1
|
Yuze Ma, Liu N, Shao X, Shi T, Lin J, Liu B, Shen T, Guo B, Jiang Q. Mechanical loading on osteocytes regulates thermogenesis homeostasis of brown adipose tissue by influencing osteocyte-derived exosomes. J Orthop Translat 2024; 48:39-52. [PMID: 39087139 PMCID: PMC11287067 DOI: 10.1016/j.jot.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.
Collapse
Affiliation(s)
- Yuze Ma
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyan Shao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Tianshu Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiaquan Lin
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tao Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Abbasi K, Zarezadeh R, Valizadeh A, Mehdizadeh A, Hamishehkar H, Nouri M, Darabi M. White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues. Biochem Pharmacol 2024; 220:116012. [PMID: 38159686 DOI: 10.1016/j.bcp.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
This study highlights the therapeutic potential of activating brown adipose tissue (BAT) for managing polycystic ovary syndrome (PCOS), a prevalent endocrine disorder associated with metabolic and reproductive abnormalities. BAT plays a crucial role in regulating energy expenditure and systemic insulin sensitivity, making it an attractive target for the treatment of obesity and metabolic diseases. Recent research suggests that impaired BAT function and mass may contribute to the link between metabolic disturbances and reproductive issues in PCOS. Additionally, abnormal white adipose tissue (WAT) can exacerbate these conditions by releasing adipokines and nonesterified fatty acids. In this review, we explored the impact of WAT changes on BAT function in PCOS and discussed the potential of BAT activation as a therapeutic strategy to improve PCOS symptoms. We propose that BAT activation holds promise for managing PCOS; however, further research is needed to confirm its efficacy and to develop clinically feasible methods for BAT activation.
Collapse
Affiliation(s)
- Khadijeh Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
3
|
Langlais AL, Mountain RV, Kunst RF, Barlow D, Houseknecht KL, Motyl KJ. Thermoneutral housing does not rescue olanzapine-induced trabecular bone loss in C57BL/6J female mice. Biochimie 2023; 210:50-60. [PMID: 37236340 PMCID: PMC10357956 DOI: 10.1016/j.biochi.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Antipsychotic drugs are prescribed to a wide range of individuals to treat mental health conditions including schizophrenia. However, antipsychotic drugs cause bone loss and increase fracture risk. We previously found that the atypical antipsychotic (AA) drug risperidone causes bone loss through multiple pharmacological mechanisms, including activation of the sympathetic nervous system in mice treated with clinically relevant doses. However, bone loss was dependent upon housing temperature, which modulates sympathetic activity. Another AA drug, olanzapine, has substantial metabolic side effects, including weight gain and insulin resistance, but it is unknown whether bone and metabolic outcomes of olanzapine are also dependent upon housing temperature in mice. We therefore treated eight week-old female mice with vehicle or olanzapine for four weeks, housed at either room temperature (23 °C) or thermoneutrality (28-30 °C), which has previously been shown to be positive for bone. Olanzapine caused significant trabecular bone loss (-13% BV/TV), likely through increased RANKL-dependent osteoclast resorption, which was not suppressed by thermoneutral housing. Additionally, olanzapine inhibited cortical bone expansion at thermoneutrality, but did not alter cortical bone expansion at room temperature. Olanzapine also increased markers of thermogenesis within brown and inguinal adipose depots independent of housing temperature. Overall, olanzapine causes trabecular bone loss and inhibits the positive effect of thermoneutral housing on bone. Understanding how housing temperature modulates the impact of AA drugs on bone is important for future pre-clinical studies, as well as for the prescription of AA drugs, particularly to older adults and adolescents who are most vulnerable to the effects on bone.
Collapse
Affiliation(s)
- Audrie L Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Rebecca V Mountain
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Roni F Kunst
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Karen L Houseknecht
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
4
|
Sattgast LH, Wong CP, Branscum AJ, Olson DA, Aguirre-Burk AM, Iwaniec UT, Turner RT. Small changes in thermoregulation influence cancellous bone turnover balance in distal femur metaphysis in growing female mice. Bone Rep 2023; 18:101675. [PMID: 37007217 PMCID: PMC10063413 DOI: 10.1016/j.bonr.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Mice are typically housed at temperatures well below their thermoneutral zone. When individually housed at room temperature (~22 °C) mice experience cold stress which results in cancellous bone loss and has the potential to alter the skeletal response to treatment. It is not clear if there is a threshold temperature for cold stress-induced bone loss. It is also not clear if alternative strategies for attenuating cold stress, such as group housing, influence bone accrual and turnover. This study aimed to determine how small differences in temperature (4 °C) or heat loss (individual versus group housing with nestlets) influence bone in growing female C57BL/6 J mice. Five-week-old mice were randomized by weight to 1 of 4 treatment groups (N = 10/group): 1) baseline, 2) single housed at 22 °C, 3) single housed at 26 °C, or 4) group housed (n = 5/cage) with nestlets at 22 °C. Mice in the baseline group were sacrificed 1 week later, at 6 weeks of age. The other 3 groups of mice were maintained at their respective temperatures and housing conditions for 13 weeks until 18 weeks of age. Compared to baseline, mice single housed at room temperature had increased body weight and femur size, but dramatically decreased cancellous bone volume fraction in distal femur metaphysis. The cancellous bone loss was attenuated but not prevented in mice individually housed at 26 °C or group housed at 22 °C. In conclusion, by impacting thermogenesis or heat loss, modest differences in housing conditions could influence experimental results.
Collapse
Affiliation(s)
- Lara H. Sattgast
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A. Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Allan M. Aguirre-Burk
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
- Corresponding author at: Skeletal Biology Laboratory, School of Biological and Population Health Sciences, 127 Milam Hall, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
5
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 PMCID: PMC11802959 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
- Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
- Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
6
|
Watanabe M, Risi R, Tafuri MA, Silvestri V, D'Andrea D, Raimondo D, Rea S, Di Vincenzo F, Profico A, Tuccinardi D, Sciuto R, Basciani S, Mariani S, Lubrano C, Cinti S, Ottini L, Manzi G, Gnessi L. Bone density and genomic analysis unfold cold adaptation mechanisms of ancient inhabitants of Tierra del Fuego. Sci Rep 2021; 11:23290. [PMID: 34857816 PMCID: PMC8639971 DOI: 10.1038/s41598-021-02783-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
The Fuegians, ancient inhabitants of Tierra del Fuego, are an exemplary case of a cold-adapted population, since they were capable of living in extreme climatic conditions without any adequate clothing. However, the mechanisms of their extraordinary resistance to cold remain enigmatic. Brown adipose tissue (BAT) plays a crucial role in this kind of adaptation, besides having a protective role on the detrimental effect of low temperatures on bone structure. Skeletal remains of 12 adult Fuegians, collected in the second half of XIX century, were analyzed for bone mineral density and structure. We show that, despite the unfavorable climate, bone mineral density of Fuegians was close to that seen in modern humans living in temperate zones. Furthermore, we report significant differences between Fuegians and other cold-adapted populations in the frequency of the Homeobox protein Hox-C4 (HOXC4) rs190771160 variant, a gene involved in BAT differentiation, whose identified variant is predicted to upregulate HOXC4 expression. Greater BAT accumulation might therefore explain the Fuegians extreme cold-resistance and the protection against major cold-related damage. These results increase our understanding of how ecological challenges have been important drivers of human-environment interactions during Humankind history.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Renata Risi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anne Tafuri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | - Daniel D'Andrea
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sandra Rea
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Di Vincenzo
- Natural History Museum-University of Florence, Florence, Italy
- Italian Institute of Human Paleontology (IsIPU), Anagni-Rome, Italy
| | - Antonio Profico
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128, Rome, Italy
| | - Rosa Sciuto
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mariani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
MicroRNA-29a in Osteoblasts Represses High-Fat Diet-Mediated Osteoporosis and Body Adiposis through Targeting Leptin. Int J Mol Sci 2021; 22:ijms22179135. [PMID: 34502056 PMCID: PMC8430888 DOI: 10.3390/ijms22179135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal tissue involves systemic adipose tissue metabolism and energy expenditure. MicroRNA signaling controls high-fat diet (HFD)-induced bone and fat homeostasis dysregulation remains uncertain. This study revealed that transgenic overexpression of miR-29a under control of osteocalcin promoter in osteoblasts (miR-29aTg) attenuated HFD-mediated body overweight, hyperglycemia, and hypercholesterolemia. HFD-fed miR-29aTg mice showed less bone mass loss, fatty marrow, and visceral fat mass together with increased subscapular brown fat mass than HFD-fed wild-type mice. HFD-induced O2 underconsumption, respiratory quotient repression, and heat underproduction were attenuated in miR-29aTg mice. In vitro, miR-29a overexpression repressed transcriptomic landscapes of the adipocytokine signaling pathway, fatty acid metabolism, and lipid transport, etc., of bone marrow mesenchymal progenitor cells. Forced miR-29a expression promoted osteogenic differentiation but inhibited adipocyte formation. miR-29a signaling promoted brown/beige adipocyte markers Ucp-1, Pgc-1α, P2rx5, and Pat2 expression and inhibited white adipocyte markers Tcf21 and Hoxc9 expression. The microRNA also reduced peroxisome formation and leptin expression during adipocyte formation and downregulated HFD-induced leptin expression in bone tissue. Taken together, miR-29a controlled leptin signaling and brown/beige adipocyte formation of osteogenic progenitor cells to preserve bone anabolism, which reversed HFD-induced energy underutilization and visceral fat overproduction. This study sheds light on a new molecular mechanism by which bone integrity counteracts HFD-induced whole-body fat overproduction.
Collapse
|
8
|
Yan C, Zeng T, Lee K, Nobis M, Loh K, Gou L, Xia Z, Gao Z, Bensellam M, Hughes W, Lau J, Zhang L, Ip CK, Enriquez R, Gao H, Wang QP, Wu Q, Haigh JJ, Laybutt DR, Timpson P, Herzog H, Shi YC. Peripheral-specific Y1 receptor antagonism increases thermogenesis and protects against diet-induced obesity. Nat Commun 2021; 12:2622. [PMID: 33976180 PMCID: PMC8113522 DOI: 10.1038/s41467-021-22925-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is caused by an imbalance between food intake and energy expenditure (EE). Here we identify a conserved pathway that links signalling through peripheral Y1 receptors (Y1R) to the control of EE. Selective antagonism of peripheral Y1R, via the non-brain penetrable antagonist BIBO3304, leads to a significant reduction in body weight gain due to enhanced EE thereby reducing fat mass. Specifically thermogenesis in brown adipose tissue (BAT) due to elevated UCP1 is enhanced accompanied by extensive browning of white adipose tissue both in mice and humans. Importantly, selective ablation of Y1R from adipocytes protects against diet-induced obesity. Furthermore, peripheral specific Y1R antagonism also improves glucose homeostasis mainly driven by dynamic changes in Akt activity in BAT. Together, these data suggest that selective peripheral only Y1R antagonism via BIBO3304, or a functional analogue, could be developed as a safer and more effective treatment option to mitigate diet-induced obesity.
Collapse
Affiliation(s)
- Chenxu Yan
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Tianshu Zeng
- Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kailun Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Max Nobis
- Invasion and Metastasis Lab, Cancer Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Luoning Gou
- Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zefeng Xia
- Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongmin Gao
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Mohammed Bensellam
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Will Hughes
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Ronaldo Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Hanyu Gao
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qi Wu
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Jody J Haigh
- Research Institute in Oncology and Hematology, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Paul Timpson
- Invasion and Metastasis Lab, Cancer Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Mukherjee S, Yun JW. Novel regulatory roles of UCP1 in osteoblasts. Life Sci 2021; 276:119427. [PMID: 33785331 DOI: 10.1016/j.lfs.2021.119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS The bone-adipose axis requires complex homeostasis in energy and global metabolism. The bioenergetics of bone establishes the necessary energy balance to coordinate endocrine functions that are affected by various factors and is not limited to matrix proteins only. UCP1 is an uncoupling protein of adipocytes, commonly known for its unique feature of promoting thermogenesis, mainly in brown fat; however, the effects of UCP1 in other cell types remain unreported. MAIN METHODS In the current study, we determined the roles of UCP1 in osteoblasts by silencing the Ucp1 gene in MC-3T3-E1 cells, as well as C3H10T1/2 mesenchymal stem cells, and explored its functional activities. KEY FINDINGS Our results demonstrate for the first time the presence of UCP1 in osteoblast cells. We identified that UCP1 regulates ATP and oxidative phosphorylation in MC-3T3-E1 cells. In addition, our data reveal that the lack of Ucp1 results in reduced expressions of regulatory proteins involved in scavenging of ROS by enhancing an autophagic event to balance osteogenic differentiation. SIGNIFICANCE In conclusion, this study highlights a novel perspective on the importance of UCP1 in bone cells.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
10
|
Okla M, Kassem M. Thermogenic potentials of bone marrow adipocytes. Bone 2021; 143:115658. [PMID: 32979539 DOI: 10.1016/j.bone.2020.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow adipose tissue (MAT) is a unique fat depot located in proximity to bone surfaces and exerts regulatory functions in the skeleton. Recent studies have demonstrated that MAT responds to changes in whole-body energy metabolism, such as in obesity and anorexia nervosa, where MAT expands, resulting in deleterious effects on the skeleton. Interestingly, MAT shares properties with both brown and white adipose tissues but exhibits distinct features with regard to lipid metabolism and insulin sensitivity. Recent reports have addressed the capacity of MAT to undergo browning, which could be an attractive strategy for preventing excessive MAT accumulation within the skeleton. In this review, we summarize studies addressing the browning phenomenon of MAT and its regulation by a number of pathophysiological conditions. Moreover, we discuss the relationship between adaptive thermogenesis and bone health. Understanding the thermogenic potentials of MAT will delineate the biological importance of this organ and unravel its potential for improving bone health and whole-body energy metabolism.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital, 5000 Odense C, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Du J, He Z, Xu M, Qu X, Cui J, Zhang S, Zhang S, Li H, Yu Z. Brown Adipose Tissue Rescues Bone Loss Induced by Cold Exposure. Front Endocrinol (Lausanne) 2021; 12:778019. [PMID: 35126308 PMCID: PMC8811040 DOI: 10.3389/fendo.2021.778019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cold temperature activates the sympathetic nervous system (SNS) to induce bone loss by altering bone remodeling. Brown adipose tissue (BAT) is influenced by the SNS in cold environments. Many studies have confirmed a positive relationship between BAT volume and bone mass, but the influence and mechanism of BAT on bone in vivo and in vitro is still unknown. Two-month-old C57/BL6j male mice were exposed to cold temperature (4°C) to induce BAT generation. BAT volume, bone remodeling and microstructure were assessed after 1 day, 14 days and 28 days of cold exposure. CTX-1, P1NP and IL-6 levels were detected in the serum by ELISA. To determine the effect of BAT on osteoclasts and osteoblasts in vitro, brown adipocyte conditional medium (BAT CM) was collected and added to the differentiation medium of bone marrow-derived macrophages (BMMs) and bone marrow mesenchymal stem cells (BMSCs). Micro-CT results showed that the bone volume fraction (BV/TV, %) significantly decreased after 14 days of exposure to cold temperature but recovered after 28 days. Double labeling and TRAP staining in vivo showed that bone remodeling was altered during cold exposure. BAT volume enlarged after 14 days of cold stimulation, and IL-6 increased. BAT CM promoted BMSC mineralization by increasing osteocalcin (Ocn), RUNX family transcription factor 2 (Runx2) and alkaline phosphatase (Alp) expression, while bone absorption was inhibited by BAT CM. In conclusion, restoration of bone volume after cold exposure may be attributed to enlarged BAT. BAT has a beneficial effect on bone mass by facilitating osteogenesis and suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhifeng Yu, ; Hanjun Li,
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhifeng Yu, ; Hanjun Li,
| |
Collapse
|
12
|
Wee NKY, Nguyen AD, Enriquez RF, Zhang L, Herzog H, Baldock PA. Neuropeptide Y Regulation of Energy Partitioning and Bone Mass During Cold Exposure. Calcif Tissue Int 2020; 107:510-523. [PMID: 32804252 DOI: 10.1007/s00223-020-00745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
The maintenance of whole body energy homeostasis is critical to survival and mechanisms exist whereby an organism can adapt to its environment and the stresses placed upon it. Environmental temperature and thermogenesis are key components known to affect energy balance. However, little is known about how these processes are balanced against the overall energy balance. We show that even mild cold exposure has a significant effect on energy expenditure and UCP-1 levels which increase by 43% and 400%, respectively, when wild-type (WT) mice at thermoneutral (29 °C) were compared to mice at room temperature (22 °C) conditions. Interestingly, bone mass was lower in cold-stressed WT mice with significant reductions in femoral bone mineral content (- 19%) and bone volume (- 13%). Importantly, these cold-induced skeletal changes were absent in mice lacking NPY, one of the main controllers of energy homeostasis, highlighting the critical role of NPY in this process. However, energy expenditure was significantly greater in cold-exposed NPY null mice, indicating that suppression of non-thermogenic tissues, like bone, contributes to the adaptive responses to cold exposure. Altogether, this work identifies NPY as being crucial in coordinating energy and bone homeostasis where it suppresses energy expenditure, UCP-1 levels and lowers bone mass under conditions of cold exposure.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Amy D Nguyen
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Ronaldo F Enriquez
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia
| | - Paul A Baldock
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia.
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, Australia.
| |
Collapse
|
13
|
Turner RT, Philbrick KA, Wong CP, Gamboa AR, Branscum AJ, Iwaniec UT. Effects of Propranolol on Bone, White Adipose Tissue, and Bone Marrow Adipose Tissue in Mice Housed at Room Temperature or Thermoneutral Temperature. Front Endocrinol (Lausanne) 2020; 11:117. [PMID: 32256446 PMCID: PMC7089918 DOI: 10.3389/fendo.2020.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Growing female mice housed at room temperature (22°C) weigh the same but differ in body composition compared to mice housed at thermoneutrality (32°C). Specifically, mice housed at room temperature have lower levels of white adipose tissue (WAT). Additionally, bone marrow adipose tissue (bMAT) and cancellous bone volume fraction in distal femur metaphysis are lower in room temperature-housed mice. The metabolic changes induced by sub-thermoneutral housing are associated with lower leptin levels in serum and higher levels of Ucp1 gene expression in brown adipose tissue. Although the precise mechanisms mediating adaptation to sub-thermoneutral temperature stress remain to be elucidated, there is evidence that increased sympathetic nervous system activity acting via β-adrenergic receptors plays an important role. We therefore evaluated the effect of the non-specific β-blocker propranolol (primarily β1 and β2 antagonist) on body composition, femur microarchitecture, and bMAT in growing female C57BL/6 mice housed at either room temperature or thermoneutral temperature. As anticipated, cancellous bone volume fraction, WAT and bMAT were lower in mice housed at room temperature. Propranolol had small but significant effects on bone microarchitecture (increased trabecular number and decreased trabecular spacing), but did not attenuate premature bone loss induced by room temperature housing. In contrast, propranolol treatment prevented housing temperature-associated differences in WAT and bMAT. To gain additional insight, we evaluated a panel of genes in tibia, using an adipogenesis PCR array. Housing temperature and treatment with propranolol had exclusive as well as shared effects on gene expression. Of particular interest was the finding that room temperature housing reduced, whereas propranolol increased, expression of the gene for acetyl-CoA carboxylase (Acacb), the rate-limiting step for fatty acid synthesis and a key regulator of β-oxidation. Taken together, these findings provide evidence that increased activation of β1 and/or β2 receptors contributes to reduced bMAT by regulating adipocyte metabolism, but that this pathway is unlikely to be responsible for premature cancellous bone loss in room temperature-housed mice.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Amanda R. Gamboa
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
- *Correspondence: Urszula T. Iwaniec
| |
Collapse
|
14
|
Lee NJ, Clarke IM, Zengin A, Enriquez RF, Nagy V, Penninger JM, Baldock PA, Herzog H. RANK deletion in neuropeptide Y neurones attenuates oestrogen deficiency-related bone loss. J Neuroendocrinol 2019; 31:e12687. [PMID: 30633834 DOI: 10.1111/jne.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
The RANKL pathway is known to be an important aspect of the pathogenesis of oestrogen deficiency-induced bone loss. RANK deletion specifically in neuropeptide Y (NPY) neurones has been shown to enhance the ability of the skeleton to match increases in body weight caused by high-fat diet feeding, likely via the modulation of NPY levels. In the present study, we used ovariectomy in female mice to show that RANK deletion in NPY neurones attenuates bone loss caused by long-term oestrogen deficiency, particularly in the vertebral compartment. Ovariectomy led to a reduction in NPY expression levels in the arcuate nucleus of NPYcre/+ ;RANKlox/lox mice compared to NPYcre/+ ;RANKlox/+ controls. Because NPY deficient mice also displayed a similar protection against ovariectomy-induced bone loss, modulation of hypothalamic NPY signalling is the likely mechanism behind the protection from bone loss in the NPYcre/+ ;RANKlox/lox mice.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincents Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ireni M Clarke
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Ayse Zengin
- Bone Biology Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Ronaldo F Enriquez
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Bone Biology Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Vanj Nagy
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Paul A Baldock
- St Vincents Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Bone Biology Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincents Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
16
|
Camerino C, Conte E, Caloiero R, Fonzino A, Carratù M, Lograno MD, Tricarico D. Evaluation of Short and Long Term Cold Stress Challenge of Nerve Grow Factor, Brain-Derived Neurotrophic Factor, Osteocalcin and Oxytocin mRNA Expression in BAT, Brain, Bone and Reproductive Tissue of Male Mice Using Real-Time PCR and Linear Correlation Analysis. Front Physiol 2018; 8:1101. [PMID: 29375393 PMCID: PMC5768886 DOI: 10.3389/fphys.2017.01101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
The correlation between the Ngf/p75ntr-Ntrk1 and Bdnf, Osteocalcin-Ost/Gprc6a and Oxytocin-Oxt/Oxtr genes, was challenged investigating their mRNA levels in 3 months-old mice after cold-stress (CS). Uncoupling protein-1 (Ucp-1) was used as positive control. Control mice were maintained at room temperature T = 25°C, CS mice were maintained at T = 4°C for 6 h and 5-days (N = 15 mice). RT-PCR experiments showed that Ucp-1 and Ngf genes were up-regulated after 6 h CS in brown adipose tissues (BAT), respectively, by 2 and 1.5-folds; Ucp-1 was upregulated also after 5-days, while Ngfr (p75ntr) and Ntrk1 genes were downregulated after 6 h and 5-days CS in BAT. NGF and P75NTR were upregulated in bone and testis following 5-days, and P75NTR in testis after 6 h CS. Bdnf was instead up-regulated in bone following 5-days CS and down-regulated in testis. OST was upregulated by 16 and 3-fold in bone and BAT, respectively, following 5-days CS. Gprc6a was upregulated after 6 h in brain, while Bglap (Ost) gene was downregulated. Oxt gene was upregulated by 5-fold following 5-days CS in bone. Oxtr was upregulated by 0.5 and 0.3-fold, respectively, following 6 h and 5-days CS in brain. Oxtr and Oxt were downregulated in testis and in BAT. The changes in the expression levels of control genes vs. genes following 6 h and 5-days CS were correlated in all tissues, but not in BAT. Correlation in BAT was improved eliminating Ngfr (p75ntr) data. The correlation in brain was lost eliminating Oxtr data. In sum, Ucp-1 potentiation in BAT after cold stress is associated with early Ngf-response in the same tissue and trophic action in bone and testis. In contrast, BDNF exerts bone and neuroprotective effects. Similarly to Ucp-1, Bglap (Ost) signaling is enhanced in bone and BAT while it may exert local neuroprotective effects thought its receptor. Ngfr (p75ntr) regulates the adaptation to CS through a feed-back loop in BAT. Oxtr regulates the gene-response to CS through a feed-forward loop in brain. Overall these results expand the understanding of the physiology of these molecules under metabolic thermogenesis.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Caloiero
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariarosaria Carratù
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Marcello D Lograno
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Abstract
New evidence has recently emerged defining a close relationship between fat and bone metabolism. Adipose tissue is one of the largest organs in the body but its functions vary by location and origin. Adipocytes can act in an autocrine manner to regulate energy balance by sequestering triglycerides and then, depending on demand, releasing fatty acids through lipolysis for energy utilization, and in some cases through uncoupling protein 1 for generating heat. Adipose tissue can also act in an endocrine or paracrine manner by releasing adipokines that modulate the function of other organs. Bone is one of those target tissues, although recent evidence has emerged that the skeleton reciprocates by releasing its own factors that modulate adipose tissue and beta cells in the pancreas. Therefore, it is not surprising that these energy-modulating tissues are controlled by a central regulatory mechanism, primarily the sympathetic nervous system. Disruption in this complex regulatory circuit and its downstream tissues is manifested in a wide range of metabolic disorders, for which the most prevalent is type 2 diabetes mellitus. The aim of this review is to summarize our knowledge of common determinants in the bone and adipose function and the translational implications of recent work in this emerging field.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Dept. of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States; Dept. of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States
| | - Clifford J Rosen
- Tufts University School of Medicine, and Maine Medical Center Research Institute, Scarborough, ME 04074, United States.
| |
Collapse
|
18
|
Zhang F, Yu L, Lin X, Cheng P, He L, Li X, Lu X, Tan Y, Yang H, Cai L, Zhang C. Minireview: Roles of Fibroblast Growth Factors 19 and 21 in Metabolic Regulation and Chronic Diseases. Mol Endocrinol 2015; 29:1400-1413. [PMID: 26308386 PMCID: PMC4588730 DOI: 10.1210/me.2015-1155] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor (FGF)19 and FGF21 are hormones that regulate metabolic processes particularly during feeding or starvation, thus ultimately influencing energy production. FGF19 is secreted by the intestines during feeding and negatively regulates bile acid synthesis and secretion, whereas FGF21 is produced in the liver during fasting and plays a crucial role in regulating glucose and lipid metabolism, as well as maintaining energy homeostasis. FGF19 and FGF21 are regarded as late-acting hormones because their functions are only used after insulin and glucagon have completed their actions. Although FGF19 and FGF21 are activated under different conditions, they show extensively functional overlap in terms of improving glucose tolerance, insulin sensitivity, weight loss, and lipid, and energy metabolism, particularly in pathological conditions such as diabetes, obesity, metabolic syndrome, and cardiovascular and renal diseases. Most patients with these metabolic diseases exhibit reduced serum FGF19 levels, which might contribute to its etiology. In addition, the simultaneous increase in serum FGF21 levels is likely a compensatory response to reduced FGF19 levels, and the 2 proteins concertedly maintain metabolic homeostasis. Here, we review the physiological and pharmacological cross talk between FGF19 and FGF21 in relation to the regulation of endocrine metabolism and various chronic diseases.
Collapse
Affiliation(s)
- Fangfang Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Lechu Yu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xiufei Lin
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Peng Cheng
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Luqing He
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xuemian Lu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Yi Tan
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Hong Yang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Lu Cai
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Chi Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
19
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|