1
|
Dalecka L, Hruba E, Andrasova M, Steklikova K, Pavlikova Z, Kucerova K, Szotkowska T, Bartos M, Buchtova M, Tucker AS, Hovorakova M. Sprouty2/4 deficiency disrupts early signaling centers impacting chondrogenesis in the mouse forelimb. JBMR Plus 2025; 9:ziaf002. [PMID: 39906257 PMCID: PMC11792080 DOI: 10.1093/jbmrpl/ziaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The FGF signaling pathway plays an important role in the regulation of limb development, controlling cell migration, proliferation, differentiation, and apoptosis. Sprouty proteins act as antagonists of the FGF pathway and control the extent of FGF signaling as part of a negative feedback loop. Sprouty2/4 deficient mice evince defects in endochondral bone formation and digit patterning in their forelimbs, with pathogenesis recently related to ciliopathies. To understand the mechanisms behind these pathologies, the limb defects in Sprouty2+/-;Sprouty4-/- male and female mice were characterized and correlated to the dynamic expression patterns of Sprouty2 and Sprouty4, and the impact on the main signaling centers of the limb bud was assessed. Sprouty2 and Sprouty4 exhibited dynamic expressions during limb development. Interestingly, despite similar expression patterns in all limbs, the hindlimbs did not evince any obvious alterations in development, while the forelimbs showed consistent phenotypes of variable severity. Prenatally as well as postnatally, the left forelimb was significantly more severely affected than the right one. A broad variety of pathologies was present in the autopodium of the forelimb, including changes in digit number, size, shape, and number of bones, hand clefts, and digit fusions. Ectopic ossification of bones and abnormal bone fusions detected in micro-CT scans were frequently observed in the digital as well as in the carpal and metacarpal areas. Sprouty2+/-;Sprouty4-/- limb buds showed patchy loss of Fgf8 expression in the apical ectodermal ridge, and a loss of tissue underlying these regions. The zone of polarizing activity was also impacted, with lineage analysis highlighting a change in the contribution of Sonic hedgehog expressing cells. These findings support the link between Sproutys and Hedgehog signaling during limb development and highlight the importance of Sprouty2 and Sprouty4 in controlling early signaling centers in the limb.
Collapse
Affiliation(s)
- Linda Dalecka
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marketa Andrasova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Klara Steklikova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Pavlikova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Klara Kucerova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Tereza Szotkowska
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Martin Bartos
- First Faculty of Medicine, General University Hospital, Institute of Dental Medicine, 121 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Abigail Saffron Tucker
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, Guys Hospital, London, TN8 7LR, United Kingdom
| | - Maria Hovorakova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
2
|
Li N, Chen Y, Wang H, Li J, Zhao RC. SPRY4 promotes adipogenic differentiation of human mesenchymal stem cells through the MEK-ERK1/2 signaling pathway. Adipocyte 2022; 11:588-600. [PMID: 36082406 PMCID: PMC9481072 DOI: 10.1080/21623945.2022.2123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity is a chronic metabolic disorder characterized by the accumulation of excess fat in the body. Preventing and controlling obesity by inhibiting the adipogenic differentiation of mesenchymal stem cells (MSCs) and thereby avoiding the increase of white adipose tissue is safe and effective. Recent studies have demonstrated that Sprouty proteins (SPRYs) are involved in cell differentiation and related diseases. However, the role and mechanism of SPRY4 in MSC adipogenic differentiation remain to be explored. Here, we found that SPRY4 positively correlates with the adipogenic differentiation of human adipose-derived MSCs (hAMSCs). Via gain- and loss-of-function experiments, we demonstrated that SPRY4 promotes hAMSC adipogenesis both in vitro and in vivo. Mechanistically, SPRY4 functioned by activating the MEK-ERK1/2 pathway. Our findings provide new insights into a critical role for SPRY4 as a regulator of adipogenic differentiation, which may illuminate the underlying mechanisms of obesity and suggest the potential of SPRY4 as a novel treatment option.
Collapse
Affiliation(s)
- Na Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yunfei Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,CONTACT Jing Li Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, P.R. China,Robert Chunhua Zhao Department of Cell Biology, School of Life Sciences Shanghai University, P.R. ChinaShanghai
| |
Collapse
|
3
|
Panebianco CJ, Dave A, Charytonowicz D, Sebra R, Iatridis JC. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J 2021; 35:e21919. [PMID: 34591994 PMCID: PMC8496998 DOI: 10.1096/fj.202101149r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Back and neck pain are significant healthcare burdens that are commonly associated with pathologies of the intervertebral disc (IVD). The poor understanding of the cellular heterogeneity within the IVD makes it difficult to develop regenerative IVD therapies. To address this gap, we developed an atlas of bovine (Bos taurus) caudal IVDs using single-cell RNA-sequencing (scRNA-seq). Unsupervised clustering resolved 15 unique clusters, which we grouped into the following annotated partitions: nucleus pulposus (NP), outer annulus fibrosus (oAF), inner AF (iAF), notochord, muscle, endothelial, and immune cells. Analyzing the pooled gene expression profiles of the NP, oAF, and iAF partitions allowed us to identify novel markers for NP (CP, S100B, H2AC18, SNORC, CRELD2, PDIA4, DNAJC3, CHCHD7, and RCN2), oAF (IGFBP6, CTSK, LGALS1, and CCN3), and iAF (MGP, COMP, SPP1, GSN, SOD2, DCN, FN1, TIMP3, WDR73, and GAL) cells. Network analysis on subpopulations of NP and oAF cells determined that clusters NP1, NP2, NP4, and oAF1 displayed gene expression profiles consistent with cell survival, suggesting these clusters may uniquely support viability under the physiological stresses of the IVD. Clusters NP3, NP5, oAF2, and oAF3 expressed various extracellular matrix (ECM)-associated genes, suggesting their role in maintaining IVD structure. Lastly, transcriptional entropy and pseudotime analyses found that clusters NP3 and NP1 had the most stem-like gene expression signatures of the NP partition, implying these clusters may contain IVD progenitor cells. Overall, results highlight cell type diversity within the IVD, and these novel cell phenotypes may enhance our understanding of IVD development, homeostasis, degeneration, and regeneration.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arpit Dave
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Sema4, a Mount Sinai venture, Stamford, CT
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Hruba E, Kavkova M, Dalecka L, Macholan M, Zikmund T, Varecha M, Bosakova M, Kaiser J, Krejci P, Hovorakova M, Buchtova M. Loss of Sprouty Produces a Ciliopathic Skeletal Phenotype in Mice Through Upregulation of Hedgehog Signaling. J Bone Miner Res 2021; 36:2258-2274. [PMID: 34423857 DOI: 10.1002/jbmr.4427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023]
Abstract
The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Linda Dalecka
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miloš Macholan
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Bosakova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Krejci
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Zhang T, Yang Y, Yin X, Wang X, Ni J, Dong Z, Li C, Lu W. Two loss-of-function ANKRD11 variants in Chinese patients with short stature and a possible molecular pathway. Am J Med Genet A 2021; 185:710-718. [PMID: 33354850 PMCID: PMC7898801 DOI: 10.1002/ajmg.a.62024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
KBG syndrome is a rare genetic disease characterized mainly by skeletal abnormalities, distinctive facial features, and intellectual disability. Heterozygous mutations in ANKRD11 gene, or deletion of 16q24.3 that includes ANKRD11 gene are the cause of KBG syndrome. We describe two patients presenting with short stature and partial facial features, whereas no intellectual disability or hearing loss was observed in them. Two ANKRD11 variants, c.4039_4041del (p. Lys1347del) and c.6427C > G (p. Leu2143Val), were identified in this study. Both of them were classified as variants of uncertain significance (VOUS) by ACMG/AMP guidelines and were inherited from their mothers. ANKRD11 could enhance the transactivation of p21 gene, which was identified to participate in chondrogenic differentiation. In this study, we demonstrated that the knockdown of ANKRD11 could reduce the p21-promoter luciferase activities while re-introduction of wild type ANKRD11, but not ANKRD11 variants (p. Lys1347del or p. Leu2143Val), could restore the p21 levels. Thus, our study report two loss-of-function ANKRD11 variants which might provide new insight on pathogenic mechanism that correlates ANKRD11 variants with the short stature phenotype of KBG syndrome.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Yun Yang
- School of MedicineGuizhou UniversityGuiyangGuizhouChina
- Department of AnesthesiologyThe First Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Xueling Yin
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xueqing Wang
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Jihong Ni
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Zhiya Dong
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenli Lu
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Tian L, Xiao H, Li M, Wu X, Xie Y, Zhou J, Zhang X, Wang B. A novel Sprouty4-ERK1/2-Wnt/β-catenin regulatory loop in marrow stromal progenitor cells controls osteogenic and adipogenic differentiation. Metabolism 2020; 105:154189. [PMID: 32105664 DOI: 10.1016/j.metabol.2020.154189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sprouty (SPRY) proteins play critical roles in controlling cell proliferation, differentiation, and survival by inhibiting receptor tyrosine kinase (RTK)-mediated extracellular signal-regulated kinase (ERK) signaling. Recent studies have demonstrated that SPRY4 negatively regulates angiogenesis and tumor growth. However, whether SPRY4 regulates osteogenic and/or adipogenic differentiation of mesenchymal stem cells remains to be explored. RESULTS In this study, we investigated the expression pattern of Spry4 and found that its expression was regulated during the differentiation of mouse marrow stromal progenitor cells and increased in the metaphysis of ovariectomized mice. In vitro loss-of-function and gain-of-function studies demonstrated that SPRY4 inhibited osteogenic differentiation and stimulated adipogenic differentiation of progenitor cells. In vivo experiments showed that silencing of Spry4 in the marrow of C57BL/6 mice blocked fat accumulation and promoted osteoblast differentiation in ovariectomized mice. Mechanistic investigations revealed the inhibitory effect of SPRY4 on canonical wingless-type MMTV integration site (Wnt) signaling and ERK pathway. ERK1/2 was shown to interact with low-density lipoprotein receptor-related protein 6 (LRP6) and activate the canonical Wnt signaling pathway. Inactivation of Wnt signaling attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by Spry4 small interfering RNA (siRNA). Finally, promoter study revealed that β-catenin transcriptionally inhibited the expression of Spry4. CONCLUSIONS Our study for the first time suggests that a novel SPRY4-ERK1/2-Wnt/β-catenin regulatory loop exists in marrow stromal progenitor cells and plays a key role in cell fate determination. It also highlights the potential of SPRY4 as a novel therapeutic target for the treatment of metabolic bone disorders such as osteoporosis.
Collapse
Affiliation(s)
- Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Hongyan Xiao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Mengyue Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaowen Wu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yan Xie
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xin Zhang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
7
|
Li J, Li N, Chen Y, Hui S, Fan J, Ye B, Fan Z, Zhang J, Zhao RC, Zhuang Q. SPRY4 is responsible for pathogenesis of adolescent idiopathic scoliosis by contributing to osteogenic differentiation and melatonin response of bone marrow-derived mesenchymal stem cells. Cell Death Dis 2019; 10:805. [PMID: 31645544 PMCID: PMC6811559 DOI: 10.1038/s41419-019-1949-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex, three-dimensional deformity of the spine that commonly occurs in pubescent girls. Decreased osteogenic differentiation and aberrant melatonin signalling have been demonstrated in mesenchymal stem cells (MSCs) from AIS patients and are implicated in the pathogenesis of AIS. However, the molecular mechanisms underlying these abnormal cellular features remain largely unknown. Our previous work comparing gene expression profiles between MSCs from AIS patients and healthy controls identified 1027 differentially expressed genes. In the present study, we focused on one of the most downregulated genes, SPRY4, in the MAPK signalling pathway and examined its role in osteogenic differentiation. We found that SPRY4 is markedly downregulated in AIS MSCs. Knockdown of SPRY4 impaired differentiation of healthy MSCs to osteoblasts, while SPRY4 overexpression in AIS MSCs enhanced osteogenic differentiation. Furthermore, melatonin treatment boosted osteogenic differentiation, whereas SPRY4 ablation ablated the promotional effects of melatonin. Moreover, SPRY4 was upregulated by melatonin exposure and contributed to osteogenic differentiation and melatonin response in a MEK-ERK1/2 dependent manner. Thus, loss of SPRY4 in bone marrow derived-MSCs results in reduced osteogenic differentiation, and these defects are further aggravated under the influence of melatonin. Our findings provide new insights for understanding the role of melatonin in AIS aetiology and highlight the importance of MSCs in AIS pathogenesis.
Collapse
Affiliation(s)
- Jing Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Na Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Yunfei Chen
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Shangyi Hui
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Junfen Fan
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China.
| | - Qianyu Zhuang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China.
| |
Collapse
|
8
|
Zhang C, Hsu P, Wang D, Zhang W, Zhang C, Guo S, Yang W, Wei X, Zhang Y, Zhong B. Superparamagnetic iron oxide (SPIO) nanoparticles labeled endothelial progenitor cells (EPCs) administration inhibited heterotopic ossification in rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102078. [DOI: 10.1016/j.nano.2019.102078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/05/2023]
|
9
|
Vesela B, Svandova E, Hovorakova M, Peterkova R, Kratochvilova A, Pasovska M, Ramesova A, Lesot H, Matalova E. Specification of Sprouty2 functions in osteogenesis in in vivo context. Organogenesis 2019; 15:111-119. [PMID: 31480885 DOI: 10.1080/15476278.2019.1656995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sprouty proteins are modulators of the MAPK/ERK pathway. Amongst these, Sprouty2 (SPRY2) has been investigated as a possible factor that takes part in the initial phases of osteogenesis. However, the in vivo context has not yet been investigated and the underlying mechanisms taking place in vitro remain unknown. Therefore, in this study, the impact of Spry2 deficiency was examined in the developing tibias of Spry2 deficient (-/-) mouse. The investigation was performed when the osteogenic zone became clearly visible and when all three basic bone cells types were present. The main markers of osteoblasts, osteocytes and osteoclasts were evaluated by immunohistochemistry and RT-PCR. RT-PCR showed that the expression of Sost was 3.5 times higher in Spry2-/- than in the wild-type bone, which pointed to a still unknown mechanism of action of SPRY2 on the differentiation of osteocytes. The up-regulation of Sost was independent of Hif-1α expression and could not be related to its positive regulator, Runx2, since none of these factors showed an increased expression in the bone of Spry2-/- mice. Regarding the RANK/RANKL/OPG pathway, the Spry2-/- showed an increased expression of Rank, but no significant change in the expression of Rankl and Opg. Thanks to these results, the impact of Spry2 deletion is shown for the first time in the developing bone as a complex organ including, particularly, an effect on osteoblasts (Runx2) and osteocytes (Sost). This might explain the previously reported decrease in bone formation in postnatal Spry2-/- mice.
Collapse
Affiliation(s)
- Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences , Brno , Czech Republic
| | - Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences , Brno , Czech Republic
| | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University , Prague , Czech Republic
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences , Brno , Czech Republic
| | - Martina Pasovska
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic.,Department of Anthropology and Human Genetics, Faculty of Science, Charles University , Prague , Czech Republic
| | - Alice Ramesova
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences , Brno , Czech Republic
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences , Brno , Czech Republic.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| |
Collapse
|
10
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|