1
|
Yang Y, Deng K, Jiang S, Guo X, Zhong Y, Wu B, Wei L. Punicalagin ameliorates lipopolysaccharide-induced inflammatory response in dental pulp cells via inhibition of the NF-κB/Wnt5a-ROR2 pathway. Immunopharmacol Immunotoxicol 2025; 47:317-327. [PMID: 39994845 DOI: 10.1080/08923973.2025.2470343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Punicalagin (PCG) is a major polyphenolic component with potent anti-inflammatory, anti-atherogenic, anti-cancer, and antioxidant activities. This study aimed to investigate the impact and underlying mechanisms of PCG on lipopolysaccharide (LPS)-induced dental pulpitis. METHODS A rat pulpitis model was constructed, and the infected pulp was covered with a PCG collagen sponge. In vitro, dental pulp cells (DPCs) were isolated, and the effects of LPS and PCG on cell viability were assessed. The expression levels of inflammation-related factors were investigated by qRT-PCR and ELISA. The Nuclear Factor kappa B (NF-κB) transcription factors and Wnt family member 5a-Receptor tyrosine kinase like Orphan Receptor 2 (Wnt5a-ROR2) levels were evaluated by immunofluorescence staining and Western blotting. RESULTS We demonstrated that the PCG collagen sponge effectively reduced the infiltration of inflammatory cells in the pulp. PCG significantly alleviated the inflammatory response by reducing the mRNA expression levels of IL-1β, IL-6, IL-8, ICAM-1, and VCAM-1 and the secretion of IL-6 and IL-8 in a concentration-dependent manner. Immunofluorescence staining showed that the activation of the NF-κB pathway was hindered by PCG, which affected with the nuclear translocation of P65. PCG reduced the phosphorylation levels of P65 and IκBα and suppressed the expression levels of Wnt5a and ROR2 induced by LPS. The NF-κB inhibitor Bay11-7082 reduced the activation of the NF-κB/Wnt5a-ROR2 pathway and the inflammatory response; the application of PCG significantly augmented this inhibitory effect. DISCUSSION PCG demonstrated an anti-inflammatory effect in LPS-induced DPCs by targeting the NF-κB/Wnt5a-ROR2 signaling pathway.
Collapse
Affiliation(s)
- Yumeng Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Jiang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Xiaolan Guo
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yiming Zhong
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Liu Wei
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Breland AN, Ross MK, Fitzkee NC, Elder SH. In Silico Insights into the Inhibition of ADAMTS-5 by Punicalagin and Ellagic Acid for the Treatment of Osteoarthritis. Int J Mol Sci 2025; 26:4093. [PMID: 40362332 PMCID: PMC12071641 DOI: 10.3390/ijms26094093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
ADAMTS-5 (aggrecanase-2) is a major metalloprotease involved in regulating the cartilage extracellular matrix. Due to its role in removing aggrecan in the progression of osteoarthritis (OA), ADAMTS-5 is often regarded as a potential therapeutic target for OA. Punicalagin (PCG), a polyphenolic ellagitannin found in pomegranate (Punica grunatum L.), and ellagic acid (EA), a hydrolytic metabolite of PCG, have been widely investigated as potential disease-modifying osteoarthritis drugs (DMOADs) due to their potent antioxidant and anti-inflammatory properties, but their interaction with ADAMTS-5 has yet to be determined. In this study, molecular docking simulations were used to predict enzyme-inhibitor binding interactions. The results suggest that both compounds may be able to bind within the active site via the formation of H bonds and interactions between the ligand's aromatic rings and hydrophobic residue in the enzyme with inhibition constants of 183.3 µM and 1.13 µM for PCG and EA, respectively. Biochemical activity against recombinant human ADAMTS-5 was assessed using a dimethylmethylene blue-based assay to determine residual sulfated glycosaminoglycan (sGAG) in porcine articular cartilage. Although its loss could not be attributed to ADAMTS-5, sGAG was effectively persevered by PCG and EA. The potential conversion of PCG to EA by enzyme-catalyzed hydrolysis activity was then investigated using liquid chromatography-mass spectroscopy to determine the potential for the use of PCG and EA as a prodrug-proactive metabolite pair in the development of drug delivery systems to arthritic synovial joints.
Collapse
Affiliation(s)
- Austen N. Breland
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew K. Ross
- Department of Comparative Biomedical Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA;
| | - Steven H. Elder
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville, MS 39762, USA;
| |
Collapse
|
3
|
Ye H, Li ZQ, Yang JM, Long Y, Zhong YB, Wu Y, Wang MY. A network pharmacology-based study to investigate the mechanism of curcumin-regulated regenerative repair of quadriceps femoris muscle in KOA rats. Eur J Pharmacol 2024; 982:176910. [PMID: 39154821 DOI: 10.1016/j.ejphar.2024.176910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a very common musculoskeletal disorder, and patients with KOA often exhibit significant quadriceps femoris muscle atrophy. It is well established that curcumin (CUR) exerts protective effects on skeletal muscle. However, the efficacy of CUR in treating KOA-induced quadriceps femoris muscle atrophy and its underlying mechanisms remain uncertain. In this study, we employed network pharmacology to investigate the mechanism by which CUR promotes regenerative repair of the quadriceps femoris muscle in rats with KOA. METHODS The potential targets of CUR were obtained from Swiss Target Prediction. The targets of skeletal muscle regeneration were identified from GeneCard and OMIM. A Venn diagram was generated to visualize the intersection of CUR targets and skeletal muscle regeneration targets, and the core targets were identified using STRING. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted using DAVID. Finally, the network pharmacology results were further validated by establishing a KOA rat model using the Hulth method. RESULTS Network pharmacology analysis and molecular docking results revealed that CUR affects skeletal muscle regeneration through multiple targets and pathways. In vivo experimental results were validated by demonstrating that KOA causes atrophy and induces apoptosis in the quadriceps femoris muscle. Furthermore, CUR was shown to inhibit apoptosis in the quadriceps femoris muscle by regulating STAT3 and FOS, as well as the PI3K/AKT signaling pathway. CONCLUSIONS Our study revealed the apoptosis-inhibiting effects of CUR and its underlying mechanisms. Consequently, CUR has the potential to improve quadriceps femoris muscle atrophy caused by KOA.
Collapse
Affiliation(s)
- Hua Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Ze-Qin Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Jia-Ming Yang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yi Long
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, Jiangxi, China
| | - Yi Wu
- Gannan Medical University, Ganzhou City, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering (2024SSY06291), School of Pharmacy, Gannan Medical University, Gouzhou, Jiangxi, China.
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Ganzhou Key Laboratory of Rehabilitation Medicine, GanZhou City, Jiangxi, China.
| |
Collapse
|
4
|
Zhao C, Feng Y, Zhou Y, Li N, Zhao L. Artesunate attenuates osteoarthritis in mice by promoting MTA1 transcription through a USP7/FoxO1 axis. Toxicol Appl Pharmacol 2024; 491:117075. [PMID: 39173720 DOI: 10.1016/j.taap.2024.117075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Artesunate (ART) is a derivative of artemisinin and has anti-inflammatory, anti-tumor, and anti-angiogenic properties. Although ART has been implicated in osteoarthritis (OA), the mechanism needs to be further dissected. Here, we explored the effects of ART on the development of OA and the underlying mechanism using destabilization of the medial meniscus (DMM) surgical instability model. Mice with OA were developed using DMM and treated with ART. The pathological morphology of knee joint tissues was examined, and the degeneration of joint cartilage was assessed. Mouse knee chondrocytes were isolated and induced with IL-1β, followed by ART treatment. ART alleviates OA in mice by elevating ubiquitin carboxyl-terminal hydrolase 7 (USP7) expression, and USP7 inhibitor (P22077) treatment mitigated the protective effects of ART on chondrocytes. We also showed that USP7 mediated the deubiquitination of forkhead box protein O1 (FoxO1), while FoxO1 alleviated chondrocyte injury. In addition, FoxO1 promoted metastasis-associated protein MTA1 (MTA1) transcription, and downregulation of MTA1 exacerbated chondrocyte injury. Our study identifies that USP7/FoxO1/MTA1 is a key signaling cascade in the treatment of ART on OA.
Collapse
Affiliation(s)
- Chengjin Zhao
- Department of Orthopedics, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, PR China
| | - Yangyang Feng
- Department of Orthopedics, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, PR China
| | - Yuhu Zhou
- Department of Orthopedics, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, PR China
| | - Nannan Li
- Department of Orthopedics, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, PR China
| | - Li Zhao
- Department of Cardiology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, PR China.
| |
Collapse
|
5
|
Ye H, Long Y, Yang JM, Wu YL, Dong LY, Zhong YB, Luo Y, Wang MY. Curcumin regulates autophagy through SIRT3-SOD2-ROS signaling pathway to improve quadriceps femoris muscle atrophy in KOA rat model. Sci Rep 2024; 14:8176. [PMID: 38589505 PMCID: PMC11001965 DOI: 10.1038/s41598-024-58375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Knee osteoarthritis (KOA) usually leads to quadriceps femoris atrophy, which in turn can further aggravate the progression of KOA. Curcumin (CUR) has anti-inflammatory and antioxidant effects and has been shown to be a protective agent for skeletal muscle. CUR has been shown to have a protective effect on skeletal muscle. However, there are no studies related to whether CUR improves KOA-induced quadriceps femoris muscle atrophy. We established a model of KOA in rats. Rats in the experimental group were fed CUR for 5 weeks. Changes in autophagy levels, reactive oxygen species (ROS) levels, and changes in the expression of the Sirutin3 (SIRT3)-superoxide dismutase 2 (SOD2) pathway were detected in the quadriceps femoris muscle of rats. KOA led to quadriceps femoris muscle atrophy, in which autophagy was induced and ROS levels were increased. CUR increased SIRT3 expression, decreased SOD2 acetylation and ROS levels, inhibited the over-activation of autophagy, thereby alleviating quadriceps femoris muscle atrophy and improving KOA. CUR has a protective effect against quadriceps femoris muscle atrophy, and KOA is alleviated after improvement of quadriceps femoris muscle atrophy, with the possible mechanism being the reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway.
Collapse
Affiliation(s)
- Hua Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yi Long
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Jia-Ming Yang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yan-Lin Wu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Ling-Yan Dong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou, Jiangxi, China
| | - Yun Luo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou, Jiangxi, China.
| |
Collapse
|
6
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| |
Collapse
|
7
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, Lin J, Wang J, Pan X, Xue X. MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology 2023; 21:486. [PMID: 38105181 PMCID: PMC10726686 DOI: 10.1186/s12951-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiguang Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shoaib Iqbal
- Feik School of Pharmacy, University of the Incarnate Word, Broadway, San Antonio, 4301, USA
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Sun W, Yue J, Xu T, Cui Y, Huang D, Shi H, Xiong J, Sun W, Yi Q. Xanthohumol alleviates palmitate-induced inflammation and prevents osteoarthritis progression by attenuating mitochondria dysfunction/NLRP3 inflammasome axis. Heliyon 2023; 9:e21282. [PMID: 37964828 PMCID: PMC10641167 DOI: 10.1016/j.heliyon.2023.e21282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative joint disease worldwide. Obesity has been linked to OA, and increased free fatty acid levels (e.g., palmitate) contribute to inflammatory responses and cartilage degradation. Xanthohumol (Xn), a bioactive prenylated chalcone, was shown to exhibit antioxidative, anti-inflammatory, and anti-obesity capacities in multiple diseases. However, a clear description of the preventive effects of Xn on obesity-associated OA is unavailable. This study aimed to assess the chondroprotective function of Xn on obesity-related OA. The in vitro levels of inflammatory and ECM matrix markers in human chondrocytes were assessed after the chondrocytes were treated with PA and Xn. Additionally, in vivo cartilage degeneration was assessed following oral administration of HFD and Xn. This study found that Xn treatment completely reduces the inflammation and extracellular matrix degradation caused by PA. The proposed mechanism involves AMPK signaling pathway activation by Xn, which increases mitochondrial biogenesis, attenuates mitochondrial dysfunction, and inhibits NLRP3 inflammasome and the NF-κB signaling pathway induced by PA. In summary, this study highlights that Xn could decrease inflammation reactions and the degradation of the cartilage matrix induced by PA by inhibiting the NLRP3 inflammasome and attenuating mitochondria dysfunction in human chondrocytes.
Collapse
Affiliation(s)
- Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518035, China
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Tianhao Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yinxing Cui
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dixi Huang
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Qian Yi
- Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan, 646099, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
9
|
Xu L, Zhang F, Cheng G, Yuan X, Wu Y, Wu H, Wang Q, Chen J, Kuai J, Chang Y, Wei W, Yan S. Attenuation of experimental osteoarthritis with human adipose-derived mesenchymal stem cell therapy: inhibition of the pyroptosis in chondrocytes. Inflamm Res 2023; 72:89-105. [PMID: 36331571 DOI: 10.1007/s00011-022-01655-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
AIM To explore the role and mechanism of human adipose-derived mesenchymal stem cells (hAD-MSCs) in the treatment of osteoarthritis (OA). METHODS OA hulth model of Sprague Dawley (SD) rats and 20 ng/ml TNF-α treated chondrocytes were used as models of OA in vivo and in vitro, respectively. hAD-MSCs were administrated in the articular cavity by injection in vivo and co-cultured with chondrocytes using transwell in vitro. Haematoxylin and eosin staining and Safranin-O/Fast green staining were performed to detect tissue destruction and histopathology. Scanning electron microscopy and transmission electron microscopy were used to observe the ultrastructure of chondrocytes. The pyroptosis signaling pathway-related proteins were detected by immunohistochemistry, immunofluorescence, qRT-PCR and Western blot. And small interference technology was used to study the mechanism in depth. RESULTS hAD-MSCs could delay the development of rat OA, improve the pathological changes of joints, inhibit the expression of NLRP3, Caspase1, GSDMD and TNFR1. In vitro, the expression of pyroptosis signal proteins in chondrocytes was significantly elevated when stimulated with TNF-α, the level of inflammatory factors such as IL-1β, IL-18 was increased, and the cell morphology was significantly destroyed. While co-cultured with hAD-MSCs, these syndromes were reversed. Knockout of TNFR1 also returned the upregulation of pyroptosis signals which caused by TNF-α. CONCLUSION These results demonstrated that hAD-MSCs could inhibit pyroptosis signaling pathway of chondrocytes induced by TNF-α, which have raised our understanding of the role of hAD-MSCs as promising therapy for the management of OA.
Collapse
Affiliation(s)
- Liang Xu
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Gang Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiaoyang Yuan
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yujiao Wu
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Kuai
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China. .,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China. .,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China. .,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China. .,Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
10
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Overview of Anti-Inflammatory and Anti-Nociceptive Effects of Polyphenols to Halt Osteoarthritis: From Preclinical Studies to New Clinical Insights. Int J Mol Sci 2022; 23:ijms232415861. [PMID: 36555503 PMCID: PMC9779856 DOI: 10.3390/ijms232415861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most multifactorial joint disorders in adults. It is characterized by degenerative and inflammatory processes that are responsible for joint destruction, pain and stiffness. Despite therapeutic advances, the search for alternative strategies to target inflammation and pain is still very challenging. In this regard, there is a growing body of evidence for the role of several bioactive dietary molecules (BDMs) in targeting inflammation and pain, with promising clinical results. BDMs may be valuable non-pharmaceutical solutions to treat and prevent the evolution of early OA to more severe phenotypes, overcoming the side effects of anti-inflammatory drugs. Among BDMs, polyphenols (PPs) are widely studied due to their abundance in several plants, together with their benefits in halting inflammation and pain. Despite their biological relevance, there are still many questionable aspects (biosafety, bioavailability, etc.) that hinder their clinical application. This review highlights the mechanisms of action and biological targets modulated by PPs, summarizes the data on their anti-inflammatory and anti-nociceptive effects in different preclinical in vitro and in vivo models of OA and underlines the gaps in the knowledge. Furthermore, this work reports the preliminary promising results of clinical studies on OA patients treated with PPs and discusses new perspectives to accelerate the translation of PPs treatment into the clinics.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-0516366803
| |
Collapse
|
11
|
Fakudze NT, Aniogo EC, George BP, Abrahamse H. The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy. PLANTS (BASEL, SWITZERLAND) 2022; 11:2820. [PMID: 36365273 PMCID: PMC9654801 DOI: 10.3390/plants11212820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Punica granatum (P. granatum) is a fruit-bearing tree from the Punicaceae family, indigenous to Iran. This plant has healing qualities that have drawn the interest of the medical community as an alternative treatment for malignancies and non-malignancies. Its healing quality is due to the phytochemicals present in the plant. These include ellagic acid, punicic acid, phenols, and flavonoids. In traditional medicine, P. granatum has been used in treating diseases such as dysentery, bleeding disorders, leprosy, and burns. This review explores the effects of the phytochemical constituents of P. granatum on photodynamic therapy for cancer, chronic inflammation, osteoarthritis, and viral infections. Its antioxidant and antitumor effects play a role in reduced free radical damage and cancer cell proliferation. It was concluded that P. granatum has been used for many disease conditions for a better therapeutic outcome. This paper will give visibility to more studies and expand the knowledge on the potential use of P. granatum in photodynamic cancer treatment.
Collapse
|
12
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
13
|
Govoni M, Danesi F. Do Pomegranate Hydrolyzable Tannins and Their Derived Metabolites Provide Relief in Osteoarthritis? Findings from a Scoping Review. Molecules 2022; 27:1033. [PMID: 35164312 PMCID: PMC8840395 DOI: 10.3390/molecules27031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis affecting both the elderly and the middle-aged population. Although various therapeutics have been developed to arrest the structural deterioration of cartilage, the current treatments are limited to delay the progress of OA clinically. Therefore, it is pivotal to study new therapeutic agents for chondroprotection and the prevention of cartilage degeneration. Hydrolyzable tannin (HT)-containing foods aroused considerable interest in recent years for their relevant anti-inflammatory effects. The focus of this scoping review is to provide an overview of the evidence of the therapeutic potential of HTs and their metabolites in preventing or alleviating the course of OA. A broad search of PubMed and Scopus databases on this topic resulted in 156 articles. After the exclusion of reviews and not relevant records, 31 articles were retrieved. Although only some papers did not consider the biotransformation of HTs, most recent studies also have investigated the effect of HT metabolites. Further larger clinical trials, with an in-deep analysis of HT metabolization, are still needed to unravel the potential benefits of these compounds in OA, paving the way towards the development of a dietary strategy for the improvement of pro-inflammatory cytokine-induced chondrocyte dysfunctions and injuries.
Collapse
Affiliation(s)
- Marco Govoni
- Reconstructive Orthopedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy;
| | - Francesca Danesi
- Human Nutrition Unit, Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
14
|
Tang L, Li T, Zhang B, Zhang Z, Sun X, Zhu Y, Feng B, Su Z, Yang L, Li H, Liu H, Chen Y, Dai Z, Zheng X, Li M, Li C, Zhao J, Qiu X, Ye S, Liu H, Zheng G, Li B, Lu C. Punicalagin Alleviates Psoriasis by Inhibiting NF-κB-Mediated IL-1β Transcription and Caspase-1-Regulated IL-1β Secretion. Front Pharmacol 2022; 13:817526. [PMID: 35153790 PMCID: PMC8826397 DOI: 10.3389/fphar.2022.817526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic and inflammatory skin disorder characterized by inflammation and epidermal hyperplasia. Punicalagin (PUN) is a main active ingredient of pomegranate (Punica granatum L.) peel with multiple biological activities, such as antibacterial, antioxidant and anti-tumor effects. However, the potential effect of PUN on psoriasis remains unknown. In this study, we want to investigate the pharmacological effect of PUN on psoriasis by using imiquimod (IMQ)-induced psoriatic mice model in vivo and tumor necrosis factor a (TNF-α) and interleukin-17A (IL-17A)-stimulated HaCaT cells in vitro. Our results showed that PUN can effectively alleviate the severity of psoriasis-like symptoms. Mechanistically, PUN potently suppresses the aberrant upregulation of interleukin-1β (IL-1β) and subsequent IL-1β-mediated inflammatory cascade in keratinocytes by inhibiting the nuclear factor kappa B (NF-κB) activation and cleaved caspase-1 expression in vitro and in vivo. Taken together, our findings indicate that PUN can relieve psoriasis by repressing NF-κB-mediated IL-1β transcription and caspase-1-regulated IL-1β secretion, which provide evidence that PUN might represent a novel and promising candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Zhang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihao Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyi Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Zhu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Laijun Yang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxia Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xirun Zheng
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxian Li
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chutian Li
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhao
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinmin Qiu
- Genetic Testing Lab, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuyan Ye
- Department of Dermatology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ben Li
- Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|