1
|
Kaplan FS, Pignolo RJ. FOP: From Biomolecules to Hope. Biomolecules 2025; 15:328. [PMID: 40149864 PMCID: PMC11940774 DOI: 10.3390/biom15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/29/2025] Open
Abstract
In the introduction to his 1970 textbook BIOCHEMISTRY, Albert Lehninger wrote "Living things are composed of lifeless molecules [...].
Collapse
Affiliation(s)
- Frederick S. Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J. Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
2
|
Kaplan FS, Shore EM, Pignolo RJ. Fibrodysplasia ossificans progressiva emerges from obscurity. Trends Mol Med 2025; 31:106-116. [PMID: 39299836 DOI: 10.1016/j.molmed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Fibrodysplasia ossificans progressiva (FOP), a disorder of congenital skeletal malformations and progressive extraskeletal ossification, is the most severe form of heterotopic ossification (HO) in humans. Gain-of-function pathogenic variants in activin A receptor type I (ACVR1), a bone morphogenetic protein (BMP) type 1 receptor, cause FOP by dramatically altering the normal physiologic functions of ACVR1, impacting BMP signaling and other interacting pathways. These alterations affect various systems, including inflammation, innate immunity, hypoxia sensing, wound healing, aging, temperature and mechanical thresholds, pain sensitivity, skeletal growth, diarthrodial joint patterning, joint function and fate, and HO. This article examines the emergent properties of FOP's diverse phenotypes, proposes a schema for targeting these phenotypes, and highlights outstanding questions and knowledge gaps.
Collapse
Affiliation(s)
- Frederick S Kaplan
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Eileen M Shore
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Li JX, Dang YM, Liu MC, Gao LQ, Lin H. Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets. Int J Biol Sci 2025; 21:544-564. [PMID: 39781450 PMCID: PMC11705629 DOI: 10.7150/ijbs.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO. In this review, we systematically summarize the diverse phenotypic and functional plasticity of fibroblasts in HO. Furthermore, we evaluate the possible interaction between fibroblasts and macrophages in pathophysiological processes and signaling pathways. Finally, we highlight the potential strategies for preventing and treating HO by targeting fibroblast activities.
Collapse
Affiliation(s)
- Jia-xin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meng-chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin-qing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
4
|
Gençel D, Erbil NN, Demiryürek Ş, Demiryürek AT. Current and emerging treatment modalities for fibrodysplasia ossificans progressiva. Expert Opin Pharmacother 2024; 25:2225-2234. [PMID: 39451784 DOI: 10.1080/14656566.2024.2422548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Heterotopic ossification (HO), acquired or hereditary, is a diverse pathological condition defined by the production of extraskeletal bone in muscles, soft tissues, and connective tissues. Acquired HO is relatively prevalent and develops mostly in response to trauma, although its etiology is unknown. Genetic forms provide insight into the pathobiological mechanisms of this disorder. Fibrodysplasia ossificans progressiva (FOP) is a rare hereditary form of HO that can have a significant impact on affected individuals. FOP steadily weakens affected subjects and increases their risk of death. AREAS COVERED The U.S. Food and Drug Administration has recently approved the retinoid palovarotene as the first compound to treat heterotopic ossification in patients with FOP. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. The online databases PubMed, Cochrane Library, Web of Science, and ClinicalTrials.gov were searched using the terms 'heterotopic ossification' and 'fibrodysplasia ossificans progressiva' or synonyms, with a special focus over the last 5 years of publications. EXPERT OPINION Approval of palovarotene, as the first retinoid indicated for reduction in the volume of new HO, may revolutionize the therapeutic landscape. However, long-term safety and efficacy data for palovarotene are currently lacking.
Collapse
Affiliation(s)
- Dilan Gençel
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Nejla Nur Erbil
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Şeniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
5
|
Yang S, Cui R, Li J, Dai R. Challenges in the diagnosis of fibrodysplasia ossificans progressiva with the ACVR1 mutation (c.774G > C, p.R258S): a case report and review of literature. Orphanet J Rare Dis 2024; 19:360. [PMID: 39350127 PMCID: PMC11443894 DOI: 10.1186/s13023-024-03363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The diagnosis of fibrodysplasia ossificans progressiva is missed or delayed because of its insidious precursors, especially in uncharacteristic cases. Fibrodysplasia ossificans progressiva, which mostly displayed the mutation c.617G > A, p.R206H, is characterized by congenital malformation of the great toe and progressive extra-skeletal ossification of ligaments, tendons and muscles. The mutation c.774G > C, p.R258S (HGVS: NC_000002.11:g.158626896 C > G) in activin A receptor type I is an infrequent etiology of fibrodysplasia ossificans progressiva and can present different clinical features. Awareness of these multiple clinical features will help endocrinologists in the early diagnosis of fibrodysplasia ossificans progressiva. We report a case of fibrodysplasia ossificans progressiva with the activin A receptor type I mutation c.774G > C, p.R258S, which was diagnosed before its ossifying period.
Collapse
Affiliation(s)
- Siqi Yang
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Rongrong Cui
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Jialin Li
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ruchun Dai
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Lounev V, Groppe JC, Brewer N, Wentworth KL, Smith V, Xu M, Schomburg L, Bhargava P, Al Mukaddam M, Hsiao EC, Shore EM, Pignolo RJ, Kaplan FS. Matrix metalloproteinase-9 deficiency confers resilience in fibrodysplasia ossificans progressiva in a man and mice. J Bone Miner Res 2024; 39:382-398. [PMID: 38477818 DOI: 10.1093/jbmr/zjae029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Single case studies of extraordinary disease resilience may provide therapeutic insight into conditions for which no definitive treatments exist. An otherwise healthy 35-year-old man (patient-R) with the canonical pathogenic ACVR1R206H variant and the classic congenital great toe malformation of fibrodysplasia ossificans progressiva (FOP) had extreme paucity of post-natal heterotopic ossification (HO) and nearly normal mobility. We hypothesized that patient-R lacked a sufficient post-natal inflammatory trigger for HO. A plasma biomarker survey revealed a reduction in total matrix metalloproteinase-9 (MMP-9) compared to healthy controls and individuals with quiescent FOP. Whole exome sequencing identified compound heterozygous variants in MMP-9 (c.59C > T, p.A20V and c.493G > A, p.D165N). Structural analysis of the D165N variant predicted both decreased MMP-9 secretion and activity that were confirmed by enzyme-linked immunosorbent assay and gelatin zymography. Further, human proinflammatory M1-like macrophages expressing either MMP-9 variant produced significantly less Activin A, an obligate ligand for HO in FOP, compared to wildtype controls. Importantly, MMP-9 inhibition by genetic, biologic, or pharmacologic means in multiple FOP mouse models abrogated trauma-induced HO, sequestered Activin A in the extracellular matrix (ECM), and induced regeneration of injured skeletal muscle. Our data suggest that MMP-9 is a druggable node linking inflammation to HO, orchestrates an existential role in the pathogenesis of FOP, and illustrates that a single patient's clinical phenotype can reveal critical molecular mechanisms of disease that unveil novel treatment strategies.
Collapse
Affiliation(s)
- Vitali Lounev
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A & M University College of Dentistry, Dallas, TX 75246-2013, United States
| | - Niambi Brewer
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA 94143-0794, United States
- Department of Medicine, University of California, San Francisco, CA 94143-0794, United States
| | | | - Meiqi Xu
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charite University Hospital, D-10115 Berlin, Germany
| | | | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Edward C Hsiao
- Department of Medicine, University of California, San Francisco, CA 94143-0794, United States
- Division of Endocrinology and Metabolism, The Institute for Human Genetics, the Program in Craniofacial Biology, University of California, San Francisco, CA 94143-0794, United States
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| |
Collapse
|
7
|
Lin C, Greenblatt MB, Gao G, Shim JH. Development of AAV-Mediated Gene Therapy Approaches to Treat Skeletal Diseases. Hum Gene Ther 2024; 35:317-328. [PMID: 38534217 PMCID: PMC11302315 DOI: 10.1089/hum.2024.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.
Collapse
Affiliation(s)
- Chujiao Lin
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew B. Greenblatt
- Research Division, Hospital for Special Surgery, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Pignolo RJ, Kaplan FS, Wang H. Cell Senescence in Heterotopic Ossification. Biomolecules 2024; 14:485. [PMID: 38672501 PMCID: PMC11047966 DOI: 10.3390/biom14040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The formation of bone outside the normal skeleton, or heterotopic ossification (HO), occurs through genetic and acquired mechanisms. Fibrodysplasia ossificans progressiva (FOP), the most devastating genetic condition of HO, is due to mutations in the ACVR1/ALK2 gene and is relentlessly progressive. Acquired HO is mostly precipitated by injury or orthopedic surgical procedures but can also be associated with certain conditions related to aging. Cellular senescence is a hallmark of aging and thought to be a tumor-suppressive mechanism with characteristic features such as irreversible growth arrest, apoptosis resistance, and an inflammatory senescence-associated secretory phenotype (SASP). Here, we review possible roles for cellular senescence in HO and how targeting senescent cells may provide new therapeutic approaches to both FOP and acquired forms of HO.
Collapse
Affiliation(s)
- Robert J. Pignolo
- Department of Medicine, Section of Geriatric Medicine & Gerontology, Mayo Clinic, Rochester, MN 55905, USA
- Divisions of Endocrinology and Hospital Internal Medicine, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
| | - Frederick S. Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haitao Wang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
10
|
Di Rocco M, Forleo-Neto E, Pignolo RJ, Keen R, Orcel P, Funck-Brentano T, Roux C, Kolta S, Madeo A, Bubbear JS, Tabarkiewicz J, Szczepanek M, Bachiller-Corral J, Cheung AM, Dahir KM, Botman E, Raijmakers PG, Al Mukaddam M, Tile L, Portal-Celhay C, Sarkar N, Hou P, Musser BJ, Boyapati A, Mohammadi K, Mellis SJ, Rankin AJ, Economides AN, Trotter DG, Herman GA, O'Meara SJ, DelGizzi R, Weinreich DM, Yancopoulos GD, Eekhoff EMW, Kaplan FS. Garetosmab in fibrodysplasia ossificans progressiva: a randomized, double-blind, placebo-controlled phase 2 trial. Nat Med 2023; 29:2615-2624. [PMID: 37770652 PMCID: PMC10579054 DOI: 10.1038/s41591-023-02561-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by heterotopic ossification (HO) in connective tissues and painful flare-ups. In the phase 2 LUMINA-1 trial, adult patients with FOP were randomized to garetosmab, an activin A-blocking antibody (n = 20) or placebo (n = 24) in period 1 (28 weeks), followed by an open-label period 2 (28 weeks; n = 43). The primary end points were safety and for period 1, the activity and size of HO lesions. All patients experienced at least one treatment-emergent adverse event during period 1, notably epistaxis, madarosis and skin abscesses. Five deaths (5 of 44; 11.4%) occurred in the open-label period and, while considered unlikely to be related, causality cannot be ruled out. The primary efficacy end point in period 1 (total lesion activity by PET-CT) was not met (P = 0.0741). As the development of new HO lesions was suppressed in period 1, the primary efficacy end point in period 2 was prospectively changed to the number of new HO lesions versus period 1. No placebo patients crossing over to garetosmab developed new HO lesions (0% in period 2 versus 40.9% in period 1; P = 0.0027). Further investigation of garetosmab in FOP is ongoing. ClinicalTrials.gov identifier NCT03188666 .
Collapse
Affiliation(s)
- Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Richard Keen
- Centre for Metabolic Bone Disease Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Philippe Orcel
- Department of Rheumatology - DMU Locomotion, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM Université Paris Cité, Paris, France
| | - Thomas Funck-Brentano
- Department of Rheumatology - DMU Locomotion, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM Université Paris Cité, Paris, France
| | - Christian Roux
- Department of Rheumatology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sami Kolta
- Department of Rheumatology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Annalisa Madeo
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Judith S Bubbear
- Centre for Metabolic Bone Disease Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Jacek Tabarkiewicz
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | - Małgorzata Szczepanek
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | | | - Angela M Cheung
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn M Dahir
- Vanderbilt University Medical Center, Program for Metabolic Bone Disorders, Nashville, TN, USA
| | - Esmée Botman
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Pieter G Raijmakers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mona Al Mukaddam
- Departments of Orthopaedics, Medicine and the Center for Research in FOP & Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lianne Tile
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Peijie Hou
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - E Marelise W Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Frederick S Kaplan
- Departments of Orthopaedics, Medicine and the Center for Research in FOP & Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Yang YS, Lin C, Ma H, Xie J, Kaplan FS, Gao G, Shim JH. AAV-Mediated Targeting of the Activin A-ACVR1 R206H Signaling in Fibrodysplasia Ossificans Progressiva. Biomolecules 2023; 13:1364. [PMID: 37759764 PMCID: PMC10526456 DOI: 10.3390/biom13091364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive disabling heterotopic ossification (HO) at extra-skeletal sites. Here, we developed adeno-associated virus (AAV)-based gene therapy that suppresses trauma-induced HO in FOP mice harboring a heterozygous allele of human ACVR1R206H (Acvr1R206H/+) while limiting the expression in non-skeletal organs such as the brain, heart, lung, liver, and kidney. AAV gene therapy carrying the combination of codon-optimized human ACVR1 (ACVR1opt) and artificial miRNAs targeting Activin A and its receptor ACVR1R206H ablated the aberrant activation of BMP-Smad1/5 signaling and the osteogenic differentiation of Acvr1R206H/+ skeletal progenitors. The local delivery of AAV gene therapy to HO-causing cells in the skeletal muscle resulted in a significant decrease in endochondral bone formation in Acvr1R206H/+ mice. These mice showed little to no expression in a major AAV-targeted organ, the liver, due to liver-abundant miR-122-mediated repression. Thus, AAV gene therapy is a promising therapeutic strategy to explore in suppressing HO in FOP.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (Y.-S.Y.); (C.L.)
| | - Chujiao Lin
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (Y.-S.Y.); (C.L.)
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Frederick S. Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (Y.-S.Y.); (C.L.)
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (H.M.); (J.X.)
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
12
|
Ueharu H, Mishina Y. BMP signaling during craniofacial development: new insights into pathological mechanisms leading to craniofacial anomalies. Front Physiol 2023; 14:1170511. [PMID: 37275223 PMCID: PMC10232782 DOI: 10.3389/fphys.2023.1170511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Cranial neural crest cells (NCCs) are the origin of the anterior part of the face and the head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial NCCs (proliferation, cell death, migration, differentiation, and cell fate specification) are well regulated by several signaling pathways; abnormalities in their behavior are often reported as causative reasons for craniofacial anomalies (CFAs), which occur in 1 in 100 newborns in the United States. Understanding the pathological mechanisms of CFAs would facilitate strategies for identifying, preventing, and treating CFAs. Bone morphogenetic protein (BMP) signaling plays a pleiotropic role in many cellular processes during embryonic development. We and others have reported that abnormalities in BMP signaling in cranial NCCs develop CFAs in mice. Abnormal levels of BMP signaling cause miscorrelation with other signaling pathways such as Wnt signaling and FGF signaling, which mutations in the signaling pathways are known to develop CFAs in mice and humans. Recent Genome-Wide Association Studies and exome sequencing demonstrated that some patients with CFAs presented single nucleotide polymorphisms (SNPs), missense mutations, and duplication of genes related to BMP signaling activities, suggesting that defects in abnormal BMP signaling in human embryos develop CFAs. There are still a few cases of BMP-related patients with CFAs. One speculation is that human embryos with mutations in coding regions of BMP-related genes undergo embryonic lethality before developing the craniofacial region as well as mice development; however, no reports are available that show embryonic lethality caused by BMP mutations in humans. In this review, we will summarize the recent advances in the understanding of BMP signaling during craniofacial development in mice and describe how we can translate the knowledge from the transgenic mice to CFAs in humans.
Collapse
|
13
|
Lalonde RL, Nicolas HA, Cutler RS, Pantekidis I, Zhang W, Yelick PC. Functional comparison of human ACVR1 and zebrafish Acvr1l FOP-associated variants in embryonic zebrafish. Dev Dyn 2023; 252:605-628. [PMID: 36606464 PMCID: PMC10311797 DOI: 10.1002/dvdy.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by progressive heterotopic ossification of muscle and connective tissues, is caused by autosomal dominant activating mutations in the type I receptor, ACVR1/ALK2. The classic human FOP variant, ACVR1R206H , shows increased bone morphogenetic protein (BMP) signaling and activation by activins. RESULTS Here, we performed in vivo functional characterization of human ACVR1R206H and orthologous zebrafish Acvr1lR203H using early embryonic zebrafish dorsoventral patterning as a phenotypic readout for receptor activity. Our results showed that human ACVR1R206H and zebrafish Acvr1lR203H exhibit functional differences in early embryonic zebrafish, and that human ACVR1R206H retained its signaling activity in the absence of a ligand-binding domain (LBD). We also showed, for the first time, that zebrafish Acvr2ba/Acvr2bb receptors are required for human ACVR1R206H signaling in early embryonic zebrafish. CONCLUSIONS Together, these data provide new insight into ACVR1R206H signaling pathways that may facilitate the design of new and effective therapies for FOP patients.
Collapse
Affiliation(s)
- Robert L. Lalonde
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Hannah A. Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Rowan S. Cutler
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Irene Pantekidis
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Weibo Zhang
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Pamela C. Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| |
Collapse
|
14
|
Wentworth KL, Lalonde RL, Groppe JC, Brewer N, Moody T, Hansberry S, Taylor KE, Shore EM, Kaplan FS, Pignolo RJ, Yelick PC, Hsiao EC. Functional Testing of Bone Morphogenetic Protein (BMP) Pathway Variants Identified on Whole-Exome Sequencing in a Patient with Delayed-Onset Fibrodysplasia Ossificans Progressiva (FOP) Using ACVR1 R206H -Specific Human Cellular and Zebrafish Models. J Bone Miner Res 2022; 37:2058-2076. [PMID: 36153796 PMCID: PMC9950781 DOI: 10.1002/jbmr.4711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is critical in skeletal development. Overactivation can trigger heterotopic ossification (HO) as in fibrodysplasia ossificans progressiva (FOP), a rare, progressive disease of massive HO formation. A small subset of FOP patients harboring the causative ACVR1R206H mutation show strikingly mild or delayed-onset HO, suggesting that genetic variants in the BMP pathway could act as disease modifiers. Whole-exome sequencing of one such patient identified BMPR1AR443C and ACVR2AV173I as candidate modifiers. Molecular modeling predicted significant structural perturbations. Neither variant decreased BMP signaling in ACVR1R206H HEK 293T cells at baseline or after stimulation with BMP4 or activin A (AA), ligands that activate ACVR1R206H signaling. Overexpression of BMPR1AR443C in a Tg(ACVR1-R206Ha) embryonic zebrafish model, in which overactive BMP signaling yields ventralized embryos, did not alter ventralization severity, while ACVR2AV173I exacerbated ventralization. Co-expression of both variants did not affect dorsoventral patterning. In contrast, BMPR1A knockdown in ACVR1R206H HEK cells decreased ligand-stimulated BMP signaling but did not affect dorsoventral patterning in Tg(ACVR1-R206Ha) zebrafish. ACVR2A knockdown decreased only AA-stimulated signaling in ACVR1R206H HEK cells and had no effect in Tg(ACVR1-R206Ha) zebrafish. Co-knockdown in ACVR1R206H HEK cells decreased basal and ligand-stimulated signaling, and co-knockdown/knockout (bmpr1aa/ab; acvr2aa/ab) decreased Tg(ACVR1-R206Ha) zebrafish ventralization phenotypes. Our functional studies showed that knockdown of wild-type BMPR1A and ACVR2A could attenuate ACVR1R206H signaling, particularly in response to AA, and that ACVR2AV173I unexpectedly increased ACVR1R206H -mediated signaling in zebrafish. These studies describe a useful strategy and platform for functionally interrogating potential genes and genetic variants that may impact the BMP signaling pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Robert L Lalonde
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Boston, MA, USA
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Niambi Brewer
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tania Moody
- Institute for Human Genetics, the Program in Craniofacial Biology, the UCSF Eli and Edythe Broad Institute for Regeneration Medicine, and the Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| | - Steven Hansberry
- San Francisco State University, California Institute of Regenerative Medicine Bridges to Stem Cell Research Program, San Francisco, CA, USA
| | - Kimberly E Taylor
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, CA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pamela C Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Boston, MA, USA
| | - Edward C Hsiao
- Institute for Human Genetics, the Program in Craniofacial Biology, the UCSF Eli and Edythe Broad Institute for Regeneration Medicine, and the Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Yang YS, Kim JM, Xie J, Chaugule S, Lin C, Ma H, Hsiao E, Hong J, Chun H, Shore EM, Kaplan FS, Gao G, Shim JH. Suppression of heterotopic ossification in fibrodysplasia ossificans progressiva using AAV gene delivery. Nat Commun 2022; 13:6175. [PMID: 36258013 PMCID: PMC9579182 DOI: 10.1038/s41467-022-33956-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Jung-Min Kim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Sachin Chaugule
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Chujiao Lin
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Hong Ma
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Edward Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine; the Institute for Human Genetics; the Program in Craniofacial Biology; and the Eli and Edyth Broad Institute of Regeneration Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA.
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Eekhoff EM, de Ruiter RD, Smilde BJ, Schoenmaker T, de Vries TJ, Netelenbos C, Hsiao EC, Scott C, Haga N, Grunwald Z, De Cunto CL, di Rocco M, Delai PLR, Diecidue RJ, Madhuri V, Cho TJ, Morhart R, Friedman CS, Zasloff M, Pals G, Shim JH, Gao G, Kaplan F, Pignolo RJ, Micha D. Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles. Hum Gene Ther 2022; 33:782-788. [PMID: 35502479 PMCID: PMC9419966 DOI: 10.1089/hum.2022.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease, in which soft connective tissue is converted into heterotopic bone through an endochondral ossification process. Patients succumb early as they gradually become trapped in a second skeleton of heterotopic bone. Although the underlying genetic defect is long known, the inherent complexity of the disease has hindered the discovery of effective preventions and treatments. New developments in the gene therapy field have motivated its consideration as an attractive therapeutic option for FOP. However, the immune system's role in FOP activation and the as-yet unknown primary causative cell, are crucial issues which must be taken into account in the therapy design. While gene therapy offers a potential therapeutic solution, more knowledge about FOP is needed to enable its optimal and safe application.
Collapse
Affiliation(s)
- Elisabeth M.W. Eekhoff
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Ruben D. de Ruiter
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bernard J. Smilde
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Coen Netelenbos
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, Institute for Human Genetics, Program in Craniofacial Biology, the Institute for Regeneration Medicine, University of California, San Francisco, California, USA
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Heath, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Nobuhiko Haga
- Rehabilitation Services Bureau, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Zvi Grunwald
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Carmen L. De Cunto
- Department of Pediatrics, Section Pediatric Rheumatology, Hospital Italiano Buenos Aires, Argentina
| | - Maja di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Patricia L. R. Delai
- Teaching and Research Institute of the Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Robert J. Diecidue
- Department of Oral and Maxillofacial Surgery, Sidney Kimmel Medical College, Philadelphia, USA
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics and Center for Stem Cell Research, Christian Medical College and Hospital, Vellore, India
| | - Tae-Joon Cho
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rolf Morhart
- Department of Pediatrics, Garmisch-Partenkichen Medical Center, Garmisch-Partenkirchen, Germany
| | - Clive S. Friedman
- Schulich School of Medicine and Dentistry, Western University, Clinical Skills Building, London, Ontario, Canada
| | - Michael Zasloff
- Surgery and Pediatrics, MedStar Georgetown Transplant Institute, Washington, District of Columbia, USA
| | - Gerard Pals
- Department of Human Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jae-Hyuck Shim
- Department of Medicine/Rheumatology, Horae Gene Therapy Center, Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, Horae Gene Therapy Center, Viral Vector Core, Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Frederick Kaplan
- Department of Orthopaedic Surgery and Medicine, Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Dimitra Micha
- Department of Human Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Meng X, Wang H, Hao J. Recent progress in drug development for fibrodysplasia ossificans progressiva. Mol Cell Biochem 2022; 477:2327-2334. [PMID: 35536530 PMCID: PMC9499916 DOI: 10.1007/s11010-022-04446-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease caused by heterozygous missense mutations in Activin A receptor type I which is also known as Activin-like kinase 2 (ALK2), a type I receptor of Bone Morphogenetic Proteins(BMP). Patients with FOP usually undergo episodic flare-ups and the heterotopic ossification in soft and connective tissues. Molecular mechanism study indicates that Activin A, the ligand which normally transduces Transforming Growth Factor Beta signaling, abnormally activates BMP signaling through ALK2 mutants in FOP, leading to heterotopic bone formation. To date, effective therapies to FOP are unavailable. However, significant advances have recently been made in the development of FOP drugs. In this article, we review the recent advances in understanding the FOP mechanism and drug development, with a focus on the small-molecular and antibody drugs currently in the clinical trials for FOP treatment.
Collapse
Affiliation(s)
- Xinmiao Meng
- College of Arts and Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Haotian Wang
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 191041, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
19
|
Xu Y, Huang M, He W, He C, Chen K, Hou J, Huang M, Jiao Y, Liu R, Zou N, Liu L, Li C. Heterotopic Ossification: Clinical Features, Basic Researches, and Mechanical Stimulations. Front Cell Dev Biol 2022; 10:770931. [PMID: 35145964 PMCID: PMC8824234 DOI: 10.3389/fcell.2022.770931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the occurrence of extraskeletal bone in soft tissue. Although this pathological osteogenesis process involves the participation of osteoblasts and osteoclasts during the formation of bone structures, it differs from normal physiological osteogenesis in many features. In this article, the primary characteristics of heterotopic ossification are reviewed from both clinical and basic research perspectives, with a special highlight on the influence of mechanics on heterotopic ossification, which serves an important role in the prophylaxis and treatment of HO.
Collapse
Affiliation(s)
- Yili Xu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
20
|
Pignolo RJ, Hsiao EC, Baujat G, Lapidus D, Sherman A, Kaplan FS. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: estimate from three treatment centers and a patient organization. Orphanet J Rare Dis 2021; 16:350. [PMID: 34353327 PMCID: PMC8340531 DOI: 10.1186/s13023-021-01983-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP), an ultra-rare, progressive, and permanently disabling disorder of extraskeletal ossification, is characterized by episodic and painful flare-ups and irreversible heterotopic ossification in muscles, tendons, and ligaments. Prevalence estimates have been hindered by the rarity of FOP and the heterogeneity of disease presentation. This study aimed to provide a baseline prevalence of FOP in the United States, based on contact with one of 3 leading treatment centers for FOP (University of Pennsylvania, Mayo Clinic, or University of California San Francisco), the International Fibrodysplasia Ossificans Progressiva Association (IFOPA) membership list, or the IFOPA FOP Registry through July 22, 2020. RESULTS Patient records were reviewed, collected, and deduplicated using first and last name initials, sex, state, and year of birth. A Kaplan-Meier survival curve was applied to each individual patient to estimate the probability that he or she was still alive, and a probability-weighted net prevalence estimate was calculated. After deduplication, 373 unique patients were identified in the United States, 294 of whom who were not listed as deceased in any list. The average time since last contact for 284 patients was 1.5 years. Based on the application of the survival probability, it is estimated that 279 of these patients were alive on the prevalence date (22 July 2020). An adjusted prevalence of 0.88 per million US residents was calculated using either an average survival rate estimate of 98.4% or a conservative survival rate estimate of 92.3% (based on the Kaplan-Meier survival curve from a previous study) and the US Census 2020 estimate of 329,992,681 on prevalence day. CONCLUSIONS This study suggests that the prevalence of FOP is higher than the often-cited value of 0.5 per million. Even so, because inclusion in this study was contingent upon treatment by the authors, IFOPA membership with confirmed clinical diagnosis, and the FOP Registry, the prevalence of FOP in the US may be higher than that identified here. Thus, it is imperative that efforts be made to identify and provide expert care for patients with this ultra-rare, significantly debilitating disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Geriatric Medicine & Gerontology, Robert and Arlene Kogod Professor of Geriatric Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Edward C Hsiao
- Robert L. Kroc Chair in Rheumatic and Connective Tissue Diseases III, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA.,Department of Medicine, Institute for Human Genetics, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Genevieve Baujat
- Department of Clinical Genetics, INSERM U1163, Paris-Descartes University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | | | - Adam Sherman
- The International FOP Association, North Kansas City, MO, USA
| | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Prados B, Del Toro R, MacGrogan D, Gómez-Apiñániz P, Papoutsi T, Muñoz-Cánoves P, Méndez-Ferrer S, de la Pompa JL. Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death Dis 2021; 12:729. [PMID: 34294700 PMCID: PMC8298441 DOI: 10.1038/s41419-021-04003-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.
Collapse
Affiliation(s)
- Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Raquel Del Toro
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Physiophatology group, Instituto de Biomedicina de Sevilla-IBIS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla). Manuel Siurot, s/n, 41013, Sevilla, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Paula Gómez-Apiñániz
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Tania Papoutsi
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Pura Muñoz-Cánoves
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Experimental & Health Sciences, Universidad Pompeu Fabra (UPF), ICREA and CIBERNED, Dr. Aiguader 88, Barcelona, Spain
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
22
|
Ramachandran A, Mehić M, Wasim L, Malinova D, Gori I, Blaszczyk BK, Carvalho DM, Shore EM, Jones C, Hyvönen M, Tolar P, Hill CS. Pathogenic ACVR1 R206H activation by Activin A-induced receptor clustering and autophosphorylation. EMBO J 2021; 40:e106317. [PMID: 34003511 PMCID: PMC8280795 DOI: 10.15252/embj.2020106317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-β family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.
Collapse
Affiliation(s)
- Anassuya Ramachandran
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
- Present address:
Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | - Merima Mehić
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
| | - Laabiah Wasim
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Ilaria Gori
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Diana M Carvalho
- Division of Molecular PathologyThe Institute of Cancer ResearchSuttonUK
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Chris Jones
- Division of Molecular PathologyThe Institute of Cancer ResearchSuttonUK
| | - Marko Hyvönen
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Pavel Tolar
- Immune Receptor Activation LaboratoryThe Francis Crick InstituteLondonUK
- Present address:
Division of Infection and ImmunityInstitute of Immunity and TransplantationUniversity CollegeLondonUK
| | - Caroline S Hill
- Developmental Signalling LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
23
|
Pierce JL, Perrien DS. Do Interactions of Vitamin D 3 and BMP Signaling Hold Implications in the Pathogenesis of Fibrodysplasia Ossificans Progressiva? Curr Osteoporos Rep 2021; 19:358-367. [PMID: 33851285 PMCID: PMC8515998 DOI: 10.1007/s11914-021-00673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Fibrodysplasia ossificans progressiva (FOP) is a debilitating rare disease known for episodic endochondral heterotopic ossification (HO) caused by gain-of-function mutations in ACVR1/ALK2. However, disease severity varies among patients with identical mutations suggesting disease-modifying factors, including diet, may have therapeutic implications. The roles of vitamin D3 in calcium metabolism and chondrogenesis are known, but its effects on BMP signaling and chondrogenesis are less studied. This review attempts to assess the possibility of vitamin D's effects in FOP by exploring relevant intersections of VD3 with mechanisms of FOP flares. RECENT FINDINGS In vitro and in vivo studies suggest vitamin D suppresses inflammation, while clinical studies suggest that vitamin D3 protects against arteriosclerosis and inversely correlates with non-genetic intramuscular HO. However, the enhancement of chondrogenesis, BMP signaling, and possibly Activin A expression by vitamin D may be more relevant in FOP. There appears to be little potential for vitamin D to reduce HO in FOP, but testing the potential for excess vitamin D to promote HO may be warranted.
Collapse
Affiliation(s)
- Jessica L Pierce
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMRB 1027, Atlanta, GA, 30232, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMRB 1027, Atlanta, GA, 30232, USA.
| |
Collapse
|
24
|
MyD88 Is Not Required for Muscle Injury-Induced Endochondral Heterotopic Ossification in a Mouse Model of Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9060630. [PMID: 34206078 PMCID: PMC8227787 DOI: 10.3390/biomedicines9060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.
Collapse
|
25
|
Martinez-Hackert E, Sundan A, Holien T. Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 2020; 57:39-54. [PMID: 33087301 DOI: 10.1016/j.cytogfr.2020.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The transforming growth factor (TGF)-β family is a group of structurally related, multifunctional growth factors, or ligands that are crucially involved in the development, regulation, and maintenance of animal tissues. In humans, the family counts over 33 members. These secreted ligands typically form multimeric complexes with two type I and two type II receptors to activate one of two distinct signal transduction branches. A striking feature of the family is its promiscuity, i.e., many ligands bind the same receptors and compete with each other for binding to these receptors. Although several explanations for this feature have been considered, its functional significance has remained puzzling. However, several recent reports have promoted the idea that ligand-receptor binding promiscuity and competition are critical features of the TGF-β family that provide an essential regulating function. Namely, they allow a cell to read and process multi-ligand inputs. This capability may be necessary for producing subtle, distinctive, or adaptive responses and, possibly, for facilitating developmental plasticity. Here, we review the molecular basis for ligand competition, with emphasis on molecular structures and binding affinities. We give an overview of methods that were used to establish experimentally ligand competition. Finally, we discuss how the concept of ligand competition may be fundamentally tied to human physiology, disease, and therapy.
Collapse
Affiliation(s)
- Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Hematology, St. Olav's University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
26
|
Kaliya-Perumal AK, Carney TJ, Ingham PW. Fibrodysplasia ossificans progressiva: current concepts from bench to bedside. Dis Model Mech 2020; 13:13/9/dmm046441. [PMID: 32988985 PMCID: PMC7522019 DOI: 10.1242/dmm.046441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterotopic ossification (HO) is a disorder characterised by the formation of ectopic bone in soft tissue. Acquired HO typically occurs in response to trauma and is relatively common, yet its aetiology remains poorly understood. Genetic forms, by contrast, are very rare, but provide insights into the mechanisms of HO pathobiology. Fibrodysplasia ossificans progressiva (FOP) is the most debilitating form of HO. All patients reported to date carry heterozygous gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1). These mutations cause dysregulated bone morphogenetic protein (BMP) signalling, leading to HO at extraskeletal sites including, but not limited to, muscles, ligaments, tendons and fascia. Ever since the identification of the causative gene, developing a cure for FOP has been a focus of investigation, and studies have decoded the pathophysiology at the molecular and cellular levels, and explored novel management strategies. Based on the established role of BMP signalling throughout HO in FOP, therapeutic modalities that target multiple levels of the signalling cascade have been designed, and some drugs have entered clinical trials, holding out hope of a cure. A potential role of other signalling pathways that could influence the dysregulated BMP signalling and present alternative therapeutic targets remains a matter of debate. Here, we review the recent FOP literature, including pathophysiology, clinical aspects, animal models and current management strategies. We also consider how this research can inform our understanding of other types of HO and highlight some of the remaining knowledge gaps. Summary: Fibrodysplasia ossificans progressiva is a rare disease characterised by progressive heterotopic bone formation. Here, we present a comprehensive summary of the recent literature on this debilitating condition and discuss approaches to solving this clinical puzzle.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore .,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| |
Collapse
|
27
|
Allen RS, Tajer B, Shore EM, Mullins MC. Fibrodysplasia ossificans progressiva mutant ACVR1 signals by multiple modalities in the developing zebrafish. eLife 2020; 9:53761. [PMID: 32897189 PMCID: PMC7478894 DOI: 10.7554/elife.53761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disorder characterized by altered skeletal development and extraskeletal ossification. All cases of FOP are caused by activating mutations in the type I BMP/TGFβ cell surface receptor ACVR1, which over-activates signaling through phospho-Smad1/5 (pSmad1/5). To investigate the mechanism by which FOP-ACVR1 enhances pSmad1/5 activation, we used zebrafish embryonic dorsoventral (DV) patterning as an assay for BMP signaling. We determined that the FOP mutants ACVR1-R206H and -G328R do not require their ligand binding domain to over-activate BMP signaling in DV patterning. However, intact ACVR1-R206H has the ability to respond to both Bmp7 and Activin A ligands. Additionally, BMPR1, a type I BMP receptor normally required for BMP-mediated patterning of the embryo, is dispensable for both ligand-independent signaling pathway activation and ligand-responsive signaling hyperactivation by ACVR1-R206H. These results demonstrate that FOP-ACVR1 is not constrained by the same receptor/ligand partner requirements as WT-ACVR1.
Collapse
Affiliation(s)
- Robyn S Allen
- Department of Cell and Developmental Biology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States.,Departments of Orthopaedic Surgery and Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Benjamin Tajer
- Department of Cell and Developmental Biology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
28
|
Hwang C, Pagani CA, Das N, Marini S, Huber AK, Xie L, Jimenez J, Brydges S, Lim WK, Nannuru KC, Murphy AJ, Economides AN, Hatsell SJ, Levi B. Activin A does not drive post-traumatic heterotopic ossification. Bone 2020; 138:115473. [PMID: 32553795 DOI: 10.1016/j.bone.2020.115473] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO), the formation of ectopic bone in soft tissues, has been extensively studied in its two primary forms: post-traumatic HO (tHO) typically found in patients who have experienced musculoskeletal or neurogenic injury and in fibrodysplasia ossificans progressiva (FOP), where it is genetically driven. Given that in both diseases HO arises via endochondral ossification, the molecular mechanisms behind both diseases have been postulated to be manifestations of similar pathways including those activated by BMP/TGFβ superfamily ligands. A significant step towards understanding the molecular mechanism by which HO arises in FOP was the discovery that FOP causing ACVR1 variants trigger HO in response to activin A, a ligand that does not activate signaling from wild type ACVR1, and that is not inherently osteogenic in wild type settings. The physiological significance of this finding was demonstrated by showing that activin A neutralizing antibodies stop HO in two different genetically accurate mouse models of FOP. In order to explore the role of activin A in tHO, we performed single cell RNA sequencing and compared the expression of activin A as well as other BMP pathway genes in tHO and FOP HO. We show that activin A is expressed in response to injury in both settings, but by different types of cells. Given that wild type ACVR1 does not transduce signal when engaged by activin A, we hypothesized that inhibition of activin A will not block tHO. Nonetheless, as activin A was expressed in tHO lesions, we tested its inhibition and compared it with inhibition of BMPs. We show here that anti-activin A does not block tHO, whereas agents such as antibodies that neutralize ACVR1 or ALK3-Fc (which blocks osteogenic BMPs) are beneficial, though not completely curative. These results demonstrate that inhibition of activin A should not be considered as a therapeutic strategy for ameliorating tHO.
Collapse
Affiliation(s)
- Charles Hwang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Chase A Pagani
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | | | - Simone Marini
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Amanda K Huber
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - LiQin Xie
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America; Division of Plastic Surgery, Department of Surgery, University of Michigan Health System, 1500 E Medical Center Drive, SPC 5340, Ann Arbor, MI 48109-5340, United States of America.
| |
Collapse
|
29
|
Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. J Cell Mol Med 2020; 24:11046-11055. [PMID: 32853465 PMCID: PMC7576286 DOI: 10.1111/jcmm.15735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue. Three factors have been proposed as required to induce HO: (a) osteogenic precursor cells, (b) osteoinductive agents and (c) an osteoconductive environment. Since Urist's landmark discovery of bone induction in skeletal muscle tissue by demineralized bone matrix, it is generally believed that skeletal muscle itself is a conductive environment for osteogenesis and that resident progenitor cells in skeletal muscle are capable of differentiating into osteoblast to form bone. However, little is known about the naturally occurring osteoinductive agents that triggered this osteogenic response in the first place. This article provides a review of the emerging findings regarding distinct types of HO to summarize the current understanding of HO mechanisms, with special attention to the osteogenic factors that are induced following injury. Specifically, we hypothesize that muscle injury‐induced up‐regulation of local bone morphogenetic protein‐7 (BMP‐7) level, combined with glucocorticoid excess‐induced down‐regulation of circulating transforming growth factor‐β1 (TGF‐β1) level, could be an important causative mechanism of traumatic HO formation.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Moulton MJ, Humphreys GB, Kim A, Letsou A. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev Cell 2020; 53:330-343.e3. [DOI: 10.1016/j.devcel.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
|
31
|
Singh S, Kidane J, Wentworth KL, Motamedi D, Morshed S, Schober AE, Hsiao EC. Surgical management of bilateral hip fractures in a patient with fibrodysplasia ossificans progressiva treated with the RAR-γ agonist palovarotene: a case report. BMC Musculoskelet Disord 2020; 21:204. [PMID: 32245464 PMCID: PMC7126417 DOI: 10.1186/s12891-020-03240-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disorder marked by painful, recurrent flare-ups and heterotopic ossification (HO) in soft and connective tissues, which can be idiopathic or provoked by trauma, illness, inflammation, or surgery. There are currently no effective treatments for FOP, or for patients with FOP who must undergo surgery. Palovarotene, an investigational retinoic acid receptor-γ agonist, offers a potential avenue to prevent HO formation. Case presentation The patient is a 32 year-old male, who at age 29 enrolled in a study evaluating palovarotene to prevent HO formation in FOP. One year after starting palovarotene, he fell resulting in a left intertrochanteric fracture. He underwent intramedullary nailing of the femur shaft with screw placement at the distal femur. After surgery, he received palovarotene at 20 mg/day for 4 weeks, then 10 mg/day for 8 weeks. Imaging 12 weeks after surgery showed new bridging HO at the site of intramedullary rod insertion and distal screw. Nine months after the left hip fracture, the patient had a second fall resulting in a subdural hematoma, left parietal bone fracture, and right intertrochanteric fracture. He underwent intramedullary nailing of the right hip, in a modified procedure which did not require distal screw placement. Palovarotene 20 mg/day was started at fracture occurrence and continued for 4 weeks, then reduced to 10 mg/day for 8 weeks. HO also formed near the insertion site of the intramedullary rod. No HO developed at the right distal intramedullary rod. After each fracture, the patient had prolonged recurrent flare-ups around the hips. Conclusion Surgery is only rarely considered in FOP due to the high risks of procedural complications and potential for inducing HO. This case emphasizes the risks of increased flare activity and HO formation from injury and surgery in patients with FOP. The efficacy of HO prevention by palovarotene could not be assessed; however, our observation that palovarotene can be administered in an individual with FOP following surgery with no negative impact on clinical fracture healing, osteointegration, or skin healing will help facilitate future trials testing the role of palovarotene as a therapy for HO.
Collapse
Affiliation(s)
- Sukhmani Singh
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics; and the Program in Craniofacial Biology - University of California, San Francisco, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
| | - Joseph Kidane
- Department of Medicine, University of California, San Francisco, 533 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Kelly L Wentworth
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics; and the Program in Craniofacial Biology - University of California, San Francisco, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
| | - Daria Motamedi
- Department of Radiology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Saam Morshed
- Department of Orthopedic Surgery, University of California, San Francisco, and the Orthopedic Trauma Institute, 2550 23rd Street, Building 9, 2nd Floor, San Francisco, CA, 94110, USA
| | - Andrew E Schober
- Department of Anesthesiology, University of California, San Francisco, 521 Parnassus Ave, San Francisco, CA, 94131, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics; and the Program in Craniofacial Biology - University of California, San Francisco, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA.
| |
Collapse
|
32
|
Zhang JM, Li CF, Ke SY, Piao YR, Han TX, Kuang WY, Wang J, Deng JH, Tan XH, Li C. Analysis of clinical manifestations and treatment in 26 children with fibrodysplasia ossificans progressiva in China. World J Pediatr 2020; 16:82-88. [PMID: 31529313 DOI: 10.1007/s12519-019-00302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/01/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is a rare and disabling heritable connective tissue disease that is difficult to treat. This study seeks to explore the clinical characteristics, clinical manifestations, treatment and prognosis of FOP to provide a clinical basis for its early diagnosis and treatment. METHODS Twenty-six children with FOP were retrospectively analyzed in terms of their onset, clinical manifestations, auxiliary examinations and treatment. RESULTS Among the 26 cases, the youngest age of manifestation of mass was 8 days after birth, and the average age was 3 years and 2 months. The peak age was 2-5 years old. Inflammatory mass and toe-finger deformity are the main early clinical manifestations of the disease. These inflammatory masses often lead to hard osteogenic deposits that initially mainly involve the central axis, such as the neck (22/26, 84.6%), back (20/26, 76.9%), and head (13/26, 50%). Toe-finger deformity mainly manifests as symmetrical great toe deformity, or short and deformed thumb and little finger. The diagnosis of FOP requires typical clinical manifestations or ACVR1 gene detection. The main therapeutic drugs for FOP include glucocorticoids and non-steroidal anti-inflammatory drugs. Although not compliant with the recommended medical management of FOP, in our clinical practice children with uncontrollable illness could be treated using a variety of immunosuppressive agents in combination. CONCLUSIONS FOP is a rare autosomal dominant heritable disease. The main clinical manifestations observed in this study were recurrent inflammatory mass and toe-finger deformity. If the diagnosis and treatment are not performed in a timely manner, serious complications are likely to affect the prognosis. Therefore, early diagnosis and active treatment should be performed.
Collapse
Affiliation(s)
- Jun-Mei Zhang
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Cai-Feng Li
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China.
| | - Shuang-Ying Ke
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Yu-Rong Piao
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Tong-Xin Han
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Wei-Ying Kuang
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Jiang Wang
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Jiang-Hong Deng
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Xiao-Hua Tan
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| | - Chao Li
- Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Nan Li Shi Road No. 56, Beijing, 100045, China
| |
Collapse
|
33
|
Pan H, Fleming N, Hong CC, Mishina Y, Perrien DS. Methods for the reliable induction of heterotopic ossification in the conditional Alk2Q207D mouse. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:149-159. [PMID: 32131380 PMCID: PMC7104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Conditional Alk2Q207D-floxed (caALK2fl) mice have previously been used as a model of heterotopic ossification (HO). However, HO formation in this model can be highly variable, and it is unclear which methods reliably induce HO. Hence, these studies report validated methods for reproducibly inducing HO in caALK2fl mice. METHODS Varying doses of Adex-cre and cardiotoxin (CTX) were injected into the calf muscles of 9, 14, or 28-day-old caALK2fl/- or caALK2fl/fl mice. HO was measured by planar radiography or microCT at 14-28 days post-injury. RESULTS In 9-day-old caALK2fl/- or caALK2fl/fl mice, single injections of 109 PFU Adex-cre and 0.3 μg of CTX were sufficient to induce extensive HO within 14 days post-injury. In 28-day-old mice, the doses were increased to 5 x 109 PFU Adex-cre and 3.0 μg of CTX to achieve similar consistency, but at a slower rate versus younger mice. Using a crush injury, instead of CTX, also provided consistent induction of HO. Finally, the Type 1 BMPR inhibitor, DMH1, significantly reduced HO formation in 28-day-old caALK2fl/fl mice. CONCLUSIONS These data illustrate multiple methods for reliable induction of localized HO in the caALK2flmouse that can serve as a starting point for new laboratories utilizing this model.
Collapse
Affiliation(s)
- Haichun Pan
- University of Michigan School of Dentistry, Ann Arbor, MI
| | - Nicole Fleming
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Charles C Hong
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN,Department of Pharmacology, and Vanderbilt University Medical Center, Nashville, TN,Division of Cardiology in the Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN
| | - Yuji Mishina
- University of Michigan School of Dentistry, Ann Arbor, MI
| | - Daniel S. Perrien
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN,Division of Clinical Pharmacology in the Department of Medicine and Vanderbilt University Medical Center, Nashville, TN,Center for Small Animal Imaging, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN,Corresponding author: Daniel S. Perrien, Ph.D., 101 Woodruff Circle, 1027 WMRB, Atlanta, GA 30322 E-mail: •
| |
Collapse
|
34
|
Haviv R, Moshe V, De Benedetti F, Prencipe G, Rabinowicz N, Uziel Y. Is fibrodysplasia ossificans progressiva an interleukin-1 driven auto-inflammatory syndrome? Pediatr Rheumatol Online J 2019; 17:84. [PMID: 31864380 PMCID: PMC6925442 DOI: 10.1186/s12969-019-0386-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is the most catastrophic form of heterotopic ossification, due to ongoing intracellular signaling through the bone morphogenic protein pathway. The paroxysmal appearance of inflammatory lumps and elevated inflammatory markers during flares, suggest that FOP is an auto-inflammatory disease. Based on evidence, demonstrating a role for interleukin-1β (IL-1β) in other forms of heterotopic ossification, we hypothesized that treating FOP patients with anti-IL-1 agents could help lower the rate of FOP paroxysms and/or limit the symptoms and residual lesions. CASE PRESENTATION A 13.5-year-old Arab boy was diagnosed with FOP. Treatment with anti-inflammatory drugs did not change the disease course. New lumps appeared in a rate of approximately one every 8 days. Treatment with the anti-IL-1 agents anakinra and canakinumab resulted in significantly lower rate of paroxysms (every 22-25 days, of which almost all involved only 2 existing lumps), as well as shorter duration. High levels of IL-1β were found in the patient's plasma samples, collected during a paroxysm that appeared 8 weeks after the last canakinumab dose. In contrast, IL-1β plasma levels were undetectable in the previous three plasma samples, obtained while he was treated with anti-IL-1 agents. CONCLUSIONS Our data demonstrate the efficacy of anti-IL-1 agents in the treatment of a patient with FOP. Results showing the marked increase in IL-1β plasma levels during a paroxysm support a role for IL-1β in the pathogenesis of FOP and further provide the rationale for the use of anti-IL-1 agents in FOP treatment.
Collapse
Affiliation(s)
- Ruby Haviv
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Veronica Moshe
- 0000 0001 0325 0791grid.415250.7Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164 Kfar Saba, Israel
| | - Fabrizio De Benedetti
- 0000 0001 0727 6809grid.414125.7Division of Rheumatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giusi Prencipe
- 0000 0001 0727 6809grid.414125.7Division of Rheumatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Noa Rabinowicz
- 0000 0001 0325 0791grid.415250.7Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164 Kfar Saba, Israel
| | - Yosef Uziel
- 0000 0001 0325 0791grid.415250.7Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164 Kfar Saba, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Fibrodysplasia ossificans progressiva (FOP) is an extremely rare and severely disabling autosomal dominant disease that is yet to be clearly understood. The purpose of this review is to present recent literature on pathophysiology, clinical features, diagnosis and treatment of FOP. RECENT FINDINGS FOP is characterized by congenital great toe deformity and progressive heterotopic ossifications in connective tissue. Heterotopic ossifications occur after painful flare-ups that can arise spontaneously or can be triggered by minor trauma. Each flare-up ultimately causes restriction of related-joint, and along with the others eventually leads to immobility. Death is usually caused by pulmonary complications because of chest wall involvement. The causative gene of FOP is activin A receptor type 1 (ACVR1), a bone morphogenetic protein-signalling component, which normally acts to inhibit osteoblastogenesis. The treatment of FOP is still preventive and supportive. SUMMARY Although there are still gaps in the underlying mechanism of FOP, effective treatment options, such as potential pharmacologic targets and cell-based therapies are promising for the future. Some of these were tested without a clinical trial setting, and are currently in the process of evidence-based research.
Collapse
Affiliation(s)
- Gulseren Akyuz
- Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine
| | - Kardelen Gencer-Atalay
- Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
36
|
Grandon B, Rincheval-Arnold A, Jah N, Corsi JM, Araujo LM, Glatigny S, Prevost E, Roche D, Chiocchia G, Guénal I, Gaumer S, Breban M. HLA-B27 alters BMP/TGFβ signalling in Drosophila, revealing putative pathogenic mechanism for spondyloarthritis. Ann Rheum Dis 2019; 78:1653-1662. [PMID: 31563893 DOI: 10.1136/annrheumdis-2019-215832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The human leucocyte antigen (HLA)-B27 confers an increased risk of spondyloarthritis (SpA) by unknown mechanism. The objective of this work was to uncover HLA-B27 non-canonical properties that could explain its pathogenicity, using a new Drosophila model. METHODS We produced transgenic Drosophila expressing the SpA-associated HLA-B*27:04 or HLA-B*27:05 subtypes, or the non-associated HLA-B*07:02 allele, alone or in combination with human β2-microglobulin (hβ2m), under tissue-specific drivers. Consequences of transgenes expression in Drosophila were examined and affected pathways were investigated by the genetic interaction experiments. Predictions of the model were further tested in immune cells from patients with SpA. RESULTS Loss of crossveins in the wings and a reduced eye phenotype were observed after expression of HLA-B*27:04 or HLA-B*27:05 in Drosophila but not in fruit flies expressing the non-associated HLA-B*07:02 allele. These HLA-B27-induced phenotypes required the presence of hβ2m that allowed expression of well-folded HLA-B conformers at the cell surface. Loss of crossveins resulted from a dominant negative effect of HLA-B27 on the type I bone morphogenetic protein (BMP) receptor saxophone (Sax) with which it interacted, resulting in elevated mothers against decapentaplegic (Mad, a Drosophila receptor-mediated Smad) phosphorylation. Likewise, in immune cells from patients with SpA, HLA-B27 specifically interacted with activin receptor-like kinase-2 (ALK2), the mammalian Sax ortholog, at the cell surface and elevated Smad phosphorylation was observed in response to activin A and transforming growth factor β (TGFβ). CONCLUSIONS Antagonistic interaction of HLA-B27 with ALK2, which exerts inhibitory functions on the TGFβ/BMP signalling pathway at the cross-road between inflammation and ossification, could adequately explain SpA development.
Collapse
Affiliation(s)
- Benjamin Grandon
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Nadège Jah
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Jean-Marc Corsi
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Erwann Prevost
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Delphine Roche
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Gilles Chiocchia
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
- Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| |
Collapse
|
37
|
The role of Activin A in fibrodysplasia ossificans progressiva: a prominent mediator. Biosci Rep 2019; 39:BSR20190377. [PMID: 31341010 PMCID: PMC6680371 DOI: 10.1042/bsr20190377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Heterotopic ossification (HO) is the aberrant formation of mature, lamellar bone in nonosseous tissue. Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disorder that causes progressive HO in the ligaments, tendons, and muscles throughout the body. FOP is attributed to an autosomal mutation in activin receptor-like kinase 2 (ALK2), a bone morphogenetic protein (BMP) type I receptor. Initial studies show that mutant ALK2 drives HO by constitutively activating the BMP signaling pathway. Recently, mutant ALK2 has been shown to transduce Smad1/5 signaling and enhance chondrogenesis, calcification in response to Activin A, which normally signals through Smad2/3 and inhibits BMP signaling pathway. Furthermore, Activin A induces heterotopic bone formation via mutant ALK2, while inhibition of Activin A blocks spontaneous and trauma-induced HO. In this manuscript, we describe the molecular mechanism of the causative gene ALK2 in FOP, mainly focusing on the prominent role of Activin A in HO. It reveals a potential strategy for prevention and treatment of FOP by inhibition of Activin A. Further studies are needed to explore the cellular and molecular mechanisms of Activin A in FOP in more detail.
Collapse
|
38
|
Valer JA, Sánchez-de-Diego C, Gámez B, Mishina Y, Rosa JL, Ventura F. Inhibition of phosphatidylinositol 3-kinase α (PI3Kα) prevents heterotopic ossification. EMBO Mol Med 2019; 11:e10567. [PMID: 31373426 PMCID: PMC6728602 DOI: 10.15252/emmm.201910567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Heterotopic ossification (HO) is the pathological formation of ectopic endochondral bone within soft tissues. HO occurs following mechanical trauma, burns, or congenitally in patients suffering from fibrodysplasia ossificans progressiva (FOP). FOP patients carry a conserved mutation in ACVR1 that becomes neomorphic for activin A responses. Here, we demonstrate the efficacy of BYL719, a PI3Kα inhibitor, in preventing HO in mice. We found that PI3Kα inhibitors reduce SMAD, AKT, and mTOR/S6K activities. Inhibition of PI3Kα also impairs skeletogenic responsiveness to BMPs and the acquired response to activin A of the Acvr1R206H allele. Further, the efficacy of PI3Kα inhibitors was evaluated in transgenic mice expressing Acvr1Q207D . Mice treated daily or intermittently with BYL719 did not show ectopic bone or cartilage formation. Furthermore, the intermittent treatment with BYL719 was not associated with any substantial side effects. Therefore, this work provides evidence supporting PI3Kα inhibition as a therapeutic strategy for HO.
Collapse
Affiliation(s)
- José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| |
Collapse
|
39
|
Kruse K, Klomp J, Sun M, Chen Z, Santana D, Huang F, Kanabar P, Maienschein-Cline M, Komarova YA. Analysis of biological networks in the endothelium with biomimetic microsystem platform. Am J Physiol Lung Cell Mol Physiol 2019; 317:L392-L401. [PMID: 31313617 DOI: 10.1152/ajplung.00392.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Here we describe a novel method for studying the protein "interactome" in primary human cells and apply this method to investigate the effect of posttranslational protein modifications (PTMs) on the protein's functions. We created a novel "biomimetic microsystem platform" (Bio-MSP) to isolate the protein complexes in primary cells by covalently attaching purified His-tagged proteins to a solid microscale support. Using this Bio-MSP, we have analyzed the interactomes of unphosphorylated and phosphomimetic end-binding protein-3 (EB3) in endothelial cells. Pathway analysis of these interactomes demonstrated the novel role of EB3 phosphorylation at serine 162 in regulating the protein's function. We showed that phosphorylation "switches" the EB3 biological network to modulate cellular processes such as cell-to-cell adhesion whereas dephosphorylation of this site promotes cell proliferation. This novel technique provides a useful tool to study the role of PTMs or single point mutations in activating distinct signal transduction networks and thereby the biological function of the protein in health and disease.
Collapse
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Mitchell Sun
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhang Chen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Fei Huang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Pinal Kanabar
- Research Informatics Core of the Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mark Maienschein-Cline
- Research Informatics Core of the Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia A Komarova
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Padilha EC, Wang J, Kerns E, Lee A, Huang W, Jiang JK, McKew J, Mutlib A, Peccinini RG, Yu PB, Sanderson P, Xu X. Application of in vitro Drug Metabolism Studies in Chemical Structure Optimization for the Treatment of Fibrodysplasia Ossificans Progressiva (FOP). Front Pharmacol 2019; 10:234. [PMID: 31068801 PMCID: PMC6491728 DOI: 10.3389/fphar.2019.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Currently no approved treatment exists for fibrodysplasia ossificans progressiva (FOP) patients, and disease progression results in severe restriction of joint function and premature mortality. LDN-193189 has been demonstrated to be efficacious in a mouse FOP disease model after oral administration. To support species selection for drug safety evaluation and to guide structure optimization for back-up compounds, in vitro metabolism of LDN-193189 was investigated in liver microsome and cytosol fractions of mouse, rat, dog, rabbit, monkey and human. Metabolism studies included analysis of reactive intermediate formation using glutathione and potassium cyanide (KCN) and analysis of non-P450 mediated metabolites in cytosol fractions of various species. Metabolite profiles and metabolic soft spots of LDN-193189 were elucidated using LC/UV and mass spectral techniques. The in vitro metabolism of LDN-193189 was significantly dependent on aldehyde oxidase, with formation of the major NIH-Q55 metabolite. The piperazinyl moiety of LDN-193189 was liable to NADPH-dependent metabolism which generated reactive iminium intermediates, as confirmed through KCN trapping experiments, and aniline metabolites (M337 and M380), which brought up potential drug safety concerns. Subsequently, strategies were employed to avoid metabolic liabilities leading to the synthesis of Compounds 1, 2, and 3. This study demonstrated the importance of metabolite identification for the discovery of novel and safe drug candidates for the treatment of FOP and helped medicinal chemists steer away from potential metabolic liabilities.
Collapse
Affiliation(s)
- Elias C Padilha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States.,Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Jianyao Wang
- Department of Pharmacokinetics, Dynamics and Metabolism, Discovery Sciences, Janssen Research and Development, Spring House, PA, United States.,Frontage Laboratories, Inc., Department of Drug Metabolism, Exton, PA, United States
| | - Ed Kerns
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Arthur Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Wenwei Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - John McKew
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Abdul Mutlib
- Frontage Laboratories, Inc., Department of Drug Metabolism, Exton, PA, United States
| | - Rosangela G Peccinini
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Paul B Yu
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Philip Sanderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
41
|
Wu J, Ren B, Shi F, Hua P, Lin H. BMP and mTOR signaling in heterotopic ossification: Does their crosstalk provide therapeutic opportunities? J Cell Biochem 2019; 120:12108-12122. [PMID: 30989716 DOI: 10.1002/jcb.28710] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) refers to the pathological formation of ectopic bone in soft tissues, it occurs following severe trauma or in patients with a rare genetic disorder known as fibrodysplasia ossificans progressiva. The pathological process of HO formation is a two-step mechanism: inflammation and destruction of connective tissues, followed by bone formation. The latter is further subdivided into three stages: fibroproliferation/angiogenesis, chondrogenesis, and osteogenesis. Currently, therapeutic options for HO are limited. New potential therapeutics will most likely arise from a more detailed understanding of the signaling pathways implicated in each stage of ectopic bone formation and molecular targets that may be effective at both the early and late stages of HO. Bone morphogenetic protein (BMP) signaling is believed to play a key role in the overall HO process. Recently, the mammalian target of rapamycin (mTOR) signaling pathway has received attention as a critical pathway for chondrogenesis, osteogenesis, and HO. Inhibition of mTOR signaling has been shown to block trauma-induced and genetic HO. Intriguingly, recent studies have revealed crosstalk between mTOR and BMP signaling. Moreover, mTOR has emerged as a factor involved in the early hypoxic and inflammatory stages of HO. We will summarize the current knowledge of the roles of mTOR and BMP signaling in HO, with a particular focus on the crosstalk between mTOR and BMP signaling. We also discuss the activation of AMP activated protein kinase (AMPK) by the most widely used drug for type 2 diabetes, metformin, which exerts a dual negative regulatory effect on mTOR and BMP signaling, suggesting that metformin is a promising drug treatment for HO. The discovery of an mTOR-BMP signaling network may be a potential molecular mechanism of HO and may represent a novel therapeutic target for the pharmacological control of HO.
Collapse
Affiliation(s)
- Jianhui Wu
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangx, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Bowen Ren
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangx, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ping Hua
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
42
|
Wentworth KL, Masharani U, Hsiao EC. Therapeutic advances for blocking heterotopic ossification in fibrodysplasia ossificans progressiva. Br J Clin Pharmacol 2019; 85:1180-1187. [PMID: 30501012 DOI: 10.1111/bcp.13823] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease in which heterotopic bone forms in muscle and soft tissue, leading to joint dysfunction and significant disability. FOP is progressive and many patients are wheelchair-bound by the 3rd decade of life. FOP is caused by an activating mutation in the ACVR1 gene, which encodes the activin A Type 1 receptor. Aberrant signalling through this receptor leads to abnormal activation of the pSMAD 1/5/8 pathway and triggers the formation of bone outside of the skeleton. There is no curative therapy for FOP; however, exciting advances in novel therapies have developed recently. Here, we review the clinical and translational pharmacology of three drugs that are currently in clinical trials (palovarotene, REGN 2477 and rapamycin) as well as other emerging treatment strategies for FOP.
Collapse
Affiliation(s)
- Kelly L Wentworth
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Umesh Masharani
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Edward C Hsiao
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
LaBonty M, Pray N, Yelick PC. Injury of Adult Zebrafish Expressing Acvr1l Q204D Does Not Result in Heterotopic Ossification. Zebrafish 2018; 15:536-545. [PMID: 30183553 DOI: 10.1089/zeb.2018.1611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare, autosomal dominant genetic disorder in humans characterized by the gradual ossification of fibrous tissues, including skeletal muscle, tendons, and ligaments. In humans, mutations in the Type I BMP/TGFβ family member receptor gene, ACVR1, are associated with FOP. Zebrafish acvr1l, previously known as alk8, is the functional ortholog of human ACVR1. We previously created and characterized the first adult zebrafish model for FOP by generating animals harboring heat shock-inducible mCherry-tagged constitutively active Acvr1l (Q204D). Since injury is a known trigger for heterotopic ossification (HO) development in human FOP patients, in this study, we investigated several injury models in Acvr1lQ204D-expressing zebrafish and the subsequent formation of HO. We performed studies of Activin A injection, cardiotoxin (CTX) injection, and caudal fin clip injury. We found that none of these methods resulted in HO formation at the site of injury. However, some of the cardiotoxin-injected and caudal fin-clipped animals did exhibit HO at distant sites, including the body cavity and along the spine. We describe these results in the context of new and exciting reports on FOP, and discuss future studies to better understand the etiology and progression of this disease.
Collapse
Affiliation(s)
- Melissa LaBonty
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts.,2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Nicholas Pray
- 2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Pamela C Yelick
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts.,2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
44
|
Lu G, Tandang-Silvas MR, Dawson AC, Dawson TJ, Groppe JC. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Bone 2018; 112:71-89. [PMID: 29626545 PMCID: PMC9851731 DOI: 10.1016/j.bone.2018.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Heterotopic ossification (HO), the pathological extraskeletal formation of bone, can arise from blast injuries, severe burns, orthopedic procedures and gain-of-function mutations in a component of the bone morphogenetic protein (BMP) signaling pathway, the ACVR1/ALK2 receptor serine-threonine (protein) kinase, causative of Fibrodysplasia Ossificans Progressiva (FOP). All three ALKs (-2, -3, -6) that play roles in bone morphogenesis contribute to trauma-induced HO, hence are well-validated pharmacological targets. That said, development of inhibitors, typically competitors of ATP binding, is inherently difficult due to the conserved nature of the active site of the 500+ human protein kinases. Since these enzymes are regulated via inherent plasticity, pharmacological chaperone-like drugs binding to another (allosteric) site could hypothetically modulate kinase conformation and activity. To test for such a mechanism, a surface pocket of ALK2 kinase formed largely by a key allosteric substructure was targeted by supercomputer docking of drug-like compounds from a virtual library. Subsequently, the effects of docked hits were further screened in vitro with purified recombinant kinase protein. A family of compounds with terminal hydrogen-bonding acceptor groups was identified that significantly destabilized the protein, inhibiting activity. Destabilization was pH-dependent, putatively mediated by ionization of a histidine within the allosteric substructure with decreasing pH. In vivo, nonnative proteins are degraded by proteolysis in the proteasome complex, or cellular trashcan, allowing for the emergence of therapeutics that inhibit through degradation of over-active proteins implicated in the pathology of diseases and disorders. Because HO is triggered by soft-tissue trauma and ensuing hypoxia, dependency of ALK destabilization on hypoxic pH imparts selective efficacy on the allosteric inhibitors, providing potential for safe prophylactic use.
Collapse
Affiliation(s)
- Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Mary R Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Alyssa C Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Trenton J Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States.
| |
Collapse
|
45
|
Mucha BE, Hashiguchi M, Zinski J, Shore EM, Mullins MC. Variant BMP receptor mutations causing fibrodysplasia ossificans progressiva (FOP) in humans show BMP ligand-independent receptor activation in zebrafish. Bone 2018; 109:225-231. [PMID: 29307777 PMCID: PMC5866198 DOI: 10.1016/j.bone.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 11/28/2022]
Abstract
The large majority of cases of the autosomal dominant human disease fibrodysplasia ossificans progressiva (FOP) are caused by gain-of-function Arg206His mutations in the BMP type I receptor ACVR1 (ALK2). The Arg206His mutation is located in the GS domain of the type I receptor. This region is normally phosphorylated by the BMP type II receptor, which activates the type I receptor to phosphorylate its substrate, the signal transducer Smad1/5/8. A small subset of patients with FOP carry variant mutations in ACVR1 altering Gly328 to Trp, Glu or Arg. Since these mutations lie outside the GS domain, the mechanism through which ACVR1 Gly328 mutations cause disease remains unclear. We used a zebrafish embryonic development assay to test the signaling of human ACVR1 Gly328 mutant receptors comparing them to the Arg206His mutant. In this assay increased or decreased BMP pathway activation alters dorsal-ventral axial patterning, providing a sensitive assay for altered BMP signaling levels. We expressed the human ACVR1 Gly328 mutant receptors in zebrafish embryos to investigate their signaling activities. We found that all ACVR1 Gly328 human mutations ventralized wild-type embryos and could partially rescue Bmp7-deficient embryos, indicating that these mutant receptors can activate BMP signaling in a BMP ligand-independent manner. The degree of ventralization or rescue was similar among all three Gly328 mutants. Smad1/5 phosphorylation, a readout of BMP receptor signaling, was mildly increased by ACVR1 Gly328 mutations. Gene expression analyses demonstrate expanded ventral and reciprocal loss of dorsal cell fate markers. This study demonstrates that Gly328 mutants increase receptor activation and BMP ligand-independent signaling through Smad phosphorylation.
Collapse
Affiliation(s)
- Bettina E Mucha
- Division of Human Genetics and Molecular Biology, and Division of Biochemical Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Universite de Montreal, Montreal, QC, Canada
| | - Megumi Hashiguchi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery, and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1 R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018; 33:269-282. [PMID: 28986986 PMCID: PMC7737844 DOI: 10.1002/jbmr.3304] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1β, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|