1
|
Jones CE, Blouin S, Raimann A, Mindler G, Contento BM, Besio R, Kranzl A, Kraler B, Hartmann MA, Forlino A, Fratzl-Zelman N. Mineralised bone properties in a child with recessive osteogenesis imperfecta type XIV and in a conditional Tmem38b knockout murine model (Runx2-Cre; Tmem38b fl/fl). Bone 2025; 193:117421. [PMID: 39904399 DOI: 10.1016/j.bone.2025.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION OI type XIV is caused by variants in the TMEM38B gene, encoding for the ubiquitously expressed endoplasmic reticulum trimeric intracellular cation channel type B (TRIC-B), causing disruptions in calcium homeostasis and collagen synthesis. Patients with OI type XIV present with a highly variable clinical phenotype, ranging from asymptomatic to severe. We present here data from a 6 year clinical follow-up of two affected siblings and bone tissue characterisation obtained during corrective surgery from one of the patients, as well as tibiae from a novel Tmem38b conditional knockout murine model (Runx2-Cre; Tmem38bfl/fl). METHODS Clinical examinations of the patients include bone mineral density (BMD) measurements using dual-energy x-ray absorptiometry (DXA) scanning and gait analyses. Quantitative backscattered electron imaging (qBEI) was used to investigate bone mineralisation density distribution (BMDD) and osteocyte lacunae properties, and confocal laser scanning microscopy was used to quantify the osteocyte lacuno-canalicular network (OLCN) in both human and murine specimens. RESULTS Both patients (P1, P2) presented with muscular hypotension, fatigue, progression of lower limb deformities, and fractures. BMDD of the osteonal bone region of the tibia and fibula specimens obtained from P1 revealed no significant shift towards higher mineral content as seen in "classical" OI. Osteocyte lacunae porosity was elevated and analyses of the OLCN revealed a reduction in canalicular density and lacunar degree. Runx2-Cre; Tmem38bfl/fl mice exhibited a very severe skeletal phenotype, with 10/12 of the tibiae showing evidence of fractures, bone deformations, or calluses. In contrast to the patient samples, both the cortex and metaphysis of mutant mice demonstrated a significant increase in the average mineral content (CaMean) and the peak of the distribution (CaPeak), as well as in osteocyte lacunae porosity (P < 0.0001), whereas canalicular density (P < 0.0001), and lacunar degree (P = 0.0004) were decreased. CONCLUSION While Runx2-Cre; Tmem38bfl/fl mice exhibit hypermineralisation of the bone matrix, this is not apparent in bone specimens obtained from the OI type XIV patient. However, both human and murine bone tissue with absence of TRIC-B demonstrate the same abnormalities of the osteocyte lacunae porosity and osteocyte lacuno-canalicular network, indicating disruption to the OLCN which is likely a general hallmark of OI bone.
Collapse
Affiliation(s)
- Chloe E Jones
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Centre, Vienna, Austria
| | - Adalbert Raimann
- Vienna Bone and Growth Centre, Vienna, Austria; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Mindler
- Vienna Bone and Growth Centre, Vienna, Austria; Department of Paediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Andreas Kranzl
- Vienna Bone and Growth Centre, Vienna, Austria; Laboratory for Gait and Movement Analysis, Orthopaedic Hospital Speising, Vienna, Austria
| | - Benjamin Kraler
- Vienna Bone and Growth Centre, Vienna, Austria; Department of Paediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Centre, Vienna, Austria
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Centre, Vienna, Austria.
| |
Collapse
|
2
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:777-804. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
3
|
Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Héritier C, Biggiogera M, Willaert A, Rossi A, Coucke PJ, Ruggiero F, Forlino A. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol 2023; 121:105-126. [PMID: 37336269 DOI: 10.1016/j.matbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Delfien Syx
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|
5
|
Hedjazi G, Guterman-Ram G, Blouin S, Schemenz V, Wagermaier W, Fratzl P, Hartmann MA, Zwerina J, Fratzl-Zelman N, Marini JC. Alterations of bone material properties in growing Ifitm5/BRIL p.S42 knock-in mice, a new model for atypical type VI osteogenesis imperfecta. Bone 2022; 162:116451. [PMID: 35654352 PMCID: PMC11162744 DOI: 10.1016/j.bone.2022.116451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a heterogenous group of heritable connective tissue disorders characterized by high bone fragility due to low bone mass and impaired bone material properties. Atypical type VI OI is an extremely rare and severe form of bone dysplasia resulting from a loss-of-function mutation (p.S40L) in IFITM5/BRIL,the causative gene of OI type V and decreased osteoblast secretion of pigment epithelium-derived factor (PEDF), as in OI type VI. It is not yet known which alterations at the material level might lead to such a severe phenotype. We therefore characterized bone tissue at the micrometer level in a novel heterozygous Ifitm5/BRIL p.S42L knock-in murine model at 4 and 8 weeks of age. METHODS We evaluated in female mice, total body size, femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry. In the femoral bone we examined osteoid deposition by light microscopy, assessed bone histomorphometry and mineralization density distribution by quantitative backscattered electron imaging (qBEI). Osteocyte lacunae were examined by qBEI and the osteocyte lacuno-canalicular network by confocal laser scanning microscopy. Vasculature was examined indirectly by qBEI as 2D porosity in cortex, and as 3D porosity by micro-CT in third trochanter. Collagen orientation was examined by second harmonic generation microscopy. Two-way ANOVA was used to discriminate the effect of age and genotype. RESULTS Ifitm5/BRIL p.S42L female mice are viable, do not differ in body size, fat and lean mass from wild type (WT) littermates but have lower whole-body, lumbar and femoral BMD and multiple fractures. The average and most frequent calcium concentration, CaMean and CaPeak, increased with age in metaphyseal and cortical bone in both genotypes and were always higher in Ifitm5/BRIL p.S42L than in WT, except CaMean in metaphysis at 4 weeks of age. The fraction of highly mineralized bone area, CaHigh, was also increased in Ifitm5/BRIL p.S42L metaphyseal bone at 8 weeks of age and at both ages in cortical bone. The fraction of lowly mineralized bone area, CaLow, decreased with age and was not higher in Ifitm5/BRIL p.S42L, consistent with lack of hyperosteoidosis on histological sections by visual exam. Osteocyte lacunae density was higher in Ifitm5/BRIL p.S42L than WT, whereas canalicular density was decreased. Indirect measurements of vascularity revealed a higher pore density at 4 weeks in cortical bone of Ifitm5/BRIL p.S42L than in WT and at both ages in the third trochanter. Importantly, the proportion of bone area with disordered collagen fibrils was highly increased in Ifitm5/BRIL p.S42L at both ages. CONCLUSIONS Despite normal skeletal growth and the lack of a collagen gene mutation, the Ifitm5/BRIL p.S42L mouse shows major OI-related bone tissue alterations such as hypermineralization of the matrix and elevated osteocyte porosity. Together with the disordered lacuno-canalicular network and the disordered collagen fibril orientation, these abnormalities likely contribute to overall bone fragility.
Collapse
Affiliation(s)
- Ghazal Hedjazi
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Victoria Schemenz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, USA.
| |
Collapse
|
6
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation. Stem Cell Res Ther 2021; 12:98. [PMID: 33536073 PMCID: PMC7860046 DOI: 10.1186/s13287-020-02123-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) are ideal seed cells for periodontal regeneration. A greater understanding of the dynamic protein profiles during osteogenic differentiation contributed to the improvement of periodontal regeneration tissue engineering. Methods Tandem Mass Tag quantitative proteomics was utilized to reveal the temporal protein expression pattern during osteogenic differentiation of hPDLSCs on days 0, 3, 7 and 14. Differentially expressed proteins (DEPs) were clustered and functional annotated by Gene Ontology (GO) terms. Pathway enrichment analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes database, followed by the predicted activation using Ingenuity Pathway Analysis software. Interaction networks of redox-sensitive signalling pathways and oxidative phosphorylation (OXPHOS) were conducted and the hub protein SOD2 was validated with western blotting. Results A total of 1024 DEPs were identified and clustered in 5 distinctive clusters representing dynamic tendencies. The GO enrichment results indicated that proteins with different tendencies show different functions. Pathway enrichment analysis found that OXPHOS was significantly involved, which further predicted continuous activation. Redox-sensitive signalling pathways with dynamic activation status showed associations with OXPHOS to various degrees, especially the sirtuin signalling pathway. SOD2, an important component of the sirtuin pathway, displays a persistent increase during osteogenesis. Data are available via ProteomeXchange with identifier PXD020908. Conclusion This is the first in-depth dynamic proteomic analysis of osteogenic differentiation of hPDLSCs. It demonstrated a dynamic regulatory mechanism of hPDLSC osteogenesis and might provide a new perspective for research on periodontal regeneration. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02123-6.
Collapse
|
8
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Cabral WA, Fratzl-Zelman N, Weis M, Perosky JE, Alimasa A, Harris R, Kang H, Makareeva E, Barnes AM, Roschger P, Leikin S, Klaushofer K, Forlino A, Backlund PS, Eyre DR, Kozloff KM, Marini JC. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol 2020; 90:20-39. [PMID: 32112888 DOI: 10.1016/j.matbio.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Joseph E Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Adrienne Alimasa
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Harris
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Peter S Backlund
- Biomedical Mass Spectrometry Facility, NICHD, NIH, Bethesda, MD, USA
| | - David R Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk. RECENT FINDINGS In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone. Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Orthopedic Institute, Medical Center East, South Tower, Suite 4200, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Lietman CD, Lim J, Grafe I, Chen Y, Ding H, Bi X, Ambrose CG, Fratzl-Zelman N, Roschger P, Klaushofer K, Wagermaier W, Schmidt I, Fratzl P, Rai J, Weis M, Eyre D, Keene DR, Krakow D, Lee BH. Fkbp10 Deletion in Osteoblasts Leads to Qualitative Defects in Bone. J Bone Miner Res 2017; 32:1354-1367. [PMID: 28206698 PMCID: PMC5466482 DOI: 10.1002/jbmr.3108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Abstract
Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65-kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon, and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10fl/fl mice (Mus musculus; C57BL/6) using the osteoblast-specific Col1a1 2.3-kb Cre recombinase. Using μCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy (MS) of bone collagen demonstrated a decrease in mature, hydroxylysine-aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral-to-matrix ratio and in crystal size as shown by Raman spectroscopy and small-angle X-ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild-type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caressa D Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam, Germany
| | - Ingo Schmidt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam, Germany
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Kang H, Aryal A C S, Marini JC. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 2017; 181:27-48. [PMID: 27914223 DOI: 10.1016/j.trsl.2016.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by fragile bones and short stature and known for its clinical and genetic heterogeneity which is now understood as a collagen-related disorder. During the last decade, research has made remarkable progress in identifying new OI-causing genes and beginning to understand the intertwined molecular and biochemical mechanisms of their gene products. Most cases of OI have dominant inheritance. Each new gene for recessive OI, and a recently identified gene for X-linked OI, has shed new light on its (often previously unsuspected) function in bone biology. Here, we summarize the literature that has contributed to our current understanding of the pathogenesis of OI.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Smriti Aryal A C
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md.
| |
Collapse
|
13
|
Fratzl-Zelman N, Barnes AM, Weis M, Carter E, Hefferan TE, Perino G, Chang W, Smith PA, Roschger P, Klaushofer K, Glorieux FH, Eyre DR, Raggio C, Rauch F, Marini JC. Non-Lethal Type VIII Osteogenesis Imperfecta Has Elevated Bone Matrix Mineralization. J Clin Endocrinol Metab 2016; 101:3516-25. [PMID: 27383115 PMCID: PMC5010570 DOI: 10.1210/jc.2016-1334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Type VIII osteogenesis imperfecta (OI; OMIM 601915) is a recessive form of lethal or severe OI caused by null mutations in P3H1, which encodes prolyl 3-hydroxylase 1. OBJECTIVES Clinical and bone material description of non-lethal type VIII OI. DESIGN Natural history study of type VIII OI. SETTING Pediatric academic research centers. PATIENTS Five patients with non-lethal type VIII OI, and one patient with lethal type VIII OI. INTERVENTIONS None. MAIN OUTCOME MEASURES Clinical examinations included bone mineral density, radiographs, and serum and urinary metabolites. Bone biopsy samples were analyzed for histomorphometry and bone mineral density distribution by quantitative backscattered electron imaging microscopy. Collagen biochemistry was examined by mass spectrometry, and collagen fibrils were examined by transmission electron microscopy. RESULTS Type VIII OI patients have extreme growth deficiency, an L1-L4 areal bone mineral density Z-score of -5 to -6, and normal bone formation markers. Collagen from bone and skin tissue and cultured osteoblasts and fibroblasts have nearly absent 3-hydroxylation (1-4%). Collagen fibrils showed abnormal diameters and irregular borders. Bone histomorphometry revealed decreased cortical width and very thin trabeculae with patches of increased osteoid, although the overall osteoid surface was normal. Quantitative backscattered electron imaging showed increased matrix mineralization of cortical and trabecular bone, typical of other OI types. However, the proportion of bone with low mineralization was increased in type VIII OI bone, compared to type VII OI. CONCLUSIONS P3H1 is the unique enzyme responsible for collagen 3-hydroxylation in skin and bone. Bone from non-lethal type VIII OI children is similar to type VII, especially bone matrix hypermineralization, but it has distinctive features including extremely thin trabeculae, focal osteoid accumulation, and an increased proportion of low mineralized bone.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Aileen M Barnes
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - MaryAnn Weis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Erin Carter
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Theresa E Hefferan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Giorgio Perino
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Weizhong Chang
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Peter A Smith
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Francis H Glorieux
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - David R Eyre
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Cathleen Raggio
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Frank Rauch
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| | - Joan C Marini
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Centre Meidling (N.F.-Z., P.R., K.K.), First Medical Department, Hanusch Hospital, 1140 Vienna, Austria; Section on Heritable Disorders of Bone (A.M.B., W.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; The Orthopaedic Research Laboratories (M.W., D.R.E.), University of Washington, Seattle, Washington 98195; Hospital for Special Surgery (E.C., G.P., C.R.), New York, New York 10021; Department of Orthopedics (T.E.H.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Shriners Hospital for Children (P.A.S.), Chicago, Illinois 60707; and Shriners Hospital for Children and McGill University (F.H.G., F.R.), Montreal, QC H4A 0A9, Canada
| |
Collapse
|