1
|
Zhu Y, Liu Y, Yang K, Wu W, Cheng Y, Ding Y, Gu R, Liu H, Zhang X, Liu Y. Apoptotic vesicles inhibit bone marrow adiposity via wnt/β-catenin signaling. Regen Ther 2025; 29:262-270. [PMID: 40230357 PMCID: PMC11994938 DOI: 10.1016/j.reth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background There is currently increasing focus on aging-related diseases. Osteoporosis is a common disease the incidence of which increases with age. In older patients with osteoporosis, bone marrow mesenchymal stem cells (BMMSCs) have a decreased capacity for osteogenesis and an increased capacity for adipogenesis, causing excessive accumulation of adipose tissue in the bone marrow. Therefore, means of reducing bone marrow adiposity may have therapeutic potential for osteoporosis. Apoptotic vesicles (apoVs) participate in a wide range of physiological processes and have been shown to have therapeutic effects in a variety of diseases. The principal objective of this study was to examine the special properties and regulatory mechanisms of BMMSC-derived apoVs in the treatment of bone marrow adiposity. Results The results showed that apoVs could decrease bone marrow adiposity in osteoporotic mice and prevent adipogenic differentiation of MSCs by activating the Wnt/β-catenin pathway. Conclusion New apoV-based therapies have potential for the treatment of bone marrow adiposity in patients with aging-related osteoporosis and may be further applicable to the treatment of obesity and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Weiliang Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanan Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Wang Y, Wang C, Gong Y, Li Q, Liu M, Sun H. GIT2 negatively regulates the NF-κB pathway directly or indirectly by regulating TRAF3 expression to promote osteogenic differentiation of BMSCs. Tissue Cell 2025; 94:102790. [PMID: 39954559 DOI: 10.1016/j.tice.2025.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AIMS Osteoporosis (OP) is a common disease of aging, which is closely related to the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). DNA damage, as a senescence-associated secretory phenotype (SASP), plays an important role in aging diseases including OP. GIT2 has been identified as a DNA repair gene and alleviates aging-related phenotypes. However, the relationship between GIT2 and osteogenic differentiation of BMSCs remains unclear. METHODS Here, we used bioinformatics analysis to identify the gene GIT2, which is closely related to aging, OP and DNA damage, and its downstream targets. Then, H2O2 -induced BMSCs senescence model and ovariectomy-induced mice OP model was established in vitro and in vivo, respectively. Micro-CT, H&E staining, toluidine blue staining, and calcein double labeling were used to analyze bone mass, osteogenic differentiation phenotype, and bone formation rate. Comet assay, Elisa and immunofluorescence were used to analyze senescence-related phenotypes. Western blotting was used to detect the protein levels of GIT2/TRAF3/NF-κB axis and osteogenesis-related markers. RESULTS Our results showed that GTI2 and TRAF3 were positively correlated with OP-related markers. On the one hand, GIT2 could inhibit the activation of both canonical and non-canonical NF-κB signaling pathways by positively regulating TRAF3. On the other hand, GIT2 could directly bind to P65, a component of the classical NF-κB signaling pathway, and P52, a component of the non-classical NF-κB signaling pathway, to inhibit their activation, improve DNA damage repair, alleviate cell senescence, and further promote osteogenic differentiation of BMSCs. CONCLUSIONS In summary, the present study demonstrates that GIT2 plays a crucial regulatory role in promoting osteogenic differentiation of BMSCs, which provides new ideas for the prevention and treatment of OP and other aging-related diseases.
Collapse
Affiliation(s)
- Yanna Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Lvshunkou District 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Lvshunkou District 116044, China
| | - Ying Gong
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Dalian, Xigang District 116011, China
| | - Qingchen Li
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Dalian, Xigang District 116011, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Dalian, Xigang District 116011, China.
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Lvshunkou District 116044, China.
| |
Collapse
|
3
|
Han Y, Ma H, Tang Z, Jin C. Knockdown of IER3 Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. Biomedicines 2025; 13:947. [PMID: 40299640 PMCID: PMC12025315 DOI: 10.3390/biomedicines13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The differentiation process of human mesenchymal stem cells (hMSCs) is regulated by a variety of chemical, physical, and biological factors. These factors activate distinct signaling pathways and transcriptional networks, thereby regulating the lineage-specific differentiation of hMSCs. Objective: This study aims to investigate the role of Immediate Early Response 3 (IER3) in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and explore the underlying regulatory mechanisms by which IER3 influences osteogenesis. Methods: The expression levels of IER3 and osteogenesis-related genes were quantified when hMSCs were subjected to in vitro osteogenic induction. Then, stable IER3-knockdown hMSCs were generated using IER3-targeted shRNA lentiviral vectors, and the impact of IER3 on osteogenic differentiation was evaluated through both in vitro cell induction and hMSCs subcutaneous implantation model of nude mice. Moreover, RNA-seq and functional inhibition assays were performed to elucidate the signaling pathway through which IER3 regulates the osteogenic differentiation of hMSCs. Results: IER3 expression was significantly downregulated during osteogenic differentiation. Knockdown of IER3 markedly upregulated the expression of ALP and RUNX2, enhancing the osteogenic differentiation capacity of hMSCs, both in vitro and in vivo. Mechanistic studies revealed that IER3 knockdown significantly increased phosphorylated ERK1/2 levels, activating the MAPK/ERK signaling pathway. Furthermore, inhibition of the MAPK/ERK signaling pathway reversed the enhanced osteogenic differentiation observed following IER3 knockdown. Conclusions: Knockdown of IER3 promotes osteogenic differentiation of hMSCs through regulation of the MAPK/ERK signaling pathway, indicating IER3 represents a potential therapeutic target for the treatment of osteoporosis and bone defect-related diseases.
Collapse
Affiliation(s)
| | | | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China; (Y.H.); (H.M.)
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China; (Y.H.); (H.M.)
| |
Collapse
|
4
|
Ellur G, Govindappa PK, Subrahmanian S, Romero GF, Gonzales DA, Margolis DS, Elfar JC. 4-Aminopyridine Promotes BMP2 Expression and Accelerates Tibial Fracture Healing in Mice. J Bone Joint Surg Am 2025:00004623-990000000-01397. [PMID: 40120116 DOI: 10.2106/jbjs.24.00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Delayed bone healing is common in orthopaedic clinical care. Agents that alter cell function to enhance healing would change treatment paradigms. 4-aminopyridine (4-AP) is a U.S. Food and Drug Administration (FDA)-approved drug shown to improve walking in patients with chronic neurological disorders. We recently showed 4-AP's positive effects in the setting of nerve, wound, and even combined multi-tissue limb injury. Here, we directly investigated the effects of 4-AP on bone fracture healing, where differentiation of mesenchymal stem cells into osteoblasts is crucial. METHODS All animal experiments conformed to the protocols approved by the Institutional Animal Care and Use Committee at the University of Arizona and Pennsylvania State University. Ten-week-old C57BL/6J male mice (22 to 28 g), following midshaft tibial fracture, were assigned to 4-AP (1.6 mg/kg/day, intraperitoneal [IP]) and saline solution (0.1 mL/mouse/day, IP) treatment groups. Tibiae were harvested on day 21 for micro-computed tomography (CT), 3-point bending tests, and histomorphological analyses. 4-AP's effect on human bone marrow mesenchymal stem cell (hBMSC) and human osteoblast (hOB) cell viability, migration, and proliferation; collagen deposition; matrix mineralization; and bone-forming gene/protein expression analyses was assessed. RESULTS 4-AP significantly upregulated BMP2 gene and protein expression and gene expression of RUNX2, OSX, BSP, OCN, and OPN in hBMSCs and hOBs. 4-AP significantly enhanced osteoblast migration and proliferation, collagen deposition, and matrix mineralization. Radiographic and micro-CT imaging confirmed 4-AP's benefit versus saline solution treatment in mouse tibial fracture healing (bone mineral density, 687.12 versus 488.29 mg hydroxyapatite/cm3 [p ≤ 0.0021]; bone volume/tissue volume, 0.87 versus 0.72 [p ≤ 0.05]; trabecular number, 7.50 versus 5.78/mm [p ≤ 0.05]; and trabecular thickness, 0.08 versus 0.06 mm [p ≤ 0.05]). Three-point bending tests demonstrated 4-AP's improvement of tibial fracture biomechanical properties versus saline solution (stiffness, 27.93 versus 14.30 N/mm; p ≤ 0.05). 4-AP also increased endogenous BMP2 expression and matrix components in healing callus. CONCLUSIONS 4-AP increased the healing rate, biomechanical properties, and endogenous BMP2 expression of tibiae following fracture. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Gerardo Figueroa Romero
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - David A Gonzales
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - David S Margolis
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
5
|
Tang L, Fan X, Xu Y, Zhang Y, Li G. Luteolin Inhibits Dexamethasone-Induced Osteoporosis by Autophagy Activation Through miR-125b-5p/SIRT3/AMPK/mTOR Axis, an In Vitro and In Vivo Study. Food Sci Nutr 2025; 13:e70071. [PMID: 40104207 PMCID: PMC11913733 DOI: 10.1002/fsn3.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
Luteolin (LUT) has been suggested as an inhibitor of osteoporosis (OP). This investigation examines the pivotal role of the miR-125b-5p/SIRT3/AMPK/mTOR pathway in mediating luteolin-induced effects on OP. Mesenchymal stem cells derived from bone marrow (BMSCs) were exposed to dexamethasone (DEX) to create an in vitro model of OP. Following treatment with luteolin, the levels of miR-125b-5p and SIRT3 were quantified using reverse transcription polymerase chain reaction. Moreover, SIRT3, AMPK, mTOR protein levels, and osteogenesis (OPN, Runx2, OSX, and OCN), and autophagy (p62, ATG5, LC3, and BECN1) were evaluated using ELISA. Additionally, specific mimics and siRNA were constructed to overexpress miR-125b-5p or downregulate SIRT3. Furthermore, animal models of DEX-induced OP were constructed to assess the effects of LUT at doses of 50 and 100 mg/kg/day on bone histology, stereology, biochemistry, and the expression of the miR-125b-5p, SIRT3/AMPK/mTOR axis, and markers of osteogenesis and autophagy. The findings revealed that LUT suppressed miR-125b-5p expression, overexpressed SIRT3 and AMPK, and downregulated mTOR in BMSCs compared to DEX (p-value < 0.01). Interestingly, LUT restored the levels of markers for osteogenesis and autophagy (p-value < 0.001). The overexpression of SIRT3 or miR-125b-5p downregulation inhibited LUT therapeutic properties. In animals, LUT improved bone histology (p-value < 0.05) and inhibited miR-125b-5p and mTOR expression while overexpressing SIRT3 and AMPK (p-value < 0.001). RUNX2, OSX, OPN, and OCN levels were improved, and autophagy was enhanced in LUT-treated rats. The current findings revealed that LUT could promote osteogenesis and improve OP via autophagy activation through the miR-125b-5p/SIRT3/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Liang Tang
- Department of Geriatrics The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology) Kunming China
| | - Xinyu Fan
- Orthopedics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Yongqing Xu
- Orthopedics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Yeming Zhang
- Orthopedics The People's Hospital of Xiangyun County Xiangyun China
| | - Gang Li
- Orthopedics 920th Hospital of Joint Logistics Support Force Kunming China
| |
Collapse
|
6
|
Huang YS, Gao JW, Ao RF, Liu XY, Wu DZ, Huang JL, Tu C, Zhuang JS, Zhu SY, Zhong ZM. Accumulation of advanced oxidation protein products aggravates bone-fat imbalance during skeletal aging. J Orthop Translat 2025; 51:24-36. [PMID: 39902100 PMCID: PMC11788738 DOI: 10.1016/j.jot.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Background Skeletal aging is characterized by a decrease in bone mass and an increase in marrowfat content. Advanced oxidation protein products (AOPPs) accumulate easily with aging and disrupt redox homeostasis. We examined whether AOPPs accumulation contributes to the bone-fat imbalance during skeletal aging. Methods Both young and aged mice were employed to assess the changes of AOPPs levels and its contribution to bone-fat imbalance during skeletal aging. Primary bone marrow mesenchymal stromal cells (MSCs) were used to examine the potential role of AOPPs in age-related switch between osteogenic and adipogenic differentiation. Aged mice were also gavaged by non-selective antioxidant N-acetyl-L-cysteine (NAC), followed by close monitoring of the changes in AOPPs levels and bone-fat metabolism. Furthermore, young mice were chronically exposed to AOPPs and then evaluated for the changes of bone mass and marrow adiposity. Results The levels of AOPPs in serum and bone marrow were markedly higher in aged mice than that in young mice. Age-related accumulation of AOPPs was accompanied by reduced bone formation, increased marrow adiposity and deterioration of bone microstructure. Reduced AOPPs accumulation by antioxidant NAC leaded to improvement of the bone-fat imbalance in aged mice. Similarly, the bone-fat imbalance was induced by chronic AOPPs loading in young mice. Compared with MSCs from young mice, MSCs from aged mice tended to differentiate into adipocytes rather than osteoblasts and displayed cellular senescence. Exposure of primary MSCs to AOPPs resulted in the switch from osteogenic to adipogenic lineage and cellular senescence. AOPPs challenge also increased intracellular ROS generation by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. The antioxidant NAC, after scavenging ROS, ameliorated the AOPPs-induced lineage switch and senescence in MSCs by inhibiting the PI3K/AKT/mTOR pathway. Conclusion Our findings revealed the involvement of AOPPs in age-related switch between osteogenic and adipogenic differentiation, and illuminated a novel potential mechanism underlying bone-fat imbalance during skeletal aging. The translational potential of this article Reducing AOPPs accumulation and its cascading effects on MSCs might be an attractive strategy for delaying skeletal aging.
Collapse
Affiliation(s)
- Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-Feng Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin-Yu Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Long Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Shen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Yuan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Li X, Yang X, Liu Z, Liu H, Lv H, Li X, Xu X, Shen Y. Tanshinone IIA Reverses Osteogenic Differentiation of Bone Marrow Mesenchymal Stromal Cells Impaired by Glucocorticoids via the ERK1/2-CREB Signaling Pathway. Chem Biol Drug Des 2025; 105:e70069. [PMID: 40047141 DOI: 10.1111/cbdd.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Glucocorticoids-induced osteoporosis poses a critical health issue due to its detrimental impact on bone marrow mesenchymal stem cells (BMSCs); Tanshinone IIA (TSA) emerges as a promising therapeutic intervention, demonstrating its capacity to reverse osteogenic differentiation impairment. The aim is to determine whether TSA enhances the osteogenic differentiation of BMSCs damaged by dexamethasone (DEX) through the ERK1/2 -CREB signaling pathway. BMSCs were treated with varying concentrations of DEX (0.1-30 μM) and TSA (0.04-5 μM) for 18 or 36 h. Cell viability was assessed using the MTT assay. Osteogenic differentiation was evaluated through Alizarin Red S staining and quantified by qRT-PCR for osteogenic markers such as Runx2 and ALP. Apoptosis was measured by Annexin V-FITC/PI staining and TUNEL/DAPI co-staining. The ERK1/2-CREB signaling pathway was examined using Western blot and immunofluorescence. TSA at 5 μM significantly bolstered BMSCs viability and osteogenic differentiation, reversing the deleterious effects of 30 μM DEX. TSA pre-treatment decreased apoptosis and ROS levels, and importantly, it enhanced the ERK1/2-CREB signaling pathway, as evidenced by increased phosphorylation of ERK1/2 and CREB. The ERK1/2 inhibitor PD98059 and siCREB abrogated TSA's protective effects, highlighting the pathway's significance. These findings indicate that TSA, through the ERK1/2-CREB axis, provides a protective strategy against DEX-induced impairment in BMSCs. TSA's modulation of the ERK1/2 -CREB pathway reverses DEX-induced osteogenic inhibition and apoptosis in BMSCs, suggesting its therapeutic efficacy against glucocorticoid-induced bone disorders.
Collapse
Affiliation(s)
- Xiaodong Li
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Yang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zelin Liu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongpeng Liu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hang Lv
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Shanhe YiPa Research Institute, Tianjin, China
| | - Xilin Xu
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiwei Shen
- Binhai New Area Hospital of TCM, Tianjin (Fourth Teaching Hospital of Tian Jin University of TCM), Binhai New Area, Tianjin, China
| |
Collapse
|
9
|
Li W, Wang W, Zhang M, Chen Q, Li F, Li S. The assessment of marrow adiposity in type 1 diabetic rabbits through magnetic resonance spectroscopy is linked to bone resorption. Front Endocrinol (Lausanne) 2025; 15:1518656. [PMID: 39926390 PMCID: PMC11803209 DOI: 10.3389/fendo.2024.1518656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Background Enhanced marrow adiposity is frequently linked with a decline in bone density. The underlying mechanisms responsible for bone loss in diabetes are not well understood. In this investigation, we employed an alloxan-induced diabetes rabbit model to unravel the association between marrow fat content and bone resorption, utilizing magnetic resonance spectroscopy. Methods Forty 4-month-old male New Zealand rabbits were randomly allocated into two groups: a control group and an alloxan-induced diabetic group, each consisting of 20 rabbits. Biochemical analyses covered plasma glucose, enzyme levels, lipid profiles, blood urea nitrogen, creatinine levels, and markers of bone turnover. Quantification of bone marrow adipose tissue utilized both MR spectroscopy and histological examinations. Dual-energy X-ray absorptiometry and microcomputed tomography were employed to determine bone density and trabecular bone microarchitectures. The expression levels of marrow adipocyte markers (peroxisome proliferator-activated receptor-gamma2, CCAAT/enhancer-binding protein-α, and fatty acid binding protein 4) and markers of bone resorption [tartrate-resistant acid phosphatase (TRACP) and cathepsin K] were assessed using RT-PCR. Results Diabetic rabbits exhibited significant increases in marrow fat fraction (MFF) over time (MFF increased by 13.2% at 1.5 months and 24.9% at 3 months relative to baseline conditions, respectively). These changes were accompanied by the deterioration of trabecular microarchitectures. Marrow adipogenesis was evident through a 31.0% increase in adipocyte size, a 60.0% rise in adipocyte number, a 103.3% increase in the percentage of adipocyte area, and elevated mRNA expressions of marrow adipocyte markers. Osteoclast markers (TRACP and cathepsin K RNA and serum TRACP5b levels) were elevated in diabetic rabbits. MFF exhibited a robust correlation with trabecular bone microarchitectures. A significant positive correlation was identified between ΔMFF and serum ΔTRACP5b levels. Moreover, MFF at 3 months showed a strong positive correlation with serum TRACP5b levels (r = 0.763), as well as with the mRNA expression of osteoclast markers, including TRACP (r = 0.784) and cathepsin K (r = 0.659), all with p <0.001. Conclusions Rabbits with type 1 diabetes experience an expansion of marrow adiposity, and this enhanced marrow adiposity is associated with increased osteoclast activity.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wei Wang
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minlan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qi Chen
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fengyi Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shaojun Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
10
|
Zhou J, Wang J, Qu M, Wang Q, Wang L, Liu S, Liu J, Sun G, Zhong P, Huang X, Liu D, Yin L, He C. Protective effects of electroacupuncture on senile osteoporosis in rats. Acupunct Med 2024; 42:334-341. [PMID: 39460675 DOI: 10.1177/09645284241280089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
OBJECTIVES The objectives were to explore the protective effects of electroacupuncture (EA) on senile osteoporosis in aged rats and investigate the underlying mechanisms. METHODS This study included aged (24-month-old; n = 16) and young (3-month-old; n = 8) male Sprague-Dawley rats. Aged rats were further randomized 1:1 to an aged control group (Aged; n = 8) and an EA treatment group (EA; n = 8). The 3-month-old rats served as young controls (Young). EA rats received EA at ST36, SP6, GB34 and SP10 bilaterally for 30 min a day, 5 days a week, for 8 weeks. RESULTS EA significantly increased serum markers of bone formation in Aged rats. There were no significant differences in serum markers of bone resorption between EA and Aged rats. Deterioration of bone mineral density (BMD) and trabecular bone architecture was observed in the Aged group, while EA significantly increased BMD of the left femur and L5 vertebral body in aged rats. Aging-induced deterioration of trabecular bone architecture was partially reversed in EA rats. Runx2 and Osterix mRNA and protein levels were significantly increased and peroxisome proliferator-activated receptor (PPAR)γ was significantly decreased in bone marrow cells in EA compared with Aged groups. The mRNA and protein levels of core constituents of the Wnt/β-catenin signaling pathway (Wnt3a, low-density lipoprotein receptor-related protein (LRP)5 and β-catenin) were significantly increased and Dickkopf 1 was significantly decreased in bone marrow cells in EA compared with Aged groups. CONCLUSION EA may prevent bone loss and deterioration in aged rats by promoting osteogenesis via a mechanism that may involve activation of the Wnt/β-catenin signaling pathway. EA may represent a therapeutic option for senile osteoporosis.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinling Wang
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengjian Qu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Qian Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiong Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Guanghua Sun
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Peirui Zhong
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiarong Huang
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Danni Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Linwei Yin
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Hosain O, Clinkenbeard EL. Adiposity and Mineral Balance in Chronic Kidney Disease. Curr Osteoporos Rep 2024; 22:561-575. [PMID: 39394545 DOI: 10.1007/s11914-024-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE OF REVIEW Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.
Collapse
Affiliation(s)
- Ozair Hosain
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46022, USA
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Shen C, Deng M, Wang X, Li X, Chen X, Gao Z, Li C, Liu Y. Zuogui Wan modulates macrophage polarization and promotes osteogenic differentiation through regulation of CD51-positive bone marrow mesenchymal stem cells. Sci Rep 2024; 14:26130. [PMID: 39478130 PMCID: PMC11525575 DOI: 10.1038/s41598-024-77590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Background Zuogui Wan (ZGW) is a traditional herbal formula used to treat chronic kidney and bone diseases. Previous research has shown that ZGW slows down the aging process of bone marrow mesenchymal stem cells (BMSCs) and improves bone metabolism. However, its role in treating postmenopausal osteoporosis (PMOP) has not yet been fully investigated. Therefore, we investigated the therapeutic effects of ZGW and its potential mechanisms in an ovariectomy (OVX)-induced osteoporosis rat model. Results We observed significant improvements in bone loss and the osteoporotic phenotype in OVX rats treated with ZGW. These findings were confirmed with micro-computed tomography (micro-CT) and histomorphological analysis. We also discovered that ZGW reversed the macrophage imbalance, which in turn inhibited osteoclast differentiation and bone resorption. Furthermore, RNA-Seq results revealed the active expression of CD51 in BMSCs before and after ZGW therapy, which is associated with macrophage polarization and osteoblastic differentiation. The results also showed that ZGW decreased CD51 + BMSCs levels, which is closely related to the inhibition of osteoblast differentiation and promotion of osteoclast resorption. Conclusions Our study demonstrated that ZGW may improve postmenopausal osteoporosis by restoring macrophage polarization and down-regulating CD51 + BMSCs. In addition, ZGW promoted osteoblast formation and inhibited osteoclast resorption.
Collapse
Affiliation(s)
- Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingxing Deng
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaobao Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Li
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiongbin Chen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhi Gao
- Sichuan Orthopedic Hospital, Chengdu, People's Republic of China
| | - Chuncai Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Yincong Liu
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
13
|
Seo YJ, Park JH, Byun JH. Therapeutic Potential of Stearoyl-CoA Desaturase1 (SCD1) in Modulating the Effects of Fatty Acids on Osteoporosis. Cells 2024; 13:1781. [PMID: 39513888 PMCID: PMC11544805 DOI: 10.3390/cells13211781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoporosis is a common skeletal disease, primarily associated with aging, that results from decreased bone density and bone volume. This reduction significantly increases the risk of fractures in osteoporosis patients compared to individuals with normal bone density. Additionally, the bone regeneration process in these patients is slow, making complete healing difficult. Along with the decline in bone volume and density, osteoporosis is characterized by an increase in marrow adipose tissue (MAT), which is fat within the bone. In this altered bone microenvironment, osteoblasts are influenced by various factors secreted by adipocytes. Notably, saturated fatty acids promote osteoclast activity, inhibit osteoblast differentiation, and induce apoptosis, further reducing osteoblast formation. In contrast, monounsaturated fatty acids inhibit osteoclast formation and mitigate the apoptosis caused by saturated fatty acids. Leveraging these properties, we aimed to investigate the effects of overexpressing stearoyl-CoA desaturase 1 (SCD1), an enzyme that converts saturated fatty acids into monounsaturated fatty acids, on osteogenic differentiation and bone regeneration in both in vivo and in vitro models. Through this novel approach, we seek to develop a stem cell-based therapeutic strategy that harnesses SCD1 to improve bone regeneration in the adipocyte-rich osteoporotic environment.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Ho Park
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA;
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
14
|
Rosas E, Dias FJ, Pitol D, Olate S, Issa JPM, Borie E. Effect of Ethyl-Cyanoacrylate and Platelet-Rich Fibrin on Fresh Sockets of Rabbits Subjected to Anticoagulant Therapy. J Clin Med 2024; 13:6389. [PMID: 39518528 PMCID: PMC11545847 DOI: 10.3390/jcm13216389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives: There are no studies related to the use of PRF associated with cyanoacrylates in fresh post-extraction sockets. Thus, the aim of this study was to assess the effect of ethyl-cyanoacrylate combined with PRF in fresh sockets of rabbits subjected to anticoagulant therapy. Methods: Twelve adults rabbits were selected and premedicated with heparin 1 week before surgery to induce and simulate anticoagulant therapy. Upper and lower first premolars on the right side were extracted and then were divided into four groups of three animals each, with the groups distributed according to the type of intervention in the sockets (n = 6): (1) clot and suture (control); (2) PRF and suture; (3) clot and ethyl-cyanoacrylate; (4) PRF and ethyl-cyanoacrylate. At 12 weeks, the animals were sacrificed and the sockets were analyzed histologically and quantitatively. Total bone area, inflammation infiltrate, and adhesive remnants were assessed. Results: No remnants of adhesive were found in the samples. Groups 1 and 2 showed the highest bone area (G1 = 37.87% ± 17.86; G2 = 30.31 ± 9.36) with significant differences to those treated with ethyl-cyanoacrylate adhesive (G3 = 26.6% ± 11.82; G4 = 24.29% ± 6.25). Conclusions: The groups that used ethyl-cyanoacrylate as a closure method in sockets exhibited less bone area than the groups that used sutures. Both groups that used PRF as therapy did not show a significant improvement in bone healing at 12 weeks compared with the clot groups.
Collapse
Affiliation(s)
- Eduardo Rosas
- Master Program in Dental Sciences, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Fernando José Dias
- Oral Biology Research Centre (CIBO-UFRO), Adults Integral Dentistry Department, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Dimitrius Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (D.P.); (J.P.M.I.)
| | - Sergio Olate
- CIMA Research Centre, Adults Integral Dentistry Department, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4811230, Chile
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (D.P.); (J.P.M.I.)
| | - Eduardo Borie
- CICO Research Centre, Adults Integral Dentistry Department, Dental School, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
15
|
Bugueno IM, Alastra G, Balic A, Stadlinger B, Mitsiadis TA. Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells. Int J Mol Sci 2024; 25:11105. [PMID: 39456888 PMCID: PMC11508566 DOI: 10.3390/ijms252011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been extensively studied, it is not yet fully defined if their adipogenic potential differs. Therefore, in this study, we compared the in vitro adipogenic differentiation potential of hDPSCs and hBMSCs. Both cell populations were cultured in adipogenic differentiation media, followed by specific lipid droplet staining to visualise cytodifferentiation. The in vitro differentiation assays were complemented with the expression of specific genes for adipogenesis and osteogenesis-dentinogenesis, as well as for genes involved in the Wnt and Notch signalling pathways. Our findings showed that hBMSCs formed adipocytes containing numerous and large lipid vesicles. In contrast to hBMSCs, hDPSCs did not acquire the typical adipocyte morphology and formed fewer lipid droplets of small size. Regarding the gene expression, cultured hBMSCs upregulated the expression of adipogenic-specific genes (e.g., PPARγ2, LPL, ADIPONECTIN). Furthermore, in these cells most Wnt pathway genes were downregulated, while the expression of NOTCH pathway genes (e.g., NOTCH1, NOTCH3, JAGGED1, HES5, HEY2) was upregulated. hDPSCs retained their osteogenic/dentinogenic molecular profile (e.g., RUNX2, ALP, COLIA1) and upregulated the WNT-specific genes but not the NOTCH pathway genes. Taken together, our in vitro findings demonstrate that hDPSCs are not entirely committed to the adipogenic fate, in contrast to the hBMSCs, which are more effective to fully differentiate into adipocytes.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Anamaria Balic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, CH-8032 Zurich, Switzerland;
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| |
Collapse
|
16
|
Pitchumani PK, Parekh S, Rachana Hegde, Thomas DC. Systemic Factors Affecting Prognosis in Periodontics: Part II. Dent Clin North Am 2024; 68:603-617. [PMID: 39244246 DOI: 10.1016/j.cden.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This study gives an insight into certain systemic conditions and factors such as nutrition, age, hematological disorders, hypertension, smoking, obesity, and metabolic syndrome that have a notable effect on the periodontium. The review highlights the importance of taking these factors into consideration in periodontal therapy and their impact on the prognosis of periodontal therapies. The other systemic factors are discussed in detail elsewhere in the special issue.
Collapse
Affiliation(s)
| | | | | | - Davis C Thomas
- Department of Diagnostic Sciences, Center for Temporomandibular Disorders and Orofacial Pain, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
17
|
Li D, Cao C, Li Z, Chang Z, Cai P, Zhou C, Liu J, Li K, Du B. Icariside II protects from marrow adipose tissue (MAT) expansion in estrogen-deficient mice by targeting S100A16. J Mol Endocrinol 2024; 73:e240020. [PMID: 39101576 PMCID: PMC11466200 DOI: 10.1530/jme-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Icariside II, a flavonoid glycoside, is the main component found invivo after the administration of Herba epimedii and has shown some pharmacological effects, such as prevention of osteoporosis and enhancement of immunity. Increased levels of marrow adipose tissue are associated with osteoporosis. S100 calcium-binding protein A16 (S100A16) promotes the differentiation of bone marrow mesenchymal stem cells (BMSCs) into adipocytes. This study aimed to confirm the anti-lipidogenesis effect of Icariside II in the bone marrow by inhibiting S100A16 expression. We used ovariectomy (OVX) and BMSC models. The results showed that Icariside II reduced bone marrow fat content and inhibited BMSCs adipogenic differentiation and S100A16 expression, which correlated with lipogenesis. Overexpression of S100A16 eliminated the inhibitory effect of Icariside II on lipid formation. β-catenin participated in the regulation adipogenesis mediated by Icariside II/S100A16 in the bone. In conclusion, Icariside II protects against OVX-induced bone marrow adipogenesis by downregulating S100A16, in which β-catenin might also be involved.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenhao Cao
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhuofan Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhiyong Chang
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ping Cai
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenxi Zhou
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun Liu
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kaihua Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin Du
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Chavassieux P, Roux JP, Libanati C, Shi Y, Chapurlat R. Evaluation of romosozumab's effects on bone marrow adiposity in postmenopausal osteoporotic women: results from the FRAME bone biopsy sub-study. J Bone Miner Res 2024; 39:1278-1283. [PMID: 39023227 DOI: 10.1093/jbmr/zjae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Romosozumab, a humanized monoclonal antibody that binds and inhibits sclerostin, produces a marked increase in bone formation with a concomitant decreased bone resorption. This transient rise in bone formation in the first 2 months of treatment is mainly due to an increased modeling-based bone formation. This requires the recruitment and differentiation of osteoblasts, one possibility being a preferential switch in commitment of precursors to osteoblasts over adipocytes. The purpose of this study was to analyze the marrow adiposity in transiliac bone biopsies at months 2 or 12 from the FRAME biopsy sub-study in patients receiving romosozumab or placebo. The total adipocyte area, number, and density were measured on the total cancellous bone area. The size and shape at the individual adipocyte level were assessed including the mean adipocyte area, perimeter, min and max diameters, and aspect ratio. No significant difference in total adipocyte area, number, or density between placebo and romosozumab groups was observed at months 2 and 12, and no difference was observed between 2 and 12 months. After 2 or 12 months, romosozumab did not modify the size or shape of the adipocytes. No relationship between the adipocyte parameters and the dynamic parameters of bone formation could be evidenced. In conclusion, based on the analysis of a small number of biopsies, no effect of romosozumab on bone marrow adiposity of iliac crest was identified after 2 and 12 months suggesting that the modeling-based formation observed at month 2 was not due to a preferential commitment of the precursor to osteoblast over adipocyte cell lines but may result from a reactivation of bone lining cells and from a progenitor pool independent of the marrow adipocyte population.
Collapse
Affiliation(s)
| | | | | | - Yifei Shi
- Amgen Inc, Thousand Oaks, CA, United States
| | | |
Collapse
|
19
|
Li H, Liao X, Lan M, He J, Gao J, Fan Z, Huang J, Wu X, Chen J, Sun G. Arctigenin Modulates Adipogenic-Osteogenic Balance in the Bone Marrow Microenvironment of Ovariectomized Rats via the MEK1/PPARγ/Wnt/β-Catenin Pathway. Chem Biol Drug Des 2024; 104:e14625. [PMID: 39289148 DOI: 10.1111/cbdd.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Arctigenin (Ar) is a promising therapeutic candidate for postmenopausal osteoporosis (PMOP). This study explores its mechanism by examining its effects on adipogenesis and osteogenesis in ovariectomized (OVX) rats. In vitro, Ar effectively suppressed the adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from OVX rats, reducing lipid droplet formation and downregulating proteins associated with lipid synthesis. In vivo, Ar treatment significantly reduced bone loss, inhibited adipocyte development, improved lipid metabolism, and promoted bone formation in OVX rats. Mechanistically, Ar inhibited the phosphorylation of Mitogen-Activated Protein Kinase 1 (MEK1), downregulated Peroxisome Proliferator-Activated Receptor gamma (PPARγ), promoted the accumulation of β-catenin in the nucleus, and prevented the direct binding of PPARγ to β-catenin in BMSCs. This regulation of the PPARγ/Wnt signaling axis underlies its dual role in inhibiting adipogenesis and promoting osteogenesis. Notably, co-treatment with rosiglitazone (RGZ) reversed the effects of Ar on adipogenesis and osteogenesis without affecting MEK1 inhibition. These findings offer valuable insights into arctigenin's potential as a therapeutic strategy for PMOP by modulating MEK1 signaling and regulating the PPARγ/Wnt axis.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Xingen Liao
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Min Lan
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jianying He
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingping Gao
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Zhiqiang Fan
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jiayu Huang
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Xin Wu
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jiaxin Chen
- Department of Orthopedic Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Guicai Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Kim IS, Lee HS, Jang J, An JN, Kim SG, Kim JK. Impact of Fat Mass on Osteoporosis, Sarcopenia, and Osteosarcopenia in Peritoneal Dialysis Patients. Am J Nephrol 2024; 55:607-617. [PMID: 39154635 DOI: 10.1159/000540948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION The relationship between fat mass and osteoporosis, sarcopenia, and osteosarcopenia is complex. While higher fat mass generally has a negative impact on bone and muscle health in the general population, the impact in peritoneal dialysis (PD) patients is less well understood. METHODS In this study of 359 PD patients, sarcopenia was identified using appendicular skeletal muscle per square meter (ASM/m2), with cut-off values of <7.0 kg/m2 for men and <5.5 kg/m2 for women. Fat tissue index (FTI) and lean tissue index (LTI) were determined using body composition monitoring, with the lowest tertile classified as low FTI and low LTI. Bone mineral density was measured, with a T-score below -2.5 indicating osteoporosis. RESULTS The prevalence of osteoporosis, sarcopenia, and osteosarcopenia was 25%, 32%, and 15%, respectively. Notably, 60% of osteoporotic patients had sarcopenia, and about 45% of sarcopenic patients had osteoporosis. Patients with osteoporosis were older and had significantly lower LTI (15.3 vs. 12.7 kg/m2, p < 0.001) and ASM (7.3 vs. 5.8 kg/m2, p < 0.001). Osteoporotic patients also had lower FTI, but this was more pronounced in men than in women. Patients with both sarcopenia and osteoporosis had the lowest LTI and FTI compared to those with only one or neither condition. Low FTI was a significant determinant for osteoporosis (OR, 2.34; 95% CI, 1.43-3.85; p = 0.001), sarcopenia (OR, 2.91; 95% CI, 1.82-4.64; p < 0.001), and osteosarcopenia (OR, 2.34; 95% CI, 1.30-4.24; p = 0.005) in univariate analysis, and these associations remained significant after adjustment for age and body mass index. CONCLUSION Osteoporosis and sarcopenia are common and interrelated in PD patients. Low fat mass, but not normal/high fat mass, was significantly associated with these conditions, suggesting the importance of maintaining adequate fat mass in PD patients.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hyung Seok Lee
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jinha Jang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jung Nam An
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jwa-Kyung Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
21
|
Barnawi BM, Alanazi MM, Al-Mutiri FA, Alqahtani RS, Al-Harbi MS, Al-Raqqas SK, Mahjoub WK, Alsetri MM, Al-Sultan ZM, Alghamdi GM, Almutawah RI. Interlinked Pathways: Exploring the Bidirectional Impacts of Periodontitis and Metabolic Syndrome. Cureus 2024; 16:e67544. [PMID: 39310407 PMCID: PMC11416629 DOI: 10.7759/cureus.67544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolic syndrome (MBS) and periodontitis are distinct conditions with overlapping and unique risk factors. Periodontitis is a chronic destructive disease of the periodontium, driven by alterations in the host immune-inflammatory response to virulent periodontal pathogens. MBS is characterized by various abnormalities, including visceral abdominal obesity, dyslipidemia (low high-density lipoprotein (HDL) and high triglyceride (TG) levels), hypertension, and hyperglycemia. These factors collectively increase the risk of atherosclerotic cardiovascular disease (CVD) and diabetes. Several pro-inflammatory mediators are involved in the pathogenesis of periodontitis and MBS, and the deleterious bidirectional effects of these mediators exacerbate the severity and progression of both conditions. This comprehensive review focuses on the intricate relationship between MBS and periodontitis. Specifically, it explores the pathophysiological mechanisms of each disease component of MBS and its impact on periodontitis, and vice versa.
Collapse
Affiliation(s)
| | - Maram M Alanazi
- College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Fai A Al-Mutiri
- College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Rahaf S Alqahtani
- College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Madhawi S Al-Harbi
- College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | | | | | | | | | | | | |
Collapse
|
22
|
Muralidharan A, Gomez GA, Kesavan C, Pourteymoor S, Larkin D, Tambunan W, Sechriest VF, Mohan S. Sex-Specific Effects of THRβ Signaling on Metabolic Responses to High Fat Diet in Mice. Endocrinology 2024; 165:bqae075. [PMID: 38935021 PMCID: PMC11237353 DOI: 10.1210/endocr/bqae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Thyroid hormone (TH) plays a crucial role in regulating the functions of both bone and adipose tissue. Given that TH exerts its cholesterol-lowering effects in hepatic tissue through the TH receptor-β (TRβ), we hypothesized that TRβ agonist therapy using MGL3196 (MGL) would be effective in treating increased adiposity and bone loss in response to a 12-week high-fat diet (HFD) in adult C57BL/6J mice. Transcriptional and serum profiling revealed that HFD-induced leptin promoted weight gain in both males and females, but MGL only suppressed leptin induction and weight gain in males. In vitro studies suggest that estrogen suppresses MGL activity in adipocytes, indicating that estrogen might interfere with MGL-TRβ function. Compared to systemic adiposity, HFD reduced bone mass in male but not female mice. Paradoxically, MGL treatment reversed macroscopic bone mineral density loss in appendicular bones, but micro-CT revealed that MGL exacerbated HFD-induced trabecular bone loss, and reduced bone strength. In studies on the mechanisms for HFD effects on bone, we found that HFD induced Rankl expression in male femurs that was blocked by MGL. By ex vivo assays, we found that RANKL indirectly represses osteoblast lineage allocation of osteoprogenitors by induction of inflammatory cytokines TNFα, IL-1β, and CCL2. Finally, we found that MGL functions in both systemic adiposity and bone by nongenomic TRβ signaling, as HFD-mediated phenotypes were not rescued in TRβ147F knockout mice with normal genomic but defective nongenomic TRβ signaling. Our findings demonstrate that the negative effects of HFD on body fat and bone phenotypes are impacted by MGL in a gender-specific manner.
Collapse
Affiliation(s)
- Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Gustavo A Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Destiney Larkin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - William Tambunan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - V Franklin Sechriest
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
23
|
Liu S, Zhang B, Ma S, Wu F, Shi X, Wu J, Jensen OT, Cariati P, Hong J, Zhu X. The mechanism of bone metabolism in a Sprague Dawley rat model of mandibular osteoradionecrosis. Quant Imaging Med Surg 2024; 14:4403-4416. [PMID: 39022252 PMCID: PMC11250332 DOI: 10.21037/qims-24-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
Background Osteoradionecrosis (ORN) is a serious complication of radiotherapy for head and neck cancer. There is currently a lack of data on the dynamic expression of genes related to bone remodeling during the development of mandibular ORN. This study aimed to establish an animal model of ORN in Sprague Dawley (SD) rats, detect the expression of genes related to bone metabolism, observe morphological changes, and clarify the mechanism of ORN. Methods A total of 24 male SD rats in group 1 were randomly divided into four groups (n=6/group): group a, normal control; group b, simple tooth extraction; group c, simple radiation; and group d, radiation extraction group. The right mandible of rats in groups c and d was irradiated with a single dose of 35 Gy. The right mandibles were taken from each group for morphological observation 90 days after irradiation. SD rats in group 2 (n=144) were randomly divided into four groups (in similar fashion to group 1 but with groups a', b', c', and d'). Samples were collected at six time points after irradiation. Histopathological changes were observed, and Western blotting (WB) was used to analyze protein expression. Results The formation of dead bone and pathological fracture was visible under micro-computed tomography (micro-CT), and tissue biopsy showed late fibrosis repair. In group d', osteogenesis and osteoclasis coexisted in the early irradiation stage. Vascular endothelial growth factor (VEGF) receptor expression was lower in groups c' and d' than in group a'. On day 45, runt-related transcription factor 2 (RUNX2) expression in group d' was lower than that in the other groups. The ratio of receptor activator of nuclear factor-κβ ligand to osteoprotegerin (RANKL:OPG) differed significantly among groups b', c', and d' on the 45th day (d' > c' > b'). Conclusions Radiation and vascular function damage resulted in the lower expression of VEGF. The first 15 days after radiation was mainly characterized by new bone formation. After 15 days, bone resorption increased. Tooth extraction trauma can aggravate the bone metabolism imbalance and promote ORN occurrence. These findings shed light on the mechanism of ORN.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Oral Maxillo-Facial Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Zhang
- Department of Oral and Maxillo-Facial Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Shengnan Ma
- Department of Oral Maxillo-Facial Surgery, People’s Hospital of Tongren, Tongren, China
| | - Feiguang Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaona Shi
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiandong Wu
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ole T. Jensen
- Department of Oral Maxillofacial Surgery, University of Utah, School of Dentistry, Salt Lake City, UT, USA
| | - Paolo Cariati
- Department of Oral & Maxillofacial Surgery, Hospital General Universitario de Albacete, Albacete, Spain
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaofeng Zhu
- Department of Oral Maxillo-Facial Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Yen BL, Wang LT, Wang HH, Hung CP, Hsu PJ, Chang CC, Liao CY, Sytwu HK, Yen ML. Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD +/SIRT1 axis. J Biomed Sci 2024; 31:49. [PMID: 38735943 PMCID: PMC11089752 DOI: 10.1186/s12929-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan.
| | - Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei, 11042, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No.250, Wuxing Street, Taipei, 11042, Taiwan
| | - Hsiu-Huang Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chin-Pao Hung
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Chien-Yu Liao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Microbiology & Immunology, NDMC, No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| |
Collapse
|
25
|
Cai Y, Han Z, Cheng H, Li H, Wang K, Chen J, Liu ZX, Xie Y, Lin Y, Zhou S, Wang S, Zhou X, Jin S. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly. Front Immunol 2024; 15:1405621. [PMID: 38774874 PMCID: PMC11106385 DOI: 10.3389/fimmu.2024.1405621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.
Collapse
Affiliation(s)
- Yijin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Xiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Xie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Zhou
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Li JY, Wang TT, Ma L, Zhang Y, Zhu D. Silencing of Jumonji domain-containing 1C inhibits the osteogenic differentiation of bone marrow mesenchymal stem cells via nuclear factor-κB signaling. World J Stem Cells 2024; 16:151-162. [PMID: 38455099 PMCID: PMC10915961 DOI: 10.4252/wjsc.v16.i2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity. During osteoporosis, bone mesenchymal stem cells (BMSCs) exhibit an increased ability to differentiate into adipocytes and a decreased ability to differentiate into osteoblasts, resulting in bone loss. Jumonji domain-containing 1C (JMJD1C) has been demonstrated to suppress osteoclastogenesis. AIM To examine the effect of JMJD1C on the osteogenesis of BMSCs and the potential underlying mechanism. METHODS BMSCs were isolated from mouse bone marrow tissues. Oil Red O staining, Alizarin red staining, alkaline phosphatase staining and the expression of adipogenic and osteogenic-associated genes were assessed to determine the differentiation of BMSCs. Bone marrow-derived macrophages (BMMs) were incubated with receptor activator of nuclear factor-kappa Β ligand to induce osteoclast differentiation, and osteoclast differentiation was confirmed by tartrate-resistant acid phosphatase staining. Other related genes were measured via reverse transcription coupled to the quantitative polymerase chain reaction and western blotting. Enzyme-linked immunosorbent assays were used to measure the levels of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6 and interleukin-1 beta. RESULTS The osteogenic and adipogenic differentiation potential of BMSCs isolated from mouse bone marrow samples was evaluated. JMJD1C mRNA and protein expression was upregulated in BMSCs after osteoblast induction, while p-nuclear factor-κB (NF-κB) and inflammatory cytokines were not significantly altered. Knockdown of JMJD1C repressed osteogenic differentiation and enhanced NF-κB activation and inflammatory cytokine release in BMSCs. Moreover, JMJD1C expression decreased during BMM osteoclast differentiation. CONCLUSION The JMJD1C/NF-κB signaling pathway is potentially involved in BMSC osteogenic differentiation and may play vital roles in the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Medical Cosmetology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ting-Ting Wang
- Department of General Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Li Ma
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Zhang
- Senior Department of Hematology, The Fifth Medical Centre, General Hospital of Chinese People's Liberation Army, Beijing 100071, China
| | - Di Zhu
- Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
27
|
Shan L, Yang X, Liao X, Yang Z, Zhou J, Li X, Wang B. Histone demethylase KDM7A regulates bone homeostasis through balancing osteoblast and osteoclast differentiation. Cell Death Dis 2024; 15:136. [PMID: 38346941 PMCID: PMC10861515 DOI: 10.1038/s41419-024-06521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Histone methylation plays a crucial role in various cellular processes. We previously reported the in vitro function of histone lysine demethylase 7 A (KDM7A) in osteoblast and adipocyte differentiation. The current study was undertaken to investigate the physiological role of KDM7A in bone homeostasis and elucidate the underlying mechanisms. A conditional strategy was employed to delete the Kdm7a gene specifically in osterix-expressing osteoprogenitor cells in mice. The resulting mutant mice exhibited a significant increase in cancellous bone mass, accompanied by an increase in osteoblasts and bone formation, as well as a reduction in osteoclasts, marrow adipocytes and bone resorption. The bone marrow stromal cells (BMSCs) and calvarial pre-osteoblastic cells derived from the mutant mice exhibited enhanced osteogenic differentiation and suppressed adipogenic differentiation. Additionally, osteoclastic precursor cells from the mutant mice exhibited impaired osteoclast differentiation. Co-culturing BMSCs from the mutant mice with wild-type osteoclast precursor cells resulted in the inhibition of osteoclast differentiation. Mechanistic investigation revealed that KDM7A was able to upregulate the expression of fibroblast activation protein α (FAP) and receptor activator of nuclear factor κB ligand (RANKL) in BMSCs through removing repressive di-methylation marks of H3K9 and H3K27 from Fap and Rankl promoters. Moreover, recombinant FAP attenuated the dysregulation of osteoblast and adipocyte differentiation in BMSCs from Kdm7a deficient mice. Finally, Kdm7a deficiency prevented ovariectomy-induced bone loss in mice. This study establish the role of KDM7A in bone homeostasis through its epigenetic regulation of osteoblast and osteoclast differentiation. Consequently, inhibiting KDM7A may prove beneficial in ameliorating osteoporosis. KDM7A suppresses osteoblast differentiation and bone formation through. upregulating FAP expression and inactivating canonical Wnt signaling, and conversely promotes osteoclast differentiation and bone resorption through upregulating RANKL expression. These are based on its epigenetic removal of the repressive H3K9me2 and H3K27me2 marks from Fap and Rankl promoters. As a result, the expression of KDM7A in osteoprogenitor cells tends to negatively modulate bone mass.
Collapse
Affiliation(s)
- Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xiaoli Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zheng Yang
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
| |
Collapse
|
28
|
Du Y, Xu B, Li Q, Peng C, Yang K. The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol 2024; 12:1342149. [PMID: 38390363 PMCID: PMC10882629 DOI: 10.3389/fbioe.2024.1342149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Piezo1 (2010) was identified as a mechanically activated cation channel capable of sensing various physical forces, such as tension, osmotic pressure, and shear force. Piezo1 mediates mechanosensory transduction in different organs and tissues, including its role in maintaining bone homeostasis. This review aimed to summarize the function and possible mechanism of Piezo1 in the mechanical receptor cells in bone tissue. We found that it is a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Zhang X, Liu L, Wang J, Yao M, Liu L, Liu H, Ren S, Wei P, Cheng P, Li X, Zhang H, Chen M. Emodin suppresses adipogenesis of bone marrow derived mesenchymal stem cells from aplastic anemia via increasing TRIB3 expression. Tissue Cell 2024; 86:102287. [PMID: 38086146 DOI: 10.1016/j.tice.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Increasing evidence indicate that enhanced adipogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) could contribute to the adiposity alteration in marrow microenvironment of aplastic anemia (AA). Identifying small molecule drugs with role in inhibiting adipogenesis of BM-MSCs may represent a novel direction in AA therapy by improving BM-MSCs mediated marrow microenvironment. METHODS For the purpose, we isolated AA BM-MSCs through whole bone marrow cell culture, evaluated a series of small molecule drugs using the in vitro adipogenic differentiation model of BM-MSCs, and finally focused on emodin, a natural anthraquinone derivative. Subsequently, we systematically investigated the molecular mechanism of emodin in attenuating adipogenic process by means of microarray profiling, bioinformatics analysis and lentivirus-mediated functional studies and rescue assay. RESULTS We found that emodin presented significantly suppressive effect on the in vitro adipogenic differentiation of AA BM-MSCs. Further mechanistic investigation revealed that emodin could increase the expression of Tribbles homolog 3 (TRIB3) which exhibited remarkably decreased expression in AA BM-MSCs compared with the normal counterparts and was subsequently demonstrated as a negative regulator in adipogenesis of AA BM-MSCs. Besides, TRIB3 depletion alleviated the suppressive effect of emodin on the adipogenic differentiation of AA BM-MSCs. CONCLUSION Our findings propose that emodin mediated TRIB3 up-regulation alleviates the adipogenic capacity of AA BM-MSCs, and emodin could serve as a potential therapeutic regimen for AA therapy.
Collapse
Affiliation(s)
- Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Jian Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingkang Yao
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Peng Wei
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Xiyu Li
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| |
Collapse
|
30
|
Paranthaman M, Angu Bala Ganesh K, Silambanan S. Linking bone marrow fat with decreased bone mineral density among Indian patients with osteoporotic fracture. Bioinformation 2024; 20:49-54. [PMID: 38352899 PMCID: PMC10859945 DOI: 10.6026/973206300200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Osteoporosis is a systemic skeletal disorder with low-bone mass causing micro-architectural deterioration and an increase in bone fragility and susceptibility to fractures. According to a worldwide report by IOF, 1 in 3 females and 1 in 5 males will experience fractures due to the osteoporotic changes in their bones. Fractures may be the first clinical manifestation of the disease. They have been causes for morbidity and mortality imposing economic burden to osteoporosis. Bone marrow fat is a negative regulator of bone-turnover and a key integrator of bone and energy metabolism. Hence we assess the bone marrow fat and BMD in patients with osteoporotic bone fractures. This cross-sectional study was conducted in 30 patients from the department of orthopaedic surgery. Biopsy samples were received from excised bone during surgery. Biochemical parameters and bone marrow fat were quantified by established methods. A negative correlation between BMD versus serum adiponectin, FGF21 and similar observation with BMD versus bone marrow fat is seen. Therefore, increased bone-marrow fat and adiponectin, FGF21 levels and decreased BMD in osteoporosis. This observation might be useful for prevention, management and therapeutic potential of osteoporosis. Based on our study findings, understand the bone-fat relationship to implications with low BMD in patients with osteoporosis.
Collapse
Affiliation(s)
- Modagan Paranthaman
- Department of Biochemistry, Dhanalakshmi Srinivasan Medical College and Hospital, Affiliated to The Tamilnadu Dr MGR Medical University, Perambalur 621 113, Tamil Nadu, India
| | - K.S.V. Angu Bala Ganesh
- Department of Anatomy, Gujarat Adani Institute of Medical Science, Bhuj, Gujarat 370001, India
| | - Santhi Silambanan
- Department of Biochemistry, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600 116, Tamil Nadu, India
| |
Collapse
|
31
|
Lei SS, Huang XW, Li LZ, Wang XP, Zhang Y, Li B, Shou D. Explorating the mechanism of Epimedii folium-Rhizoma drynariae herbal pair promoted bone defects healing through network pharmacology and experimental studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117329. [PMID: 37879510 DOI: 10.1016/j.jep.2023.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone defects are difficult to treat and have a high incidence of nonunion. The Epimedii folium-Rhizoma drynariae herbal pair (EDP) is a traditional Chinese medicine (TCM) used for treating bone diseases. However, the mechanisms by which EDP promotes osteogenesis or bone formation remain largely unclear. AIM OF THE STUDY This study aimed to investigate the mechanism of EDP promoted bone formation in bone defects using network pharmacology and experiments. MATERIALS AND METHODS The chemical components of EDP were analyzed by UHPLC-MS. The hub target and pathway enrichment analysis was conducted using molecular docking or network pharmacology. The pharmacological actions of EDP were determined by μCT and histopathology examination using a bone defect rat model. The effects of EDP on the mRNA expression of Bmp2, Smad2/5, Runx2, and Alp genes were measured by RT-PCR, while changes in the protein expressions of BMP2, COL1A1, SPP1, ALP, and RUNX2in the tibia tissues of the rats in response to EDP were analyzed by immunohistochemical staining or Western blot. We also performed cell viability assays, Alizarin Red and ALP staining assays, and RT-PCR to better understand how EDP affected osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS Identified 14 key compounds and 47 hub targets of EDP that may be involved in promoting osteogenesis to repair bone defects. And the BMP/Smad/Runx2 pathway was likely the key pathway through which EDP promoted bone defects repairing. The results of in vivo rat experiments indicated that EDP effectively promoted tibia repair in the model rats and activated the BMP/Smad/Runx2 pathway in the tibia tissue, with upregulating Bmp2, Bmpr1α, Smad2/5, Runx2, and Alp genes, and increased the protein expression of BMP2, COL1A1, RUNX2, and ALP. In vitro, EDP was found to increase the proliferation, differentiation, and mineralization in BMSCs- and also up-regulated the expression of key genes in the BMP/Smad/Runx2 pathway. CONCLUSION This study highlighted the ability of EDP to promote the osteogenic differentiation to enable bone repair by activating the BMP/Smad/Runx2 pathway.
Collapse
Affiliation(s)
- Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Xiao Wen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Lin Zi Li
- Jingmen Central Hospital, 448000, Jingmen, China
| | - Xu Ping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Yang Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310007, China.
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| |
Collapse
|
32
|
Zhang J, Ye F, Ye A, He B. Lysyl oxidase inhibits BMP9-induced osteoblastic differentiation through reducing Wnt/β-catenin via HIF-1a repression in 3T3-L1 cells. J Orthop Surg Res 2023; 18:911. [PMID: 38031108 PMCID: PMC10688138 DOI: 10.1186/s13018-023-04251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) is a promising growth factor in bone tissue engineering, while the detailed molecular mechanism underlying BMP9-oriented osteogenesis remains unclear. In this study, we investigated the effect of lysyl oxidase (Lox) on the BMP9 osteogenic potential via in vivo and in vitro experiments, as well as the underlying mechanism. METHODS PCR assay, western blot analysis, histochemical staining, and immunofluorescence assay were used to quantify the osteogenic markers level, as well as the possible mechanism. The mouse ectopic osteogenesis assay was used to assess the impact of Lox on BMP9-induced bone formation. RESULTS Our findings suggested that Lox was obviously upregulated by BMP9 in 3T3-L1 cells. BMP9-induced Runx2, OPN, and mineralization were all enhanced by Lox inhibition or knockdown, while Lox overexpression reduced their expression. Additionally, the BMP9-induced adipogenic makers were repressed by Lox inhibition. Inhibition of Lox resulted in an increase in c-Myc mRNA and β-catenin protein levels. However, the increase in BMP9-induced osteoblastic biomarkers caused by Lox inhibition was obviously reduced when β-catenin knockdown. BMP9 upregulated HIF-1α expression, which was further enhanced by Lox inhibition or knockdown, but reversed by Lox overexpression. Lox knockdown or HIF-1α overexpression increased BMP9-induced bone formation, although the enhancement caused by Lox knockdown was largely diminished when HIF-1α was knocked down. Lox inhibition increased β-catenin levels and decreased SOST levels, which were almost reversed by HIF-1α knockdown. CONCLUSION Lox may reduce the BMP9 osteoblastic potential by inhibiting Wnt/β-catenin signaling via repressing the expression HIF-1α partially.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - FangLin Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - AiHua Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - BaiCheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
33
|
Li MJ, Liang ZT, Sun Y, Li J, Zhang HQ, Deng A. Research progress on the regulation of bone marrow stem cells by noncoding RNAs in adolescent idiopathic scoliosis. J Cell Physiol 2023; 238:2228-2242. [PMID: 37682901 DOI: 10.1002/jcp.31119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in young women, but its pathogenesis remains unclear. The primary pathogenic factors contributing to its development include genetics, abnormal bone metabolism, and endocrine factors. Bone marrow stem cells (BMSCs) play a crucial role in the pathogenesis of AIS by regulating its occurrence and progression. Noncoding RNAs (ncRNAs) are also involved in the pathogenesis of AIS, and their role in regulating BMSCs in patients with AIS requires further evaluation. In this review, we discuss the relevant literature regarding the osteogenic, chondrogenic, and lipogenic differentiation of BMSCs. The corresponding mechanisms of ncRNA-mediated BMSC regulation in patients with AIS, recent advancements in AIS and ncRNA research, and the importance of ncRNA translation profiling and multiomics are highlighted.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhuo-Tao Liang
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yang Sun
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jiong Li
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ang Deng
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
34
|
Liu J, Sun Z, You Y, Zhang L, Hou D, Gu G, Chen Y, Jiao G. M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of bone marrow mesenchymal stem cells and osteoporosis. Aging (Albany NY) 2023; 15:9499-9520. [PMID: 37751585 PMCID: PMC10564417 DOI: 10.18632/aging.205031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND An imbalance between osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMMSCs) can cause osteoporosis. Macrophage-derived exosomes (MD-Exos) and microRNAs (miRNAs) enriched in exosomes participate in the differentiation of BMMSCs. METHODS Bioinformatics methods were used to analyze differentially expressed miRNAs. We cocultured M2 macrophages and BMMSCs to examine the biological function of exosomal microRNA-486-5p (miR-486-5p) on BMMSCs differentiation. Gain-of-function experiments related to osteogenesis were designed to investigate the effects of exosomes carrying miR-486-5p on an ovariectomized (OVX) mice model and the direct impact of miR-486-5p on BMMSCs. A dual luciferase experiment was performed to demonstrate the target gene of miR-486-5p. RESULTS Bioinformatics analysis identified high expression of miRNA-486 in M2 macrophage-derived exosomes (M2D-Exos). The in vitro results demonstrated that M2 macrophage-derived exosomal miR-486-5p enhanced osteogenic capacity but inhibited the adipogenesis of BMMSCs. The direct effect of miR-486-5p on BMMSCs showed the same effects. Animal experiments revealed that exosomal miR-486-5p rescued bone loss of OVX mice. SMAD2 was characterized as a target gene of miR-486-5p. Pathway analysis showed that M2 macrophage-derived exosomal miR-486-5p stimulated osteogenic differentiation via the TGF-β/SMAD2 signalling pathway. CONCLUSIONS Taken together, M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of BMMSCs through the miR-486-5p/SMAD2/TGF-β signalling pathway and osteoporosis.
Collapse
Affiliation(s)
- Jincheng Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunhao You
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dehui Hou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guanghui Gu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunzhen Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangjun Jiao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
35
|
Aizenbud I, Wilensky A, Almoznino G. Periodontal Disease and Its Association with Metabolic Syndrome-A Comprehensive Review. Int J Mol Sci 2023; 24:13011. [PMID: 37629193 PMCID: PMC10455993 DOI: 10.3390/ijms241613011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal disease is a complex and progressive chronic inflammatory condition that leads to the loss of alveolar bone and teeth. It has been associated with various systemic diseases, including diabetes mellitus and obesity, among others. Some of these conditions are part of the metabolic syndrome cluster, a group of interconnected systemic diseases that significantly raise the risk of cardiovascular diseases, diabetes mellitus, and stroke. The metabolic syndrome cluster encompasses central obesity, dyslipidemia, insulin resistance, and hypertension. In this review, our objective is to investigate the correlation between periodontal disease and the components and outcomes of the metabolic syndrome cluster. By doing so, we aim to gain insights into the fundamental mechanisms that link each systemic condition with the metabolic syndrome. This deeper understanding of the interplay between these conditions and periodontal disease can pave the way for more effective treatments that take into account the broader impact of managing periodontal disease on the comprehensive treatment of systemic diseases, and vice versa.
Collapse
Affiliation(s)
- Itay Aizenbud
- Medical Corps, Israel Defense Forces, Jerusalem 60930, Israel;
| | - Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Galit Almoznino
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel, Big Biomedical Data Research Laboratory, Dean’s Office, Hadassah Medical Center, Jerusalem 91120, Israel
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Department of Oral Medicine, Sedation & Maxillofacial Imaging, Hadassah Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
36
|
Zheng Y, Yan J, Zhang X, Cui H, Wei Z, Li X, Wang Q, Zhong B. Dietary intervention reprograms bone marrow cellular signaling in obese mice. Front Endocrinol (Lausanne) 2023; 14:1171781. [PMID: 37529608 PMCID: PMC10390309 DOI: 10.3389/fendo.2023.1171781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Objectives The current study aimed to investigate the pathogenesis of obesity-induced impaired bone mass accrual and the impact of dietary intervention on bone density in the mouse model of obesity. Methods Mice were fed with chow diet (CD) for 10 months, high-fat-diet (HFD) for 10 months, or HFD for 6 months then transferred to chow diet for 4 months (HFDt). Results Weight loss and decreased intrahepatic lipid accumulation were observed in mice following dietary intervention. Additionally, HFD feeding induced bone mass accrual, while diet intervention restrained trabecular bone density. These changes were further reflected by increased osteogenesis and decreased adipogenesis in HFDt mice compared to HFD mice. Furthermore, HFD feeding decreased the activity of the Wingless-related integration site (Wnt)-β-Catenin signaling pathway, while the Wnt signaling was augmented by diet intervention in the HFDt group. Conclusions Our findings suggest that a HFD inhibits bone formation and that dietary intervention reverses this inhibition. Furthermore, the dietary intervention was able to compensate for the suppressed increase in bone mass to a level comparable to that in the CD group. Our study suggests that targeting the Wnt signaling pathway may be a potential approach to treat obesity-induced impaired bone mass accrual.
Collapse
Affiliation(s)
- Yuxuan Zheng
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jiren Yan
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofu Zhang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailong Cui
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- First Affifiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhenyuan Wei
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuyu Wang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biao Zhong
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
38
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Ma J, Chen P, Deng B, Wang R. Kynurenic acid promotes osteogenesis via the Wnt/β-catenin signaling. In Vitro Cell Dev Biol Anim 2023; 59:356-365. [PMID: 37291335 DOI: 10.1007/s11626-023-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The role of kynurenic acid (KynA) in neurological and mental diseases has been widely studied. Emerging studies disclosed that KynA has a protective effect on tissues including heart, kidney, and retina. However, the role of KynA in osteoporosis has not been reported so far. To elucidate the role of KynA in age-related osteoporosis, both control and osteoporosis mice were administrated KynA for three consecutive months, and micro-computed tomography (μCT) analysis was then performed. In addition, primary bone marrow mesenchymal stem cells (BMSCs) were isolated for osteogenic differentiation induction and treated with KynA in vitro. Our data suggested that KynA administration rescued age-related bone loss in vivo, and KynA treatment promotes BMSC osteogenic differentiation in vitro. Moreover, KynA activated the Wnt/β-catenin signaling during BMSC osteogenic differentiation. Wnt inhibitor MSAB inhibited KynA-induced osteogenic differentiation. Further data demonstrated that KynA exerted its effect on BMSC osteogenic differentiation and Wnt/β-catenin signaling activation via G protein-coupled receptor 35 (GPR35). In conclusion, the protective effect of KynA on age-related osteoporosis was disclosed. Additionally, the promoting effect of KynA on osteoblastic differentiation via Wnt/β-catenin signaling was verified and the effect dependent on GPR35. These data suggest that KynA administration potentially contributes to the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Jiangwei Ma
- Department of Orthopedics, The First Hospital of Yulin, No. 93, Yu Xi Street, Yulin, 719000, Shaanxi, People's Republic of China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Baojuan Deng
- Department of General Practice, The First Hospital of Yulin, No. 93, Yu Xi Street, Yulin, 719000, Shaanxi, People's Republic of China
| | - Rong Wang
- Department of General Practice, The First Hospital of Yulin, No. 93, Yu Xi Street, Yulin, 719000, Shaanxi, People's Republic of China.
| |
Collapse
|
40
|
Zhang X, Liu L, Liu X, Huang Q, Liu L, Liu H, Ren S, Wei P, Cheng P, Yao M, Song W, Zhang H, Chen M. Chidamide suppresses adipogenic differentiation of bone marrow derived mesenchymal stem cells via increasing REEP2 expression. iScience 2023; 26:106221. [PMID: 36879811 PMCID: PMC9985040 DOI: 10.1016/j.isci.2023.106221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Increased propensity of bone marrow-derived mesenchymal stem cells (BM-MSCs) toward adipogenic differentiation at the expense of osteogenesis has been implicated in obesity, diabetes, and age-related osteoporosis as well as various hematopoietic disorders. Defining small molecules with role in rectifying the adipo-osteogenic differentiation imbalance is of great significance. Here, we unexpectedly found that Chidamide, a selective histone deacetylases inhibitor, exhibited remarkably suppressive effect on the in vitro induced adipogenic differentiation of BM-MSCs. Multifaceted alterations in the spectrum of gene expression were observed in Chidamide-managed BM-MSCs during adipogenic induction. Finally, we focused on REEP2, which presented decreased expression in BM-MSCs-mediated adipogenesis and was restored by Chidamide treatment. REEP2 was subsequently demonstrated as a negative regulator of adipogenic differentiation of BM-MSCs and mediated the suppressive effect of Chidamide on adipocyte development. Our findings provide the theoretical and experimental foundation for the clinical application of Chidamide for disorders associated with excessive marrow adipocytes.
Collapse
Affiliation(s)
- Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Xin Liu
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Qian Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Peng Wei
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingkang Yao
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Wenjun Song
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| |
Collapse
|
41
|
Kim DY, Ko SH. Common Regulators of Lipid Metabolism and Bone Marrow Adiposity in Postmenopausal Women. Pharmaceuticals (Basel) 2023; 16:322. [PMID: 37259464 PMCID: PMC9967016 DOI: 10.3390/ph16020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 09/13/2024] Open
Abstract
A variety of metabolic disorders are associated with a decrease in estradiol (E2) during natural or surgical menopause. Postmenopausal women are prone to excessive fat accumulation in skeletal muscle and adipose tissue due to the loss of E2 via abnormalities in lipid metabolism and serum lipid levels. In skeletal muscle and adipose tissue, genes related to energy metabolism and fatty acid oxidation, such as those encoding peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and estrogen-related receptor alpha (ERRα), are downregulated, leading to increased fat synthesis and lipid metabolite accumulation. The same genes regulate lipid metabolism abnormalities in the bone marrow. In this review, abnormalities in lipid metabolism caused by E2 deficiency were investigated, with a focus on genes able to simultaneously regulate not only skeletal muscle and adipose tissue but also bone metabolism (e.g., genes encoding PGC-1α and ERRα). In addition, the mechanisms through which mesenchymal stem cells lead to adipocyte differentiation in the bone marrow as well as metabolic processes related to bone marrow adiposity, bone loss, and osteoporosis were evaluated, focusing on the loss of E2 and lipid metabolic alterations. The work reviewed here suggests that genes underlying lipid metabolism and bone marrow adiposity are candidate therapeutic targets for bone loss and osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Dae-Yong Kim
- CEO, N- BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Gyeonggi-do, Republic of Korea
| | - Seong-Hee Ko
- Regenerative Medicine Research Team, N- BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Gyeonggi-do, Republic of Korea
| |
Collapse
|
42
|
Li Y, Huang Z, Huang X, Xu R, He Y, Deng F, Chen G. The influences of PEG-functionalized graphdiyne on cell growth and osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:1309-1317. [PMID: 36762569 DOI: 10.1002/jbm.b.35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Guided bone regeneration (GBR) is a frequently used technique for patients with insufficient alveolar bone. The discovery of bone substitutes that can enhance osteogenesis is critical for GBR. Graphdiyne (GDY), a newly discovered carbon-based nanomaterial, has been recognized as the most stable allotrope of acetylene carbon and is anticipated to be able to promote osteogenesis. Whereas it still remains unknown whether it could enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, GDY was modified with polyethylene glycol (PEG) and the influences of GDY-PEG at different concentrations on BMSCs cell growth and osteogenic differentiation were researched for the first time. In this study, we found that GDY-PEG at low concentration possessed premium bio-compatibility and revealed evident facilitation of BMSCs osteogenic differentiation. The cell growth and osteogenic differentiation of BMSCs treated with GDY-PEG were dose-dependent. GDY-PEG at 1 μg/mL demonstrated the optimal promoting effects of BMSCs osteogenic differentiation. Moreover, the regulating effect of BMSCs osteogenic differentiation by GDY-PEG might be associated with the Wnt/β-catenin signaling pathway. In all, the present study indicated a novel application of GDY in promoting bone tissue regeneration, providing a novel biomaterial for bone augmentation in clinics.
Collapse
Affiliation(s)
- Yiming Li
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ziqing Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoqiong Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ruogu Xu
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi He
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
43
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
44
|
Chen Q, Sinha KM, de Crombrugghe B, Krahe R. Osteoblast-Specific Overexpression of Nucleolar Protein NO66/RIOX1 in Mouse Embryos Leads to Osteoporosis in Adult Mice. J Osteoporos 2023; 2023:8998556. [PMID: 36660551 PMCID: PMC9845042 DOI: 10.1155/2023/8998556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
In previous study, we showed that nucleolar protein 66 (NO66) is a chromatin modifier and negatively regulates Osterix activity as well as mesenchymal progenitor differentiation. Genetic ablation of the NO66 (RIOX1) gene in cells of the Prx1-expressing mesenchymal lineage leads to acceleration of osteochondrogenic differentiation and a larger skeleton in adult mice, whereas mesenchyme-specific overexpression of NO66 inhibits osteochondrogenesis resulting in dwarfism and osteopenia. However, the impact of NO66 overexpression in cells of the osteoblast lineage in vivo remains largely undefined. Here, we generated osteoblast-specific transgenic mice overexpressing a FLAG-tagged NO66 transgene driven by the 2.3 kB alpha-1type I collagen (Col1a1) promoter. We found that overexpression of NO66 in cells of the osteoblast lineage did not cause overt defects in developmental bones but led to osteoporosis in the long bones of adult mice. This includes decreased bone volume (BV), bone volume density (bone volume/total volume, BV/TV), and bone mineral density (BMD) in cancellous compartment of long bones, along with the accumulation of fatty droplets in bone marrow. Ex vivo culture of the bone marrow mesenchymal stem/stromal cells (BMSCs) from adult Col1a1-NO66 transgenic mice showed an increase in adipogenesis and a decrease in osteogenesis. Taken together, these data demonstrate a crucial role for NO66 in adult bone formation and homeostasis. Our Col1a1-NO66 transgenic mice provide a novel animal model for the mechanistic and therapeutic study of NO66 in osteoporosis.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krishna M. Sinha
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benoit de Crombrugghe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ralf Krahe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Zeng C, Wang S, Chen F, Wang Z, Li J, Xie Z, Ma M, Wang P, Shen H, Wu Y. Alpinetin alleviates osteoporosis by promoting osteogenic differentiation in BMSCs by triggering autophagy via PKA/mTOR/ULK1 signaling. Phytother Res 2023; 37:252-270. [PMID: 36104214 PMCID: PMC10087978 DOI: 10.1002/ptr.7610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Osteoporosis, a systemic bone disease that is characterized by a reduction in bone mass and destruction of bone microstructure, is becoming a serious problem worldwide. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into bone-forming osteoblasts, and play an important role in maintaining homeostasis of bone metabolism, thus being a potential therapeutic target for osteoporosis. Although the phytochemical alpinetin (APT) has been reported to possess a variety of pharmacological activities, it is still unclear whether APT can influence the osteogenic differentiation of on BMSCs and if it can improve osteoporosis. In this study, we found that APT treatment was able to enhance osteogenic differentiation levels of human BMSCs in vitro and mouse ones in vivo as revealed by multiple osteogenic markers including increased alkaline phosphatase activity and osteocalcin expression. Mechanistically, the protein kinase A (PKA)/mTOR/ULK1 signaling was involved in the action of APT to enhance the osteogenic differentiation of BMSCs. In addition, oral administration of APT significantly mitigated the bone loss in a dexamethasone-induced mouse model of osteoporosis through strengthening PKA signaling and autophagy. Altogether, these data demonstrate that APT promotes osteogenic differentiation in BMSCs by augmenting the PKA/mTOR/ULK1 autophagy signaling, highlighting its potential therapeutic application for treating osteoporotic diseases.
Collapse
Affiliation(s)
- Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| |
Collapse
|
46
|
Burkhardt LM, Bucher CH, Löffler J, Rinne C, Duda GN, Geissler S, Schulz TJ, Schmidt-Bleek K. The benefits of adipocyte metabolism in bone health and regeneration. Front Cell Dev Biol 2023; 11:1104709. [PMID: 36895792 PMCID: PMC9988968 DOI: 10.3389/fcell.2023.1104709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.
Collapse
Affiliation(s)
- Lisa-Marie Burkhardt
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Löffler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
47
|
Harun NH, Froemming GRA, Mohd Ismail A, Nawawi H, Mokhtar SS, Abd Muid S. Osteoblast Demineralization Induced by Oxidized High-Density Lipoprotein via the Inflammatory Pathway Is Suppressed by Adiponectin. Int J Mol Sci 2022; 23:ijms232314616. [PMID: 36498945 PMCID: PMC9740717 DOI: 10.3390/ijms232314616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Low mineralization activity by human osteoblast cells (HOBs) indicates abnormal bone remodeling that potentially leads to osteoporosis. Oxidation, the most prominent form of high-density lipoprotein (HDL) modification, is suggested to affect bone mineralization through the inflammatory pathway. Adiponectin, which possesses anti-inflammatory activity, is postulated to have the ability to suppress the detrimental effects of oxidized HDL (oxHDL). This study aimed to investigate the effects of HDL before and after oxidation on markers of mineralization and inflammation. The protective effects of adiponectin on demineralization and inflammation induced by oxHDL were also investigated. OxHDL at 100 µg/mL protein had the highest inhibitory effect on mineralization, followed by lower calcium incorporation. OxHDL also had significantly lower expression of a mineralization marker (COL1A2) and higher expression of inflammatory markers (IL-6, TNF-α, and RELA proto-oncogene, NF-κβ (p65)) compared to the unstimulated control group. These findings suggest that oxHDL reduces the mineralization activity of HOBs by increasing the expression of inflammatory markers. Interestingly, co-incubation of adiponectin and oxHDL in HOBs resulted in higher expression of mineralization markers (ALPL, COL1A2, BGLAP, and RUNX2) and significantly reduced all targeted inflammatory markers compared to the oxHDL groups. On the contrary, HDL increased the expression of mineralization markers (COL1A2 and STAT-3) and exhibited lower expression of inflammatory cytokines (IL-6 and TNF-α), proving the protective effect of HDL beyond the reverse cholesterol transport activity.
Collapse
Affiliation(s)
- Noor Hanisa Harun
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Gabriele Ruth Anisah Froemming
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Aletza Mohd Ismail
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Hapizah Nawawi
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerforM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Shuhada Mokhtar
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Suhaila Abd Muid
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerforM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence: ; Tel.: +60-361267338
| |
Collapse
|
48
|
Zhang HX, Cao C, Li XH, Chen Y, Zhang Y, Liu Y, Gong Y, Qiu X, Zhou C, Chen Y, Wang Z, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Imputation of Human Primary Osteoblast Single Cell RNA-Seq Data Identified Three Novel Osteoblastic Subtypes. FRONT BIOSCI-LANDMRK 2022; 27:295. [PMID: 36336853 PMCID: PMC11097352 DOI: 10.31083/j.fbl2710295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recently, single-cell RNA sequencing (scRNA-seq) technology was increasingly used to study transcriptomics at a single-cell resolution, scRNA-seq analysis was complicated by the "dropout", where the data only captures a small fraction of the transcriptome. This phenomenon can lead to the fact that the actual expressed transcript may not be detected. We previously performed osteoblast subtypes classification and dissection on freshly isolated human osteoblasts. MATERIALS AND METHODS Here, we used the scImpute method to impute the missing values of dropout genes from a scRNA-seq dataset generated on freshly isolated human osteoblasts. RESULTS Based on the imputed gene expression patterns, we discovered three new osteoblast subtypes. Specifically, these newfound osteoblast subtypes are osteoblast progenitors, and two undetermined osteoblasts. Osteoblast progenitors showed significantly high expression of proliferation related genes (FOS, JUN, JUNB and JUND). Analysis of each subtype showed that in addition to bone formation, these undetermined osteoblasts may involve osteoclast and adipocyte differentiation and have the potential function of regulate immune activation. CONCLUSIONS Our findings provided a new perspective for studying the osteoblast heterogeneity and potential biological functions of these freshly isolated human osteoblasts at the single-cell level, which provides further insight into osteoblasts subtypes under various (pathological) physiological conditions.
Collapse
Affiliation(s)
- Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Yue Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiang Qiu
- School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, 410013 Changsha, Hunan, China
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, 410081 Changsha, Hunan, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
| |
Collapse
|
49
|
Hyunganol II Exerts Antiadipogenic Properties via MAPK-Mediated Suppression of PPAR γ Expression in Human Bone Marrow-Derived Mesenchymal Stromal Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4252917. [PMID: 36299776 PMCID: PMC9592193 DOI: 10.1155/2022/4252917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Bone marrow adiposity has been associated with several metabolic syndromes such as diabetes and osteoporosis. Imbalance in adipogenic and osteoblastogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSCs) was suggested to be the cause of elevated bone marrow adiposity. There are several drugs, of both natural and synthetic origin, to treat bone loss. In this study, as a part of a recent trend to discover natural products with more biocompatibility and fewer side effects to treat bone loss, the effect of hyunganol II (HNG), a coumarin isolated from Corydalis heterocarpa, on hBM-MSC adipogenesis was investigated. Cells treated with HNG showed decreased lipid accumulation indicating a diminished adipocyte phenotype. Treatment with HNG also suppressed the mRNA and protein expressions of PPARγ, C/EBPα, and SREBP1c, and three adipogenic marker genes. Further analysis of MAPK signaling pathway exhibited that HNG treatment elevated ERK activation and suppressed the JNK-mediated cFos and cJun phosphorylation, which inhibits PPARγ transcriptional activity. Taken together, HNG treatment was shown to inhibit adipogenesis via suppressed PPARγ expression as a result of altered MAPK signaling. Therefore, it was suggested that HNG might prevent bone marrow adiposity by inhibiting hBM-MSC adipogenesis and can be utilized as a drug or nutraceutical with beneficial effects on bone. Thus, further studies should be conducted to analyze its effect in vivo.
Collapse
|
50
|
Gingival epithelial cell-derived microvesicles activate mineralization in gingival fibroblasts. Sci Rep 2022; 12:15779. [PMID: 36138045 PMCID: PMC9500071 DOI: 10.1038/s41598-022-19732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.
Collapse
|