied their biological characteristics. According to our results, these cells exhibited similar immunophenotype and had potential for multilineage differentiation. MSCs from dental and perinatal tissues proliferated more rapidly than those from somatic origins. Simultaneously, DPSCs and PDLSCs owned stronger antiapoptotic ability under the microenvironment of oxidative stress combined with serum deprivation. In respect to osteogenic differentiation, the two somatic MSCs, BM-MSCs and ADSCs, demonstrated the strongest ability for osteogenesis compared to PDLSCs and DFSCs, which were just a little bit weaker than the formers. However, GMSCs and UCMSCs were the most pertinacious ones to differentiate to osteoblasts. We also revealed that the canonical intracellular protein kinase-based cascade signaling pathways, including PI3K/AKT, MAPK/ERK, and p38 MAPK, possessed different levels of activation in different MSCs after osteoblast induction. Our conclusions suggest that PDLSCs might be a good potential alternative to BM-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Yunpeng Zhang
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Yixiao Xing
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Linglu Jia
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Yawen Ji
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Bin Zhao
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Yong Wen
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| | - Xin Xu
- 1 School of Stomatology, Shandong University , Jinan, P.R. China .,2 Shandong Provincial Key Laboratory of Oral Tissue Regeneration , Jinan, P.R. China
| |
Collapse
|
37
|
Ji Y, Zhang P, Xing Y, Jia L, Zhang Y, Jia T, Wu X, Zhao B, Xu X. Effect of 1α, 25-dihydroxyvitamin D3 on the osteogenic differentiation of human periodontal ligament stem cells and the underlying regulatory mechanism. Int J Mol Med 2018; 43:167-176. [PMID: 30365053 PMCID: PMC6257868 DOI: 10.3892/ijmm.2018.3947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
1α, 25-dihydroxyvitamin D3 (1,25-D3), an active vitamin D metabolite, is a well-known regulator of osteogenic differentiation. However, how 1,25-D3 regulates osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs) remains to be fully elucidated. The present study aimed to clarify this issue through well-controlled in vitro experiments. After hPDLSCs were treated with 1,25-D3, immunofluorescence and western blotting were used to detect the expression of vitamin D receptor; Cell Counting Kit-8 and western blotting were used to assay the cell proliferation ability. Alkaline phosphatase staining, Alizarin Red staining and western blotting were used to detect the osteogenic differentiation. It was found that treating hPDLSCs with 1,25-D3: i) Inhibited cell proliferation; ii) promoted osteogenic differentiation; iii) upregulated the expression of transcriptional coactivator with PDZ-binding motif (TAZ), an important downstream effector of Hippo signaling that has been demonstrated to be involved in the osteogenic differentiation of stem/progenitor cells; and iv) that co-treatment of TAZ-overexpressing hPDLSCs with 1,25-D3 synergistically stimulated the expression of osteogenic markers. These results suggested that the induction of osteogenic differentiation promoted by 1,25-D3 in hPDLSCs involves, at least in part, the action of TAZ.
Collapse
Affiliation(s)
- Yawen Ji
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Panpan Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixiao Xing
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tingting Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuan Wu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
38
|
Park KH, Choi Y, Yoon DS, Lee KM, Kim D, Lee JW. Zinc Promotes Osteoblast Differentiation in Human Mesenchymal Stem Cells Via Activation of the cAMP-PKA-CREB Signaling Pathway. Stem Cells Dev 2018; 27:1125-1135. [PMID: 29848179 DOI: 10.1089/scd.2018.0023] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crucial trace element zinc stimulates osteogenesis in vitro and in vivo. However, the pathways mediating these effects remain poorly understood. This study aimed to investigate the effects of zinc on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) and to identify the molecular mechanisms of these effects. In hBMSCs, zinc exposure resulted in a dose-dependent increase in osteogenesis and increased mRNA and protein levels of the master transcriptional factor RUNX2. Analyzing the upstream signaling pathways of RUNX2, we found that protein kinase A (PKA) signaling inhibition blocked zinc-induced osteogenic effects. Zinc exposure increased transcriptional activity and protein levels of phospho-CREB and enhanced translocation of phospho-CREB into the nucleus. These effects were reversed by H-89, a potent inhibitor of PKA. Moreover, zinc exposure led to dose-dependent increases in levels of intracellular cyclic adenosine monophosphate (cAMP). These findings indicate that zinc activates the PKA signaling pathway by triggering an increase in intracellular cAMP, leading to enhanced osteogenic differentiation in hBMSCs. Our results suggest that zinc exerts osteogenic effects in hBMSCs by activation of RUNX2 via the cAMP-PKA-CREB signaling pathway. Zinc supplementation may offer a promise as a potential pharmaceutical therapy for osteoporosis and other bone loss conditions.
Collapse
Affiliation(s)
- Kwang Hwan Park
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea
| | - Yoorim Choi
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,2 Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine , Seoul, South Korea
| | - Dong Suk Yoon
- 3 Department of Internal Medicine, Brody School of Medicine at East Carolina University , Greenville, North Carolina
| | - Kyoung-Mi Lee
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,4 Severance Biomedical Science Institute, Yonsei University College of Medicine , South Korea
| | - Dohyun Kim
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea
| | - Jin Woo Lee
- 1 Department of Orthopaedic Surgery, Yonsei University College of Medicine , Seoul, South Korea .,2 Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine , Seoul, South Korea .,4 Severance Biomedical Science Institute, Yonsei University College of Medicine , South Korea
| |
Collapse
|
39
|
Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. Stem Cell Res Ther 2018. [PMID: 29514703 PMCID: PMC5842656 DOI: 10.1186/s13287-018-0799-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Adipose-derived stem cells (ADSCs) are an attractive cell source for bone tissue engineering and have great potential for bone regeneration and defect repair. The transcriptional coactivator with PDZ-binding motif (TAZ) has been demonstrated to modulate osteogenic and adipogenic differentiation of mesenchymal stem cells. However, its roles during ADSC differentiation and therapeutic potentials for bone regeneration have as yet not been well established. Methods TAZ expression was measured during osteogenic differentiation of ADSCs in vitro. Both loss-of-function and gain-of-function approaches by TAZ knockdown or enforced overexpression were utilized to determine its functions during osteogenic differentiation of ADSCs. TM-25659, a chemical activator of TAZ, was used to determine whether pharmacological activation of TAZ in ADSCs enhanced osteogenic differentiation in vitro and bone formation in animal models. The molecular mechanisms underlying TAZ in promoting osteogenesis of ADSCs were also explored. Results Increased TAZ expression was observed during osteogenic differentiation of human ADSCs. TAZ knockdown resulted in compromised osteogenic differentiation and enhanced adipogenic differentiation of ADSCs. In contrast, enforced TAZ overexpression yielded increased osteogenic differentiation and bone regeneration in vivo, and impaired adipogenic differentiation of ADSCs. Pharmacological activation of TAZ by its chemical activator TM-25659 facilitated osteogenic differentiation of ADSCs. Noticeably, transient treatment of ADSCs with TM-25659 or intraperitoneal injection of TM-25659 significantly enhanced bone regeneration of ADSCs loaded with porous β-TCP in vivo. Mechanistically, TM-25659 exposure significantly promoted TAZ phosphorylation and nuclear translocation, and potentiated the assembly of the TAZ-Runx2 complex. Subsequently, the TAZ-Runx2 complex was further recruited to the promoter of osteocalcin and in turn enhanced its transcription. Conclusions Our findings indicate that TAZ is a key mediator that promotes ADSC commitment to the osteoblast lineage. Pharmacological activation of TAZ in ADSCs might become a feasible and promising approach to enhance bone regeneration and repair. Electronic supplementary material The online version of this article (10.1186/s13287-018-0799-z) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Zhu WQ, Ming PP, Qiu J, Shao SY, Yu YJ, Chen JX, Yang J, Xu LN, Zhang SM, Tang CB. Effect of titanium ions on the Hippo/YAP signaling pathway in regulating biological behaviors of MC3T3-E1 osteoblasts. J Appl Toxicol 2018; 38:824-833. [PMID: 29377205 DOI: 10.1002/jat.3590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Titanium (Ti) and its corresponding alloys have been widely applied in dental and orthopedic implants. Owing to abrasion and corrosion of implants in the unfavorable electrolytic aqueous environment of the host body, Ti ions could be released from implants and accumulated in local tissues. Recent studies have found that excessive Ti ions were toxic to osteoblasts in adjacent bone tissues and subsequently influenced long-term effects on implant prostheses. However, the potential molecular mechanisms underlying the damage to osteoblasts induced by Ti ions remained unclear. Hippo signaling has been confirmed to be involved in organ size and tissue regeneration in many organs, while its roles in osteoblasts differentiation and bone repair remained elusive. Therefore, we hypothesize that YAP, a regulator of Hippo pathway, inhibited osteoblast growth, skeletal development and bone repair, as well as excessive Ti ions promoted the progression of YAP activation. This study aimed to explore the role of Hippo/YAP signaling pathway in the biotoxicity effect of Ti ions on osteoblast behaviors. Here, we confirmed that 10 ppm Ti ions, a minimum concentration gradient previously reported that was capable of suppressing osteoblasts growth, induced nuclear expression of YAP in osteoblasts in our study. Furthermore, 10 ppm Ti ion-induced YAP activation was found to downregulate osteogenic differentiation of MC3T3-E1 cells. Most importantly, the hypothesis we proposed that knockdown of YAP did reverse the inhibitory effect of 10 ppm Ti ions on osteogenesis has been verified. Taken together, our work provides insights into the mechanism of which YAP is involved in regulating osteoblast behaviors under the effect of Ti ions, which may help to develop therapeutic applications for Ti implant failures and peri-implantitis.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pan-Pan Ming
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Juan Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia-Xi Chen
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Yang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li-Na Xu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Song-Mei Zhang
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Chun-Bo Tang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
41
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
42
|
Byun MR, Hwang JH, Kim AR, Kim KM, Park JI, Oh HT, Hwang ES, Hong JH. SRC activates TAZ for intestinal tumorigenesis and regeneration. Cancer Lett 2017; 410:32-40. [DOI: 10.1016/j.canlet.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
|
43
|
Gardin C, Ferroni L, Piattelli A, SIvolella S, Zavan B, Mijiritsky E. Non-Washed Resorbable Blasting Media (NWRBM) on Titanium Surfaces could Enhance Osteogenic Properties of MSCs through Increase of miRNA-196a And VCAM1. Stem Cell Rev Rep 2017; 12:543-552. [PMID: 27318850 DOI: 10.1007/s12015-016-9669-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surface topography of Titanium (Ti) dental implants strongly influences osseointegration. In the present work, we have analyzed the influence of two Ti implant surfaces characterized by similar microtopography but different nanotopography and chemistry on the osteoblastic phenotype of Dental Pulp Stem Cells (DPSCs). The effect on osteogenic differentiation, extracellular matrix (ECM) and cell adhesion molecules production have been evaluated by means of molecular biology analyses. The morphology of the cells grown onto these surfaces has been analyzed with SEM and immunofluorescence (IF), and the safety of the surfaces has been tested by using karyotype analysis, Ames test and hemocompatibility assay. Results showed that starting from 15 days of DPSCs culture, a substantial expression of osteoblast specific markers and a strong increase of cell adhesion molecules can be detected. In particular, when DPSCs are seeded on the Ti implants expression of microRNA (miRNA)-196a, which is involved in osteoblastic commitment of stem cells, and of Vascular Cell Adhesion Molecule 1 (VCAM1), a factor involved in angiogenesis, is strongly enhanced.
Collapse
Affiliation(s)
- Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Adriano Piattelli
- Department of Stomatology and Biotechnologies, University of Chieti-Pescara, Chieti, Italy
| | - Stefano SIvolella
- Department of Neurological Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Eitan Mijiritsky
- Department of Oral Rehabilitation, School of Dental Medicine, Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|
44
|
Zhang G, Cheng X, Zhou G, Xue H, Shao S, Wang Z. New pathway of icariin-induced MSC osteogenesis: transcriptional activation of TAZ/Runx2 by PI3K/Akt. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIcariin has been demonstrated to stimulate mesenchymal stem cell (MSC) osteogensis and activate several signals, such as PI3K/Akt, but how the osteogenesis was sequentially mediated is unclear. Runx2 is one of the osteogenic regulators in MSC and is regulated by the TAZ gene. The purpose of this study was to investigate whether icariin-activated PI3K/Akt crosstalked with the TAZ-Runx2 pathway to regulate MSC osteogenesis. Adipose-derived MSCs were treated with icariin alone, together with TAZ silencing or PI3K/Akt inhibitor. Normal MSCs were used as a control. The activation of PI3K/Akt, expression of TAZ and downstream expression of Runx2 were analyzed. Induction of MSC osteogenesis under different treatments was detected. The results demonstrated that icariin treatment significantly activated PI3K/Akt and TAZ expression, as well as the downstream Runx2 expression. When activation of PI3K/Akt by icariin was inhibited by LY294002, upregulated TAZ expression was reversed, as well as the downstream expression of Runx2. Consequently, with the osteogenic counteracting effects of icariin on MSCs, inhibition of TAZ upregulation by siRNA did not significantly influence PI3K/ Akt activation in icariin-treated MSCs, but icariin-induced upregulation of Runx2 and osteogenic differentiation in MSCs was counteracted. It could be concluded from these findings that icariin treatment activated PI3K/Akt and further mediated the transcriptional activation of the TAZ/Runx2 pathway to induce osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Guoying Zhang
- Department of Orthopedics, The General Hospital of Chinese People’s Liberation Army, 28 Fuxing Road, 100853, Beijing, China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopaedic Implants, Departmemt of Orthopaedic Surgery, Ninth People’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Gongshe Zhou
- Department of Orthopedics, The Center Hospital of Zhoukou, Henan Province, China
| | - Huimin Xue
- The Third People’s Hospital of Jinan. 1 North Industrial Road, Wangsheren North Street, Jinan 250132, Shandong Province, China
| | - Shan Shao
- The Third People’s Hospital of Jinan. 1 North Industrial Road, Wangsheren North Street, Jinan 250132, Shandong Province, China
| | - Zheng Wang
- Department of Orthopedics, The General Hospital of Chinese People’s Liberation Army, 28 Fuxing Road, 100853, Beijing, China
| |
Collapse
|
45
|
Dolivo DM, Larson SA, Dominko T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev 2017; 38:49-58. [PMID: 28967471 DOI: 10.1016/j.cytogfr.2017.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis is a pathological condition that is characterized by the replacement of dead or damaged tissue with a nonfunctional, mechanically aberrant scar, and fibrotic pathologies account for nearly half of all deaths worldwide. The causes of fibrosis differ somewhat from tissue to tissue and pathology to pathology, but in general some of the cellular and molecular mechanisms remain constant regardless of the specific pathology in question. One of the common mechanisms underlying fibroses is the paradigm of the activated fibroblast, termed the "myofibroblast," a differentiated mesenchymal cell with demonstrated contractile activity and a high rate of collagen deposition. Fibroblast growth factor 2 (FGF2), one of the members of the mammalian fibroblast growth factor family, is a cytokine with demonstrated antifibrotic activity in non-human animal, human, and in vitro models. FGF2 is highly pleiotropic and its receptors are present on many different cell types throughout the body, lending a great deal of variety to the potential mechanisms of FGF2 effects on fibrosis. However, recent reports demonstrate that a substantial contribution to the antifibrotic effects of FGF2 comes from the inhibitory effects of FGF2 on connective tissue fibroblasts, activated myofibroblasts, and myofibroblast progenitors. FGF2 demonstrates effects antagonistic towards fibroblast activation and towards mesenchymal transition of potential myofibroblast-forming cells, as well as promotes a gene expression paradigm more reminiscent of regenerative healing, such as that which occurs in the fetal wound healing response, than fibrotic resolution. With a better understanding of the mechanisms by which FGF2 alters the wound healing cascade and results in a shift away from scar formation and towards functional tissue regeneration, we may be able to further address the critical need of therapy for varied fibrotic pathologies across myriad tissue types.
Collapse
Affiliation(s)
- David M Dolivo
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Sara A Larson
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States
| | - Tanja Dominko
- Worcester Polytechnic Institute, Department of Biology and Biotechnology,100 Institute Road, Worcester, MA, 01609, United States.
| |
Collapse
|
46
|
Wei Q, He M, Chen M, Chen Z, Yang F, Wang H, Zhang J, He W. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression. Biomed Pharmacother 2017; 91:581-589. [DOI: 10.1016/j.biopha.2017.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
|
47
|
Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Sci Rep 2017; 7:3632. [PMID: 28620202 PMCID: PMC5472602 DOI: 10.1038/s41598-017-03815-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
The topographical environment, which mimics the stem cell niche, provides mechanical cues to regulate the differentiation of mesenchymal stem cells (MSC). Diverse topographical variations have been engineered to investigate cellular responses; however, the types of mechanical parameters that affect cells, and their underlying mechanisms remain largely unknown. In this study, we screened nanotopological pillars with size gradient to activate transcriptional coactivator with PDZ binding motif (TAZ), which stimulates osteogenesis of MSC. We observed that a nanotopological plate, 70 nm in diameter, significantly induces osteogenic differentiation with the activation of TAZ. TAZ activation via the nanotopological plate was mediated by actin polymerization and Rho signaling, as evidenced by the cytosolic localization of TAZ under F-actin or Rho kinase inhibitor. The FAK and MAPK pathways also play a role in TAZ activation by the nanotopological plate because the inhibitor of ERK and JNK blocked nanopattern plate induced osteogenic differentiation. Taken together, these results indicate that nanotopology regulates cell differentiation through TAZ activation.
Collapse
|
48
|
Arumugam B, Vairamani M, Partridge NC, Selvamurugan N. Characterization of Runx2 phosphorylation sites required for TGF‐β1‐mediated stimulation of matrix metalloproteinase‐13 expression in osteoblastic cells. J Cell Physiol 2017; 233:1082-1094. [DOI: 10.1002/jcp.25964] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mariappanadar Vairamani
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial BiologyNew York University College of Dentistry, New York UniversityNew YorkNew York
| | - Nagarajan Selvamurugan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| |
Collapse
|
49
|
Chang M, Lin H, Fu H, Wang B, Han G, Fan M. MicroRNA-195-5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading. J Cell Physiol 2017; 232:3762-3774. [PMID: 28181691 DOI: 10.1002/jcp.25856] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Osteogenic differentiation and bone formation are tightly regulated by several factors, including microRNAs (miRNAs). However, miRNA expression patterns and function during mechanical loading-induced osteogenic differentiation of human periodontal ligament cells (PDLCs) remain unclear. Here, we investigated the differential expression of miRNA-195-5p in the periodontal tissues of mice under orthodontic mechanical loading and in primary human PDLCs exposed to a simulated tension strain. The miR-195-5p was observed to be down-regulated and negatively correlated with osteogenic differentiation. Overexpression of miR-195-5p significantly inhibited PDLC differentiation under cyclic tension strain (CTS), whereas the functional inhibition of miR-195-5p yielded an opposite effect. Further experiments confirmed that WNT family member 3A (WNT3A), fibroblast growth factor 2 (FGF2), and bone morphogenetic protein receptor-1A (BMPR1A), proteins important for osteogenic activity and stability, were direct targets of miR-195-5p. Mechanical loading increased the WNT3A, FGF2, and BMPR1A protein levels, while miR-195-5p inhibited WNT3A, FGF2, and BMPR1A protein expression. WNT, FGF, and BMP signaling were involved in osteogenic differentiation of PDLCs under CTS. Further study confirmed that reintroduction of WNT3A and BMPR1A can rescue the inhibition of miR-195-5p on osteogenic differentiation of PDLCs. Our findings are the first to demonstrate that miR-195-5p is a mechanosensitive gene that plays an important role in mechanical loading-induced osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Maolin Chang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haidi Fu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Beike Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingwen Fan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Liu CY, Yu T, Huang Y, Cui L, Hong W. ETS (E26 transformation-specific) up-regulation of the transcriptional co-activator TAZ promotes cell migration and metastasis in prostate cancer. J Biol Chem 2017; 292:9420-9430. [PMID: 28408625 DOI: 10.1074/jbc.m117.783787] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/13/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is a very common malignant disease and a leading cause of death for men in the Western world. Tumorigenesis and progression of prostate cancer involves multiple signaling pathways, including the Hippo pathway. Yes-associated protein (YAP) is the downstream transcriptional co-activator of the Hippo pathway, is overexpressed in prostate cancer, and plays a vital role in the tumorigenesis and progression of prostate cancer. However, the role of the YAP paralog and another downstream effector of the Hippo pathway, transcriptional co-activator with PDZ-binding motif (TAZ), in prostate cancer has not been fully elucidated. Here, we show that TAZ is a basal cell marker for the prostate epithelium. We found that overexpression of TAZ promotes the epithelial-mesenchymal transition (EMT), cell migration, and anchorage-independent growth in the RWPE1 prostate epithelial cells. Of note, knock down of TAZ in the DU145 prostate cancer cells inhibited cell migration and metastasis. We also found that SH3 domain binding protein 1 (SH3BP1), a RhoGAP protein that drives cell motility, is a direct target gene of TAZ in the prostate cancer cells, mediating TAZ function in enhancing cell migration. Moreover, the prostate cancer-related oncogenic E26 transformation-specific (ETS) transcription factors, ETV1, ETV4, and ETV5, were required for TAZ gene transcription in PC3 prostate cancer cells. MAPK inhibitor U0126 treatment decreased TAZ expression in RWPE1 cells, and ETV4 overexpression rescued TAZ expression in RWPE1 cells with U0126 treatment. Our results show a regulatory mechanism of TAZ transcription and suggest a significant role for TAZ in the progression of prostate cancer.
Collapse
Affiliation(s)
- Chen-Ying Liu
- From the Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China and .,the Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Tong Yu
- From the Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China and
| | - Yuji Huang
- From the Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China and
| | - Long Cui
- From the Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China and
| | - Wanjin Hong
- the Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|