1
|
Grassi L, Väänänen SP, Voss A, Nissinen T, Sund R, Kröger H, Isaksson H. DXA-based 3D finite element models predict hip fractures better than areal BMD in elderly women. Bone 2025; 195:117457. [PMID: 40086683 DOI: 10.1016/j.bone.2025.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Bone strength is a major contributor to fracture risk. Areal bone mineral density (aBMD) obtained from dual-energy X-ray absorptiometry (DXA) is used as a surrogate for bone strength in fracture risk prediction. 3D finite element (FE) models predict bone strength better than aBMD but need 3D computed tomography and are not automated. We have earlier developed a method to automatically reconstruct the 3D hip anatomy from a 2D hip DXA image, followed by subject-specific FE-based prediction of proximal femoral strength. In this study, we evaluate the method's ability to predict incident hip fractures in a population-based cohort of women (OSTPRE). We used a sub-cohort including 46 cases with a hip fracture (<10 years from DXA scan) and 2 healthy controls to each hip fracture case, matched by age, height, and body mass index. We automatically reconstructed the 3D hip anatomy and predicted proximal femoral strength using FE analysis for all the subjects of the sub-cohort. The FE-predicted proximal femoral strength was a significantly better predictor of incident hip fractures than aBMD (difference in area under the receiver operating characteristics curve, ΔAUROC = 0.10). This is the first time that 3D FE models obtained from a 2D hip DXA scan outperform aBMD in predicting incident hip fractures in a population-based prospectively followed cohort of women. Our approach provided an improved fracture risk prediction in a clinically feasible manner (only one single DXA image is needed) and without additional costs compared to the current clinical approach.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sami P Väänänen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Antti Voss
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Tomi Nissinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Reijo Sund
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Knowledge Management Unit, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Orthopedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Paracuollo M, Tarulli FR, Pellegrino G, Pellegrino A. Proximal femoral nailing for intertrochanteric fracture combined with contralateral femoral neck local osteo-enhancement procedure (LOEP) for severe osteoporotic bone loss: An original Italian case series. Injury 2024; 55 Suppl 4:111408. [PMID: 39542574 DOI: 10.1016/j.injury.2024.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 11/17/2024]
Abstract
Proximal femoral fractures in elderly women are a major cause of morbidity and mortality worldwide and a public health concern. Although pharmacological therapies have shown potential in improving bone mineral density (BMD) and decreasing fracture risk, the current research effort is focused on developing a procedure that can ensure both immediate and long-term efficacy. A minimally-invasive surgical approach, known as AGN1 local osteo-enhancement procedure (LOEP), has been recently developed to promote bone augmentation. The procedure implies the preparation of an enhancement site, a specific location where new bone is required within a local bony area weakened by osteoporotic bone loss, and the insertion of a triphasic, resorbable, calcium-based implant material. The results of this procedure have shown a significant and sustainable long-term increase in the proximal femur BMD and consequently in bone strength, thereby improving the femoral neck's resistance to compression and distraction forces that may result in fall-related fractures. A preliminary case series of ten women, suffering from intertrochanteric fracture and contralateral proximal femur severe osteoporotic bone loss, who underwent a combined procedure of proximal femoral nailing and AGN1 local osteo-enhancement procedure, has been developed over the course of a year of clinical and radiological data collection.
Collapse
Affiliation(s)
- Mario Paracuollo
- III Division of Orthopaedics and Traumatology, "C.T.O." Hospital in Naples (NA), Viale Colli Aminei, 21 80131, Italy.
| | - Filippo Rosati Tarulli
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| | - Giuseppe Pellegrino
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| | - Achille Pellegrino
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| |
Collapse
|
3
|
Qasim M, López Picazo M, Ruiz Wills C, Noailly J, Di Gregorio S, Del Río Barquero LM, Malouf Sierra J, Humbert L. 3D-DXA Based Finite Element Modelling for Femur Strength Prediction: Evaluation Against QCT. J Clin Densitom 2024; 27:101471. [PMID: 38306806 DOI: 10.1016/j.jocd.2024.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Osteoporosis is characterised by the loss of bone density resulting in an increased risk of fragility fractures. The clinical gold standard for diagnosing osteoporosis is based on the areal bone mineral density (aBMD) used as a surrogate for bone strength, in combination with clinical risk factors. Finite element (FE) analyses based on quantitative computed tomography (QCT) have been shown to estimate bone strength better than aBMD. However, their application in the osteoporosis clinics is limited due to exposure of patients to increased X-rays radiation dose. Statistical modelling methods (3D-DXA) enabling the estimation of 3D femur shape and volumetric bone density from dual energy X-ray absorptiometry (DXA) scan have been shown to improve osteoporosis management. The current study used 3D-DXA based FE analyses to estimate femur strength from the routine clinical DXA scans and compared its results against 151 QCT based FE analyses, in a clinical cohort of 157 subjects. The linear regression between the femur strength predicted by QCT-FE and 3D-DXA-FE models correlated highly (coefficient of determination R2 = 0.86) with a root mean square error (RMSE) of 397 N. In conclusion, the current study presented a 3D-DXA-FE modelling tool providing accurate femur strength estimates noninvasively, compared to QCT-FE models.
Collapse
|
4
|
Jadzic J, Andjelic U, Milovanovic P, Zivkovic V, Nikolic S, Djonic D, Djuric M. Improved femoral micro-architecture in adult male individuals with overweight: fracture resistance due to regional specificities. Int J Obes (Lond) 2024; 48:202-208. [PMID: 37770573 DOI: 10.1038/s41366-023-01389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND It is still unclear whether femoral fracture risk is positively or negatively altered in individuals with overweight. Considering the lack of studies including men with overweight, this study aimed to analyze regional specificities in mechano-structural femoral properties (femoral neck and intertrochanteric region) in adult male cadavers with overweight compared to their normal-weight age-matched counterparts. METHODS Ex-vivo osteodensitometry, micro-computed tomography, and Vickers micro-indentation testing were performed on femoral samples taken from 30 adult male cadavers, divided into the group with overweight (BMI between 25 and 30 kg/m2; n = 14; age:55 ± 16 years) and control group (BMI between 18.5 and 25 kg/m2; n = 16; age:51 ± 18 years). RESULTS Better quality of trabecular and cortical microstructure in the inferomedial (higher trabecular bone volume fraction, trabecular thickness, and cortical thickness, coupled with reduced cortical pore diameter, p < 0.05) and superolateral femoral neck (higher trabecular number and tendency to lower cortical porosity, p = 0.043, p = 0.053, respectively) was noted in men with overweight compared to controls. Additionally, the intertrochanteric region of men with overweight had more numerous and denser trabeculae, coupled with a thicker and less porous cortex (p < 0.05). Still, substantial overweight-induced change in femoral osteodensitometry parameters and Vickers micro-hardness was not demonstrated in assessed femoral subregions (p > 0.05). CONCLUSIONS Despite the absence of significant changes in femoral osteodensitometry, individuals with overweight had better trabecular and cortical femoral micro-architecture implying higher femoral fracture resistance. However, the microhardness was not significantly favorable in the individuals who were overweight, indicating the necessity for further research.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Uros Andjelic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Giuliodori A, Soudah E, Malouf J, Martel-Duguech L, Amodru V, Gil J, Hernández JA, Domingo MP, Webb SM, Valassi E. Evaluation of bone-related mechanical properties in female patients with long-term remission of Cushing's syndrome using quantitative computed tomography-based finite element analysis. Eur J Endocrinol 2024; 190:86-95. [PMID: 38285633 DOI: 10.1093/ejendo/lvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Hypercortisolism in Cushing's syndrome (CS) is associated with bone loss, skeletal fragility, and altered bone quality. No studies evaluated bone geometric and strain-stress values in CS patients after remission thus far. PATIENTS AND METHODS Thirty-two women with CS in remission (mean age [±SD] 51 ± 11; body mass index [BMI], 27 ± 4 kg/m2; mean time of remission, 120 ± 90 months) and 32 age-, BMI-, and gonadal status-matched female controls. Quantitative computed tomography (QCT) was used to assess volumetric bone mineral density (vBMD) and buckling ratio, cross-sectional area, and average cortical thickness at the level of the proximal femur. Finite element (FE) models were generated from QCT to calculate strain and stress values (maximum principal strain [MPE], maximum strain energy density [SED], maximum Von Mises [VM], and maximum principal stress [MPS]). Areal BMD (aBMD) and trabecular bone score (TBS) were assessed by dual-energy X-ray absorptiometry (2D DXA). RESULTS Trabecular vBMD at total hip and trochanter were lower in CS as compared with controls (P < .05). Average cortical thickness was lower, and buckling ratio was greater in CS vs controls (P < .01). All strain and stress values were higher in CS patients vs controls (P < .05). 2D DXA-derived measures were similar between patients and controls (P > .05). Prior hypercortisolism predicted both VM (β .30, P = .014) and MPS (β .30, P = .015), after adjusting for age, BMI, menopause, delay to diagnosis, and duration of remission. CONCLUSIONS Women with prior hypercortisolism have reduced trabecular vBMD and impaired bone geometrical and mechanical properties, which may contribute to an elevated fracture risk despite long-term remission.
Collapse
Affiliation(s)
- Agustina Giuliodori
- Centre Internacional de Mètodes Numèrics en Enginyeria, CIMNE, 08034 Barcelona, Spain
- Biomedical Engineering Department, Universitat Politècnica de Catalunya, UPC, 08034 Barcelona, Spain
| | - Eduardo Soudah
- Centre Internacional de Mètodes Numèrics en Enginyeria, CIMNE, 08034 Barcelona, Spain
- Biomedical Engineering Department, Universitat Politècnica de Catalunya, UPC, 08034 Barcelona, Spain
- Mechanical Engineering Department, Faculty of Industrial Engineering of the University of Valladolid, 47011 Valladolid, Spain
| | - Jorge Malouf
- Mineral Metabolism Unit, Hospital Sant Pau, 08025 Barcelona, Spain
| | - Luciana Martel-Duguech
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Vincent Amodru
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Joan Gil
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joaquín A Hernández
- Centre Internacional de Mètodes Numèrics en Enginyeria, CIMNE, 08034 Barcelona, Spain
- E.S. d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa, Technical University of Catalonia, C/Colom, 11, 08222 Terrassa, Spain
| | - Manuel Puig Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, 28029 Madrid, Spain
- School of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Endocrinology and Nutrition Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain
| | - Susan M Webb
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, 28029 Madrid, Spain
- School of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Elena Valassi
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Endocrinology and Nutrition Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain
- School of Medicine, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
6
|
Grassi L, Väänänen SP, Jehpsson L, Ljunggren Ö, Rosengren BE, Karlsson MK, Isaksson H. 3D Finite Element Models Reconstructed From 2D Dual-Energy X-Ray Absorptiometry (DXA) Images Improve Hip Fracture Prediction Compared to Areal BMD in Osteoporotic Fractures in Men (MrOS) Sweden Cohort. J Bone Miner Res 2023; 38:1258-1267. [PMID: 37417707 DOI: 10.1002/jbmr.4878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Bone strength is an important contributor to fracture risk. Areal bone mineral density (aBMD) derived from dual-energy X-ray absorptiometry (DXA) is used as a surrogate for bone strength in fracture risk prediction tools. 3D finite element (FE) models predict bone strength better than aBMD, but their clinical use is limited by the need for 3D computed tomography and lack of automation. We have earlier developed a method to reconstruct the 3D hip anatomy from a 2D DXA image, followed by subject-specific FE-based prediction of proximal femoral strength. In the current study, we aim to evaluate the method's ability to predict incident hip fractures in a population-based cohort (Osteoporotic Fractures in Men [MrOS] Sweden). We defined two subcohorts: (i) hip fracture cases and controls cohort: 120 men with a hip fracture (<10 years from baseline) and two controls to each hip fracture case, matched by age, height, and body mass index; and (ii) fallers cohort: 86 men who had fallen the year before their hip DXA scan was acquired, 15 of which sustained a hip fracture during the following 10 years. For each participant, we reconstructed the 3D hip anatomy and predicted proximal femoral strength in 10 sideways fall configurations using FE analysis. The FE-predicted proximal femoral strength was a better predictor of incident hip fractures than aBMD for both hip fracture cases and controls (difference in area under the receiver operating characteristics curve, ΔAUROC = 0.06) and fallers (ΔAUROC = 0.22) cohorts. This is the first time that FE models outperformed aBMD in predicting incident hip fractures in a population-based prospectively followed cohort based on 3D FE models obtained from a 2D DXA scan. Our approach has potential to notably improve the accuracy of fracture risk predictions in a clinically feasible manner (only one single DXA image is needed) and without additional costs compared to the current clinical approach. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sami P Väänänen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Eastern Finland, Finland
| | - Lars Jehpsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn E Rosengren
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Magnus K Karlsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Amani A, Bellver M, Del Rio L, Torrella JR, Lizarraga A, Humbert L, Drobnic F. Femur 3D-DXA Assessment in Female Football Players, Swimmers, and Sedentary Controls. Int J Sports Med 2023. [PMID: 35995142 DOI: 10.1055/a-1928-9824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cortical and trabecular volumetric bone mineral density (vBMD), cortical thickness and surface BMD (sBMD, density-to-thickness ratio) were analyzed in the proximal femur of elite female football players and artistic swimmers using three-dimensional dual-energy X-ray absorptiometry (3D-DXA) software and compared to sedentary controls. Football players had significantly higher (p<0.05) vBMD (mg/cm3) in the trabecular (263±44) and cortical femur (886±69) than artistic swimmers (224±43 and 844±89) and sedentary controls (215±51 and 841±85). Football players had also higher (p<0.05) cortical thickness (2.12±0.19 mm) and sBMD (188±22 mg/cm2) compared to artistic swimmers (1.85±0.15 and 156±21) and sedentary controls (1.87±0.16 and 158±23). Artistic swimmers did not show significant differences in any parameter analyzed for 3D-DXA when compared to sedentary controls. The 3D-DXA modeling revealed statistical differences in cortical thickness and vBMD between female athletes engaged in weight-bearing (football) and non-weight bearing (swimming) sports and did not show differences between the non-weight bearing sport and the sedentary controls. 3D-DXA modeling could provide insight into bone remodeling in the sports field, allowing evaluation of femoral trabecular and cortical strength from standard DXA scans.
Collapse
Affiliation(s)
- Amineh Amani
- Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Facultat de Biologia, Barcelona, Spain
- Centre Mèdic, CETIR, Barcelona, Spain
| | - Montse Bellver
- Sports Medicine, Centre Alt Rendiment Sant Cugat del Vallès, Barcelona, Spain
| | | | - Joan Ramon Torrella
- Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Facultat de Biologia, Barcelona, Spain
| | | | | | - Franchek Drobnic
- Sports Medicine, Centre Alt Rendiment Sant Cugat del Vallès, Barcelona, Spain
- Medical Department, Shanghai Shenhau FC, Shanghai, China
| |
Collapse
|
8
|
Geometry and bone mineral density determinants of femoral neck strength changes following exercise. Biomech Model Mechanobiol 2023; 22:207-216. [PMID: 36271264 PMCID: PMC9958140 DOI: 10.1007/s10237-022-01642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
Physical exercise induces spatially heterogeneous adaptation in bone. However, it remains unclear where the changes in BMD and geometry have the greatest impact on femoral neck strength. The aim of this study was to determine the principal BMD-and-geometry changes induced by exercise that have the greatest effect on femoral neck strength. Pre- and post-exercise 3D-DXA images of the proximal femur were collected of male participants from the LIFTMOR-M exercise intervention trial. Meshes with element-by-element correspondence were generated by morphing a template mesh to each bone to calculate changes in BMD and geometry. Finite element (FE) models predicted femoral neck strength changes under single-leg stance and sideways fall load. Partial least squares regression (PLSR) models were developed with BMD-only, geometry-only, and BMD-and-geometry changes to determine the principal modes that explained the greatest variation in neck strength changes. The PLSR models explained over 90% of the strength variation with 3 PLS components using BMD-only (R2 > 0.92, RMSE < 0.06 N) and 8 PLS components with geometry-only (R2 > 0.93, RMSE < 0.06 N). Changes in the superior neck and distal cortex were most important during single-leg stance while the superior neck, medial head, and lateral trochanter were most important during a sideways fall. Local changes in femoral neck and head geometry could differentiate the exercise groups from the control group. Exercise interventions may target BMD changes in the superior neck, inferior neck, and greater trochanter for improved femoral neck strength in single-leg stance and sideways fall.
Collapse
|
9
|
Dudle A, Gugler Y, Pretterklieber M, Ferrari S, Lippuner K, Zysset P. 2D-3D reconstruction of the proximal femur from DXA scans: Evaluation of the 3D-Shaper software. Front Bioeng Biotechnol 2023; 11:1111020. [PMID: 36937766 PMCID: PMC10014626 DOI: 10.3389/fbioe.2023.1111020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: Osteoporosis is currently diagnosed based on areal bone mineral density (aBMD) computed from 2D DXA scans. However, aBMD is a limited surrogate for femoral strength since it does not account for 3D bone geometry and density distribution. QCT scans combined with finite element (FE) analysis can deliver improved femoral strength predictions. However, non-negligible radiation dose and high costs prevent a systematic usage of this technique for screening purposes. As an alternative, the 3D-Shaper software (3D-Shaper Medical, Spain) reconstructs the 3D shape and density distribution of the femur from 2D DXA scans. This approach could deliver a more accurate estimation of femoral strength than aBMD by using FE analysis on the reconstructed 3D DXA. Methods: Here we present the first independent evaluation of the software, using a dataset of 77 ex vivo femora. We extend a prior evaluation by including the density distribution differences, the spatial correlation of density values and an FE analysis. Yet, cortical thickness is left out of this evaluation, since the cortex is not resolved in our FE models. Results: We found an average surface distance of 1.16 mm between 3D DXA and QCT images, which shows a good reconstruction of the bone geometry. Although BMD values obtained from 3D DXA and QCT correlated well (r 2 = 0.92), the 3D DXA BMD were systematically lower. The average BMD difference amounted to 64 mg/cm3, more than one-third of the 3D DXA BMD. Furthermore, the low correlation (r 2 = 0.48) between density values of both images indicates a limited reconstruction of the 3D density distribution. FE results were in good agreement between QCT and 3D DXA images, with a high coefficient of determination (r 2 = 0.88). However, this correlation was not statistically different from a direct prediction by aBMD. Moreover, we found differences in the fracture patterns between the two image types. QCT-based FE analysis resulted mostly in femoral neck fractures and 3D DXA-based FE in subcapital or pertrochanteric fractures. Discussion: In conclusion, 3D-Shaper generates an altered BMD distribution compared to QCT but, after careful density calibration, shows an interesting potential for deriving a standardized femoral strength from a DXA scan.
Collapse
Affiliation(s)
- Alice Dudle
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- *Correspondence: Alice Dudle, ; Yvan Gugler,
| | - Yvan Gugler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- *Correspondence: Alice Dudle, ; Yvan Gugler,
| | - Michael Pretterklieber
- Division of Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW We re-evaluated clinical applications of image-to-FE models to understand if clinical advantages are already evident, which proposals are promising, and which questions are still open. RECENT FINDINGS CT-to-FE is useful in longitudinal treatment evaluation and groups discrimination. In metastatic lesions, CT-to-FE strength alone accurately predicts impending femoral fractures. In osteoporosis, strength from CT-to-FE or DXA-to-FE predicts incident fractures similarly to DXA-aBMD. Coupling loads and strength (possibly in dynamic models) may improve prediction. One promising MRI-to-FE workflow may now be tested on clinical data. Evidence of artificial intelligence usefulness is appearing. CT-to-FE is already clinical in opportunistic CT screening for osteoporosis, and risk of metastasis-related impending fractures. Short-term keys to improve image-to-FE in osteoporosis may be coupling FE with fall risk estimates, pool FE results with other parameters through robust artificial intelligence approaches, and increase reproducibility and cross-validation of models. Modeling bone modifications over time and bone fracture mechanics are still open issues.
Collapse
Affiliation(s)
- Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Zerdzicki K, Lemski P, Klosowski P, Skorek A, Zmuda Trzebiatowski M, Koberda M. Tensile modulus of human orbital wall bones cut in sagittal and coronal planes. PLoS One 2021; 16:e0259363. [PMID: 34739503 PMCID: PMC8570484 DOI: 10.1371/journal.pone.0259363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
In the current research, 68 specimens of orbital superior and/or medial walls taken from 33 human cadavers (12 females, 21 males) were subjected to uniaxial tension untill fracture. The samples were cut in the coronal (38 specimens) and sagittal (30 specimens) planes of the orbital wall. Apparent density (ρapp), tensile Young’s modulus (E-modulus) and ultimate tensile strength (UTS) were identified. Innovative test protocols were used to minimize artifacts and analyze the obtained data: (1) grips dedicated to non-symmetrical samples clamping were applied for mechanical testing, (2) non-contact measuring system of video-extensometer was employed for displacement registration, (3) ink imprint technique coupled with CAD analysis was applied to precisely access the cross-sectional areas of tested samples. With regard to a pooled group, apparent density for the coronal and sagittal cut plane was equal 1.53 g/cm3 and 1.57 g/cm3, tensile Young’s modulus 2.36 GPa and 2.14 GPa, and ultimate tensile strength 12.66 MPa and 14.35 MPa, respectively. No significant statistical differences (p > 0.05) were found for all the analyzed parameters when comparing coronal and sagittal plane cut groups. These observations confirmed the hypothesis that direction of sample cut does not affect the mechanical response of the orbital wall tissue, thus suggesting that mechanical properties of orbital wall bone show isotropic character.
Collapse
Affiliation(s)
- Krzysztof Zerdzicki
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
- * E-mail:
| | - Pawel Lemski
- Medical University of Gdańsk, Department of Otolaryngology, Gdańsk, Poland
| | - Pawel Klosowski
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Andrzej Skorek
- Medical University of Gdańsk, Department of Otolaryngology, Gdańsk, Poland
| | | | - Mateusz Koberda
- Medical University of Gdansk, Department of Ophtalmology, Gdansk, Poland
| |
Collapse
|
12
|
O'Rourke D, Beck BR, Harding AT, Watson SL, Pivonka P, Martelli S. Assessment of femoral neck strength and bone mineral density changes following exercise using 3D-DXA images. J Biomech 2021; 119:110315. [PMID: 33636460 DOI: 10.1016/j.jbiomech.2021.110315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/27/2022]
Abstract
Physical exercise induces spatially heterogeneous bone changes in the proximal femur. Recent advances have enabled 3D dual-energy X-ray Absorptiometry (DXA)-based finite element (FE) models to estimate bone strength. However, its ability to detect exercise-induced BMD and strength changes is unclear. The aim of this study was to quantify the repeatability of vBMD and femoral neck strength obtained from 3D-DXA images and determine the changes due an exercise intervention. The DXA scans included pairs of same-day repeated scans from ten healthy females and pre- and post-exercise intervention scans of 26 males. FE models with element-by-element correspondence were generated by morphing a template mesh to each bone. BMD and femoral strength under single-leg-stance and sideways fall loading configurations were obtained for both groups and compared. In the repeated images, the total hip vBMD difference was 0.5 ± 2.5%. Element-by-element BMD differences reached 30 ± 50%. The strength difference in single-leg stance was 2.8 ± 13% and in sideways fall was 4.5% ± 19%. In the exercise group, strength changes were 6 ± 19% under single-leg stance and 1 ± 18% under sideways fall. vBMD parameters were weakly correlated to strength (R2 < 0.31). The exercise group had a mean bone accrual exceeding repeatability values in the femoral head and cortical regions. The case with the highest vBMD change (6.4%) caused 18% and -7% strength changes under single-leg stance and sideways fall. 3D-DXA technology can assess the effect of exercise interventions in large cohorts but its validity in individual cases should be interpreted with caution.
Collapse
Affiliation(s)
- Dermot O'Rourke
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - Belinda R Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia; The Bone Clinic, Brisbane, Australia
| | - Amy T Harding
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| | - Steven L Watson
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
13
|
Grassi L, Fleps I, Sahlstedt H, Väänänen SP, Ferguson SJ, Isaksson H, Helgason B. Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip. Bone 2021; 142:115678. [PMID: 33022451 DOI: 10.1016/j.bone.2020.115678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Computed tomography (CT)-derived finite element (FE) models have been proposed as a tool to improve the current clinical assessment of osteoporosis and personalized hip fracture risk by providing an accurate estimate of femoral strength. However, this solution has two main drawbacks, namely: (i) 3D CT images are needed, whereas 2D dual-energy x-ray absorptiometry (DXA) images are more generally available, and (ii) quasi-static femoral strength is predicted as a surrogate for fracture risk, instead of predicting whether a fall would result in a fracture or not. The aim of this study was to combine a biofidelic fall simulation technique, based on 3D computed tomography (CT) data with an algorithm that reconstructs 3D femoral shape and BMD distribution from a 2D DXA image. This approach was evaluated on 11 pelvis-femur constructs for which CT scans, ex vivo sideways fall impact experiments and CT-derived biofidelic FE models were available. Simulated DXA images were used to reconstruct the 3D shape and bone mineral density (BMD) distribution of the left femurs by registering a projection of a statistical shape and appearance model with a genetic optimization algorithm. The 2D-to-3D reconstructed femurs were meshed, and the resulting FE models inserted into a biofidelic FE modeling pipeline for simulating a sideways fall. The median 2D-to-3D reconstruction error was 1.02 mm for the shape and 0.06 g/cm3 for BMD for the 11 specimens. FE models derived from simulated DXAs predicted the outcome of the falls in terms of fracture versus non-fracture with the same accuracy as the CT-derived FE models. This study represents a milestone towards improved assessment of hip fracture risk based on widely available clinical DXA images.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | |
Collapse
|
14
|
Villamor E, Monserrat C, Del Río L, Romero-Martín JA, Rupérez MJ. Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105484. [PMID: 32278980 DOI: 10.1016/j.cmpb.2020.105484] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
A great challenge in osteoporosis clinical assessment is identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models have been developed to predict the mechanical failure of the bone. Yet, their contribution has been modest. In this study, supervised machine learning (ML) is applied in conjunction with clinical and computationally driven mechanical attributes. Through this multi-technique approach, we aimed to obtain a predictive model that outperforms BMD and other clinical data alone, as well as to identify the best-learned ML classifier within a group of suitable algorithms. A total number of 137 postmenopausal women (81.4 ± 6.95 years) were included in the study and separated into a fracture group (n = 89) and a control group (n = 48). A semi-automatic and patient-specific DXA-based FE model was used to generate mechanical attributes, describing the geometry, the impact force, bone structure and mechanical response of the bone after a sideways-fall. After preprocessing the whole dataset, 19 attributes were selected as predictors. Support Vector Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural Networks and Random Forest were tested through a comprehensive validation procedure to compare their predictive performance. Clinical attributes were used alone in another experimental setup for the sake of comparison. SVM was confirmed to generate the best-learned algorithm for both experimental setups, including 19 attributes and only clinical attributes. The first, generated the best-learned model and outperformed BMD by 14pp. The results suggests that this approach could be easily integrated for effective prediction of hip fracture without interrupting the actual clinical workflow.
Collapse
Affiliation(s)
- E Villamor
- Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - C Monserrat
- Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - L Del Río
- ASCIRES Grupo Biomédico, Valencia, Spain
| | | | - M J Rupérez
- Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| |
Collapse
|
15
|
The comparison of bone mineral density of femoral head between non-hip fracture side and hip fracture side. Sci Rep 2020; 10:13015. [PMID: 32747650 PMCID: PMC7400568 DOI: 10.1038/s41598-020-70144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
We aimed to analyze the associations of bone mineral density (BMD) of femoral heads, age and gender, and compare the differences in BMD between fracture side and non-fracture side by “3D Spine Exam Analysis” module in QCT Pro software. In this study, we identified patients who had undergone quantitative computed tomography (QCT) examinations between March 2016 and July 2018 and measured their trabecular volumetric BMD (vBMD) of femoral heads. This retrospective study enrolled 367 subjects. A total of 149 participants with images were randomly selected to verify the repeatability of this method. The relationship among the vBMD, age and gender was analyzed (n = 367), and the difference of vBMD between non-fracture side and fracture side were studied in subjects (n = 75) with low-energy hip fracture on one side and compared the image quality of bilateral hip joints. The intraclass correlation coefficients (ICCs) between the results measured by 2 operators and the results measured by the same operator showed excellent agreement (ICCs > 0.9). Multivariate regression equation of vBMD of femoral head, age and gender showed statistical significance (P < 0.05). vBMD showed negative correlation with age (P < 0.05), and showed no statistically significant relation with gender (P > 0.05). vBMD of non-fracture side was higher than that of fracture side, but the difference was statistically significant only at the middle layer (Pmiddle < 0.05). In conclusions, the vBMD of femoral head as measured by "3D Spine Exam Analysis" module in QCT Pro software showed good repeatability. The trabecular vBMD of femoral head was negatively correlated with age, and not related with gender. The vBMD of femoral head was higher on non-fracture side than that on the fracture side.
Collapse
|
16
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
17
|
Martelli S, Beck B, Saxby D, Lloyd D, Pivonka P, Taylor M. Modelling Human Locomotion to Inform Exercise Prescription for Osteoporosis. Curr Osteoporos Rep 2020; 18:301-311. [PMID: 32335858 PMCID: PMC7250953 DOI: 10.1007/s11914-020-00592-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We review the literature on hip fracture mechanics and models of hip strain during exercise to postulate the exercise regimen for best promoting hip strength. RECENT FINDINGS The superior neck is a common location for hip fracture and a relevant exercise target for osteoporosis. Current modelling studies showed that fast walking and stair ambulation, but not necessarily running, optimally load the femoral neck and therefore theoretically would mitigate the natural age-related bone decline, being easily integrated into routine daily activity. High intensity jumps and hopping have been shown to promote anabolic response by inducing high strain in the superior anterior neck. Multidirectional exercises may cause beneficial non-habitual strain patterns across the entire femoral neck. Resistance knee flexion and hip extension exercises can induce high strain in the superior neck when performed using maximal resistance loadings in the average population. Exercise can stimulate an anabolic response of the femoral neck either by causing higher than normal bone strain over the entire hip region or by causing bending of the neck and localized strain in the superior cortex. Digital technologies have enabled studying interdependences between anatomy, bone distribution, exercise, strain and metabolism and may soon enable personalized prescription of exercise for optimal hip strength.
Collapse
Affiliation(s)
- Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, 5042, Australia.
| | - Belinda Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
| | - David Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - David Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Pivonka
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology, Brisbane, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, 5042, Australia
| |
Collapse
|
18
|
Bouxsein ML, Zysset P, Glüer CC, McClung M, Biver E, Pierroz DD, Ferrari SL. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 2020; 31:393-408. [PMID: 31900541 DOI: 10.1007/s00198-019-05195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED We reviewed the experimental and clinical evidence that hip bone strength estimated by BMD and/or finite element analysis (FEA) reflects the actual strength of the proximal femur and is associated with hip fracture risk and its changes upon treatment. INTRODUCTION The risk of hip fractures increases exponentially with age due to a progressive loss of bone mass, deterioration of bone structure, and increased incidence of falls. Areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), is the most used surrogate marker of bone strength. However, age-related declines in bone strength exceed those of aBMD, and the majority of fractures occur in those who are not identified as osteoporotic by BMD testing. With hip fracture incidence increasing worldwide, the development of accurate methods to estimate bone strength in vivo would be very useful to predict the risk of hip fracture and to monitor the effects of osteoporosis therapies. METHODS We reviewed experimental and clinical evidence regarding the association between aBMD and/orCT-finite element analysis (FEA) estimated femoral strength and hip fracture risk as well as their changes with treatment. RESULTS Femoral aBMD and bone strength estimates by CT-FEA explain a large proportion of femoral strength ex vivo and predict hip fracture risk in vivo. Changes in femoral aBMD are strongly associated with anti-fracture efficacy of osteoporosis treatments, though comparable data for FEA are currently not available. CONCLUSIONS Hip aBMD and estimated femoral strength are good predictors of fracture risk and could potentially be used as surrogate endpoints for fracture in clinical trials. Further improvements of FEA may be achieved by incorporating trabecular orientations, enhanced cortical modeling, effects of aging on bone tissue ductility, and multiple sideway fall loading conditions.
Collapse
Affiliation(s)
- M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - P Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - C C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - E Biver
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - S L Ferrari
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
19
|
Ziaeipoor H, Taylor M, Martelli S. Population-Based Bone Strain During Physical Activity: A Novel Method Demonstrated for the Human Femur. Ann Biomed Eng 2020; 48:1694-1701. [PMID: 32103370 DOI: 10.1007/s10439-020-02483-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
Statistical methods are increasingly used in biomechanics for studying bone geometry, bone density distribution and function in the population. However, relating population-based bone variation to strain during activity is computationally challenging. Here, we describe a new method for calculating strain in a population, using the Superposition Principle Method Squared (SPM2), and we demonstrate the method for calculating strain in human femurs. Computed-tomography images and motion capture while walking in 21 healthy adult women were obtained earlier. Variation of femur geometry and bone distribution were modelled using active shape and appearance modelling (ASAM). Femoral strain was modelled as the weighted sum of strain generated by each force in the model plus a strain variation assumed a quadratic function of the ASAM scores. The quadratic coefficients were fitted to 35 instances drawn from the ASAM model by varying each eigenmode by ± 2 SD. The equivalent strain in matched finite-element and SPM2 calculations was obtained for 40 frames of walking for three independent cases and 50 ASAM instances. Finite-element and SPM2 solutions for walking were obtained in 44 and 3 min respectively. The SPM2 model accurately predicted strain for the three independent instances (R-squared 0.83-0.94) and the 50 ASAM instances (R-squared 0.95-1.00). The method developed enables fast and accurate calculation of population-based femoral strain.
Collapse
Affiliation(s)
- Hamed Ziaeipoor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Rd, Tonsley, SA, 5042, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Rd, Tonsley, SA, 5042, Australia
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Rd, Tonsley, SA, 5042, Australia.
| |
Collapse
|
20
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
21
|
Diez-Perez A, Brandi ML, Al-Daghri N, Branco JC, Bruyère O, Cavalli L, Cooper C, Cortet B, Dawson-Hughes B, Dimai HP, Gonnelli S, Hadji P, Halbout P, Kaufman JM, Kurth A, Locquet M, Maggi S, Matijevic R, Reginster JY, Rizzoli R, Thierry T. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res 2019; 31:1375-1389. [PMID: 31422565 PMCID: PMC6763416 DOI: 10.1007/s40520-019-01294-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this paper was to review the available approaches for bone strength assessment, osteoporosis diagnosis and fracture risk prediction, and to provide insights into radiofrequency echographic multi spectrometry (REMS), a non-ionizing axial skeleton technique. METHODS A working group convened by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis met to review the current image-based methods for bone strength assessment and fracture risk estimation, and to discuss the clinical perspectives of REMS. RESULTS Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is the consolidated indicator for osteoporosis diagnosis and fracture risk assessment. A more reliable fracture risk estimation would actually require an improved assessment of bone strength, integrating also bone quality information. Several different approaches have been proposed, including additional DXA-based parameters, quantitative computed tomography, and quantitative ultrasound. Although each of them showed a somewhat improved clinical performance, none satisfied all the requirements for a widespread routine employment, which was typically hindered by unclear clinical usefulness, radiation doses, limited accessibility, or inapplicability to spine and hip, therefore leaving several clinical needs still unmet. REMS is a clinically available technology for osteoporosis diagnosis and fracture risk assessment through the estimation of BMD on the axial skeleton reference sites. Its automatic processing of unfiltered ultrasound signals provides accurate BMD values in view of fracture risk assessment. CONCLUSIONS New approaches for improved bone strength and fracture risk estimations are needed for a better management of osteoporotic patients. In this context, REMS represents a valuable approach for osteoporosis diagnosis and fracture risk prediction.
Collapse
Affiliation(s)
- Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar/IMIM and CIBERFES, Autonomous University of Barcelona, Passeig Maritim 25-29, 08003, Barcelona, Spain.
| | - Maria Luisa Brandi
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jaime C Branco
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olivier Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - Loredana Cavalli
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Bernard Cortet
- Department of Rheumatology and EA 4490, University-Hospital of Lille, Lille, France
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Peyman Hadji
- Frankfurter Hormon und Osteoporose Zentrum, Frankfurt, Germany
| | | | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Andreas Kurth
- Department of Orthopaedic Surgery and Osteology, Klinikum Frankfurt, Frankfurt, Germany
- Mayor Teaching Hospital, Charite Medical School, Berlin, Germany
| | - Medea Locquet
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Stefania Maggi
- National Research Council, Aging Program, Institute of Neuroscience, Padua, Italy
| | - Radmila Matijevic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Clinical Center of Vojvodina, Clinic for Orthopedic Surgery, Novi Sad, Serbia
| | - Jean-Yves Reginster
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Thomas Thierry
- Department of Rheumatology, Hospital Nord, CHU St Etienne, St Etienne, France
- INSERM 1059, University of Lyon, St Etienne, France
| |
Collapse
|
22
|
Neuro-musculoskeletal flexible multibody simulation yields a framework for efficient bone failure risk assessment. Sci Rep 2019; 9:6928. [PMID: 31061388 PMCID: PMC6503141 DOI: 10.1038/s41598-019-43028-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fragility fractures are a major socioeconomic problem. A non-invasive, computationally-efficient method for the identification of fracture risk scenarios under the representation of neuro-musculoskeletal dynamics does not exist. We introduce a computational workflow that integrates modally-reduced, quantitative CT-based finite-element models into neuro-musculoskeletal flexible multibody simulation (NfMBS) for early bone fracture risk assessment. Our workflow quantifies the bone strength via the osteogenic stresses and strains that arise due to the physiological-like loading of the bone under the representation of patient-specific neuro-musculoskeletal dynamics. This allows for non-invasive, computationally-efficient dynamic analysis over the enormous parameter space of fracture risk scenarios, while requiring only sparse clinical data. Experimental validation on a fresh human femur specimen together with femur strength computations that were consistent with literature findings provide confidence in the workflow: The simulation of an entire squat took only 38 s CPU-time. Owing to the loss (16% cortical, 33% trabecular) of bone mineral density (BMD), the strain measure that is associated with bone fracture increased by 31.4%; and yielded an elevated risk of a femoral hip fracture. Our novel workflow could offer clinicians with decision-making guidance by enabling the first combined in-silico analysis tool using NfMBS and BMD measurements for optimized bone fracture risk assessment.
Collapse
|