1
|
da Cunha RS, Azevedo CAB, Miniskiskosky G, Gregório PC, Stinghen AEM. MicroRNAs and vascular damage in chronic kidney disease: advances and clinical implications. J Bras Nefrol 2025; 47:e20240223. [PMID: 40388304 PMCID: PMC12088645 DOI: 10.1590/2175-8239-jbn-2024-0223en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/06/2025] [Indexed: 05/21/2025] Open
Abstract
Chronic kidney disease (CKD) is closely associated with endothelial dysfunction and vascular calcification, which are major contributors to the development of cardiovascular disease in this population. MicroRNAs (miRNAs) are a group of non-coding RNAs that regulate gene expression and other cellular processes. Recent studies have demonstrated that changes in the levels of several miRNAs are associated with the progression of renal dysfunction. Patients with CKD have reduced levels of miR-126, a microRNA produced by the endothelium that has an atheroprotective function. Reduced miRNA levels that inhibit vascular calcification, such as miR-133a and miR-204-5p, are also found in patients with CKD. These changes may contribute to vascular dysfunction in these patients. Therefore, understanding the profile of microRNAs in the context of CKD may be important for the identification of new biomarkers and potential therapeutic targets. Given the growing relevance of microRNA analysis, this review addresses recent advances in the study of microRNAs related to vascular dysfunction in CKD and their potential applications in translational clinical practice.
Collapse
Affiliation(s)
- Regiane Stafim da Cunha
- Universidade Federal do Paraná, Laboratório de Nefrologia Experimental, Departamento de Patologia Básica, Curitiba, PR, Brazil
| | - Carolina Amaral Bueno Azevedo
- Universidade Federal do Paraná, Laboratório de Nefrologia Experimental, Departamento de Patologia Básica, Curitiba, PR, Brazil
| | - Guilherme Miniskiskosky
- Universidade Federal do Paraná, Laboratório de Nefrologia Experimental, Departamento de Patologia Básica, Curitiba, PR, Brazil
| | - Paulo Cézar Gregório
- Universidade Federal do Paraná, Laboratório de Nefrologia Experimental, Departamento de Patologia Básica, Curitiba, PR, Brazil
| | - Andréa Emilia Marques Stinghen
- Universidade Federal do Paraná, Laboratório de Nefrologia Experimental, Departamento de Patologia Básica, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Hu Y, An Q, Yu X, Jiang W. Identification of novel therapeutic targets in hepatitis-B virus-associated membranous nephropathy using scRNA-seq and machine learning. Sci Rep 2025; 15:18959. [PMID: 40442195 PMCID: PMC12123029 DOI: 10.1038/s41598-025-03625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Hepatitis B Virus-associated membranous nephropathy (HBV-MN) significantly impacts renal health, particularly in areas with high HBV prevalence. Understanding the molecular mechanisms underlying HBV-MN is crucial for developing effective therapeutic strategies. This study aims to elucidate the roles of miR-223-3p and CRIM1 in HBV-MN using single-cell RNA sequencing (scRNA-seq) and machine learning. scRNA-seq analysis identified a distinct subcluster of podocytes linked to HBV-MN progression. miR-223-3p emerged as a critical regulatory molecule, with overexpression resulting in decreased CRIM1 expression. Dual-luciferase reporter assays confirmed miR-223-3p targeting CRIM1 at a conserved binding site. These findings were corroborated by machine learning models, which highlighted the significance of miR-223-3p and CRIM1 in disease pathology. miR-223-3p plays a pivotal role in modulating CRIM1 expression in HBV-MN, providing a potential therapeutic target. Integrating scRNA-seq with machine learning offers valuable insights into the molecular landscape of HBV-MN, paving the way for novel interventions.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian An
- Department of Nephrology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Xinxin Yu
- Department of Nephrology, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Avgoustou E, Tzivaki I, Diamantopoulou G, Zachariadou T, Avramidou D, Dalopoulos V, Skourtis A. Obesity-Related Chronic Kidney Disease: From Diagnosis to Treatment. Diagnostics (Basel) 2025; 15:169. [PMID: 39857056 PMCID: PMC11763674 DOI: 10.3390/diagnostics15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Obesity has emerged as a global epidemic with far-reaching health complications, including its role as an independent risk factor for chronic kidney disease (CKD). Increasing evidence suggests that obesity contributes to CKD through multiple mechanisms, including chronic inflammation, hemodynamic alterations, insulin resistance, and lipid accumulation. These processes can culminate in histopathological changes collectively referred to as obesity-related glomerulopathy (ORG). This review aims to provide a comprehensive overview of the current knowledge regarding the prevalence, clinical manifestations, and pathophysiology of ORG. Furthermore, we emphasize the importance of identifying key biomarkers that facilitate the early detection of ORG. Finally, we explore emerging therapeutic strategies that offer promise in mitigating this growing global health crisis.
Collapse
Affiliation(s)
- Elena Avgoustou
- Second Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokratio General Hospital, Vasilissis Sofias 114, 11527 Athens, Greece; (G.D.); (D.A.)
| | - Ilektra Tzivaki
- First Department of Internal Medicine, Sismanogleio General Hospital, 37 Sismanogliou Str., 15126 Athens, Greece; (I.T.); (T.Z.); (V.D.)
| | - Garyfalia Diamantopoulou
- Second Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokratio General Hospital, Vasilissis Sofias 114, 11527 Athens, Greece; (G.D.); (D.A.)
| | - Tatiana Zachariadou
- First Department of Internal Medicine, Sismanogleio General Hospital, 37 Sismanogliou Str., 15126 Athens, Greece; (I.T.); (T.Z.); (V.D.)
| | - Despoina Avramidou
- Second Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokratio General Hospital, Vasilissis Sofias 114, 11527 Athens, Greece; (G.D.); (D.A.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 37 Sismanogliou Str., 15126 Athens, Greece; (I.T.); (T.Z.); (V.D.)
| | - Alexandros Skourtis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece;
| |
Collapse
|
4
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
5
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
6
|
Legaz I, Jimenez-Coll V, González-López R, Fernández-González M, Alegría-Marcos MJ, Galián JA, Botella C, Moya-Quiles R, Muro-Pérez M, Minguela A, Llorente S, Muro M. MicroRNAs as Potential Graft Rejection or Tolerance Biomarkers and Their Dilemma in Clinical Routines Behaving like Devilish, Angelic, or Frightening Elements. Biomedicines 2024; 12:116. [PMID: 38255221 PMCID: PMC10813128 DOI: 10.3390/biomedicines12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Allograft rejection is a widespread complication in allograft recipients with chronic kidney disease. Undertreatment of subclinical and clinical rejection and later post-transplant problems are caused by an imperfect understanding of the mechanisms at play and a lack of adequate diagnostic tools. Many different biomarkers have been analyzed and proposed to detect and monitor these crucial events in transplant outcomes. In this sense, microRNAs may help diagnose rejection or tolerance and indicate appropriate treatment, especially in patients with chronic allograft rejection. As key epigenetic regulators of physiological homeostasis, microRNAs have therapeutic potential and may indicate allograft tolerance or rejection. However, more evidence and clinical validation are indispensable before microRNAs are ready for clinical prime time.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum,” Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain
| | - Víctor Jimenez-Coll
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Rosana González-López
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | | | | | - José Antonio Galián
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Carmen Botella
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Rosa Moya-Quiles
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Manuel Muro-Pérez
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Santiago Llorente
- Service of Nephrology, Unit Hospital Clinic Universitario Virgen de la Arrixaca, IMIB-Arrixaca, 30120 Murcia, Spain
| | - Manuel Muro
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| |
Collapse
|
7
|
Guo X, Huang M, Yang D, Luo Z. Expression and Clinical Significance of Plasma miR-223 in Patients with Diabetic Nephropathy. Int J Endocrinol 2023; 2023:9663320. [PMID: 38179188 PMCID: PMC10764645 DOI: 10.1155/2023/9663320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Background MicroRNA-223 (miR-223) is associated with diabetes and kidney diseases and serves as a novel marker for diagnosing diabetic kidney disease (DKD). This study was conducted to investigate the plasma expression of miR-223 and its clinical significance in type 2 diabetes (T2DM) and diabetic nephropathy (DN) patients. Methods In this research, 20 patients with T2DM and DN, 19 patients with T2DM, and 17 healthy volunteers were finally enrolled. miR-223 expression was detected by quantitative real-time PCR (qPCR), and the diagnostic value of miR-223 in DN was further analyzed. Results miR-223 was downregulated in the DN group compared to that in the T2DM group (P=0.031) and the control group (P < 0.001). Pearson's correlation analysis showed a negative correlation of miR-223 levels with an albumin-creatinine ratio (ACR) (r = -0.481; P=0.044), urine β2-microglobulin (β2-MG) (r = -0.494; P=0.037), urine α1-microglobulin (α1-MG) (r = -0.537; P=0.022), creatinine (Cr) (r = -0.664; P < 0.01), cystatin C (Cyc-C) (r = -0.553; P=0.017), and glycosylated hemoglobin (HbA1c) (r = -0.761; P < 0.01). The findings of a binary regression analysis indicated that miR-223, ACR, Cr, and α1-MG were the risk factors for DN (OR: 2.019, 1.166, 1.031, and 1.031; all P < 0.05). Furthermore, miR-223 had a favorable diagnostic value for DN (AUC: 0.752; sensitivity: 0.722; specificity: 0.842) (2.5 was utilized as the diagnostic cutoff point). Conclusion miR-223 was lowly expressed in DN patients, and the evaluation of miR-223 may be a good approach for diagnosing DN.
Collapse
Affiliation(s)
- Xingrong Guo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meiying Huang
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Dawei Yang
- Department of Geriatric Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Yakupova EI, Abramicheva PA, Bocharnikov AD, Andrianova NV, Plotnikov EY. Biomarkers of the End-Stage Renal Disease Progression: Beyond the GFR. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1622-1644. [PMID: 38105029 DOI: 10.1134/s0006297923100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023]
Abstract
Chronic kidney disease can progress to the end-stage renal disease (ESRD) characterized by a high risk of morbidity and mortality. ESRD requires immediate therapy or even dialysis or kidney transplantation, therefore, its timely diagnostics is critical for many patients. ESRD is associated with pathological changes, such as inflammation, fibrosis, endocrine disorders, and epigenetic changes in various cells, which could serve as ESRD markers. The review summarizes information on conventional and new ESRD biomarkers that can be assessed in kidney tissue, blood, and urine. Some biomarkers are specific to a particular pathology, while others are more universal. Here, we suggest several universal inflammatory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and ESRD progression for improvement of ESRD diagnostics.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Polina A Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey D Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
9
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Motshwari DD, Matshazi DM, Erasmus RT, Kengne AP, Matsha TE, George C. MicroRNAs Associated with Chronic Kidney Disease in the General Population and High-Risk Subgroups-A Systematic Review. Int J Mol Sci 2023; 24:ijms24021792. [PMID: 36675311 PMCID: PMC9863068 DOI: 10.3390/ijms24021792] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The potential utility of microRNAs (miRNAs) as diagnostic or prognostic biomarkers, as well as therapeutic targets, for chronic kidney disease (CKD) has been advocated. However, studies evaluating the expression profile of the same miRNA signatures in CKD report contradictory findings. This review aimed to characterize miRNAs associated with CKD and/or measures of kidney function and kidney damage in the general population, and also in high-risk subgroups, including people with hypertension (HTN), diabetes mellitus (DM) and human immunodeficiency virus (HIV) infection. Medline via PubMed, Scopus, Web of Science, and EBSCOhost databases were searched to identify relevant studies published in English or French languages on or before 30 September 2022. A total of 75 studies fulfilled the eligibility criteria: CKD (n = 18), diabetic kidney disease (DKD) (n = 51) and HTN-associated CKD (n = 6), with no study reporting on miRNA profiles in people with HIV-associated nephropathy. In individuals with CKD, miR-126 and miR-223 were consistently downregulated, whilst in DKD, miR-21 and miR-29b were consistently upregulated and miR-30e and let-7a were consistently downregulated in at least three studies. These findings suggest that these miRNAs may be involved in the pathogenesis of CKD and therefore invites further research to explore their clinical utility for CKD prevention and control.
Collapse
Affiliation(s)
- Dipuo D. Motshwari
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town 7530, South Africa
| | - Don M. Matshazi
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town 7530, South Africa
| | - Rajiv T. Erasmus
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town 7505, South Africa
| | - Andre P. Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Cape Town 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Tandi E. Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town 7530, South Africa
- Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa
| | - Cindy George
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Cape Town 7505, South Africa
- Correspondence:
| |
Collapse
|
11
|
Wang J, Li G, Lin M, Lin S, Wu L. microRNA-338-3p suppresses lipopolysaccharide-induced inflammatory response in HK-2 cells. BMC Mol Cell Biol 2022; 23:60. [PMID: 36564725 PMCID: PMC9789656 DOI: 10.1186/s12860-022-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is the most common cause of kidney damage, and inflammatory responses in a number of diseases are mediated by microRNA-338-3p (miR-338-3p). However, there are only a few reports which described the regulation of miR-338-3p in human proximal tubular cells. The goal of this study was to see how miR-338-3p affected lipopolysaccharide (LPS)-caused inflammatory response in HK-2 cells. METHODS LPS was used to construct an inflammatory model in HK-2 cells. miR-338-3p mimic was used to increase the levels of miR-338-3p in HK-2 cells. MTT, JC-1 staining, and apoptosis assays were used to detect cell viability, mitochondrial membrane potential (MMP), and apoptosis, respectively. The production of inflammatory factors and the levels of p38, p65, phospho-p65, phospho-p38, Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were investigated using real-time polymerase chain reaction, western blotting, or enzyme-linked immunosorbent assay. RESULTS The levels of miR-338-3p were significantly lower in serum from patients with sepsis-induced kidney injury compared to the serum from healthy volunteers (P < 0.05). LPS reduced the level of miR-338-3p in HK-2 cells (P < 0.05). HK-2 cell viability, mitochondrial membrane potential, and Bcl-2 mRNA and protein levels were decreased by LPS (all P < 0.05). Apoptosis, the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and Bax, and the levels of cleaved caspase-9 and caspase-3 were increased by LPS (all P < 0.05). Raising the level of miR-338-3p mitigated these effects of LPS (all P < 0.05). CONCLUSION LPS-induced inflammation in HK-2 cells is reduced by miR-338-3p.
Collapse
Affiliation(s)
- Jing Wang
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Guokai Li
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Min Lin
- Pediatric intensive care unit, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Sheng Lin
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| | - Ling Wu
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| |
Collapse
|
12
|
Zhao H, Liu H, Liu Y, Jin J, He Q, Lin B. The role of extracellular vesicles in vascular calcification in chronic kidney disease. Front Med (Lausanne) 2022; 9:997554. [PMID: 36388921 PMCID: PMC9651939 DOI: 10.3389/fmed.2022.997554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Widespread vascular calcification (VC) in patients with chronic kidney disease (CKD) is the pathological basis for the development of cardiovascular disease, and VC has been identified as an independent risk factor for increased cardiovascular mortality in cases of CKD. While VC was earlier thought to be a passive deposition process following calcium and phosphorus supersaturation, recent studies have suggested that it is an active, modifiable, biological process similar to bone development. The involvement of extracellular vesicles (EVs) in the process of VC has been reported as an important transporter of material transport and intercellular communication. This paper reviews the mechanism of the role of EVs, especially exosomes, in VC and the regulation of VC by stem cell-derived EVs, and discusses the possible and promising application of related therapeutic targets in the clinical setting.
Collapse
Affiliation(s)
- Huan Zhao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Haojie Liu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Yueming Liu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bo Lin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| |
Collapse
|
13
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
14
|
Wu YY, Shan SK, Lin X, Xu F, Zhong JY, Wu F, Duan JY, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Tang KX, Li CC, Ullah MHE, Yuan LQ. Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification. Front Cardiovasc Med 2022; 9:912358. [PMID: 35677687 PMCID: PMC9168031 DOI: 10.3389/fcvm.2022.912358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 07/20/2023] Open
Abstract
Vascular calcification is prevalent in aging, diabetes, chronic kidney disease, cardiovascular disease, and certain genetic disorders. However, the pathogenesis of vascular calcification is not well-understood. It has been progressively recognized that vascular calcification depends on the bidirectional interactions between vascular cells and their microenvironment. Exosomes are an essential bridge to mediate crosstalk between cells and organisms, and thus they have attracted increased research attention in recent years. Accumulating evidence has indicated that exosomes play an important role in cardiovascular disease, especially in vascular calcification. In this review, we introduce vascular biology and focus on the crosstalk between the different vessel layers and how their interplay controls the process of vascular calcification.
Collapse
Affiliation(s)
- Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Qu N, Chen L, Liang S, Wei M, Sun L, He Q, Xue J, Wang M, Shi K, Jiang H, Liu H. Roxadustat Attenuates the Disruption of Epithelial Tight Junction in Caco2 Cells and a Rat Model of CKD Through MicroRNA-223. Front Med (Lausanne) 2022; 9:850966. [PMID: 35492370 PMCID: PMC9043115 DOI: 10.3389/fmed.2022.850966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction Increasing evidence supports the idea that the disruption of epithelial tight junction proteins (TJPs) caused by accumulation of uremia toxins, such as homocysteine (Hcy), is one of the most important mechanisms underlying the damage of intestinal barrier function (IBF) in chronic kidney disease (CKD). Since the decrease of hypoxia inducible factor-1α (HIF-1α) is reported to be involved in Hcy-induced cell injury, and the upregulation of microRNA-223 (miR-223) plays a vital protective role in the impairment of IBF in the experimental colitis, we investigated the effect of HIF-1α stabilizer roxadustat on the disruption of TJPs induced by Hcy and CKD and the underlying mechanism. Methods Chronic kidney disease was induced in rats via 5/6 nephrectomy. In a series of experiments, the rats were treated orally with roxadustat of different doses. The expression of tight junction proteins, HIF-1α, and miR-223 was analyzed in different groups by western blotting analysis, RT-qPCR techniques and immunofluorescence. A series of experiments with cultured Caco2 cells was performed. Results The results showed that the expression of TJPs (occludin, claudin-1, and ZO-1) decreased significantly, accompanied by the reduction of HIF-1α and miR-223 in Hcy-treated Caco2 cells and colonic mucosa of uremic rats. The reduction of HIF-1α and miR-223 was reversed by roxadustat and the decrease of TJPs expression was attenuated in both Caco2 cells induced by Hcy and colon tissue of CKD rats. Furthermore, transfection with miR-223 mimics increased the expression of TJPs, while transfection with miR-223 inhibitor decreased their expression in Caco2 cells. MiR-223 inhibitor applied before roxadustat treatment partly diminished the effect of roxadustat on TJPs expression in Caco2 cells. Conclusion These results indicated that roxadustat attenuated the disruption of epithelial TJPs induced by Hcy in Caco2 cells and the damage of colonic epithelium in CKD rats through the upregulation of miR-223 induced by HIF-1α. A novel insight into the IBF dysfunction in CKD was provided, and it suggests a potential therapeutic use of roxadustat for the IBF dysfunction besides anemia in CKD.
Collapse
Affiliation(s)
- Ning Qu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Liang
- Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wei
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingshuang Sun
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quan He
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhong Xue
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kehui Shi
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hua Liu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Mas-Bargues C, Alique M, Barrús-Ortiz MT, Borrás C, Rodrigues-Díez R. Exploring New Kingdoms: The Role of Extracellular Vesicles in Oxi-Inflamm-Aging Related to Cardiorenal Syndrome. Antioxidants (Basel) 2021; 11:78. [PMID: 35052582 PMCID: PMC8773353 DOI: 10.3390/antiox11010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of age associated chronic diseases has increased in recent years. Although several diverse causes produce these phenomena, abundant evidence shows that oxidative stress plays a central role. In recent years, numerous studies have focused on elucidating the role of oxidative stress in the development and progression of both aging and chronic diseases, opening the door to the discovery of new underlying mechanisms and signaling pathways. Among them, senolytics and senomorphics, and extracellular vesicles offer new therapeutic strategies to slow the development of aging and its associated chronic diseases by decreasing oxidative stress. In this review, we aim to discuss the role of extracellular vesicles in human cardiorenal syndrome development and their possible role as biomarkers, targets, or vehicles of drugs to treat this syndrome.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departmento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (C.M.-B.); (C.B.)
- Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Madrid, Spain;
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - María Teresa Barrús-Ortiz
- Área de Fisiología, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Univesidad Rey Juan Carlos, Avenida de Atenas s/n, 28922 Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departmento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (C.M.-B.); (C.B.)
- Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Hospital La Paz (IdiPAZ), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
| |
Collapse
|
17
|
Fourdinier O, Glorieux G, Brigant B, Diouf M, Pletinck A, Vanholder R, Choukroun G, Verbeke F, Massy ZA, Metzinger-Le Meuth V, Metzinger L, Group-EUTox OBOTEUTW. Syndecan-1 and Free Indoxyl Sulfate Levels Are Associated with miR-126 in Chronic Kidney Disease. Int J Mol Sci 2021; 22:10549. [PMID: 34638892 PMCID: PMC8508835 DOI: 10.3390/ijms221910549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic kidney disease (CKD) is a major cause of death worldwide and is associated with a high risk for cardiovascular and all-cause mortality. In CKD, endothelial dysfunction occurs and uremic toxins accumulate in the blood. miR-126 is a regulator of endothelial dysfunction and its blood level is decreased in CKD patients. In order to obtain a better understanding of the physiopathology of the disease, we correlated the levels of miR-126 with several markers of endothelial dysfunction, as well as the representative uremic toxins, in a large cohort of CKD patients at all stages of the disease. Using a univariate analysis, we found a correlation between eGFR and most markers of endothelial dysfunction markers evaluated in this study. An association of miR-126 with all the evaluated uremic toxins was also found, while uremic toxins were not associated with the internal control, specifically cel-miR-39. The correlation between the expression of endothelial dysfunction biomarker Syndecan-1, free indoxyl sulfate, and total p-cresyl glucuronide on one side, and miR-126 on the other side was confirmed using multivariate analysis. As CKD is associated with reduced endothelial glycocalyx (eGC), our results justify further evaluation of the role of correlated parameters in the pathophysiology of CKD.
Collapse
Affiliation(s)
- Ophélie Fourdinier
- Nephrology Dialysis and Transplantation Department, Amiens University Hospital, 80054 Amiens, France; (O.F.); (G.C.)
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (G.G.); (A.P.); (R.V.); (F.V.)
| | - Benjamin Brigant
- UPJV HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne, CEDEX 1, 80025 Amiens, France; (B.B.); (V.M.-L.M.)
| | - Momar Diouf
- Biostatistics Unit, Clinical Research and Innovation Department, Amiens-Picardie University Hospital, 80054 Amiens, France;
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (G.G.); (A.P.); (R.V.); (F.V.)
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (G.G.); (A.P.); (R.V.); (F.V.)
| | - Gabriel Choukroun
- Nephrology Dialysis and Transplantation Department, Amiens University Hospital, 80054 Amiens, France; (O.F.); (G.C.)
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (G.G.); (A.P.); (R.V.); (F.V.)
| | - Ziad A. Massy
- Ambroise Paré Hospital, Division of Nephrology, APHP, Paris Ile de France Ouest (UVSQ) University, et INSERM 1018 Eq. 5, CESP, Boulogne Billancourt et Villejuif, 92100 Paris, France;
| | - Valérie Metzinger-Le Meuth
- UPJV HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne, CEDEX 1, 80025 Amiens, France; (B.B.); (V.M.-L.M.)
- INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Sorbonne Paris Nord, CEDEX, 93017 Bobigny, France
| | - Laurent Metzinger
- UPJV HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne, CEDEX 1, 80025 Amiens, France; (B.B.); (V.M.-L.M.)
| | | |
Collapse
|
18
|
Xiaoyu L, Wei Z, Ming Z, Guowei J. Anti-apoptotic Effect of MiR-223-3p Suppressing PIK3C2A in Cardiomyocytes from Myocardial Infarction Rat Through Regulating PI3K/Akt Signaling Pathway. Cardiovasc Toxicol 2021; 21:669-682. [PMID: 33999393 DOI: 10.1007/s12012-021-09658-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
We aimed to explore the regulatory mechanism of the axis of miR-223-3p-PIK3C2A-PI3K/Akt on cardiomyocyte apoptosis in rats with myocardial infarction. Thirty 8-week-old healthy male SD rats were used for establishing the sham group and the model group, with HE staining, TUNEL staining, and TTC staining performed. After the identification of the targeting relationship between PIK3C2A and miR-223-3p, experimental rats were randomly divided into seven groups by plasmid transfection, including the Blank group, negative control (NC) group, miR-223-3p mimic group, miR-223-3p inhibitor group, siRNA-PIK3C2A group, oe-PIK3C2A group, and miR-223-3p inhibitor + oe-PIK3C2A group. Four weeks after transfection, the expression levels of miR-223-3p and PIK3C2A in tissues as well as PI3K, Akt, Bax, and bcl-2 mRNA in cells were detected by qRT-PCR and western blot, in combination with the detection of apoptosis rate by flow cytometry. Compared with the sham group, the model group showed typical myocardial injury and abnormal staining, higher apoptotic index, and larger myocardial infarction area (all P < 0.05). PIK3C2A was the target gene of miR-223-3p. The expression level of miR-223-3p in model group was significantly lower than that in sham group, while the mRNA and protein expression levels of PIK3C2A increased significantly (all P < 0.05). In cell tests, the expression level of miR-223-3p increased significantly in miR-223-3p mimic group (P < 0.05), which, however, showed no significant change in siRNA-PIK3C2A group (P > 0.05). MiR-223-3p inhibitor group and siRNA-PIK3C2A group had obviously increased PI3K, Akt, mTOR and Bcl-2 mRNA, and protein expression, while decreased mRNA and protein expression of PIK3C2A and Bax (all P < 0.05); miR-223-3p mimic groups had the opposite trends (all P < 0.05). siRNA-PIK3C2A + miR-223-3p mimic showed no obvious change relative to the control groups (all P > 0.05). Low expression of miR-223-3p may downregulate PIK3C2A expression, resulting in the inhibition of myocardial cell apoptosis in rats with myocardial infarction via the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Liu Xiaoyu
- The Third Department of Cardiology, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou City, 061000, People's Republic of China
| | - Zhang Wei
- The Third Department of Cardiology, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou City, 061000, People's Republic of China.
| | - Zhao Ming
- The Third Department of Cardiology, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou City, 061000, People's Republic of China
| | - Jia Guowei
- The Third Department of Cardiology, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou City, 061000, People's Republic of China
| |
Collapse
|
19
|
Srivastava SP, Srivastava R, Chand S, Goodwin JE. Coronavirus Disease (COVID)-19 and Diabetic Kidney Disease. Pharmaceuticals (Basel) 2021; 14:751. [PMID: 34451848 PMCID: PMC8398861 DOI: 10.3390/ph14080751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
The present review describes COVID-19 severity in diabetes and diabetic kidney disease. We discuss the crucial effect of COVID-19-associated cytokine storm and linked injuries and associated severe mesenchymal activation in tubular epithelial cells, endothelial cells, and macrophages that influence neighboring cell homeostasis, resulting in severe proteinuria and organ fibrosis in diabetes. Altered microRNA expression disrupts cellular homeostasis and the renin-angiotensin-system, targets reno-protective signaling proteins, such as angiotensin-converting enzyme 2 (ACE2) and MAS1 receptor (MAS), and facilitates viral entry and replication in kidney cells. COVID-19-associated endotheliopathy that interacts with other cell types, such as neutrophils, platelets, and macrophages, is one factor that accelerates prethrombotic reactions and thrombus formation, resulting in organ failures in diabetes. Apart from targeting vital signaling through ACE2 and MAS, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are also associated with higher profibrotic dipeptidyl transferase-4 (DPP-4)-mediated mechanisms and suppression of AMP-activated protein kinase (AMPK) activation in kidney cells. Lowered DPP-4 levels and restoration of AMPK levels are organ-protective, suggesting a pathogenic role of DPP-4 and a protective role of AMPK in diabetic COVID-19 patients. In addition to standard care provided to COVID-19 patients, we urgently need novel drug therapies that support the stability and function of both organs and cell types in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem 91905, Israel;
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
20
|
Abstract
Chronic kidney disease (CKD), which is characterized by the gradual loss of kidney function, is a growing worldwide problem due to CKD-related morbidity and mortality. There are no reliable and early biomarkers enabling the monitoring, the stratification of CKD progression and the estimation of the risk of CKD-related complications, and therefore, the search for such molecules is still going on. Numerous studies have provided evidence that miRNAs are potentially important particles in the CKD field. Studies indicate that some miRNA levels can be increased in patients with CKD stages III–V and hemodialysis and decreased in renal transplant recipients (miR-143, miR-145 and miR-223) as well as elevated in patients with CKD stages III–V, decreased in hemodialysis patients and even more markedly decreased in renal transplant recipients (miR-126 and miR-155). miRNA have great potential of being sensitive and specific biomarkers in kidney diseases as they are tissue specific and stable in various biological materials. Some promising non-invasive miRNA biomarkers have already been recognized in renal disease with the potential to enhance diagnostic accuracy, predict prognosis and monitor the course of disease. However, large-scale clinical trials enrolling heterogeneous patients are required to evaluate the clinical value of miRNAs.
Collapse
|
21
|
Ishrat R, Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Zubbair Malik M, Sultan A. In Silico Integrative Approach Revealed Key MicroRNAs and Associated Target Genes in Cardiorenal Syndrome. Bioinform Biol Insights 2021; 15:11779322211027396. [PMID: 34276211 PMCID: PMC8256246 DOI: 10.1177/11779322211027396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiorenal syndromes constellate primary dysfunction of either heart or kidney whereby one organ dysfunction leads to the dysfunction of another. The role of several microRNAs (miRNAs) has been implicated in number of diseases, including hypertension, heart failure, and kidney diseases. Wide range of miRNAs has been identified as ideal candidate biomarkers due to their stable expression. Current study was aimed to identify crucial miRNAs and their target genes associated with cardiorenal syndrome and to explore their interaction analysis. Three differentially expressed microRNAs (DEMs), namely, hsa-miR-4476, hsa-miR-345-3p, and hsa-miR-371a-5p, were obtained from GSE89699 and GSE87885 microRNA data sets, using R/GEO2R tools. Furthermore, literature mining resulted in the retrieval of 15 miRNAs from scientific research and review articles. The miRNAs-gene networks were constructed using miRNet (a Web platform of miRNA-centric network visual analytics). CytoHubba (Cytoscape plugin) was adopted to identify the modules and the top-ranked nodes in the network based on Degree centrality, Closeness centrality, Betweenness centrality, and Stress centrality. The overlapped miRNAs were further used in pathway enrichment analysis. We found that hsa-miR-21-5p was common in 8 pathways out of the top 10. Based on the degree, 5 miRNAs, namely, hsa-mir-122-5p, hsa-mir-222-3p, hsa-mir-21-5p, hsa-mir-146a-5p, and hsa-mir-29b-3p, are considered as key influencing nodes in a network. We suggest that the identified miRNAs and their target genes may have pathological relevance in cardiorenal syndrome (CRS) and may emerge as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Romana Ishrat
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Mohd Murshad Ahmed
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Aftab Alam
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Anam Farooqui
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Rafat Ali
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Nikhat Imam
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Naaila Tamkeen
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research
in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi,
India
| | - Md Zubbair Malik
- School of Computational and Integrative
Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia
Islamia (A Central University), New Delhi, India
| |
Collapse
|
22
|
Wang X, Liu Y, Rong J, Wang K. LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis. BMC Endocr Disord 2021; 21:134. [PMID: 34187448 PMCID: PMC8243433 DOI: 10.1186/s12902-021-00781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are widely reported to be involved in the development of human diseases. HLA complex P5 (HCP5) deregulation is associated with various diseases. However, the function of HCP5 in diabetic nephropathy (DN) is unclear. METHODS Human glomerular mesangial cells (HGMCs) were treated with high glucose (HG) to establish DN cell models. The expression of HCP5, miR-93-5p and high mobility group AT-hook 2 (HMGA2) mRNA was detected using quantitative polymerase chain reaction (QPCR). Cell proliferation and cell apoptosis were assessed using cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The expression of apoptosis- and fibrosis-related proteins and HMGA2 protein was quantified by western blot. The release of pro-inflammatory factor was checked using enzyme-linked immunosorbent assay (ELISA). The predicted relationship between miR-93-5p and HCP5 or HMGA2 was verified using dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. RESULTS The expression of HCP5 and HMGA2 was enhanced, while the expression of miR-93-5p was declined in DN serum samples and HG-treated HGMCs. HCP5 knockdown or miR-93-5p restoration ameliorated HG-induced HGMC proliferation, fibrosis and inflammation. MiR-93-5p was a target of HCP5, and miR-93-5p inhibition reversed the effects caused by HCP5 knockdown. Moreover, HMGA2 was a target of miR-93-5p, and HMGA2 overexpression abolished the effects of miR-93-5p restoration. HCP5 knockdown inhibited the AKT/mTOR signaling pathway. CONCLUSION HCP5 was implicated in DN progression by modulating the miR-93-5p/HMGA2 axis, which provided new insights into the understanding of DN pathogenesis.
Collapse
Affiliation(s)
- Xuan Wang
- Department of International Medical Center, Tianjin Hospital, No. 406, Jiefangnan Road, Tianjin City, 300211, China
| | - Yan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jian Rong
- Department of Emergency internal medicine, Tianjin Hospital, Tianjin, China
| | - Kai Wang
- Department of International Medical Center, Tianjin Hospital, No. 406, Jiefangnan Road, Tianjin City, 300211, China.
| |
Collapse
|
23
|
Peng J, Qin C, Tian SY, Peng JQ. MiR-93 inhibits the vascular calcification of chronic renal failure by suppression of Wnt/β-catenin pathway. Int Urol Nephrol 2021; 54:225-235. [PMID: 34138419 DOI: 10.1007/s11255-021-02907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore the effect of miR-93-mediated Wnt/β-catenin pathway on the vascular calcification (VC) of chronic renal failure (CRF). METHODS SD rats were utilized to construct CRF models and divided into Control, CRF, CRF + LV (lentiviral vector)-miR-93 and CRF + LV-Con groups. Renal tissues collected from rats were performed hematoxylin and eosin (HE) staining and Masson staining, while the abdominal aorta was dissected for alizarin red staining and Von Kossa staining. VC-related genes were determined by qRT-PCR while Wnt/β-catenin pathway-related proteins were examined by Western blotting. RESULTS As compared to Control group, the serum levels of blood urea nitrogen (BUN), serum creatinine (Scr), phosphorus (P), cystatin C (Cys-C) and 24-h urea protein (24 h Upro), and the scores of renal interstitial lesion and fibrotic area in rats from CRF group were elevated, with the increased calcified area of aorta as well as the enhanced calcium content and ALP. Meanwhile, rats in the CRF group had up-regulated expression of OPN, OCN, RUNX2 and BMP-2 and down-regulated expression of miR-93. As for the expression of Wnt/β-catenin pathway, rats in the CRF group had sharp increases in the protein expression of TCF4 and β-catenin, while α-SMA was down-regulated. However, changes of the above were reversed in rats from CRF + LV-miR-93 group, and TCF4 was confirmed to be a target gene of miR-93. CONCLUSION MiR-93, via inhibiting the activity of Wnt/β-catenin pathway by targeting TCF4, can improve the renal function of CRF rats, thereby mitigating the vascular calcification of CRF.
Collapse
Affiliation(s)
- Jun Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China
| | - Chao Qin
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou, Hubei, China
| | - Shu-Yan Tian
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China
| | - Jia-Qing Peng
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
24
|
Rysz J, Franczyk B, Radek M, Ciałkowska-Rysz A, Gluba-Brzózka A. Diabetes and Cardiovascular Risk in Renal Transplant Patients. Int J Mol Sci 2021; 22:3422. [PMID: 33810367 PMCID: PMC8036743 DOI: 10.3390/ijms22073422] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
End-stage kidney disease (ESKD) is a main public health problem, the prevalence of which is continuously increasing worldwide. Due to adverse effects of renal replacement therapies, kidney transplantation seems to be the optimal form of therapy with significantly improved survival, quality of life and diminished overall costs compared with dialysis. However, post-transplant patients frequently suffer from post-transplant diabetes mellitus (PTDM) which an important risk factor for cardiovascular and cardiovascular-related deaths after transplantation. The management of post-transplant diabetes resembles that of diabetes in the general population as it is based on strict glycemic control as well as screening and treatment of common complications. Lifestyle interventions accompanied by the tailoring of immunosuppressive regimen may be of key importance to mitigate PTDM-associated complications in kidney transplant patients. More transplant-specific approach can include the exchange of tacrolimus with an alternative immunosuppressant (cyclosporine or mammalian target of rapamycin (mTOR) inhibitor), the decrease or cessation of corticosteroid therapy and caution in the prescribing of diuretics since they are independently connected with post-transplant diabetes. Early identification of high-risk patients for cardiovascular diseases enables timely introduction of appropriate therapeutic strategy and results in higher survival rates for patients with a transplanted kidney.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, 90-549 Lodz, Poland;
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
25
|
Han Y, Zhang J, Huang S, Cheng N, Zhang C, Li Y, Wang X, Liu J, You B, Du J. MicroRNA-223-3p inhibits vascular calcification and the osteogenic switch of vascular smooth muscle cells. J Biol Chem 2021; 296:100483. [PMID: 33647318 PMCID: PMC8039724 DOI: 10.1016/j.jbc.2021.100483] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
Vascular calcification is the ectopic deposition of calcium hydroxyapatite minerals in arterial wall, which involves the transdifferentiation of vascular smooth muscle cells (VSMCs) toward an osteogenic phenotype. However, the underlying molecular mechanisms regulating the VSMC osteogenic switch remain incompletely understood. In this study, we examined the roles of microRNAs (miRNAs) in vascular calcification. miRNA-seq transcriptome analysis identified miR-223-3p as a candidate miRNA in calcified mouse aortas. MiR-223-3p knockout aggravated calcification in both medial and atherosclerotic vascular calcification models. Further, RNA-seq transcriptome analysis verified JAK-STAT and PPAR signaling pathways were upregulated in both medial and atherosclerotic calcified aortas. Overlapping genes in these signaling pathways with predicted target genes of miR-223-3p derived from miRNA databases, we identified signal transducer and activator of transcription 3 (STAT3) as a potential target gene of miR-223-3p in vascular calcification. In vitro experiments showed that miR-223-3p blocked interleukin-6 (IL-6)/STAT3 signaling, thereby preventing the osteogenic switch and calcification of VSMCs. In contrast, overexpression of STAT3 diminished the effect of miR-223-3p. Taken together, the results indicate a protective role of miR-223-3p that inhibits both medial and atherosclerotic vascular calcification by regulating IL-6/STAT3 signaling-mediated VSMC transdifferentiation.
Collapse
Affiliation(s)
- Yingchun Han
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jichao Zhang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shan Huang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Naixuan Cheng
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jinghua Liu
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
26
|
Widiasta A, Sribudiani Y, Nugrahapraja H, Hilmanto D, Sekarwana N, Rachmadi D. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res 2020; 5:153-166. [PMID: 32923747 PMCID: PMC7480227 DOI: 10.1016/j.ncrna.2020.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for coronavirus disease (COVID-19), potentially have severe kidney adverse effects. This organ expressed angiotensin-converting enzyme 2 (ACE2), the transmembrane protein which facilitate the entering of the virus into the cell. Therefore, early detection of the kidney manifestations of COVID-19 is crucial. Previous studies showed ACE2 role in various indications of this disease, especially in kidney effects. The MicroRNAs (miRNAs) in this organ affected ACE2 expression. Therefore, this review aims at summarizing the literature of a novel miRNA-based therapy and its potential applications in COVID-19-associated nephropathy. Furthermore, previous studies were analyzed for the kidney manifestations of COVID-19 and the miRNAs role that were published on the online databases, namely MEDLINE (PubMed) and Scopus. Several miRNAs, particularly miR-18 (which was upregulated in nephropathy), played a crucial role in ACE2 expression. Therefore, the antimiR-18 roles were summarized in various primate models that aided in developing the therapy for ACE2 related diseases.
Collapse
Affiliation(s)
- Ahmedz Widiasta
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
- Medical Genetic Research Center, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Yunia Sribudiani
- Medical Genetic Research Center, Faculty of Medicine, Universitas Padjadjaran, Indonesia
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Indonesia
| | - Dany Hilmanto
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Nanan Sekarwana
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Dedi Rachmadi
- Pediatric Nephrology Division, Child Health Department, Faculty of Medicine, Universitas Padjadjaran, Indonesia
- Medical Genetic Research Center, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| |
Collapse
|
27
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
28
|
Carmona A, Guerrero F, Jimenez MJ, Ariza F, Agüera ML, Obrero T, Noci V, Muñoz-Castañeda JR, Rodríguez M, Soriano S, Moreno JA, Martin-Malo A, Aljama P. Inflammation, Senescence and MicroRNAs in Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:739. [PMID: 32850849 PMCID: PMC7423998 DOI: 10.3389/fcell.2020.00739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Patients with chronic kidney disease (CKD) show a chronic microinflammatory state that promotes premature aging of the vascular system. Currently, there is a growth interest in the search of novel biomarkers related to vascular aging to identify CKD patients at risk to develop cardiovascular complications. Methods Forty-five CKD patients were divided into three groups according to CKD-stages [predialysis (CKD4-5), hemodialysis (HD) and kidney transplantation (KT)]. In all these patients, we evaluated the quantitative changes in microRNAs (miRNAs), CD14+C16++ monocytes number, and microvesicles (MV) concentration [both total MV, and monocytes derived MV (CD14+Annexin V+CD16+)]. To understand the molecular mechanism involved in senescence and osteogenic transdifferentation of vascular smooth muscle cells (VSMC), these cells were stimulated with MV isolated from THP-1 monocytes treated with uremic toxins (txMV). Results A miRNA array was used to investigate serum miRNAs profile in CKD patients. Reduced expression levels of miRNAs-126-3p, -191-5p and -223-3p were observed in CKD4-5 and HD patients as compared to KT. This down-regulation disappeared after KT, even when lower glomerular filtration rates (eGFR) persisted. Moreover, HD patients had higher percentage of proinflammatory monocytes (CD14+CD16++) and MV derived of proinflammatory monocytes (CD14+Annexin V+CD16+) than the other groups. In vitro studies showed increased expression of osteogenic markers (BMP2 and miRNA-223-3p), expression of cyclin D1, β-galactosidase activity and VSMC size in those cells treated with txMV. Conclusion CKD patients present a specific circulating miRNAs expression profile associated with the microinflammatory state. Furthermore, microvesicles generated by monocytes treated with uremic toxins induce early senescence and osteogenic markers (BMP2 and miRNA-223-3p) in VSMC.
Collapse
Affiliation(s)
- Andres Carmona
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain
| | - Fatima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Department of Medicine, University of Córdoba, Córdoba, Spain
| | - Maria Jose Jimenez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain
| | - Francisco Ariza
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain
| | - Marisa L Agüera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Nephrology Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Teresa Obrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain
| | - Victoria Noci
- Anesthesia Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Juan Rafael Muñoz-Castañeda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Nephrology Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Mariano Rodríguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Department of Medicine, University of Córdoba, Córdoba, Spain.,Nephrology Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Sagrario Soriano
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Nephrology Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Alejandro Martin-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Department of Medicine, University of Córdoba, Córdoba, Spain.,Nephrology Unit, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Pedro Aljama
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.,Department of Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
29
|
Verdelli C, Sansoni V, Perego S, Favero V, Vitale J, Terrasi A, Morotti A, Passeri E, Lombardi G, Corbetta S. Circulating fractures-related microRNAs distinguish primary hyperparathyroidism-related from estrogen withdrawal-related osteoporosis in postmenopausal osteoporotic women: A pilot study. Bone 2020; 137:115350. [PMID: 32380256 DOI: 10.1016/j.bone.2020.115350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Primary hyperparathyroidism (PHPT) represents a common cause of secondary osteoporosis in postmenopausal women, where the negative effect of estrogen withdrawal and that of hyperparathyroidism on bone mineralization coexist. Circulating microRNAs (miRNAs) expression profile has been correlated to both osteoporosis and fragility fractures. The study aimed to profile a set of miRNAs associated with osteoporotic fractures, namely miR-21-5p, miR-23a-5p, miR-24-2-5p, miR-24-3p, miR-93-5p, miR-100-5p, miR-122-5p, miR-124-3p, miR-125b-5p and miR-148-3p, in the plasma of 20 postmenopausal PHPT women. PHPT miRNAs profiles were compared with those detected in 10 age-matched postmenopausal non-PHPT osteoporotic women (OP). All the 10 miRNAs were detected in the plasma samples of both PHPT and OP women. The miRNA profiles clearly distinguished PHPT from OP samples, and identified within the PHPT group, two clusters differing for the PHPT severity, in term of ionized calcium and bone mineralization. In particular, miR-93-5p was significantly downregulated in PHPT samples, while miR-24-3p negatively correlated with the T-score at lumbar, femur neck and total hip sites. PHPT women who experienced osteoporotic fractures had plasma miR-24-3p levels higher than those detected in unfractured PHPT women. In conclusion, PHPT may modulate circulating fractures-related miRNAs, in particular, miR-93-5p, which may distinguish estrogen-related from PHPT-related osteoporosis.
Collapse
Affiliation(s)
- C Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy.
| | - V Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy.
| | - S Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy.
| | - V Favero
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy; Department of Clinical and Community Sciences for Health, University of Milan, via F.Sforza 35, 20122 Milan, Italy.
| | - J Vitale
- Laboratory of Movement and Sport Science, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy.
| | - A Terrasi
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F.Sforza 35, 20122 Milan, Italy.
| | - A Morotti
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F.Sforza 35, 20122 Milan, Italy.
| | - E Passeri
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy
| | - G Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy; Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland.
| | - S Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Via R.Galeazzi 4, 20161 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via C.Pascal 36, 20100 Milan, Italy.
| |
Collapse
|
30
|
Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Sci Rep 2020; 10:10657. [PMID: 32606426 PMCID: PMC7326964 DOI: 10.1038/s41598-020-67574-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Protein bound uremic toxins, such as p-cresol, cannot be effectively removed by conventional dialysis techniques and are accumulated in plasma, thus contributing to progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD). Pathological effects of uremic toxins include activation of inflammatory response, endothelial dysfunction and release of endothelial microvesicles. To date, the role of p-cresol in endothelial microvesicles formation has not been analyzed. The aim of the present study was evaluate the effects of endothelial microvesicles released by p-cresol (PcEMV) on endothelial dysfunction. An in vitro model of endothelial damage mediated by p-cresol was proposed to evaluate the functional effect of PcEMV on the endothelial repair process carried out by endothelial cells and microRNA (miRNA) that could be involved in this process. We observed that p-cresol induced a greater release of microvesicles in endothelial cells. These microvesicles altered regenerative capacity of endothelial cells, decreasing their capacity for cell migration and their potential to form vascular structures in vitro. Moreover, we observed increased cellular senescence and a deregulation of miRNA-146b-5p and miRNA-223-3p expression in endothelial cells treated with endothelial microvesicles released by p-cresol. In summary our data show that microvesicles generated in endothelial cells treated with p-cresol (PcEMV) interfere with the endothelial repair process by decreasing the migratory capacity, the ability to form new vessels and increasing the senescence of mature endothelial cells. These alterations could be mediated by the upregulation of miRNA-146b-5p and miRNA-223-3p.
Collapse
|
31
|
Cheng N, Liu C, Li Y, Gao S, Han YC, Wang X, Du J, Zhang C. MicroRNA-223-3p promotes skeletal muscle regeneration by regulating inflammation in mice. J Biol Chem 2020; 295:10212-10223. [PMID: 32493731 PMCID: PMC7383371 DOI: 10.1074/jbc.ra119.012263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
After injury, the coordinated balance of pro- and anti-inflammatory factors in the microenvironment contribute to skeletal muscle regeneration. However, the underlying molecular mechanisms regulating this balance remain incompletely understood. In this study, we examined the roles of microRNAs (miRNAs) in inflammation and muscle regeneration. miRNA-Seq transcriptome analysis of mouse skeletal muscle revealed that miR-223-3p is upregulated in the early stage of muscle regeneration after injury. miR-223-3p knockout resulted in increased inflammation, impaired muscle regeneration, and increased interstitial fibrosis. Mechanistically, we found that myeloid-derived miR-223-3p suppresses the target gene interleukin-6 (Il6), associated with the maintenance of the proinflammatory macrophage phenotype during injury. Administration of IL-6-neutralizing antibody in miR-223-3p-knockout muscle could rescue the impaired regeneration ability and reduce the fibrosis. Together, our results reveal that miR-223-3p improves muscle regeneration by regulating inflammation, indicating that miRNAs can participate in skeletal muscle regeneration by controlling the balance of pro- and anti-inflammatory factors in the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Naixuan Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Chang Liu
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Ying-Chun Han
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaonan Wang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jie Du
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
32
|
Berillo O, Huo KG, Fraulob-Aquino JC, Richer C, Briet M, Boutouyrie P, Lipman ML, Sinnett D, Paradis P, Schiffrin EL. Circulating let-7g-5p and miR-191-5p Are Independent Predictors of Chronic Kidney Disease in Hypertensive Patients. Am J Hypertens 2020; 33:505-513. [PMID: 32115655 DOI: 10.1093/ajh/hpaa031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/15/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypertension (HTN) is associated with target organ damage such as cardiac, vascular, and kidney injury. Several studies have investigated circulating microRNAs (miRNAs) as biomarkers of cardiovascular disease, but few have examined them as biomarker of target organ damage in HTN. We aimed to identify circulating miRNAs that could serve as biomarkers of HTN-induced target organ damage using an unbiased approach. METHODS AND RESULTS Fifteen normotensive subjects, 16 patients with HTN, 15 with HTN associated with other features of the metabolic syndrome (MetS), and 16 with HTN or chronic kidney disease (CKD) were studied. Circulating RNA extracted from platelet-poor plasma was used for small RNA sequencing. Differentially expressed (DE) genes were identified with a threshold of false discovery rate <0.1. DE miRNAs were identified uniquely associated with HTN, MetS, or CKD. However, only 2 downregulated DE miRNAs (let-7g-5p and miR-191-5p) could be validated by reverse transcription-quantitative PCR. Let-7g-5p was associated with large vessel stiffening, miR-191-5p with MetS, and both miRNAs with estimated glomerular filtration rate (eGFR) and neutrophil and lymphocyte fraction or number and neutrophil-to-lymphocyte ratio. Using the whole population, stepwise multiple linear regression generated a model showing that let-7g-5p, miR-191-5p, and urinary albumin/creatinine ratio predicted eGFR with an adjusted R2 of 0.46 (P = 8.5e-7). CONCLUSIONS We identified decreased circulating let-7g-5p and miR-191-5p as independent biomarkers of CKD among patients with HTN, which could have pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Olga Berillo
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Ku-Geng Huo
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Júlio C Fraulob-Aquino
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, Research Center, CHU Sainte-Justine, Montréal, Canada
| | - Marie Briet
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
- INSERM U1083, CNRS UMR 6214, Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, Université d’Angers, Angers, France
| | - Pierre Boutouyrie
- Department of Pharmacology, Université Paris-Descartes, INSERM U970 and Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Mark L Lipman
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Research Center, CHU Sainte-Justine, Montréal, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Ernesto L Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Canada
| |
Collapse
|
33
|
Carracedo J, Alique M, Vida C, Bodega G, Ceprián N, Morales E, Praga M, de Sequera P, Ramírez R. Mechanisms of Cardiovascular Disorders in Patients With Chronic Kidney Disease: A Process Related to Accelerated Senescence. Front Cell Dev Biol 2020; 8:185. [PMID: 32266265 PMCID: PMC7099607 DOI: 10.3389/fcell.2020.00185] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular diseases (CVDs), especially those involving a systemic inflammatory process such as atherosclerosis, remain the leading cause of morbidity and mortality in patients with chronic kidney disease (CKD). CKD is a systemic condition affecting approximately 10% of the general population. The prevalence of CKD has increased over the past decades because of the aging of the population worldwide. Indeed, CVDs in patients with CKD constitute a premature form of CVD observed in the general population. Multiple studies indicate that patients with renal disease undergo accelerated aging, which precipitates the appearance of pathologies, including CVDs, usually associated with advanced age. In this review, we discuss several aspects that characterize CKD-associated CVDs, such as etiopathogenic elements that CKD patients share with the general population, changes in the cellular balance of reactive oxygen species (ROS), and the associated process of cellular senescence. Uremia-associated aging is linked with numerous changes at the cellular and molecular level. These changes are similar to those observed in the normal process of physiologic aging. We also discuss new perspectives in the study of CKD-associated CVDs and epigenetic alterations in intercellular signaling, mediated by microRNAs and/or extracellular vesicles (EVs), which promote vascular damage and subsequent development of CVD. Understanding the processes and factors involved in accelerated senescence and other abnormal intercellular signaling will identify new therapeutic targets and lead to improved methods of diagnosis and monitoring for patients with CKD-associated CVDs.
Collapse
Affiliation(s)
- Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carmen Vida
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Noemí Ceprián
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Enrique Morales
- Departamento de Nefrología, Hospital Universitario 12 de Octubre/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Praga
- Departamento de Nefrología, Hospital Universitario 12 de Octubre/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia de Sequera
- Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
34
|
Jin X, Wu Y, Cui N, Jiang C, Li SS. Methylglyoxal-induced miR-223 suppresses rat vascular K ATP channel activity by downregulating Kir6.1 mRNA in carbonyl stress. Vascul Pharmacol 2020; 128-129:106666. [PMID: 32151743 DOI: 10.1016/j.vph.2020.106666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022]
Abstract
The vascular ATP-sensitive K+ (KATP) channel composed of Kir6.1 and SUR2B subunits regulates cellular activity by coupling intermediary metabolism to membrane excitability. Our previous studies have shown that both Kir6.1 and SUB2B are post-transcriptionally downregulated by methylglyoxal (MGO) which is a reactive carbonyl specie and can cause disruption of vascular tone regulation under diabetic conditions. We have shown that the SUB2B downregulation is mediated by the microRNA (miR) miR-9a, while the mechanism underlying Kir6.1 inhibition is still unclear. Studying the microRNA databases, we found that miR-223 has sequence similarities to the 3' untranslated sequence (3'UTR) of Kir6.1 mRNA suggesting their potential interactions. Therefore, we explored the role of miR-233 in KATP channel regulation by up/down-regulation of miR-223 in smooth muscle cells (SMCs) and mesenteric arterials. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis showed augmentation of miR-223 expression in the cultured SMCs after 300 μM MGO exposure by 5-6 folds. miR-223 overexpression down-regulated Kir6.1 mRNA levels by ~2.6 times while miR-223 knockdown diminished the effect of 300 μM MGO by ~50% in the SMCs. Luciferase assay and mutagenesis studies showed that the effect of miR-223 was abolished when the potential interaction site in the 3' UTR was mutated. Studies with Western blot, patch clamp, and perfused mesenteric arterial rings showed that transfection of miR-223 downregulated KATP protein expression, inhibited KATP channel activity and enhanced vasoconstriction. These results therefore suggest that miR-223 is induced by MGO exposure, which subsequently downregulates the Kir6.1 mRNA, suppresses KATP channel function, and impairs functional regulation of vascular tones. BACKGROUND Methylglyoxal causes transcriptional inhibition of the vascular KATP channel. RESULTS Exogenous miR-223 down-regulated Kir6.1. miR-223 knockdown alleviated the effect of MGO. CONCLUSION Vascular KATP channel is important for miR-223 targeting. SIGNIFICANCE Regulation of the miR-223 level may be a novel strategy for clinical treatment of diabetes.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Cell Line
- Down-Regulation
- KATP Channels/genetics
- KATP Channels/metabolism
- Male
- Membrane Potentials
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/pathology
- Mesenteric Arteries/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Protein Carbonylation/drug effects
- Pyruvaldehyde/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China; Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA.
| | - Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA.
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China; Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA, USA.
| |
Collapse
|
35
|
The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int J Mol Sci 2020; 21:ijms21030980. [PMID: 32024140 PMCID: PMC7037112 DOI: 10.3390/ijms21030980] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Collapse
|
36
|
Diagnostic, Prognostic, and Therapeutic Value of Non-Coding RNA Expression Profiles in Renal Transplantation. Diagnostics (Basel) 2020; 10:diagnostics10020060. [PMID: 31978997 PMCID: PMC7168890 DOI: 10.3390/diagnostics10020060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
End-stage renal disease is a public health problem responsible for millions of deaths worldwide each year. Although transplantation is the preferred treatment for patients in need of renal replacement therapy, long-term allograft survival remains challenging. Advances in high-throughput methods for large-scale molecular data generation and computational analysis are promising to overcome the current limitations posed by conventional diagnostic and disease classifications post-transplantation. Non-coding RNAs (ncRNAs) are RNA molecules that, despite lacking protein-coding potential, are essential in the regulation of epigenetic, transcriptional, and post-translational mechanisms involved in both health and disease. A large body of evidence suggests that ncRNAs can act as biomarkers of renal injury and graft loss after transplantation. Hence, the focus of this review is to discuss the existing molecular signatures of non-coding transcripts and their value to improve diagnosis, predict the risk of rejection, and guide therapeutic choices post-transplantation.
Collapse
|
37
|
Deng W, Chen K, Liu S, Wang Y. Silencing circular ANRIL protects HK-2 cells from lipopolysaccharide-induced inflammatory injury through up-regulating microRNA-9. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3478-3484. [PMID: 31432701 DOI: 10.1080/21691401.2019.1652187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circular antisense non-coding RNA in the INK4 locus (cANRIL) participated in inflammation of endothelial cells. However, whether cANRIL is associated with inflammatory injury of HK-2 cells, thereby affecting chronic kidney disease has not been investigated. We tested the hypothesis that cANRIL participated in inflammatory response in vitro. HK-2 cells were stimulated by lipopolysaccharides (LPS). RT-qPCR was executed for cANRIL expression assessment. After transfection, cell viability, apoptosis, inflammatory cytokines and ROS generation were appraised to evaluate the impact of silencing cANRIL on LPS-induced inflammatory injury. The regulatory relationship between cANRIL and microRNA-9 (miR-9) was verified. In addition, whether miR-9 affected LPS-induced inflammatory injury was measured after miR-9 inhibitor transfection. Western blot was utilized to detect NF-κB and JNK/p38 pathway-related proteins. The results showed that LPS promoted cANRIL expression and cell injuries in HK-2 cells. Furthermore, silencing cANRIL alleviated inflammatory injuries by promoting viability, suppressing apoptosis, inflammatory cytokines and ROS generation in HK-2 cells. In addition, miR-9 expression was accelerated by silencing cANRIL. Meanwhile, miR-9 down-regulation invalidated the effect of silencing cANRIL on inflammation and NF-κB and JNK/p38 pathways. The study clarified that silencing cANRIL hindered NF-κB and JNK/p38 pathways by positively regulating miR-9, thereby protecting HK-2 cells from LPS-induced injury.
Collapse
Affiliation(s)
- Wenyan Deng
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| | - Kai Chen
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| | - Shuxia Liu
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| | - Yingying Wang
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| |
Collapse
|
38
|
Cisilotto J, do Amaral AE, Rosolen D, Rode MP, Silva AH, Winter E, da Silva TE, Fischer J, Matiollo C, Rateke ECDM, Narciso-Schiavon JL, Schiavon LDL, Creczynski-Pasa TB. MicroRNA profiles in serum samples from Acute-On-Chronic Liver Failure patients and miR-25-3p as a potential biomarker for survival prediction. Sci Rep 2020; 10:100. [PMID: 31919459 PMCID: PMC6952390 DOI: 10.1038/s41598-019-56630-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a condition characterized by acute decompensation of cirrhosis, associated with organ failure(s), and high short-term mortality. The microRNAs or miRNAs are small non-coding RNA molecules, stable in circulating samples such as biological fluids, and the difference in expression levels may indicate the presence, absence and/or stage of the disease. We analyzed here the miRNA profiling to identify potential diagnostic or prognostic biomarkers for ACLF. The major miRNAs discovered were validated in a cohort of patients with acute decompensation of cirrhosis grouped in no ACLF or ACLF according to EASL-CLIF definition. Relationship between serum miRNAs and variables associated with liver-damage and survival outcomes were verified to identify possible prognostic markers. Our results showed twenty altered miRNAs between no ACLF and ACLF patients, and twenty-seven in patients who died in 30 days compared with who survived. In validation phase, miR-223-3p and miR-25-3p were significantly altered in ACLF patients and in those who died in 30 days. miR-223-3p and miR-25-3p expression were associated with the lowest survival in 30 days. The decrease in miR-223-3p and miR-25-3p expression was associated with the presence of ACLF and poor prognosis. Of these, miR-25-3p was independently related to ACLF and 30-day mortality.
Collapse
Affiliation(s)
- Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Michele Patrícia Rode
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, 89520-000, SC, Brazil
| | - Telma Erotides da Silva
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Josiane Fischer
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Camila Matiollo
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Elayne Cristina de Morais Rateke
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Janaína Luz Narciso-Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | | |
Collapse
|
39
|
Metzinger-Le Meuth V, Fourdinier O, Charnaux N, Massy ZA, Metzinger L. The expanding roles of microRNAs in kidney pathophysiology. Nephrol Dial Transplant 2019; 34:7-15. [PMID: 29800482 DOI: 10.1093/ndt/gfy140] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that control gene expression through base pairing with regions within the 3'-untranslated region of target mRNAs. These small non-coding RNAs are now increasingly known to be involved in kidney physiopathology. In this review we will describe how miRNAs were in recent years implicated in cellular and animal models of kidney disease but also in chronic kidney disease, haemodialysed and grafted patients, acute kidney injury patients and so on. At the moment miRNAs are considered as potential biomarkers in nephrology, but larger cohorts as well as the standardization of methods of measurement will be needed to confirm their usefulness. It will further be of the utmost importance to select specific tissues and biofluids to make miRNAs appropriate in day-to-day clinical practice. In addition, up- or down-regulating miRNAs that were described as deregulated in kidney diseases may represent innovative therapeutic methods to cure these disorders. We will enumerate in this review the most recent methods that can be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure, such as the cardiovascular system.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13, Bobigny, France
| | | | - Nathalie Charnaux
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13, Bobigny, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest (UVSQ) University, Boulogne-Billancourt, France.,INSERM U 1018, Team 5, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Laurent Metzinger
- HEMATIM, le Centre Universitaire de Recherche en Santé (CURS), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
40
|
Zhang W, Deng W, Wang Y. microRNA-103 promotes LPS-induced inflammatory injury by targeting c-Myc in HK-2 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2791-2799. [PMID: 31284776 DOI: 10.1080/21691401.2019.1636806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wei Zhang
- Department of Nephrology, Jining No. 1 People’s Hospital, Jining, China
| | - Wenyan Deng
- Department of Nephrology, Jining No. 1 People’s Hospital, Jining, China
| | - Yingying Wang
- Department of Nephrology, Jining No. 1 People’s Hospital, Jining, China
| |
Collapse
|
41
|
Pickering ME, Millet M, Rousseau JC, Croset M, Szulc P, Borel O, Sornay Rendu E, Chapurlat R. Selected serum microRNA, abdominal aortic calcification and risk of osteoporotic fracture. PLoS One 2019; 14:e0216947. [PMID: 31086410 PMCID: PMC6516733 DOI: 10.1371/journal.pone.0216947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
CONTEXT MicroRNA (miRNA) regulate post-transcriptionally the expression of osteogenesis and angiogenesis associated genes and emerge as potential non-invasive biomarkers in vascular and bone diseases. Severe abdominal aortic calcification (AAC) is associated with higher risk of cardiovascular event and of fragility fracture. OBJECTIVE To identify miRNA linked to the aggravation of AAC and to incident osteoporotic fracture. DESIGN Postmenopausal women (>50 years) with available serum at inclusion and data for each outcome (Kauppila score and incident fracture) were selected from the OFELY prospective cohort. We conducted a case-control study in 434 age-matched women, 50% with incident osteoporotic fracture over 20 years of follow-up and a second study in 183 women to explore AAC over 17 years. METHODS Serum expression of three miRNA involved in vascular calcification and bone turnover regulation (miRs-26a-5p,-34a-5p, and -223-5p) was quantified at baseline by TaqMan Advanced miRNA technology and expressed by relative quantification. Outcomes were the association of miRNA levels with (1) incident osteoporotic fractures during 20 years, (2) AAC aggravation during 17 years. RESULTS MiRNA level was not associated with incident fractures (miR-26a-5p: 1.06 vs 0.99, p = 0.07; miR-34a-5p: 1.15 vs 1.26, p = 0.35; miR-223a-5p: 1.01 vs 1.05, p = 0.32). 93 women had an increase in Kauppila score over 17 years while 90 did not. None of the miRNAs was associated with an aggravation in AAC (miR-26a-5p: 1.09 vs 1.10, p = 0.95; miR-34a-5p: 0.78 vs 0.73, p = 0.90; miR-223-5p: 0.97 vs 0.78, p = 0.11). CONCLUSIONS Circulating miR-26a-5p, -34a-5p and -223-5p are not significantly associated with incident fracture and AAC aggravation.
Collapse
Affiliation(s)
- Marie-Eva Pickering
- Service de Rhumatologie et Pathologie Osseuse, Hôpital E Herriot, HCL, Lyon, France
- Inserm UMR 1033, Lyon, France
| | | | | | | | | | | | | | - Roland Chapurlat
- Service de Rhumatologie et Pathologie Osseuse, Hôpital E Herriot, HCL, Lyon, France
- Inserm UMR 1033, Lyon, France
| |
Collapse
|
42
|
Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients. Sci Rep 2019; 9:4477. [PMID: 30872798 PMCID: PMC6418179 DOI: 10.1038/s41598-019-41101-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/28/2019] [Indexed: 01/11/2023] Open
Abstract
Several microRNAs (miRNAs) have been linked to chronic kidney disease (CKD) mortality, cardiovascular (CV) complications and kidney disease progression. However, their association with clinical outcomes remains poorly evaluated. We used real-time qPCR to measure serum levels of miR-126 and miR-223 in a large cohort of 601 CKD patients (CKD stage G1 to G5 patients or on renal replacement therapy – CKD G5D) from Ghent University Hospital and 31 healthy controls. All-cause mortality and cardiovascular and renal events were registered as endpoints over a 6 year follow-up period. miR-126 levels were significantly lower from CKD stage G2 on, compared to controls. The serum levels of miR-223 were significantly lower from CKD stage G3B on. When considering overall mortality, patients with levels of either miR-126 or miR-223 below the median had a lower survival rate. Similar results were observed for CV and renal events. The observed link between the two miRNAs’ seric levels and mortality, cardiovascular events or renal events in CKD appears to depend on eGFR. However, this does not preclude their potential role in the pathophysiology of CKD. In conclusion, CKD is associated with a decrease in circulating miR-223 and miR-126 levels.
Collapse
|
43
|
Metzinger-Le Meuth V, Metzinger L. miR-223 and other miRNA's evaluation in chronic kidney disease: Innovative biomarkers and therapeutic tools. Noncoding RNA Res 2019; 4:30-35. [PMID: 30891535 PMCID: PMC6404357 DOI: 10.1016/j.ncrna.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) represent a recent breakthrough regarding gene expression regulation. They are instrumental players known to regulate post-transcriptional expression. miRNAs are short single stranded RNAs that base-pair with target mRNAs in specific regions mainly within their 3' untranslated region. We know now that miRNAs are involved in kidney physiopathology. We outline in this review the recent discoveries made on the roles of miRNAs in cellular and animal models of kidney disease but also in patients suffering from chronic kidney disease, acute kidney injury and so forth. miRNAs are potential innovative biomarkers in nephrology, but before being used in daily clinical routine, their expression in large cohorts will have to be assessed, and an effort will have to be made to standardize measurement methods and to select the most suitable tissues and biofluids. In addition to a putative role as biomarkers, up- or down-regulating miRNAs is a novel therapeutic approach to cure kidney disorders. We discuss in this review recent methods that could be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure such as the cardiovascular system.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13-Sorbonne Paris Cité, 93017 Bobigny Cedex, France
| | - Laurent Metzinger
- HEMATIM EA4666, C.U.R.S, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France
| |
Collapse
|
44
|
Kétszeri M, Kirsch A, Frauscher B, Moschovaki-Filippidou F, Mooslechner AA, Kirsch AH, Schabhuettl C, Aringer I, Artinger K, Pregartner G, Ekart R, Breznik S, Hojs R, Goessler W, Schilcher I, Müller H, Obermayer-Pietsch B, Frank S, Rosenkranz AR, Eller P, Eller K. MicroRNA-142-3p improves vascular relaxation in uremia. Atherosclerosis 2019; 280:28-36. [PMID: 30453118 PMCID: PMC6591123 DOI: 10.1016/j.atherosclerosis.2018.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Chronic kidney disease (CKD) is strongly associated with a high burden of cardiovascular morbidity and mortality. Therefore, we aimed to characterize the putative role of microRNAs (miR)s in uremic vascular remodelling and endothelial dysfunction. METHODS We investigated the expression pattern of miRs in two independent end-stage renal disease (ESRD) cohorts and in the animal model of uremic DBA/2 mice via quantitative RT-PCR. Moreover, DBA/2 mice were treated with intravenous injections of synthetic miR-142-3p mimic and were analysed for functional and morphological vascular changes by mass spectrometry and wire myography. RESULTS The expression pattern of miRs was regulated in ESRD patients and was reversible after kidney transplantation. Out of tested miRs, only blood miR-142-3p was negatively associated with carotid-femoral pulse-wave velocity in CKD 5D patients. We validated these findings in a murine uremic model and found similar suppression of miR-142-3p as well as decreased acetylcholine-mediated vascular relaxation of the aorta. Therefore, we designed experiments to restore bioavailability of aortic miR-142-3p in vivo via intravenous injection of synthetic miR-142-3p mimic. This intervention restored acetylcholine-mediated vascular relaxation. CONCLUSIONS Taken together, we provide compelling evidence, both in humans and in mice, that miR-142-3p constitutes a potential pharmacological agent to prevent endothelial dysfunction and increased arterial stiffness in ESRD.
Collapse
Affiliation(s)
- Máté Kétszeri
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Andrijana Kirsch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria; Department of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Austria
| | - Bianca Frauscher
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | | | - Agnes A Mooslechner
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Corinna Schabhuettl
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Ida Aringer
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Katharina Artinger
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Clinical Centre Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Silva Breznik
- Department of Radiology, University Clinical Centre Maribor, Slovenia
| | - Radovan Hojs
- Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Nephrology, Clinic for Internal Medicine, University Clinical Center Maribor, Slovenia
| | - Walter Goessler
- Institute of Chemistry Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Irene Schilcher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Helmut Müller
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Alexander R Rosenkranz
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Austria.
| | - Kathrin Eller
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| |
Collapse
|
45
|
Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediators Inflamm 2018; 2018:2931049. [PMID: 30647531 PMCID: PMC6311799 DOI: 10.1155/2018/2931049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/19/2023] Open
Abstract
The growing incidence of obesity, hypertension, and diabetes, coupled with the aging of the population, is increasing the prevalence of renal diseases in our society. Chronic kidney disease (CKD) is characterized by persistent inflammation, fibrosis, and loss of renal function leading to end-stage renal disease. Nowadays, CKD treatment has limited effectiveness underscoring the importance of the development of innovative therapeutic options. Recent studies have identified how epigenetic modifications participate in the susceptibility to CKD and have explained how the environment interacts with the renal cell epigenome to contribute to renal damage. Epigenetic mechanisms regulate critical processes involved in gene regulation and downstream cellular responses. The most relevant epigenetic modifications that play a critical role in renal damage include DNA methylation, histone modifications, and changes in miRNA levels. Importantly, these epigenetic modifications are reversible and, therefore, a source of potential therapeutic targets. Here, we will explain how epigenetic mechanisms may regulate essential processes involved in renal pathology and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
|
46
|
Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers 2018; 23:713-724. [PMID: 29909697 DOI: 10.1080/1354750x.2018.1488275] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022]
Abstract
The prognostic, diagnostic and therapeutic value of microRNA (miRNA) expression aberrations in renal fibrosis has been studied in recent years. However, the miRNA expression profiling efforts have led to inconsistent results between the studies. The aim of this study was to perform a meta-analysis on the renal fibrosis miRNA expression profiling studies to identify candidate diagnostic biomarkers. We performed comprehensive literature searches in several databases to identify miRNA expression studies of renal fibrosis in animal models and humans. The miRNAs expression data were extracted from 20 included studies, and both miRNA vote-counting strategy and Robust Rank Aggregation method were utilized to identify significant miRNA meta-signatures. The predicted and validated targets of miRNA meta-signature were obtained by using MultiMiR package in 11 databases. Then a gene set enrichment analysis (KEGG, PANTHER pathways and GO processes) were carried out with GeneCodis web tool to recognize pathways that are most strongly influenced by modified expressions of these miRNAs. We recognized in both meta-analysis approaches a significant miRNA meta-signature of five up-regulated (miR-142-3p, miR-223-3p, miR-21-5p, miR-142-5p and miR-214-3p) and two down-regulated (miR-29c-3p and miR-200a-3p) miRNAs. Enrichment analysis confirmed that miRNA meta-signature cooperatively target functionally related genes in signalling and developmental pathways in renal fibrosis. This meta-analysis identified seven highly significant and consistently dysregulated miRNAs from 20 datasets, as the focus of future investigations to discover their potential influence to renal fibrosis and their clinical utility as biomarkers and/or as therapeutic mediators against chronic kidney disease..
Collapse
Affiliation(s)
- Alieh Gholaminejad
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Hossein Abdul Tehrani
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | | |
Collapse
|
47
|
Wu X, Yang J, Yu L, Long D. Plasma miRNA-223 correlates with risk, inflammatory markers as well as prognosis in sepsis patients. Medicine (Baltimore) 2018; 97:e11352. [PMID: 29979415 PMCID: PMC6076081 DOI: 10.1097/md.0000000000011352] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose was to evaluate the role of plasma microRNA-223 (miRNA-223) in risk and prognosis in sepsis patients, and its correlation with inflammatory markers.In this study, 187 sepsis patients from July 2015 to December 2016 were consecutively enrolled. Blood samples from septic patients and healthy controls (HCs) were collected, and plasma was separated for miRNA-223 expression detected by quantitative real-time PCR (qPCR). Enzyme-linked immune sorbent assay (ELISA) was performed to detect inflammatory markers.The results were as follows: miRNA-223 was highly expressed in sepsis patients compared to HCs (P < .001). Receiver operating characteristic (ROC) curve revealed miRNA-223 disclosed a good diagnostic value of sepsis with area under curve (AUC) of 0.754, 95% CI: 0.706-0.803. Sensitivity and specificity were 56.6% and 86.6% at the best cut-off point, respectively. Multivariate logistic analysis indicated that miRNA-223 could predict sepsis risk independently. Spearman's correlation disclosed that miRNA-223 relatively expression positively correlated with APCHE II score (r = 0.459, P < 0.001), CRP (r = 0.326, P < 0.001), TNFα (r = 0.325, P < 0.001), IL-1β (r = 0.165, P = 0.024), IL-6 (r = 0.229, P = 0.002) and IL-8 (r = 0.154, P = 0.035), while it was negatively correlated with IL-10 (r = -0.289, P < 0.001). miRNA-223 expression in non-survivor was higher than that in survivor (P < 0.001). ROC curve revealed miRNA-223 could distinguish sepsis non-survivor form survivor with AUC of 0.600, 95% CI: 0.505-0.695. Sensitivity and specificity were 83.5% and 38.9% respectively at the best cut-off point.In conclusion, plasma miRNA-223 correlates with disease severity and inflammatory markers levels, and it might serve as a novel diagnostic and prognostic biomarker in sepsis patients.
Collapse
|
48
|
Zhang C, Zhang K, Huang F, Feng W, Chen J, Zhang H, Wang J, Luo P, Huang H. Exosomes, the message transporters in vascular calcification. J Cell Mol Med 2018; 22:4024-4033. [PMID: 29892998 PMCID: PMC6111818 DOI: 10.1111/jcmm.13692] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification (VC) is caused by hydroxyapatite deposition in the intimal and medial layers of the vascular wall, leading to severe cardiovascular events in patients with hypertension, chronic kidney disease and diabetes mellitus. VC occurrences involve complicated mechanism networks, such as matrix vesicles or exosomes production, osteogenic differentiation, reduced cell viability, aging and so on. However, with present therapeutic methods targeting at VC ineffectively, novel targets for VC treatment are demanded. Exosomes are proven to participate in VC and function as initializers for mineral deposition. Secreted exosomes loaded with microRNAs are also demonstrated to modulate VC procession in recipient vascular smooth muscle cells. In this review, we targeted at the roles of exosomes during VC, especially at their effects on transporting biological information among cells. Moreover, we will discuss the potential mechanisms of exosomes in VC.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Jie Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanji Zhang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| |
Collapse
|
49
|
Huang G, Xue J, Sun X, Wang J, Yu LL. Necroptosis in 3-chloro-1, 2-propanediol (3-MCPD)-dipalmitate-induced acute kidney injury in vivo and its repression by miR-223-3p. Toxicology 2018; 406-407:33-43. [PMID: 29860048 DOI: 10.1016/j.tox.2018.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD) are a group of processing-induced food contaminants with nephrotoxicity. This study investigated whether and how necroptosis played a role in the nephrotoxic effect of 3-MCPD-dipalmitate (2.5 g/kg BW) in C57 BL/6 mice. The results showed that the principal components in necroptosis pathway including receptor-interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) were up-regulated in 3-MCPD-dipalmitate-induced acute kidney injury (AKI). Deletion of RIPK3 or MLKL, and inhibition of RIPK1 suppressed AKI. The up-regulation of inflammatory cytokines in the kidney of 3-MCPD-dipalmitate treated mice were attenuated in RIPK3- or MLKL- deficient mice, suggesting a positive feedback loop involving necroptosis and inflammation. The microRNA analysis revealed that 38 known miRNAs and 40 novel miRNAs were differentially expressed (DE) in the kidney treated with 3-MCPD-dipalmitate. Of these miRNAs, miR-223-3p was significantly up-regulated during 3-MCPD-dipalmitate-induced AKI. In cultured mouse proximal tubular cells, a miR-223-3p mimic suppressed RIPK3 expression, which was blocked by miR-223-3p inhibitor. The luciferase reporter assay confirmed that miR-223-3p was able to inhibit RIPK3 expression by targeting the 3' un-translated region of RIPK3. These results suggest that necroptosis contributes to 3-MCPD-dipalmitate-induced acute kidney injury, and that may be attenuated by miR-223-3p.
Collapse
Affiliation(s)
- Guoren Huang
- Institute of Food and Nutraceutical Science, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinli Xue
- Institute of Food and Nutraceutical Science, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, 0112 Skinner Building, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Keating BJ, Pereira AC, Snyder M, Piening BD. Applying genomics in heart transplantation. Transpl Int 2018; 31:278-290. [PMID: 29363220 PMCID: PMC5990370 DOI: 10.1111/tri.13119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
While advances in patient care and immunosuppressive pharmacotherapies have increased the lifespan of heart allograft recipients, there are still significant comorbidities post-transplantation and 5-year survival rates are still significant, at approximately 70%. The last decade has seen massive strides in genomics and other omics fields, including transcriptomics, with many of these advances now starting to impact heart transplant clinical care. This review summarizes a number of the key advances in genomics which are relevant for heart transplant outcomes, and we highlight the translational potential that such knowledge may bring to patient care within the next decade.
Collapse
Affiliation(s)
- Brendan J. Keating
- Division of Transplantation, Department of Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|