1
|
Yu Z, Kawashima N, Sunada-Nara K, Wang S, Han P, Kieu TQ, Ren C, Noda S, Tazawa K, Okiji T. MicroRNA-27a transfected dental pulp stem cells undergo odonto/osteogenic differentiation via targeting DKK3 and SOSTDC1 in Wnt/BMP signaling in vitro and enhance bone formation in vivo. J Transl Med 2025; 23:189. [PMID: 39956898 PMCID: PMC11831854 DOI: 10.1186/s12967-025-06208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a crucial role in cell differentiation through epigenetic regulation of gene expression. In human dental pulp cells, we have identified miRNA-27a being upregulated under inflammatory conditions. Here, we aimed to examine whether (i) overexpression of miRNA-27a in human dental pulp stem cells (hDPSCs) enhances their odonto/osteoblastic differentiation via Wnt and bone morphogenetic protein signaling; and (ii) hDPSCs overexpressing miRNA-27a promote new bone formation in vivo. METHODS hDPSCs were cultured in osteogenic medium to promote differentiation. To examine the role of miRNA-27a, hDPSCs were transfected with either a miRNA-27a mimic to enhance or an inhibitor to suppress miRNA-27a expression. Odonto/osteoblastic differentiation was assessed by evaluating the expression of specific markers, Wnt and bone morphogenetic protein (BMP) signaling molecules, and mineralization capacity using RT-qPCR, western blotting, Alizarin Red S (ARS) staining, and alkaline phosphatase (ALP) activity. Potential miRNA-27a binding sites in the 3'UTRs of DKK3 and SOSTDC1 were identified via bioinformatics analysis and validated through the luciferase reporter assay. In vivo, miRNA-27a-overexpressing hDPSCs were seeded into collagen honeycomb scaffolds and implanted into mouse calvarial bone cavities to assess new bone formation. RESULTS MiRNA-27a was highly upregulated in hDPSCs committed to odonto/osteoblastic differentiation. Overexpression of miRNA-27a led to increased expression of odonto/osteoblastic markers and enhanced mineralization capacity, while inhibition of miRNA-27a had the opposite effect. MiRNA-27a targeted DKK3, promoting β-catenin nuclear translocation and inhibiting SOSTDC1, which enhanced SMAD1/5 phosphorylation. Binding sites for miRNA-27a were identified in the 3'UTRs of DKK3 and SOSTDC1. In vivo, miRNA-27a-overexpressing hDPSCs promoted new bone formation in mouse calvaria bone cavities. CONCLUSION Transfection of miRNA-27a in hDPSCs enhanced their odonto/osteoblastic differentiation by targeting DKK3 and SOSTDC1, thereby promoting the Wnt and BMP signaling. Transplantation of miRNA-27a-overexpressing hDPSCs promoted new bone formation in vivo. These findings deepen our understanding of the effects of miRNA on Wnt and BMP pathways and suggest a potential clinical application for miRNA-27a in promoting hard tissue regeneration, offering a promising therapeutic target for dental and craniofacial tissue reconstruction.
Collapse
Affiliation(s)
- Ziniu Yu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Shihan Wang
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Peifeng Han
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Thoai Quoc Kieu
- Department of Pediatric Dentistry, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 17000, Vietnam
| | - Chunmei Ren
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Formerly Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| |
Collapse
|
2
|
Palomino Lago E, Ross AKC, McClellan A, Guest DJ. Identification of a global gene expression signature associated with the genetic risk of catastrophic fracture in iPSC-derived osteoblasts from Thoroughbred horses. Anim Genet 2025; 56:e13504. [PMID: 39801206 PMCID: PMC11726005 DOI: 10.1111/age.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Bone fractures are a significant problem in Thoroughbred racehorses. The risk of fracture is influenced by both genetic and environmental factors. To determine the biological processes that are affected in genetically susceptible horses, we utilised polygenic risk scoring to establish induced pluripotent stem cells (iPSCs) from horses at high and low genetic risk. RNA-sequencing on iPSC-derived osteoblasts revealed 112 genes that were significantly differentially expressed. Forty-three of these genes have known roles in bone, 27 are not yet annotated in the equine genome and 42 currently have no described role in bone. However, many of the proteins encoded by the known and unknown genes have reported interactions. Functional enrichment analyses revealed that the differentially expressed genes were overrepresented in processes regulating the extracellular matrix and pathways known to be involved in bone remodelling and bone diseases. Gene set enrichment analysis also detected numerous biological processes and pathways involved in glycolysis with the associated genes having a higher expression in the iPSC-osteoblasts from horses with low polygenic risk scores for fracture. Therefore, the differentially expressed genes may be relevant for maintaining bone homeostasis and contribute to fracture risk. A deeper understanding of the consequences of mis-regulation of these genes and the identification of the DNA variants which underpin their differential expression may reveal more about the molecular mechanisms which are involved in equine bone health and fracture risk.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| | - Amy K. C. Ross
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| | - Alyce McClellan
- Animal Health TrustNewmarketUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| |
Collapse
|
3
|
Rai D, Sardar A, Raj A, Maji B, Verma S, Tripathi AK, Gupta S, Sharma A, Dhar YV, Trivedi R. miR4352b a cross-species modulator of SOSTDC1, targets dual pathway to regulate bone health and fracture healing. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167514. [PMID: 39326466 DOI: 10.1016/j.bbadis.2024.167514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Mutations in SOST can lead to various monogenic bone diseases. Its paralog, SOSTDC1, shares 55 % protein sequence homology and belongs to the BMP antagonist class. Sostdc1-/- mice exhibit distinct effects on cortical and trabecular bone. Genetic polymorphisms in SOSTDC1 impacting peak bone mass makes SOSTDC1 gene, a candidate for influencing BMD variation in humans. SOSTDC1 is upregulated in bone loss conditions, altering BMP-responsive genes and signaling modulators, suggesting its dual BMP/Wnt antagonist role may enhance both pathways. Overexpression of SOSTDC1 confirmed its role as an osteogenic antagonist. Glycine max (Soy)-derived miR4352b, identified for cross-kingdom applications, precisely targets SOSTDC1, a key regulator of bone. SOSTDC1 competitively binds to BMP2 receptor, BMPR1A. Gma-miR4352b suppresses SOSTDC1 expression, enhancing osteogenesis and countering SOSTDC1's inhibition of osteogenic potential. Modeling estrogen deficiency to mimic elevated SOSTDC1 levels, we observed an inverse correlation with SOSTDC1 expression, while serum BMP2 and PINP levels increased following gma-miR4352b supplementation. In fracture healing, SOSTDC1's crucial role becomes evident in conditions of delayed fracture healing. As healing progresses, SOSTDC1 expression decreases. Gma-miR4352b, compared to scrambled miRNA, remarkably promotes callus formation, achieving 68 % healing by day 10, surpassing the scrambled group at 44 %. By the day 13, the treatment group exhibits advanced healing, challenging to find the callus, while the scrambled group maintains a healing rate similar to day10. The accelerated healing in the treatment group underscores the importance of SOSTDC1 in influencing early fracture healing, potentially through the activation of both BMP2 and Wnt signaling pathways.
Collapse
Affiliation(s)
- Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anuj Raj
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhaskar Maji
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shikha Verma
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sanchita Gupta
- Computational Biology lab, CSIR-National Botanical Research Institute, 226001, India
| | - Ashish Sharma
- CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogeshwar Vikram Dhar
- Computational Biology lab, CSIR-National Botanical Research Institute, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
You C, Shen F, Yang P, Cui J, Ren Q, Liu M, Hu Y, Li B, Ye L, Shi Y. O-GlcNAcylation mediates Wnt-stimulated bone formation by rewiring aerobic glycolysis. EMBO Rep 2024; 25:4465-4487. [PMID: 39256595 PMCID: PMC11467389 DOI: 10.1038/s44319-024-00237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-β-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.
Collapse
Affiliation(s)
- Chengjia You
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiaoyue Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Moyu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Hu
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Wang C, Wang X, Cheng H, Fang J. MiR-22-3p facilitates bone marrow mesenchymal stem cell osteogenesis and fracture healing through the SOSTDC1-PI3K/AKT pathway. Int J Exp Pathol 2024; 105:52-63. [PMID: 38152045 PMCID: PMC10951417 DOI: 10.1111/iep.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Bone fractures are the most common form of musculoskeletal trauma worldwide. Numerous microRNAs (miRNAs) have been suggested to be participants in regulating bone-related diseases. Recent studies revealed the regulatory role of miR-22-3p in osteogenic differentiation, but its role in fracture healing has not been investigated previously. Here, a rat femoral fracture model was established, Bone marrow mesenchymal stem cells (BMSCs) were isolated to detect the specific function and underlying mechanisms of miR-22-3p. MiR-22-3p and sclerostin domain-containing 1 (SOSTDC1) expression was determined by RT-qPCR and immunohistochemistry staining. The levels of proteins associated with osteogenic differentiation were assessed by western blotting. Flow cytometry was conducted to identify the isolated rat BMSCs. Alizarin red staining, alkaline phosphatase staining and Oil Red O staining were used to evaluate the osteogenic and adipogenic differentiation of rat BMSCs. The interaction between miR-22-3p and SOSTDC1 was verified using a luciferase reporter assay. Haematoxylin and Eosin (H&E) staining of the bone tissues was performed to analyse the effect of miR-22-3p on histopathological changes in vivo. MiR-22-3p was downregulated in the callus tissues of rat femoral fracture, while the expression of SOSTDC1 was upregulated. The isolated rat BMSCs had the capacity for both osteogenic and adipogenic differentiation. The differentiation capacity of BMSCs into osteoblasts was increased by miR-22-3p overexpression. MiR-22-3p activated the PI3K/AKT pathway by targeting SOSTDC1. SOSTDC1 overexpression and PI3K/AKT signalling inhibitor LY294002 abolished the enhancing effect of miR-22-3p overexpression on the osteogenesis of BMSCs. Thus MiR-22-3p facilitated the femoral fracture healing in rats. MiR-22-3p overexpression promoted fracture healing via the activation of PI3K/AKT pathway by targeting SOSTDC1.
Collapse
Affiliation(s)
- Chunqiu Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xinguo Wang
- Department of OrthopedicsZhenjiang 359 HospitalZhenjiangChina
| | - Hui Cheng
- Department of OrthopedicsZhenjiang 359 HospitalZhenjiangChina
| | - Jiahu Fang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Choi RB, Hoggatt AM, Horan DJ, Rogers EZ, Loots GG, Robling AG. Sostdc1 Suppression in the Absence of Sclerostin Potentiates Anabolic Action of Cortical Bone in Mice. J Bone Miner Res 2023; 38:765-774. [PMID: 36891756 PMCID: PMC10830127 DOI: 10.1002/jbmr.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
The development of Wnt-based osteoanabolic agents has progressed rapidly in recent years, given the potent effects of Wnt modulation on bone homeostasis. Simultaneous pharmacologic inhibition of the Wnt antagonists sclerostin and Dkk1 can be optimized to create potentiated effects in the cancellous bone compartment. We looked for other candidates that might be co-inhibited along with sclerostin to potentiate the effects in the cortical compartment. Sostdc1 (Wise), like sclerostin and Dkk1, also binds and inhibits Lrp5/6 coreceptors to impair canonical Wnt signaling, but Sostdc1 has greater effects in the cortical bone. To test this concept, we deleted Sostdc1 and Sost from mice and measured the skeletal effects in cortical and cancellous compartments individually. Sost deletion alone produced high bone mass in all compartments, whereas Sostdc1 deletion alone had no measurable effects on either envelope. Mice with codeletion of Sostdc1 and Sost had high bone mass and increased cortical properties (bone mass, formation rates, mechanical properties), but only among males. Combined administration of sclerostin antibody and Sostdc1 antibody in wild-type female mice produced potentiation of cortical bone gain despite no effect of Sostdc1 antibody alone. In conclusion, Sostdc1 inhibition/deletion can work in concert with sclerostin deficiency to improve cortical bone properties. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Roy B. Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - April M. Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Z. Rogers
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriela G. Loots
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| |
Collapse
|
7
|
Tong X, Zhu C, Liu L, Huang M, Xu J, Chen X, Zou J. Role of Sostdc1 in skeletal biology and cancer. Front Physiol 2022; 13:1029646. [PMID: 36338475 PMCID: PMC9633957 DOI: 10.3389/fphys.2022.1029646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sclerostin domain-containing protein-1 (Sostdc1) is a member of the sclerostin family and encodes a secreted 28–32 kDa protein with a cystine knot-like domain and two N-linked glycosylation sites. Sostdc1 functions as an antagonist to bone morphogenetic protein (BMP), mediating BMP signaling. It also interacts with LRP6, mediating LRP6 and Wnt signaling, thus regulating cellular proliferation, differentiation, and programmed cell death. Sostdc1 plays various roles in the skin, intestines, brain, lungs, kidneys, and vasculature. Deletion of Sostdc1 gene in mice resulted in supernumerary teeth and improved the loss of renal function in Alport syndrome. In the skeletal system, Sostdc1 is essential for bone metabolism, bone density maintenance, and fracture healing. Recently, Sostdc1 has been found to be closely related to the development and progression of multiple cancer types, including breast, renal, gastric, and thyroid cancers. This article summarises the role of Sostdc1 in skeletal biology and related cancers to provide a theoretical basis for the treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoyang Tong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xi Chen, ; Jun Zou,
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xi Chen, ; Jun Zou,
| |
Collapse
|
8
|
Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms231911928. [PMID: 36233230 PMCID: PMC9570000 DOI: 10.3390/ijms231911928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multi-potent cell populations and are capable of maintaining bone and body homeostasis. The stemness and potential therapeutic effect of BMSCs have been explored extensively in recent years. However, diverse cell surface antigens and complex gene expression of BMSCs have indicated that BMSCs represent heterogeneous populations, and the natural characteristics of BMSCs make it difficult to identify the specific subpopulations in pathological processes which are often obscured by bulk analysis of the total BMSCs. Meanwhile, the therapeutic effect of total BMSCs is often less effective partly due to their heterogeneity. Therefore, understanding the functional heterogeneity of the BMSC subpopulations under different physiological and pathological conditions could have major ramifications for global health. Here, we summarize the recent progress of functional heterogeneity of BMSC subpopulations in physiology and pathology. Targeting tissue-resident single BMSC subpopulation offers a potentially innovative therapeutic strategy and improves BMSC effectiveness in clinical application.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration. RECENT FINDINGS Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment. Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| |
Collapse
|
10
|
Li C, Wang M, Shi Y, Xin H. SOSTDC1 acts as a tumor inhibitor in acute myeloid leukemia by downregulating the Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1934-1943. [PMID: 35442555 DOI: 10.1002/tox.23540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Sclerostin domain-containing 1 (SOSTDC1) has been documented as a key tumor-associated protein that is differentially expressed in multiple malignancies. However, the function of SOSTDC1 in acute myeloid leukemia (AML) is unexplored. The goal of this work was to assess the possible role of SOSTDC1 in AML. Our data showed decreased SOSTDC1 level in bone marrow from AML patients, and patients with low levels of SOSTDC1 had a reduced survival rate. SOSTC1 upregulation restrained the proliferative ability and promoted the apoptotic rate of AML cells. SOSTDC1 suppressed the activation of the Wnt/β-catenin pathway in AML cells. Reactivation of the Wnt/β-catenin pathway reversed SOSTDC1-mediated antitumor effects. SOSTDC1 upregulation weakened the tumorigenicity of AML cells in vivo. Collectively, our work demonstrates that SOSTDC1 has a tumor-inhibiting role in AML via downregulation of the Wnt/β-catenin pathway. This work underscores a key function for the SOSTDC1/Wnt/β-catenin pathway in AML.
Collapse
Affiliation(s)
- Chengliang Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Minjuan Wang
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yingpeng Shi
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Hong Xin
- Department of Cardiovasology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
11
|
Wang F, Guo J, Wang Y, Hu Y, Zhang H, Chen J, Jing Y, Cao L, Chen X, Su J. Loss of Bcl-3 delays bone fracture healing through activating NF-κB signaling in mesenchymal stem cells. J Orthop Translat 2022; 35:72-80. [PMID: 36186660 PMCID: PMC9471962 DOI: 10.1016/j.jot.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Background Bone fracture healing is a postnatal regenerative process in which fibrocartilaginous callus formation and bony callus formation are important. Bony callus formation requires osteoblastic differentiation of MSCs. Materials and methods The formation of callus was assessed by μCT, Safranin-O, H&E and Masson trichrome staining. Osteogenesis of MSCs was analyzed by ALP staining, ARS staining, qRT-PCR and WB. And we also used IF and TOP/FOP Flash luciferase reporter to assess the nuclear translocation of PP65. Results In this study, we found Bcl-3 showed a significant correlation with bone fracture healing. Results of μCT showed that loss of Bcl-3 delays bone fracture healing. Safranin-O, H&E and Masson trichrome staining confirmed that loss of Bcl-3 impacted the formation of cartilage and woven bone in callus. Further experiments in vitro manifested that Bcl-3-knockdown could inhibit MSCs osteoblastic differentiation through releasing the inhibition on NF-κB signaling by Co-IP, IF staining and luciferase reporter assay. Conclusions We unveiled that loss of Bcl-3 could lead to inhibited osteogenic differentiation of MSCs via promoting PP65 nuclear translocation. The translational potential of this article Our data demonstrated that overexpression of Bcl-3 accelerates bone fracture healing, which serves as a promising therapeutic target for bone fracture treatment.
Collapse
|
12
|
Jeyaraman M, Muthu S, Gangadaran P, Ranjan R, Jeyaraman N, Prajwal GS, Mishra PC, Rajendran RL, Ahn BC. Osteogenic and Chondrogenic Potential of Periosteum-Derived Mesenchymal Stromal Cells: Do They Hold the Key to the Future? Pharmaceuticals (Basel) 2021; 14:1133. [PMID: 34832915 PMCID: PMC8618036 DOI: 10.3390/ph14111133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
The periosteum, with its outer fibrous and inner cambium layer, lies in a dynamic environment with a niche of pluripotent stem cells for their reparative needs. The inner cambium layer is rich in mesenchymal progenitors, osteogenic progenitors, osteoblasts, and fibroblasts in a scant collagen matrix environment. Their role in union and remodeling of fracture is well known. However, the periosteum as a source of mesenchymal stem cells has not been explored in detail. Moreover, with the continuous expansion of techniques, newer insights have been acquired into the roles and regulation of these periosteal cells. From a therapeutic standpoint, the periosteum as a source of tissue engineering has gained much attraction. Apart from its role in bone repair, analysis of the bone-forming potential of periosteum-derived stem cells is lacking. Hence, this article elucidates the role of the periosteum as a potential source of mesenchymal stem cells along with their capacity for osteogenic and chondrogenic differentiation for therapeutic application in the future.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
| | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | | | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| |
Collapse
|
13
|
Uterine Sensitization-Associated Gene-1 in the Progression of Kidney Diseases. J Immunol Res 2021; 2021:9752139. [PMID: 34414243 PMCID: PMC8369194 DOI: 10.1155/2021/9752139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine sensitization-associated gene-1 (USAG-1), originally identified as a secretory protein preferentially expressed in the sensitized rat endometrium, has been determined to modulate bone morphogenetic protein (BMP) and Wnt expression to play important roles in kidney disease. USAG-1 affects the progression of acute and chronic kidney damage and the recovery of allograft kidney function by regulating the BMP and Wnt signaling pathways. Moreover, USAG-1 has been found to be involved in the process of T cell immune response, and its ability to inhibit germinal center activity and reduce humoral immunity is of great significance for the treatment of autoimmune nephropathy and antibody-mediated rejection (AMR) after renal transplantation. This article summarizes the many advances made regarding the roles of USAG-1 in the progression of kidney disease and outlines potential treatments.
Collapse
|
14
|
Choi RB, Bullock WA, Hoggatt AM, Loots GG, Genetos DC, Robling AG. Improving Bone Health by Optimizing the Anabolic Action of Wnt Inhibitor Multitargeting. JBMR Plus 2021; 5:e10462. [PMID: 33977198 PMCID: PMC8101614 DOI: 10.1002/jbm4.10462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Sclerostin antibody (romosozumab) was recently approved for clinical use in the United States to treat osteoporosis. We and others have explored Wnt‐based combination therapy to disproportionately improve the anabolic effects of sclerostin inhibition, including cotreatment with sclerostin antibody (Scl‐mAb) and Dkk1 antibody (Dkk1‐mAb). To determine the optimal ratio of Scl‐mAb and Dkk1‐mAb for producing maximal anabolic action, the proportion of Scl‐mAb and Dkk1‐mAb were systematically varied while holding the total antibody dose constant. A 3:1 mixture of Scl‐mAb to Dkk1‐mAb produced two to three times as much cancellous bone mass as an equivalent dose of Scl‐mAb alone. Further, a 75% reduction in the dose of the 3:1 mixture was equally efficacious to a full dose of Scl‐mAb in the distal femur metaphysis. The Scl‐mAb/Dkk1‐mAb combination approach was highly efficacious in the cancellous bone mass, but the cortical compartment was much more subtly affected. The osteoanabolic effects of Wnt pathway targeting can be made more efficient if multiple antagonists are simultaneously targeted. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roy B Choi
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Whitney A Bullock
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - April M Hoggatt
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Gabriela G Loots
- Biology and Biotechnology DivisionLawrence Livermore National LaboratoryLivermoreCAUSA
- Molecular Cell Biology Unit, School of Natural SciencesUniversity of California MercedMercedCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell BiologyUniversity of California–Davis School of Veterinary MedicineDavisCAUSA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Affairs Medical CenterIndianapolisINUSA
- Department of Biomedical EngineeringIndiana University–Purdue University at IndianapolisIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
| |
Collapse
|
15
|
Liu D, He S, Chen S, Yang L, Yang J, Bao Q, Qin H, Zhao Y, Zong Z. Wnt/β-catenin signalling promotes more effective fracture healing in aged mice than in adult mice by inducing angiogenesis and cell differentiation. Sci Prog 2021; 104:368504211013223. [PMID: 33950750 PMCID: PMC10358591 DOI: 10.1177/00368504211013223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate whether activating the Wnt/β-catenin signalling pathway differentially promotes fracture healing in aged and adult individuals. CatnbTM2Kem, Catnblox(ex3) and wild-type adult and aged mice were used in this study. The femur was electroporated through a hole with a diameter of 0.6 mm. On the 7th, 14th and 21st days after fracture establishment, repair of the femoral diaphyseal bone was examined using X-ray and CT, the levels of mRNAs related to Wnt/β-catenin signalling were detected using real-time polymerase chain reaction (RT-PCR), and angiogenesis and cell differentiation were observed using immunohistochemistry. The numbers of osteoclasts were determined by TRAP staining. Wnt/β-catenin activation accelerated fracture healing in adult mice, with more pronounced effects on aged mice. Compared with wild-type mice at the corresponding ages, Wnt/β-catenin signalling activation induced higher levels of angiogenesis and cell differentiation in aged mice than in adult mice and promoted fracture healing. The administration of medications targeting Wnt/β-catenin signalling to aged patients may accelerate fracture healing to a greater extent.
Collapse
Affiliation(s)
| | - Sihao He
- Army Medical University, Chongqing, China
| | - Sixu Chen
- Army Medical University, Chongqing, China
| | - Lei Yang
- Army Medical University, Chongqing, China
| | | | | | - Hao Qin
- Army Medical University, Chongqing, China
| | | | | |
Collapse
|
16
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
17
|
Li X, Wei Z, Zhang W, Lv H, Li J, Wu L, Zhang H, Yang B, Zhu M, Jiang J. Anti-Inflammatory Effects of Magnetically Targeted Mesenchymal Stem Cells on Laser-Induced Skin Injuries in Rats. Int J Nanomedicine 2020; 15:5645-5659. [PMID: 32848391 PMCID: PMC7428346 DOI: 10.2147/ijn.s258017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are a promising resource for tissue regeneration and repair. However, their clinical application is hindered by technical limitations related to MSC enrichment at the target sites. Methods MSCs were labeled with magnetic Fe3O4 nanoparticles (NPs). We analyzed the effects of NP on cell proliferation, stem cell characteristics, and cytokine secretion. Furthermore, we induced NP-labeled MSC migration with an external magnetic field toward laser-induced skin wounds in rats and evaluated the associated anti-inflammatory effects. Results Fe3O4 NP application did not adversely affect MSC characteristics. Moreover, Fe3O4 NP-labeled MSCs presented increased anti-inflammatory cytokine and chemokine production compared with unlabeled MSCs. Furthermore, MSCs accumulated at the injury site and magnetic targeting promoted NP-labeled MSC migration toward burn injury sites in vivo. On day 7 following MSC injection, reduced inflammation and promoted angiogenesis were observed in the magnetically targeted MSC group. In addition, anti-inflammatory factors were upregulated, whereas pro-inflammatory factors were downregulated within the magnetically targeted MSC group compared with those in the PBS group. Conclusion This study demonstrates that magnetically targeted MSCs contribute to cell migration to the site of skin injury, improve anti-inflammatory effects and enhance angiogenesis compared with MSC injection alone. Therefore, magnetically targeted MSC therapy may be an effective treatment approach for epithelial tissue injuries.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenhong Wei
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huiying Lv
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Liya Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Mingji Zhu
- Dermatological Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
18
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World J Stem Cells 2020; 12:339-350. [PMID: 32547682 PMCID: PMC7280866 DOI: 10.4252/wjsc.v12.i5.339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.
Collapse
Affiliation(s)
- Guo-Ping Xu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xiang-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| | - Er-Man Chen
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
20
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
21
|
MiR-26a promotes fracture healing of nonunion rats possibly by targeting SOSTDC1 and further activating Wnt/β-catenin signaling pathway. Mol Cell Biochem 2019; 460:165-173. [DOI: 10.1007/s11010-019-03578-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
|
22
|
Chicana B, Donham C, Millan AJ, Manilay JO. Wnt Antagonists in Hematopoietic and Immune Cell Fate: Implications for Osteoporosis Therapies. Curr Osteoporos Rep 2019; 17:49-58. [PMID: 30835038 PMCID: PMC6715281 DOI: 10.1007/s11914-019-00503-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We reviewed the current literature on the roles of the Wnt antagonists sclerostin (Sost) and sclerostin-containing domain protein 1 (Sostdc1) on bone homeostasis, the relationship of the hypoxia-inducible factor (Hif) and von Hippel-Lindau (Vhl) pathways on Sost expression, and how changes in bone induced by depletion of Sost, Sostdc1, and Vhl affect hematopoietic cells. RECENT FINDINGS B cell development is adversely affected in Sost-knockout mice and is more severely affected in Vhl-knockout mice. Inflammation in the Sost-/- bone microenvironment could alter hematopoietic stem cell behavior. Sostdc1-/- mice display defects in natural killer cell development and cytotoxicity. Depletion of Sost and Sostdc1 have effects on immune cell function that warrant investigation in patients receiving Wnt antagonist-depleting therapies for treatment of bone diseases. Additional clinical applications for manipulation of Wnt antagonists include cancer immunotherapies, stem cell transplantation, and directed differentiation to immune lineages.
Collapse
Affiliation(s)
- Betsabel Chicana
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Cristine Donham
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Alberto J Millan
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA.
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
23
|
Millan AJ, Elizaldi SR, Lee EM, Aceves JO, Murugesh D, Loots GG, Manilay JO. Sostdc1 Regulates NK Cell Maturation and Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2296-2306. [PMID: 30814306 DOI: 10.4049/jimmunol.1801157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023]
Abstract
NK cells are innate-like lymphocytes that eliminate virally infected and cancerous cells, but the mechanisms that control NK cell development and cytotoxicity are incompletely understood. We identified roles for sclerostin domain-containing-1 (Sostdc1) in NK cell development and function. Sostdc1-knockout (Sostdc1 -/-) mice display a progressive accumulation of transitional NK cells (tNKs) (CD27+CD11b+) with age, indicating a partial developmental block. The NK cell Ly49 repertoire in Sostdc1 -/- mice is also changed. Lower frequencies of Sostdc1 -/- splenic tNKs express inhibitory Ly49G2 receptors, but higher frequencies express activating Ly49H and Ly49D receptors. However, the frequencies of Ly49I+, G2+, H+, and D+ populations were universally decreased at the most mature (CD27-CD11b+) stage. We hypothesized that the Ly49 repertoire in Sostdc1 -/- mice would correlate with NK killing ability and observed that Sostdc1-/- NK cells are hyporesponsive against MHC class I-deficient cell targets in vitro and in vivo, despite higher CD107a surface levels and similar IFN-γ expression to controls. Consistent with Sostdc1's known role in Wnt signaling regulation, Tcf7 and Lef1 levels were higher in Sostdc1 -/- NK cells. Expression of the NK development gene Id2 was decreased in Sostdc1-/- immature NK and tNK cells, but Eomes and Tbx21 expression was unaffected. Reciprocal bone marrow transplant experiments showed that Sostdc1 regulates NK cell maturation and expression of Ly49 receptors in a cell-extrinsic fashion from both nonhematopoietic and hematopoietic sources. Taken together, these data support a role for Sostdc1 in the regulation of NK cell maturation and cytotoxicity, and identify potential NK cell niches.
Collapse
Affiliation(s)
- Alberto J Millan
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Sonny R Elizaldi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Eric M Lee
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Jeffrey O Aceves
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Deepa Murugesh
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Gabriela G Loots
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550
| | - Jennifer O Manilay
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| |
Collapse
|
24
|
Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol 2019; 62:R167-R185. [PMID: 30532996 DOI: 10.1530/jme-18-0176] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.
Collapse
Affiliation(s)
| | | | - Hua Zhu Ke
- Bone Therapeutic Area, UCB Pharma, Slough, United Kingdom
| |
Collapse
|
25
|
Lu L, Zhu J, Zhang Y, Wang Y, Zhang S, Xia A. Febuxostat inhibits TGF‑β1‑induced epithelial‑mesenchymal transition via downregulation of USAG‑1 expression in Madin‑Darby canine kidney cells in vitro. Mol Med Rep 2019; 19:1694-1704. [PMID: 30628645 PMCID: PMC6390060 DOI: 10.3892/mmr.2019.9806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Our previous study demonstrated that febuxostat, a xanthine oxidase inhibitor, can alleviate kidney dysfunction and ameliorate renal tubulointerstitial fibrosis in a rat unilateral ureteral obstruction (UUO) model; however, the underlying mechanisms remain unknown. Increasing evidence has revealed that epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating the progression of renal tubulointerstitial fibrosis in chronic kidney disease (CKD). Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific bone morphogenetic protein antagonist, is involved in the development of numerous types of CKDs. The present study aimed to investigate the role of febuxostat in the process of EMT in Madin-Darby canine kidney (MDCK) cells in vitro. Western blotting, reverse transcription-semiquantitative polymerase chain reaction analysis and immunofluorescence staining were used to evaluate the expression levels of bone morphogenetic protein 7, USAG-1, α-smooth muscle actin (α-SMA) and E-cadherin, respectively. The results demonstrated that the expression of USAG-1 and α-SMA increased, and that of E-cadherin decreased significantly in MDCK cells following treatment with transforming growth factor-β1 (TGF-β1). The application of small interfering RNA-USAG-1 potently inhibited TGF-β1-induced EMT. Subsequently, the effects of febuxostat on TGF-β1-induced EMT was investigated. The results demonstrated that febuxostat downregulated the expression of USAG-1, and reversed TGF-β1-induced EMT in MDCK cells. Furthermore, pretreatment with febuxostat significantly restored the decreased expression levels of phosphorylated Smad1/5/8 induced by TGF-β1 in MDCK cells. The results of the present study suggested that USAG-1 may be involved in the EMT process of MDCK cells induced by TGF-β1, and febuxostat inhibited EMT by activating the Smad1/5/8 signaling pathway via downregulating the expression of USAG-1 in MDCK cells.
Collapse
Affiliation(s)
- Linghong Lu
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jiajun Zhu
- Department of Anesthesiology, Guanyun County People's Hospital, Lianyungang, Jiangsu 222200, P.R. China
| | - Yaqian Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yanxia Wang
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shu Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Anzhou Xia
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
26
|
Chen G, Gong H, Wang T, Wang J, Han Z, Bai G, Han S, Yang X, Zhou W, Liu T, Xiao J. SOSTDC1 inhibits bone metastasis in non-small cell lung cancer and may serve as a clinical therapeutic target. Int J Mol Med 2018; 42:3424-3436. [PMID: 30320379 PMCID: PMC6202094 DOI: 10.3892/ijmm.2018.3926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
Bone metastasis occurs in ~40% patients with non‑small cell lung cancer (NSCLC), resulting in serious morbidity and mortality. Sclerostin domain‑containing protein 1 (SOSTDC1) has been demonstrated to be associated with the development and progression of multiple types of cancer. However, the role of SOSTDC1 in NSCLC bone metastasis remains unclear. In the present study, it was identified that SOSTDC1 was downregulated in NSCLC bone metastatic lesions compared with that in primary tumors, and low SOSTDC1 expression predicted poor prognosis for patients with NSCLC. Functionally, SOSTDC1 overexpression suppressed NSCLC cell proliferation, migration, invasion and cancer cell‑induced osteoclastogenesis, while SOSTDC1 knockdown produced the opposite effect. In addition, a number of potential downstream target genes of SOSTDC1, which were demonstrated to be associated with tumor progression and bone metastasis, were identified in NSCLC cells by RNA deep sequencing and RT‑qPCR assays. The results from the present study may provide useful insight for an improved understanding of the pathogenesis of NSCLC bone metastasis, and suggest that SOSTDC1 may be a potential prognostic biomarker and therapeutic target for NSCLC bone metastasis.
Collapse
Affiliation(s)
- Guanghui Chen
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Haiyi Gong
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Ting Wang
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Jian Wang
- Department of Orthopedics, Pudong New District People’s Hospital, Shanghai 201200
| | - Zhitao Han
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
- School of Medicine and Life Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023
| | - Guangjian Bai
- Department of Orthopedics, Affiliated Hospital of Taishan Medical University, Taishan Medical University, Tai’an, Shandong 271016
| | - Shuai Han
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Xinghai Yang
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Wang Zhou
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
- School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Tielong Liu
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Jianru Xiao
- Orthopedic Oncology Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| |
Collapse
|
27
|
Witcher PC, Miner SE, Horan DJ, Bullock WA, Lim KE, Kang KS, Adaniya AL, Ross RD, Loots GG, Robling AG. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 2018; 3:98673. [PMID: 29875318 DOI: 10.1172/jci.insight.98673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, μCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue.
Collapse
Affiliation(s)
- Phillip C Witcher
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sara E Miner
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Whitney A Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung-Eun Lim
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Physical Sciences & Engineering, Anderson University, Anderson, Indiana, USA
| | - Alison L Adaniya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA.,School of Natural Sciences, University of California, Merced, California, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The development of therapeutics that target anabolic pathways involved in skeletogenesis is of great importance with regard to disease resulting in bone loss, or in cases of impaired bone repair. This review aims to summarize recent developments in this area. RECENT FINDINGS A greater understanding of how drugs that modulate signaling pathways involved in skeletogenesis exert their efficacy, and the molecular mechanisms resulting in bone formation has led to novel pharmacological bone repair strategies. Furthermore, crosstalk between pathways and molecules has suggested signaling synergies that may be exploited for enhanced tissue formation. The sequential pharmacological stimulation of the molecular cascades resulting in tissue repair is a promising strategy for the treatment of bone fractures. It is proposed that a therapeutic strategy which mimics the natural cascade of events observed during fracture repair may be achieved through temporal targeting of tissue repair pathways.
Collapse
Affiliation(s)
- Scott J Roberts
- Bone Therapeutic Area, UCB Pharma, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK.
| | - Hua Zhu Ke
- Bone Therapeutic Area, UCB Pharma, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| |
Collapse
|
29
|
Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci Rep 2018; 8:3867. [PMID: 29497100 PMCID: PMC5832871 DOI: 10.1038/s41598-018-22095-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/15/2018] [Indexed: 01/15/2023] Open
Abstract
A fracture is the most dangerous complication of osteoporosis in patients because the associated disability and mortality rates are high. Osteoporosis impairs fracture healing and prognosis, but how intramembranous ossification (IO) or endochondral ossification (EO) during fracture healing are affected and whether these two kinds of ossification are different between glucocorticoid-induced osteoporosis (GIOP) and estrogen deficiency-induced osteoporosis (EDOP) are poorly understood. In this study, we established two bone repair models that exhibited repair via IO or EO and compared the pathological progress of each under GIOP and EDOP. In the cortical drill-hole model, which is repaired through IO, osteogenic differentiation was more seriously impaired in EDOP at the early stage than in GIOP. In the periosteum scratch model, in which EO is replicated, chondrocyte hypertrophy progression was delayed in both GIOP and EDOP. The in vitro results were consistent with the in vivo results. Our study is the first to establish bone repair models in which IO and EO occur separately, and the results strongly describe the differences in bone repair between GIOP and EDOP.
Collapse
|
30
|
Holdsworth G, Greenslade K, Jose J, Stencel Z, Kirby H, Moore A, Ke HZ, Robinson MK. Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone 2018; 107:93-103. [PMID: 29129759 DOI: 10.1016/j.bone.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/03/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
Administration of antibodies to sclerostin (Scl-Ab) has been shown to increase bone mass, bone mineral density (BMD) and bone strength by increasing bone formation and decreasing bone resorption in both animal studies and human clinical trials. In these studies, the magnitude and rate of increase in bone formation markers is attenuated upon repeat dosing with Scl-Ab despite a continuous and progressive increase in BMD. Here, we investigated whether the attenuation in the bone formation response following repeated administration of Scl-Ab was associated with increased expression of secreted antagonists of Wnt signalling and determined how the circulating marker of bone formation, P1NP, responded to single, or multiple doses, of Scl-Ab four days post-dosing. Female Balb/c mice were treated with Scl-Ab and we demonstrated that the large increase in serum P1NP observed following the first dose was reduced following administration of multiple doses of Scl-Ab. This dampening of the P1NP response was not due to a change in the kinetics of the bone formation marker response, or differences in exposure to the drug. The abundance of transcripts encoding several secreted Wnt antagonists was determined in femurs collected from mice following one or six doses of Scl-Ab, or vehicle treatment. Compared with vehicle controls, expression of SOST, SOST-DC1, DKK1, DKK2, SFRP1, SFRP2, FRZB, SFRP4 and WIF1 transcripts was significantly increased (approximately 1.5-4.2 fold) following a single dose of Scl-Ab. With the exception of SFRP1, these changes were maintained or further increased following six doses of Scl-Ab and the abundance of SFRP5 was also increased. Up-regulation of these Wnt antagonists may exert a negative feedback to increased Wnt signalling induced by repeated administration of Scl-Ab and could contribute to self-regulation of the bone formation response over time. After an antibody-free period of four weeks or more, the P1NP response was comparable to the naïve response, and a second phase of treatment with Scl-Ab following an antibody-free period elicited additional gains in BMD. Together, these data demonstrate that the rapid dampening of the bone formation response in the immediate post-dose period which occurs after repeat dosing of Scl-Ab is associated with increased expression of Wnt antagonists, and a treatment-free period can restore the full bone formation response to Scl-Ab.
Collapse
Affiliation(s)
| | | | | | | | - Hishani Kirby
- UCB Pharma, Slough, UK; Hishani Kirby Associates Ltd, Reading, UK
| | | | | | | |
Collapse
|
31
|
Tang Y, Jiang S, Gu Y, Li W, Mo Z, Huang Y, Li T, Hu Y. Promoter DNA methylation analysis reveals a combined diagnosis of CpG-based biomarker for prostate cancer. Oncotarget 2017; 8:58199-58209. [PMID: 28938548 PMCID: PMC5601644 DOI: 10.18632/oncotarget.16437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Background Prostate cancer (PCa) is the most common tumor in elderly men. However, the specificity and sensitivity of serum prostate-specific antigen levels in PCa diagnosis are controversial. This study aims to reveal a novel diagnosis biomarker in PCa. Materials and Methods The differential methylated CpG sites between 423 primary PCa and 39 adjacent samples from The Cancer Genome Atlas (TCGA) on Illumina HumanMethylation 450 platform were analyzed. The diagnostic methylation markers were mined using the Prediction Analysis of Microarrays package in Bioconductor. Then, the Gene Expression Omnibus data was used for verification. Pyrosequencing was applied to improve methylation levels of five CpGs (cg06363129, cg08843517, cg05385513, cg07220448 and cg11417025). Results The area under curve of receiver operating characteristic of eight diagnostic methylation CpGs (cg06363129, cg08843517, cg03576469, cg05385513, cg07220448, cg11417025, cg20883831, and cg23824801) in TCGA data ranged from 0.910 to 0.939. Except for cg20883831 and cg23824801, the correlations between methylation levels of six other sites and their expressions in patients were significant (r > 0.5 and P < 0.001). The methylation level of cg06363129 was significantly different between the groups of Gleason Score (GS) = 7 and GS ≥ 8 (P < 0.05). Pyrosequencing in our samples confirmed that four diagnostic methylation sites (cg06363129, cg08843517, cg05385513, and cg11417025) had high diagnostic efficacy. Conclusions The combined diagnosis of four methylation CpGs sites (cg06363129, cg08843517, cg05385513, and cg11417025) in the gene promoter has high tissue specificity and diagnostic efficacy for PCa. Results revealed a novel potential biomarker for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Guangxi Reproductive Medical Research Center, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shusuan Jiang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinmin Gu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weidong Li
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zengnan Mo
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanjie Huang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Tianyu Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
32
|
Himburg HA, Sasine J, Yan X, Kan J, Dressman H, Chute JP. A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation. Radiat Res 2016; 186:141-52. [PMID: 27387861 DOI: 10.1667/rr14444.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ionizing radiation exposure can cause acute radiation sickness (ARS) by damaging the hematopoietic compartment. Radiation damages quiescent hematopoietic stem cells (HSCs) and proliferating hematopoietic cells, resulting in neutropenia, thrombocytopenia and increased risk for long-term hematopoietic dysfunction and myelodysplasia. While some aspects of the hematopoietic response to radiation injury are intrinsic to hematopoietic cells, the recovery of the HSC pool and overall hematopoiesis is also dependent on signals from bone marrow endothelial cells (BM ECs) within the HSC vascular niche. The precise mechanisms through which BM ECs regulate HSC regeneration remain unclear. Characterization of the altered EC gene expression that occurs in response to radiation could provide a roadmap to the discovery of EC-derived mechanisms that regulate hematopoietic regeneration. Here, we show that 5 Gy total-body irradiation substantially alters the expression of numerous genes in BM ECs within 24 h and this molecular response largely resolves by day 14 postirradiation. Several unique and nonannotated genes, which encode secreted proteins were upregulated and downregulated in ECs in response to radiation. These results highlight the complexity of the molecular response of BM ECs to ionizing radiation and identify several candidate mechanisms that should be prioritized for functional analysis in models of hematopoietic injury and regeneration.
Collapse
Affiliation(s)
| | - Joshua Sasine
- a Division of Hematology/Oncology, Department of Medicine
| | - Xiao Yan
- a Division of Hematology/Oncology, Department of Medicine
| | - Jenny Kan
- a Division of Hematology/Oncology, Department of Medicine
| | - Holly Dressman
- d Center for Bioinformatics and Genetics, Duke University, Durham, North Carolina
| | - John P Chute
- a Division of Hematology/Oncology, Department of Medicine.,b Jonsson Comprehensive Cancer Center and.,c Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California; and
| |
Collapse
|