1
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
2
|
Yin H, Staples SCR, Pickering JG. The fundamentals of fibroblast growth factor 9. Differentiation 2024; 139:100731. [PMID: 37783652 DOI: 10.1016/j.diff.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Biochemistry, Western University, London, Canada; Department of Medicine, Western University, London, Canada; London Health Sciences Centre, London, Canada.
| |
Collapse
|
3
|
Song C, Liu Y, Tao X, Cheng K, Cai W, Zhou D, Zhou Y, Wang L, Shi H, Hao Q, Liu Z. Immunomodulation Pathogenesis and Treatment of Bone Nonunion. Orthop Surg 2024; 16:1770-1782. [PMID: 38946017 PMCID: PMC11293939 DOI: 10.1111/os.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Fractures and bone nonunion commonly require surgical intervention. Serious outcomes of non-healing in the late stages of fracture place a significant financial burden on society and families. Bone nonunion occurs when a fracture stops healing, for many reasons, and leads to a variety of bad outcomes. Numerous factors, including biomechanics and immunology, are involved in the complicated mechanisms of bone nonunion. The immune-inflammatory response plays a significant part in the emergence of bone nonunion, and the occurrence, control, and remission of inflammation in the bone healing process have a significant influence on the ultimate success of bone tissue repair. In the bone microenvironment, immune cells and associated cytokines control bone repair, which is significantly influenced by macrophages, T cells, and fibroblast growth factor. To limit acute inflammation and balance osteogenesis and osteoblastogenesis for tissue repair and regeneration, immune cells and various cytokines in the local microenvironment must be precisely regulated. As a bad complication of late-stage fractures, bone nonunion has a significant effect on patients' quality of life and socioeconomic development. Therefore, in-depth research on its pathogenesis and treatment methods has important clinical value. To provide more precise, focused therapeutic options for the treatment of bone nonunion, we discuss the regulatory roles of the key immune cells engaged in bone healing within the microenvironment during bone healing and their effect on osteogenesis.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yong Liu
- Department of Bone and Joint Sports MedicineXingguo People's Hospital, Gannan Medical CollegeXingguoChina
| | - Xingxing Tao
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yang Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Liquan Wang
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Qi Hao
- Orthopedic Surgery, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhou Longmatan District People's HospitalLuzhouChina
| |
Collapse
|
4
|
Dlugosova S, Spoutil F, Madureira Trufen CE, Melike Ogan B, Prochazkova M, Fedosieieva O, Nickl P, Aranaz Novaliches G, Sedlacek R, Prochazka J. Skeletal dysmorphology and mineralization defects in Fgf20 KO mice. Front Endocrinol (Lausanne) 2024; 15:1286365. [PMID: 39129916 PMCID: PMC11310068 DOI: 10.3389/fendo.2024.1286365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. Methods The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. Results The bone phenotype could be detected especially in the area of the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. Discussion Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.
Collapse
Affiliation(s)
- Sylvie Dlugosova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | | | - Betul Melike Ogan
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Michaela Prochazkova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Olha Fedosieieva
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Nickl
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Goretti Aranaz Novaliches
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
5
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Chen M, Liang H, Wu M, Ge H, Ma Y, Shen Y, Lu S, Shen C, Zhang H, Wang Z, Tang L. Fgf9 regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis by PI3K/AKT/Hippo and MEK/ERK signaling. Int J Biol Sci 2024; 20:3461-3479. [PMID: 38993574 PMCID: PMC11234224 DOI: 10.7150/ijbs.94863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024] Open
Abstract
Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mingmei Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Ma
- Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
7
|
Li W, Zheng J, Xu Y, Niu W, Guo D, Cui J, Bian W, Wang X, Niu J. Remodeling of the periodontal ligament and alveolar bone during axial tooth movement in mice with type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1098702. [PMID: 36755916 PMCID: PMC9900130 DOI: 10.3389/fendo.2023.1098702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES To observe the elongation of the axial tooth movement in the unopposed rodent molar model with type 1 diabetes mellitus and explore the pathological changes of periodontal ligament and alveolar bone, and their correlation with tooth axial movement. METHODS The 80 C57BL/6J mice were randomly divided into the streptozotocin(STZ)-injected group (n = 50) and the control group (n = 30). Mice in the streptozotocin(STZ)-injected group were injected intraperitoneal with streptozotocin (STZ), and mice in the control group were given intraperitoneal injection of equal doses of sodium citrate buffer. Thirty mice were randomly selected from the successful models as the T1DM group. The right maxillary molar teeth of mice were extracted under anesthesia, and allowed mandibular molars to super-erupt. Mice were sacrificed at 0, 3, 6,9, and 12 days. Tooth elongation and bone mineral density (BMD) were evaluated by micro-CT analysis(0,and 12 days mice). Conventional HE staining, Masson staining and TRAP staining were used to observe the changes in periodontal tissue(0, 3, 6, 9, and 12 days mice). The expression differences of SPARC, FGF9, BMP4, NOGGIN, and type I collagen were analyzed by RT-qPCR. RESULTS After 12 days of tooth extraction, our data showed significant super-eruption of mandibular mouse molars of the two groups. The amount of molar super-eruption in the T1DM group was 0.055mm( ± 0.014mm), and in the control group was 0.157( ± 0.017mm). The elongation of the T1DM mice was less than that of the control mice(P<0.001). It was observed that the osteoclasts and BMD increased gradually in both groups over time. Compared with the control group, the collagen arrangement was more disordered, the number of osteoclasts was higher (P<0.05), and the increase of bone mineral density was lower(2.180 ± 0.007g/cm3 vs. 2.204 ± 0.006g/cm3, P<0.001) in the T1DM group. The relative expression of SPARC, FGF9, BMP4, and type I collagen in the two groups increased with the extension of tooth extraction time while NOGGIN decreased. The relative expression of all of SPARC, FGF9, BMP4, and type I collagen in the T1DM group were significantly lower, and the expression of NOGGIN was higher than that in the control group (P<0.05). CONCLUSION The axial tooth movement was inhibited in type 1 diabetic mice. The result may be associated with the changes of periodontal ligament osteoclastogenic effects and alveolar bone remodeling regulated by the extracellular matrix and osteogenesis-related factors.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Stomatology, 2nd Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zheng
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yao Xu
- Stomatological Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiran Niu
- Department of Mental Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Guo
- Stomatological Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianing Cui
- Medical Imaging Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenjin Bian
- Medical Imaging Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohui Wang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinliang Niu
- Department of Radiology, 2nd Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- *Correspondence: Jinliang Niu,
| |
Collapse
|
8
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
9
|
Chen K, Rao Z, Dong S, Chen Y, Wang X, Luo Y, Gong F, Li X. Roles of the fibroblast growth factor signal transduction system in tissue injury repair. BURNS & TRAUMA 2022; 10:tkac005. [PMID: 35350443 PMCID: PMC8946634 DOI: 10.1093/burnst/tkac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Following injury, tissue autonomously initiates a complex repair process, resulting in either partial recovery or regeneration of tissue architecture and function in most organisms. Both the repair and regeneration processes are highly coordinated by a hierarchy of interplay among signal transduction pathways initiated by different growth factors, cytokines and other signaling molecules under normal conditions. However, under chronic traumatic or pathological conditions, the reparative or regenerative process of most tissues in different organs can lose control to different extents, leading to random, incomplete or even flawed cell and tissue reconstitution and thus often partial restoration of the original structure and function, accompanied by the development of fibrosis, scarring or even pathogenesis that could cause organ failure and death of the organism. Ample evidence suggests that the various combinatorial fibroblast growth factor (FGF) and receptor signal transduction systems play prominent roles in injury repair and the remodeling of adult tissues in addition to embryonic development and regulation of metabolic homeostasis. In this review, we attempt to provide a brief update on our current understanding of the roles, the underlying mechanisms and clinical application of FGFs in tissue injury repair.
Collapse
Affiliation(s)
| | | | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of breast surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongde Luo
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| | - Fanghua Gong
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| | - Xiaokun Li
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| |
Collapse
|
10
|
Dobson SM, Kiss C, Borschneck D, Heath KE, Gross A, Glucksman MJ, Guerin A. Novel
FGF9
variant contributes to multiple synostoses syndrome 3. Am J Med Genet A 2022; 188:2162-2167. [DOI: 10.1002/ajmg.a.62729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Courtney Kiss
- Division of Medical Genetics, Department of Pediatrics Queen’s University Kingston Ontario Canada
| | | | - Karen E. Heath
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ Universidad de Madrid Madrid Spain
- Skeletal dysplasia multidisciplinary Unit and ERN‐BOND Hospital Universitario La Paz Madrid Spain
- CIBERER, ISCIII Madrid Spain
| | - Adrian Gross
- Center for Proteomics and Molecular Therapeutics, Department of Biochemistry and Molecular Biology, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois USA
| | | | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics Queen’s University Kingston Ontario Canada
| |
Collapse
|
11
|
Gu B, Sun R, Fang X, Zhang J, Zhao Z, Huang D, Zhao Y, Zhao Y. Genome-Wide Association Study of Body Conformation Traits by Whole Genome Sequencing in Dazu Black Goats. Animals (Basel) 2022; 12:ani12050548. [PMID: 35268118 PMCID: PMC8908837 DOI: 10.3390/ani12050548] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Body conformation traits are economically important in the goat meat industry. Good growth performance in goats, including an accelerated growth rate, can improve carcass weight and meat yield. The identification of genetic variants associated with these traits provides a basis for the genetic improvement of growth performance. In this study, we measured six body conformation traits, including body height, body length, cannon circumference, chest depth, chest width, and heart girth. By a genome-wide association study of a Chinese meat goat breed, 53 significant single nucleotide polymorphisms and 42 candidate genes associated with these traits were detected. These findings improve our understanding of the genetic basis of body conformation traits in goats. Abstract Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats.
Collapse
Affiliation(s)
- Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
| | - Deli Huang
- Tengda Animal Husbandry Co., Ltd., Chongqing 402360, China;
| | - Yuanping Zhao
- Dazu County Agriculture and Rural Committee, Chongqing 402360, China;
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.G.); (R.S.); (X.F.); (J.Z.); (Z.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
12
|
Lai AN, Zhou R, Chen B, Guo L, Dai YY, Jia YP. MiR-149-3p can improve the osteogenic differentiation of human adipose-derived stem cells via targeting AKT1. Kaohsiung J Med Sci 2021; 37:1077-1088. [PMID: 34382740 DOI: 10.1002/kjm2.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
The study aims to investigate the role of microRNA-149-3p (miR-149-3p) in regulating osteogenic differentiation of human adipose-derived stem cells (hADSCs) by targeting v-akt murine thymoma viral oncogene homolog 1 (AKT1). Bioinformatics websites and a dual luciferase reporter assay were used to predict and verify the targeting relationship between miR-149-3p and AKT1. The hADSCs were divided into the blank, negative control (NC), mimic, control siRNA, AKT1 siRNA, and miR-149-3p inhibitors + AKT1 siRNA groups and then subjected to Alizarin Red staining, Alkaline phosphatase (ALP) staining, ALP activity detections, MTT assay, and EdU cell proliferation assay. Gene or protein expression was quantified using quantitative real-time PCR (qRT-PCR) or Western blotting, respectively. The miR-149-3p expression increased gradually and AKT1 expression decreased gradually during osteogenic differentiation of hADSCs. The prediction of bioinformatics websites miRTarBase and TargetScan and the dual luciferase reporter assay indicated that miR-149-3p can directly target AKT1. After hADSCs were transfected with miR-149-3p mimic, AKT1 expression was significantly downregulated. However, transfection with AKT1 siRNA did not have an impact on miR-149-3p in hADSCs. In comparison with the AKT1 siRNA group, the miR-149-3p inhibitors + AKT1 siRNA group showed decreased miR-149-3p expression but increased AKT1 expression. In addition, AKT1 siRNA enhanced the cell viability and proliferation of hADSCs and increased mineral calcium deposition and ALP activity, resulting in higher expression of osteogenic differentiation-related genes, which was reversed by miR-149-3p inhibition. The miR-149-3p can increase the expression of osteogenic differentiation-related genes by targeting AKT1 and thereby enhance the osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Ai-Ning Lai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Rong Zhou
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Bin Chen
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Long Guo
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yu-Ya Dai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yong-Peng Jia
- Section V, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| |
Collapse
|
13
|
Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 2021; 12:2444. [PMID: 33953184 PMCID: PMC8100170 DOI: 10.1038/s41467-021-22517-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - John P Kemp
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claudio M Sergio
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan C Chai
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Alexander P Corr
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - James T Smith
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - Sindhu T Mohanty
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Faculty of Arts and Science, Department of Biology, New York University, New York, NY, USA
| | - Michelle M McDonald
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Amelia R McGlade
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, NSW, Australia
| | - Matt Jansson
- Viapath Genetics Laboratory, Viapath Analytics LLP, Guy's Hospital, London, UK
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melita D Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | - Emma Duncan
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - J Brent Richards
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Faculty of Medicine, McGill University, Quebec, Canada
| | | | | | - Robert Brink
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tri Giang Phan
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Fremantle, Australia
| | - David M Evans
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Paul A Baldock
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Peter I Croucher
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia.
| |
Collapse
|
14
|
Tang L, Wu M, Lu S, Zhang H, Shen Y, Shen C, Liang H, Ge H, Ding X, Wang Z. Fgf9 Negatively Regulates Bone Mass by Inhibiting Osteogenesis and Promoting Osteoclastogenesis Via MAPK and PI3K/AKT Signaling. J Bone Miner Res 2021; 36:779-791. [PMID: 33316109 DOI: 10.1002/jbmr.4230] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 01/16/2023]
Abstract
Fibroblast growth factor 9 (Fgf9) is a well-known factor that regulates bone development; however, its function in bone homeostasis is still unknown. Previously, we identified a point mutation in the FGF9 gene (p.Ser99Asn, S99N) and generated an isogeneic knock-in mouse model, which revealed that this loss-of-function mutation impaired early joint formation and was responsible for human multiple synostosis syndrome 3 (SYNS3). Moreover, newborn and adult S99N mutant mice exhibited significantly increased bone mass, suggesting that Fgf9 also participated in bone homeostasis. Histomorphology, tomography, and serological analysis of homozygous newborns and heterozygous adults showed that the Fgf9S99N mutation immensely increased bone mass and bone formation in perinatal and adult bones and decreased osteoclastogenesis in adult bone. An in vitro differentiation assay further revealed that the S99N mutation enhanced bone formation by promoting osteogenesis and mineralization of bone marrow mesenchymal stem cells (BMSCs) and attenuating osteoclastogenesis of bone marrow monocytes (BMMs). Considering the loss-of-function effect of the S99N mutation, we hypothesized that Fgf9 itself inhibits osteogenesis and promotes osteoclastogenesis. An in vitro differentiation assay revealed that Fgf9 prominently inhibited BMSC osteogenic differentiation and mineralization and showed for the first time that Fgf9 promoted osteoclastogenesis by enhancing preosteoclast aggregation and cell-cell fusion. Furthermore, specific inhibitors and in vitro differentiation assays were used and showed that Fgf9 inhibited BMSC osteogenesis mainly via the MEK/ERK pathway and partially via the PI3K/AKT pathway. Fgf9 also promoted osteoclastogenesis as a potential costimulatory factor with macrophage colony-stimating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by coactivating the MAPK and PI3K/AKT signaling pathways. Taken together, our study demonstrated that Fgf9 is a negative regulator of bone homeostasis by regulating osteogenesis and osteoclastogenesis and provides a potential therapeutic target for bone degenerative diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Min Wu
- Shanghai Institute of Hematology, Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoyi Ding
- Department of Radiology, Rui-Jin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
15
|
Zhong J, Tu X, Kong Y, Guo L, Li B, Zhong W, Cheng Y, Jiang Y, Jiang Q. LncRNA H19 promotes odontoblastic differentiation of human dental pulp stem cells by regulating miR-140-5p and BMP-2/FGF9. Stem Cell Res Ther 2020; 11:202. [PMID: 32460893 PMCID: PMC7251819 DOI: 10.1186/s13287-020-01698-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increasing evidence has revealed that long non-coding RNAs (lncRNAs) exert critical roles in biological mineralization. As a critical process for dentin formation, odontoblastic differentiation is regulated by complex signaling networks. The present study aimed to investigate the biological role and regulatory mechanisms of lncRNA-H19 (H19) in regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). METHODS We performed lncRNA microarray assay to reveal the expression patterns of lncRNAs involved in odontoblastic differentiation. H19 was identified and verified as a critical factor by qRT-PCR. The gain- and loss-of-function studies were performed to investigate the biological role of H19 in regulating odontoblastic differentiation of hDPSCs in vitro and in vivo. Odontoblastic differentiation was evaluated through qRT-PCR, Western blot, and Alizarin Red S staining. Bioinformatics analysis identified that H19 could directly interact with miR-140-5p, which was further verified by luciferase reporter assay. After overexpression of miR-140-5p in hDPSCs, odontoblastic differentiation was determined. Moreover, the potential target genes of miR-140-5p were investigated and the biological functions of BMP-2 and FGF9 in hDPSCs were verified. Co-transfection experiments were conducted to validate miR-140-5p was involved in H19-mediated odontoblastic differentiation in hDPSCs. RESULTS The expression of H19 was significantly upregulated in hDPSCs undergoing odontoblastic differentiation. Overexpression of H19 stimulated odontoblastic differentiation in vitro and in vivo, whereas downregulation of H19 revealed the opposite effect. H19 binds directly to miR-140-5p and overexpression of miR-140-5p inhibited odontoblastic differentiation of hDPSCs. H19 acted as a miR-140-5p sponge, resulting in regulated the expression of BMP-2 and FGF9. Overexpression of H19 abrogated the inhibitory effect of miR-140-5p on odontoblastic differentiation. CONCLUSION Our data revealed that H19 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through miR-140-5p/BMP-2/FGF9 axis, suggesting that H19 may be a stimulatory regulator of odontogenesis.
Collapse
Affiliation(s)
- Jialin Zhong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| | - Xinran Tu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| | - Yuanyuan Kong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| | - Liyang Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| | - Baishun Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| | - Wenchao Zhong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| | - Ying Cheng
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Qianzhou Jiang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510000 People’s Republic of China
| |
Collapse
|
16
|
Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones. Histochem Cell Biol 2020; 153:215-223. [PMID: 32002646 DOI: 10.1007/s00418-020-01844-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 10/24/2022]
Abstract
Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9-/- mice exhibit disproportionate shortening of proximal skeletal elements. Fgf9 missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in Fgf9 have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in Fgf9Eks/Eks embryos. Increased and expanded FGF signaling in concert with wider expression domain of Fgf receptor 3 (Fgfr3) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal Fgf9Eks/Eks mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in Fgf9Eks/Eks embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.
Collapse
|
17
|
Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 2019; 18:3562-3580. [PMID: 31735119 PMCID: PMC6927711 DOI: 10.1080/15384101.2019.1691796] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and vice versa. Recently, enhanced FGF9 production was observed in the OmGFP66 osteogenic cell line. To test its role in myogenic differentiation, C2C12 myoblasts were treated with recombinant FGF9. FGF9 as low as 10 ng/mL inhibited myogenic differentiation, suggesting that FGF9 might be a potential inhibitory factor produced from bone cells with effects on muscle cells. FGF9 (10–50 ng/mL) significantly decreased mRNA expression of MyoG and Mhc while increasing the expression of Myostatin. Consistent with the phenotype, RT-qPCR array revealed that FGF9 (10 ng/mL) increased the expression of Icam1 while decreased the expression of Wnt1 and Wnt6 decreased, respectively. FGF9 decreased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and reduced the expression of genes (i.e. Cacna1s, RyR2, Naftc3) directly associated with intracellular Ca2+ homeostasis. Myogenic differentiation in human skeletal muscle cells was similarly inhibited by FGF9 but required higher doses of 200 ng/mL FGF9. FGF9 was also shown to stimulate C2C12 myoblast proliferation. FGF2 and the FGF9 subfamily members FGF16 and FGF20 also inhibited C2C12 myoblast differentiation and enhanced proliferation. Intriguingly, the differentiation inhibition was independent of proliferation enhancement. These findings suggest that FGF9 may modulate myogenesis via a complex signaling mechanism.
Collapse
Affiliation(s)
- Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN USA
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
18
|
McKenzie J, Smith C, Karuppaiah K, Langberg J, Silva MJ, Ornitz DM. Osteocyte Death and Bone Overgrowth in Mice Lacking Fibroblast Growth Factor Receptors 1 and 2 in Mature Osteoblasts and Osteocytes. J Bone Miner Res 2019; 34:1660-1675. [PMID: 31206783 PMCID: PMC6744314 DOI: 10.1002/jbmr.3742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
Fibroblast growth factor (FGF) signaling pathways have well-established roles in skeletal development, with essential functions in both chondrogenesis and osteogenesis. In mice, previous conditional knockout studies suggested distinct roles for FGF receptor 1 (FGFR1) signaling at different stages of osteogenesis and a role for FGFR2 in osteoblast maturation. However, the potential for redundancy among FGFRs and the mechanisms and consequences of stage-specific osteoblast lineage regulation were not addressed. Here, we conditionally inactivate Fgfr1 and Fgfr2 in mature osteoblasts with an Osteocalcin (OC)-Cre or Dentin matrix protein 1 (Dmp1)-CreER driver. We find that young mice lacking both receptors or only FGFR1 are phenotypically normal. However, between 6 and 12 weeks of age, OC-Cre Fgfr1/Fgfr2 double- and Fgfr1 single-conditional knockout mice develop a high bone mass phenotype with increased periosteal apposition, increased and disorganized endocortical bone with increased porosity, and biomechanical properties that reflect increased bone mass but impaired material properties. Histopathological and gene expression analyses show that this phenotype is preceded by a striking loss of osteocytes and accompanied by activation of the Wnt/β-catenin signaling pathway. These data identify a role for FGFR1 signaling in mature osteoblasts/osteocytes that is directly or indirectly required for osteocyte survival and regulation of bone mass during postnatal bone growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer McKenzie
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kannan Karuppaiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua Langberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Ornitz
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|