1
|
Zhang M, Xiang C, Niu R, He X, Luo W, Liu W, Gu R. Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders: drug stability, targeting efficiency, and safety. Neural Regen Res 2025; 20:1883-1899. [PMID: 39254548 PMCID: PMC11691476 DOI: 10.4103/nrr.nrr-d-24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 09/11/2024] Open
Abstract
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chunyu Xiang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Renrui Niu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaodong He
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenqi Luo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
3
|
Bhattacharjya S, Zhang Z, Ramamoorthy A. LL-37: Structures, Antimicrobial Activity, and Influence on Amyloid-Related Diseases. Biomolecules 2024; 14:320. [PMID: 38540740 PMCID: PMC10968335 DOI: 10.3390/biom14030320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/β defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs-testis, skin, respiratory tract, and gastrointestinal tract-to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhizhuo Zhang
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA;
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
4
|
Hu J, Linse S, Sparr E. Ganglioside Micelles Affect Amyloid β Aggregation by Coassembly. ACS Chem Neurosci 2023; 14:4335-4343. [PMID: 38050745 PMCID: PMC10739608 DOI: 10.1021/acschemneuro.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Amyloid β peptide (Aβ) is the crucial protein component of extracellular plaques in Alzheimer's disease. The plaques also contain gangliosides lipids, which are abundant in membranes of neuronal cells and in cell-derived vesicles and exosomes. When present at concentrations above its critical micelle concentration (cmc), gangliosides can occur as mixed micelles. Here, we study the coassembly of the ganglioside GM1 and the Aβ peptides Aβ40 and 42 by means of microfluidic diffusional sizing, confocal microscopy, and cryogenic transmission electron microscopy. We also study the effects of lipid-peptide interactions on the amyloid aggregation process by fluorescence spectroscopy. Our results reveal coassembly of GM1 lipids with both Aβ monomers and Aβ fibrils. The results of the nonseeded kinetics experiments show that Aβ40 aggregation is delayed with increasing GM1 concentration, while that of Aβ42 is accelerated. In seeded aggregation reactions, the addition of GM1 leads to a retardation of the aggregation process of both peptides. Thus, while the effect on nucleation differs between the two peptides, GM1 may inhibit the elongation of both types of fibrils. These results shed light on glycolipid-peptide interactions that may play an important role in Alzheimer's pathology.
Collapse
Affiliation(s)
- Jing Hu
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sara Linse
- Division
of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
5
|
Gao C, Liu Y, Zhang TL, Luo Y, Gao J, Chu JJ, Gong BF, Chen XH, Yin T, Zhang J, Yin Y. Biomembrane-Derived Nanoparticles in Alzheimer's Disease Therapy: A Comprehensive Review of Synthetic Lipid Nanoparticles and Natural Cell-Derived Vesicles. Int J Nanomedicine 2023; 18:7441-7468. [PMID: 38090364 PMCID: PMC10712251 DOI: 10.2147/ijn.s436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Current therapies for Alzheimer's disease used in the clinic predominantly focus on reducing symptoms with limited capability to control disease progression; thus, novel drugs are urgently needed. While nanoparticles (liposomes, high-density lipoprotein-based nanoparticles) constructed with synthetic biomembranes have shown great potential in AD therapy due to their excellent biocompatibility, multifunctionality and ability to penetrate the BBB, nanoparticles derived from natural biomembranes (extracellular vesicles, cell membrane-based nanoparticles) display inherent biocompatibility, stability, homing ability and ability to penetrate the BBB, which may present a safer and more effective treatment for AD. In this paper, we reviewed the synthetic and natural biomembrane-derived nanoparticles that are used in AD therapy. The challenges associated with the clinical translation of biomembrane-derived nanoparticles and future perspectives are also discussed.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Luo
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian-Jian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Bao-Feng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiao-Han Chen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Paterna A, Santonicola P, Di Prima G, Rao E, Raccosta S, Zampi G, Russo C, Moran O, Manno M, Di Schiavi E, Librizzi F, Carrotta R. α S1-Casein-Loaded Proteo-liposomes as Potential Inhibitors in Amyloid Fibrillogenesis: In Vivo Effects on a C. elegans Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3894-3904. [PMID: 37847529 PMCID: PMC10623563 DOI: 10.1021/acschemneuro.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
According to the amyloid hypothesis, in the early phases of Alzheimer's disease (AD), small soluble prefibrillar aggregates of the amyloid β-peptide (Aβ) interact with neuronal membranes, causing neural impairment. Such highly reactive and toxic species form spontaneously and transiently in the amyloid building pathway. A therapeutic strategy consists of the recruitment of these intermediates, thus preventing aberrant interaction with membrane components (lipids and receptors), which in turn may trigger a cascade of cellular disequilibria. Milk αs1-Casein is an intrinsically disordered protein that is able to inhibit Aβ amyloid aggregation in vitro, by sequestering transient species. In order to test αs1-Casein as an inhibitor for the treatment of AD, it needs to be delivered in the place of action. Here, we demonstrate the use of large unilamellar vesicles (LUVs) as suitable nanocarriers for αs1-Casein. Proteo-LUVs were prepared and characterized by different biophysical techniques, such as multiangle light scattering, atomic force imaging, and small-angle X-ray scattering; αs1-Casein loading was quantified by a fluorescence assay. We demonstrated on a C. elegans AD model the effectiveness of the proposed delivery strategy in vivo. Proteo-LUVs allow efficient administration of the protein, exerting a positive functional readout at very low doses while avoiding the intrinsic toxicity of αs1-Casein. Proteo-LUVs of αs1-Casein represent an effective proof of concept for the exploitation of partially disordered proteins as a therapeutic strategy in mild AD conditions.
Collapse
Affiliation(s)
- Angela Paterna
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Pamela Santonicola
- Institute
of Biosciences and Bioresources, Division of Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy
- Department
of Medicine and Health Sciences, University
of Molise, 86100 Campobasso, Italy
| | - Giulia Di Prima
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Estella Rao
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Samuele Raccosta
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giuseppina Zampi
- Institute
of Biosciences and Bioresources, Division of Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudio Russo
- Department
of Medicine and Health Sciences, University
of Molise, 86100 Campobasso, Italy
- Consorzio
Interuniversitario in Ingegneria e Medicina (COIIM), Via F. De Sanctis, 86100 Campobasso, Italy
| | - Oscar Moran
- Institute
of Biophysics, National Research Council, Division of Genova, Via De Marini 6, 16149 Genova, Italy
| | - Mauro Manno
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Elia Di Schiavi
- Institute
of Biosciences and Bioresources, Division of Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Fabio Librizzi
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Rita Carrotta
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
7
|
Ball HL, Said H, Chapman K, Fu R, Xiong Y, Burk JA, Rosenbaum D, Veneziano R, Cotten ML. Orexin A, an amphipathic α-helical neuropeptide involved in pleiotropic functions in the nervous and immune systems: Synthetic approach and biophysical studies of the membrane-bound state. Biophys Chem 2023; 297:107007. [PMID: 37037119 DOI: 10.1016/j.bpc.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
This research reports on the membrane interactions of orexin A (OXA), an α-helical and amphipathic neuropeptide that contains 33 residues and two disulfide bonds in the N-terminal region. OXA, which activates the orexins 1 and 2 receptors in neural and immune cell membranes, has essential pleiotropic physiological effects, including at the levels of arousal, sleep/wakefulness, energy balance, neuroprotection, lipid signaling, the inflammatory response, and pain. As a result, the orexin system has become a prominent target to treat diseases such as sleep disorders, drug addiction, and inflammation. While the high-resolution structure of OXA has been investigated in water and bound to micelles, there is a lack of information about its conformation bound to phospholipid membranes and its receptors. NMR is a powerful method to investigate peptide structures in a membrane environment. To facilitate the NMR structural studies of OXA exposed to membranes, we present a novel synthetic scheme, leading to the production of isotopically-labeled material at high purity. A receptor activation assay shows that the 15N-labeled peptide is biologically active. Biophysical studies are performed using surface plasmon resonance, circular dichroism, and NMR to investigate the interactions of OXA with phospholipid bilayers. The results demonstrate a strong interaction between the peptide and phospholipids, an increase in α-helical content upon membrane binding, and an in-plane orientation of the C-terminal region critical to function. This new knowledge about structure-activity relationships in OXA could inspire the design of novel therapeutics that leverage the anti-inflammatory and neuro-protective functions of OXA, and therefore could help address neuroinflammation, a major issue associated with neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Haydn L Ball
- Department of Chemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hooda Said
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA
| | - Karen Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yawei Xiong
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | - Joshua A Burk
- Department of Psychological Sciences, William & Mary, Williamsburg, VA 23185, USA
| | - Daniel Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA.
| |
Collapse
|
8
|
Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol 2022; 59:7056-7073. [PMID: 36076005 PMCID: PMC9525381 DOI: 10.1007/s12035-022-03025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-β peptides Aβ40 and Aβ42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aβ in the APP sequence resulted in a concomitant significant increase in the production of shorter Aβ peptides. Mass spectrometry (MS) confirmed the predominance of Aβx-33 and Aβx-34 with the APPK28A mutant. The enzymatic activity of α-, β-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 and Aβ42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aβ species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
Collapse
Affiliation(s)
- Linda Hanbouch
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Béatrice Schaack
- Univ. Grenoble Alpes, CNRS, INP, TheRex Team, TIMC-IMAG, 38700, La Tronche, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38044, Grenoble, France
| | - Amal Kasri
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Gaëlle Fontaine
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Gilles Mourier
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Mark J Millan
- Neuroscience Inflammation Thérapeutic Area, IDR Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 62 Hillhead Street, Glasgow, G12 8QB, Scotland
| | - Catherine Marquer
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Lydie Boussicault
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
9
|
Saha J, Bose P, Dhakal S, Ghosh P, Rangachari V. Ganglioside-Enriched Phospholipid Vesicles Induce Cooperative Aβ Oligomerization and Membrane Disruption. Biochemistry 2022; 61:2206-2220. [PMID: 36173882 PMCID: PMC9840156 DOI: 10.1021/acs.biochem.2c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major hallmark of Alzheimer's disease (AD) is the accumulation of extracellular aggregates of amyloid-β (Aβ). Structural polymorphism observed among Aβ fibrils in AD brains seem to correlate with the clinical subtypes suggesting a link between fibril polymorphism and pathology. Since fibrils emerge from a templated growth of low-molecular-weight oligomers, understanding the factors affecting oligomer generation is important. Membrane lipids are key factors to influence early stages of Aβ aggregation and oligomer generation, which cause membrane disruption. We have previously demonstrated that conformationally discrete Aβ oligomers can be generated by modulating the charge, composition, and chain length of lipids and surfactants. Here, we extend our studies into liposomal models by investigating Aβ oligomerization on large unilamellar vesicles (LUVs) of total brain extracts (TBE), reconstituted lipid rafts (LRs), or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Varying the vesicle composition by specifically increasing the amount of GM1 gangliosides as a constituent, we found that only GM1-enriched liposomes induce the formation of toxic, low-molecular-weight oligomers. Furthermore, we found that the aggregation on liposome surface and membrane disruption are highly cooperative and sensitive to membrane surface characteristics. Numerical simulations confirm such a cooperativity and reveal that GM1-enriched liposomes form twice as many pores as those formed in the absence GM1. Overall, this study uncovers mechanisms of cooperativity between oligomerization and membrane disruption under controlled lipid compositional bias, and refocuses the significance of the early stages of Aβ aggregation in polymorphism, propagation, and toxicity in AD.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Priyankar Bose
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Shailendra Dhakal
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
10
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
11
|
Small Angle X-ray Scattering Sensing Membrane Composition: The Role of Sphingolipids in Membrane-Amyloid β-Peptide Interaction. BIOLOGY 2021; 11:biology11010026. [PMID: 35053023 PMCID: PMC8772848 DOI: 10.3390/biology11010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The early impairments in Alzheimer’s disease are related to neuronal membrane damage. Different lipids are present in biological membranes, playing relevant physiological roles. Some of them, such as sphingomyelin, cholesterol, and ganglioside GM1, interact with each other and, importantly, with the Aβ peptide. Here, these interactions are studied using small angle X-ray scattering in model membrane systems, such as large unilamellar liposomes. This technique gives information on the width of the bilayer and reveals structural differences due to the different lipid compositions, as well as some small differences due to the presence of the Aβ peptide. The analysis highlights the concentration-dependent effect of GM1 on membrane thickness and the interaction with the Aβ-peptide, together with the inhibiting effect that the presence of sphingomyelin has on the GM1–Aβ interaction. Abstract The early impairments appearing in Alzheimer’s disease are related to neuronal membrane damage. Both aberrant Aβ species and specific membrane components play a role in promoting aggregation, deposition, and signaling dysfunction. Ganglioside GM1, present with cholesterol and sphingomyelin in lipid rafts, preferentially interacts with the Aβ peptide. GM1 at physiological conditions clusters in the membrane, the assembly also involves phospholipids, sphingomyelin, and cholesterol. The structure of large unilamellar vesicles (LUV), made of a basic POPC:POPS matrix in a proportion of 9:1, and containing different amounts of GM1 (1%, 3%, and 4% mol/mol) in the presence of 5% mol/mol sphingomyelin and 15% mol/mol cholesterol, was studied using small angle X-ray scattering (SAXS). The effect of the membrane composition on the LUVs–Aβ-peptide interaction, both for Aβ1–40 and Aβ1–42 variants, was, thus, monitored. The presence of GM1 leads to a significant shift of the main peak, towards lower scattering angles, up to 6% of the initial value with SM and 8% without, accompanied by an opposite shift of the first minimum, up to 21% and 24% of the initial value, respectively. The analysis of the SAXS spectra, using a multi-Gaussian model for the electronic density profile, indicated differences in the bilayer of the various compositions. An increase in the membrane thickness, by 16% and 12% when 2% and 3% mol/mol GM1 was present, without and with SM, respectively, was obtained. Furthermore, in these cases, in the presence of Aβ40, a very small decrease of the bilayer thickness, less than 4% and 1%, respectively, was derived, suggesting the inhibiting effect that the presence of sphingomyelin has on the GM1–Aβ interaction.
Collapse
|
12
|
Andrade S, Loureiro JA, Pereira MC. The Role of Amyloid β-Biomembrane Interactions in the Pathogenesis of Alzheimer's Disease: Insights from Liposomes as Membrane Models. Chemphyschem 2021; 22:1547-1565. [PMID: 34086399 DOI: 10.1002/cphc.202100124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The aggregation and deposition of amyloid β (Aβ) peptide onto neuronal cells, with consequent cellular membrane perturbation, are central to the pathogenesis of Alzheimer's disease (AD). Substantial evidence reveals that biological membranes play a key role in this process. Thus, elucidating the mechanisms by which Aβ interacts with biomembranes and becomes neurotoxic is fundamental to developing effective therapies for this devastating progressive disease. However, the structural basis behind such interactions is not fully understood, largely due to the complexity of natural membranes. In this context, lipid biomembrane models provide a simplified way to mimic the characteristics and composition of membranes. Aβ-biomembrane interactions have been extensively investigated applying artificial membrane models to elucidate the molecular mechanisms underlying the AD pathogenesis. This review summarizes the latest findings on this field using liposomes as biomembrane model, as they are considered the most promising 3D model. The current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
13
|
Smeralda W, Since M, Cardin J, Corvaisier S, Lecomte S, Cullin C, Malzert-Fréon A. β-Amyloid peptide interactions with biomimetic membranes: A multiparametric characterization. Int J Biol Macromol 2021; 181:769-777. [PMID: 33811932 DOI: 10.1016/j.ijbiomac.2021.03.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is the most common form of senile dementia in the world, and amyloid β peptide1-42 (Aβ1-42) is one of its two principal biological hallmarks. While interactome concept was getting forward the scientific community, we proposed that the study of the molecular interactions of amyloid β peptide with the biological membranes will allow to highlight underlying mechanisms responsive of AD. We have developed two simple liposomal formulations (phosphatidylcholine, cholesterol, phosphatidylglycerol) mimicking neuronal cell membrane (composition, charge, curvature radius). Interactions with Aβ1-42 and mutant oG37C, a stable oligomeric form of the peptide, were characterized according to a simple multiparametric procedure based on ThT fluorescence, liposome leakage assay, ATR-FTIR spectroscopy. Kinetic aggregation, membrane damage and peptide conformation provided our first methodologic bases to develop an original model to describe interactions of Aβ peptide and lipids.
Collapse
Affiliation(s)
| | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.
| | - Julien Cardin
- NIMPH Team, CIMAP CNRS UMR 6252, EnsiCaen-UNICAEN-CEA, 14050 Caen, France.
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, Univ. Bordeaux, 33600 Pessac, France.
| | | | | |
Collapse
|
14
|
The interaction of Aβ42 peptide in monomer, oligomer or fibril forms with sphingomyelin/cholesterol/ganglioside bilayers. Int J Biol Macromol 2020; 168:611-619. [PMID: 33217464 DOI: 10.1016/j.ijbiomac.2020.11.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Aβ42 peptide binds neuronal membranes and aggregates into plaques that are characteristic of Alzheimer's disease. Aβ42 peptide has been proposed to be generated in membrane (nano) domains in the liquid-ordered phase, ganglioside GM1 being a major facilitator of peptide binding to the membrane. The peptide exists in solution in various degrees of aggregation, either monomers, oligomers or fibrils, of which oligomers appear to be particularly toxic. The present study reports on the binding of Aβ42 peptide, in monomer, oligomer or fibril form, to model membranes (lipid vesicles or monolayers), composed of sphingomyelin and cholesterol in equimolar ratios, to which 1-5 mol% of different gangliosides were incorporated. Thermodynamic binding parameters obtained from calorimetric data indicate a strong tendency to bind the membrane (ΔG ≈ 7 kcal/mol peptide), in a process dominated in most cases by the increase in entropy. ΔG was virtually invariant with the ganglioside species and the aggregation state of the peptide. The Langmuir balance demonstrated the capacity of all peptide preparations to become inserted in lipid monolayers of any composition and initial π in the range 10-30 mN/m, although fibrils were less capable to do so than oligomers or monomers, their maximum initial π being ≈25 mN/m.
Collapse
|
15
|
Wang G, Wang Y, Liu N, Liu M. The role of exosome lipids in central nervous system diseases. Rev Neurosci 2020; 31:743-756. [PMID: 32681787 DOI: 10.1515/revneuro-2020-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Central nervous system (CNS) diseases are common diseases that threaten human health. The CNS is highly enriched in lipids, which play important roles in maintaining normal physiological functions of the nervous system. Moreover, many CNS diseases are closely associated with abnormal lipid metabolism. Exosomes are a subtype of extracellular vesicles (EVs) secreted from multivesicular bodies (MVBs) . Through novel forms of intercellular communication, exosomes secreted by brain cells can mediate inter-neuronal signaling and play important roles in the pathogenesis of CNS diseases. Lipids are essential components of exosomes, with cholesterol and sphingolipid as representative constituents of its bilayer membrane. In the CNS, lipids are closely related to the formation and function of exosomes. Their dysregulation causes abnormalities in exosomes, which may, in turn, lead to dysfunctions in inter-neuronal communication and promote diseases. Therefore, the role of lipids in the treatment of neurological diseases through exosomes has received increasing attention. The aim of this review is to discuss the relationship between lipids and exosomes and their roles in CNS diseases.
Collapse
Affiliation(s)
- Ge Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
- Xiangya School of MedicineCentral South University, Changsha, 410078, Hunan, China
| | - Yong Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Ningyuan Liu
- Xiangya School of MedicineCentral South University, Changsha, 410078, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
16
|
Rudajev V, Novotny J. The Role of Lipid Environment in Ganglioside GM1-Induced Amyloid β Aggregation. MEMBRANES 2020; 10:membranes10090226. [PMID: 32916822 PMCID: PMC7558528 DOI: 10.3390/membranes10090226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023]
Abstract
Ganglioside GM1 is the most common brain ganglioside enriched in plasma membrane regions known as lipid rafts or membrane microdomains. GM1 participates in many modulatory and communication functions associated with the development, differentiation, and protection of neuronal tissue. It has, however, been demonstrated that GM1 plays a negative role in the pathophysiology of Alzheimer's disease (AD). The two features of AD are the formation of intracellular neurofibrillary bodies and the accumulation of extracellular amyloid β (Aβ). Aβ is a peptide characterized by intrinsic conformational flexibility. Depending on its partners, Aβ can adopt different spatial arrangements. GM1 has been shown to induce specific changes in the spatial organization of Aβ, which lead to enhanced peptide accumulation and deleterious effect especially on neuronal membranes containing clusters of this ganglioside. Changes in GM1 levels and distribution during the development of AD may contribute to the aggravation of the disease.
Collapse
|
17
|
Feuillie C, Lambert E, Ewald M, Azouz M, Henry S, Marsaudon S, Cullin C, Lecomte S, Molinari M. High Speed AFM and NanoInfrared Spectroscopy Investigation of Aβ 1-42 Peptide Variants and Their Interaction With POPC/SM/Chol/GM1 Model Membranes. Front Mol Biosci 2020; 7:571696. [PMID: 33033718 PMCID: PMC7510551 DOI: 10.3389/fmolb.2020.571696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aβ1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aβ1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aβ1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aβ peptides, L34T, oG37C, and WT Aβ1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel β-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aβ1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.
Collapse
Affiliation(s)
- Cecile Feuillie
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Eleonore Lambert
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Mehdi Azouz
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France.,Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Sarah Henry
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Sophie Marsaudon
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Michael Molinari
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| |
Collapse
|
18
|
Prima GD, Librizzi F, Carrotta R. Light Scattering as an Easy Tool to Measure Vesicles Weight Concentration. MEMBRANES 2020; 10:E222. [PMID: 32899344 PMCID: PMC7558410 DOI: 10.3390/membranes10090222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/22/2023]
Abstract
Over the last few decades, liposomes have emerged as promising drug delivery systems and effective membrane models for studying biophysical and biological processes. For all applications, knowing their concentration after preparation is crucial. Thus, the development of methods for easily controlling vesicles concentration would be of great utility. A new assay is presented here, based on a suitable analysis of light scattering intensity from liposome dispersions. The method, tested for extrusion preparations, is precise, easy, fast, non-destructive and uses a tiny amount of sample. Furthermore, the scattering intensity can be measured indifferently at different angles, or even by using the elastic band obtained from a standard spectrofluorimeter. To validate the method, the measured concentrations of vesicles of different matrix compositions and sizes, measured by light scattering with different angles and instruments, were compared to the data obtained by the standard Stewart assay. Consistent results were obtained. The light scattering assay is based on the assessment of the mass fraction lost in the preparation, and can be applied for methods such as extrusion, homogenization, French press and other microfluidic procedures.
Collapse
Affiliation(s)
- Giulia Di Prima
- Institute of Biophysics, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.P.); (F.L.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.P.); (F.L.)
| | - Rita Carrotta
- Institute of Biophysics, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.P.); (F.L.)
| |
Collapse
|
19
|
Bera S, Gayen N, Mohid SA, Bhattacharyya D, Krishnamoorthy J, Sarkar D, Choi J, Sahoo N, Mandal AK, Lee D, Bhunia A. Comparison of Synthetic Neuronal Model Membrane Mimics in Amyloid Aggregation at Atomic Resolution. ACS Chem Neurosci 2020; 11:1965-1977. [PMID: 32492332 DOI: 10.1021/acschemneuro.0c00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by abnormal accumulation of toxic amyloid plaques of the amyloid-beta (Aβ) or the tau proteins in the brain. The plaque deposition leading to the collapse of the cellular integrity is responsible for a myriad of surface phenomena acting at the neuronal lipid interface. Recent years have witnessed dysfunction of the blood-brain barriers (BBB) associated with AD. Several studies support the idea that BBB acts as a platform for the formation of misfolded Aβ peptide, promoting oligomerization and fibrillation, compromising the overall integrity of the central nervous system. While the amyloid plaque deposition has been known to be responsible for the collapse of the BBB membrane integrity, the causal effect relationship between BBB and Aβ amyloidogenesis remains unclear. In this study, we have used physiologically relevant synthetic model membrane systems to gain atomic insight into the functional aspects of the lipid interface. Here, we have used a minimalist BBB mimic, POPC/POPG/cholesterol/GM1, to compare with the native BBB (total lipid brain extract (TLBE)), to understand the molecular events occurring in the membrane-induced Aβ40 amyloid aggregation. Our study showed that the two membrane models accelerated the Aβ40 aggregation kinetics with differential secondary structural transitions of the peptide. The observed structural transitions are defined by the lipid compositions, which in turn undermines the differences in lipid surface phenomena, leading to peptide induced cellular toxicity in the neuronal membrane.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Nilanjan Gayen
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sk. Abdul Mohid
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | | | | | - Dibakar Sarkar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Jihye Choi
- Department of Fine Chemistry & Convergence Institute of Biomedical and Biomaterials, Seoul National University of Science and Technology, Seoul 139-743, Korea
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Atin K. Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - DongKuk Lee
- Department of Fine Chemistry & Convergence Institute of Biomedical and Biomaterials, Seoul National University of Science and Technology, Seoul 139-743, Korea
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| |
Collapse
|
20
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
21
|
Ahyayauch H, de la Arada I, Masserini ME, Arrondo JLR, Goñi FM, Alonso A. The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation. Int J Mol Sci 2020; 21:ijms21051674. [PMID: 32121399 PMCID: PMC7084322 DOI: 10.3390/ijms21051674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
The binding of Aβ42 peptide monomers to sphingomyelin/cholesterol (1:1 mol ratio) bilayers containing 5 mol% gangliosides (either GM1, or GT1b, or a mixture of brain gangliosides) has been assayed by density gradient ultracentrifugation. This procedure provides a direct method for measuring vesicle-bound peptides after non-bound fraction separation. This centrifugation technique has rarely been used in this context previously. The results show that gangliosides increase by about two-fold the amount of Aβ42 bound to sphingomyelin/cholesterol vesicles. Complementary studies of the same systems using thioflavin T fluorescence, Langmuir monolayers or infrared spectroscopy confirm the ganglioside-dependent increased binding. Furthermore these studies reveal that gangliosides facilitate the aggregation of Aβ42 giving rise to more extended β-sheets. Thus, gangliosides have both a quantitative and a qualitative effect on the binding of Aβ42 to sphingomyelin/cholesterol bilayers.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
- Institut Supérieur des Professions Infirmières et Techniques de Santé, Oujda 60000, Morocco
- Neuroendocrinology Unit, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 14000 Kénitra, Morocco
| | - Igor de la Arada
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
| | - Massimo E. Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - José L. R. Arrondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
| | - Félix M. Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; (H.A.); (I.d.l.A.); (J.L.R.A.); (F.M.G.)
- Correspondence:
| |
Collapse
|
22
|
Gao Q, Wu G, Lai KWC. Cholesterol Modulates the Formation of the Aβ Ion Channel in Lipid Bilayers. Biochemistry 2020; 59:992-998. [PMID: 31914730 DOI: 10.1021/acs.biochem.9b00968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misfolding of amyloid beta (Aβ) is one of the predominant hallmarks in the pathology of Alzheimer's disease (AD). In this study, we showed that the formation of the Aβ ion channel on the membrane depended on the cholesterol concentration. From a mechanical aspect, we found that cholesterol levels affected the stability and assembly of lipid bilayers. Measurements on planar lipid bilayers indicated that a small amount of cholesterol interacted with Aβ proteins and promoted the insertion process. Conversely, high cholesterol integrated the lipid bilayer and exerted an opposite effect on Aβ insertion. The Aβ ion channel was then detected by graphene-based field-effect transistors. Results demonstrated that the Aβ ion channel promoted a Ca2+ flux in the presence of 15% cholesterol but prevented a Ca2+ flux in high cholesterol. Thus, cholesterol had a complex impact on the Aβ ion channel that can be described as two different effects. First, a small amount of cholesterol interacted with Aβ and facilitated the Aβ ion channel formation in the membrane. Second, a large amount of cholesterol did not induce the ion flux in the membrane, which can be explained by the cholesterol damage to the regular distribution of the lipid bilayer. Overall, this study suggested a possible approach to consider cholesterol levels for the treatment of AD patients.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Guangfu Wu
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
23
|
β-Amyloid Peptide: the Cell Compartment Multi-faceted Interaction in Alzheimer's Disease. Neurotox Res 2019; 37:250-263. [PMID: 31811589 DOI: 10.1007/s12640-019-00116-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most widespread form of dementia, characterized by memory loss and reduction of cognitive functions that strongly interfere with normal daily life. Numerous evidences show that aggregates of the amyloid beta peptide, formed by 39 to 42 amino acid residues (Aβ39-43), from soluble small oligomers to large fibrils are characteristic markers of this pathology. However, AD is a complex disease and its neurodegenerative molecular mechanism is not yet fully understood. Growing evidence suggests a link between Aβ polymorphic nature, oligomers and fibrils, and specific mechanisms of neurodegeneration. The Aβ variable nature and its multiplicity of interactions with different proteins and organelles reflect the complexity of this pathology. In this review, we analyze the effects of the interaction between Aβ peptide and different cellular compartments in relation to the different kinds and sizes of amyloid aggregates. In particular, Aβ interaction with different cell structures such as the plasma membrane, mitochondria, lysosomes, nucleus, and endoplasmic reticulum is discussed. Further, we analyze the Aβ peptide ability to modify the structure and function of the target organelle, inducing alteration of its physiological role thus contributing to the pathological event. Dysfunction of cellular components terminating with the activation of the cellular death mechanism and subsequent neurodegeneration is also taken into consideration.
Collapse
|
24
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Ewald M, Henry S, Lambert E, Feuillie C, Bobo C, Cullin C, Lecomte S, Molinari M. High speed atomic force microscopy to investigate the interactions between toxic Aβ 1-42 peptides and model membranes in real time: impact of the membrane composition. NANOSCALE 2019; 11:7229-7238. [PMID: 30924478 DOI: 10.1039/c8nr08714h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to an aging population, neurodegenerative diseases have become a major health issue, the most common being Alzheimer's disease. The mechanisms leading to neuronal loss still remain unclear but recent studies suggest that soluble Aβ oligomers have deleterious effects on neuronal membranes. Here, high-speed atomic force microscopy was used to assess the effect of oligomeric species of a variant of Aβ1-42 amyloid peptide on model membranes with various lipid compositions. Results showed that the peptide does not interact with membranes composed of phosphatidylcholine and sphingomyelin. Ganglioside GM1, but not cholesterol, is required for the peptide to interact with the membrane. Interestingly, when they are both present, a fast disruption of the membrane was observed. It suggests that the presence of ganglioside GM1 and cholesterol in membranes promotes the interaction of the oligomeric Aβ1-42 peptide with the membrane. This interaction leads to the membrane's destruction in a few seconds. This study highlights the power of high-speed atomic force microscopy to explore lipid-protein interactions with high spatio-temporal resolution.
Collapse
Affiliation(s)
- M Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, F-51685 Reims, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ricci C, Maccarini M, Falus P, Librizzi F, Mangione MR, Moran O, Ortore MG, Schweins R, Vilasi S, Carrotta R. Amyloid β-Peptide Interaction with Membranes: Can Chaperones Change the Fate? J Phys Chem B 2018; 123:631-638. [DOI: 10.1021/acs.jpcb.8b11719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Caterina Ricci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60122, Italy
| | - Marco Maccarini
- Université Grenoble Alpes—Laboratoire TIMC/IMAG UMR CNRS 5525, Grenoble 38000, France
| | - Peter Falus
- Science Division, Institut Laue-Langevin, Grenoble Cedex 9 38042, France
| | | | | | - Oscar Moran
- Istituto di Biofisica, CNR, Genova 16149, Italy
| | - Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60122, Italy
| | - Ralf Schweins
- Science Division, Institut Laue-Langevin, Grenoble Cedex 9 38042, France
| | | | | |
Collapse
|
27
|
Cossu C, Fiore M, Baroni D, Capurro V, Caci E, Garcia-Valverde M, Quesada R, Moran O. Anion-Transport Mechanism of a Triazole-Bearing Derivative of Prodigiosine: A Candidate for Cystic Fibrosis Therapy. Front Pharmacol 2018; 9:852. [PMID: 30131695 PMCID: PMC6090297 DOI: 10.3389/fphar.2018.00852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel. CF mutations affect CFTR protein through a variety of molecular mechanisms which result in different functional defects. Current therapeutic approaches are targeted to specific groups of patients that share a common functional defect. We seek to develop an innovative therapeutic approach for the treatment of CF using anionophores, small molecules that facilitate the transmembrane transport of anions. We have characterized the anion transport mechanism of a synthetic molecule based on the structure of prodigiosine, a red pigment produced by bacteria. Anionophore-driven chloride efflux from large unilamellar vesicles is consistent with activity of an uniporter carrier that facilitates the transport of anions through lipid membranes down the electrochemical gradient. There are no evidences of transport coupling with protons. The selectivity sequence of the prodigiosin inspired EH160 ionophore is formate > acetate > nitrate > chloride > bicarbonate. Sulfate, phosphate, aspartate, isothionate, and gluconate are not significantly transported by these anionophores. Protonation at acidic pH is important for the transport capacity of the anionophore. This prodigiosin derived ionophore induces anion transport in living cells. Its low toxicity and capacity to transport chloride and bicarbonate, when applied at low concentration, constitute a promising starting point for the development of drug candidates for CF therapy.
Collapse
Affiliation(s)
- Claudia Cossu
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| | - Michele Fiore
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| | - Valeria Capurro
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Emanuela Caci
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche, Genova, Italy
| |
Collapse
|
28
|
Costa MA, Mangione MR, Santonocito R, Passantino R, Giacomazza D, Librizzi F, Moran O, Carrotta R. Biophysical characterization of asolectin-squalene liposomes. Colloids Surf B Biointerfaces 2018; 170:479-487. [PMID: 29960216 DOI: 10.1016/j.colsurfb.2018.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 11/19/2022]
Abstract
Liposomes are shell nanoparticles able to embed hydrophobic molecules into their lipid layers to be released to cells. In pharmaceutical sciences, liposomes remain the delivery system with the highest biocompatibility, stability, loading characteristics, tunable physicochemical properties. Squalene is a natural, water insoluble, lipid, abundant in olive oil and shark liver. Studies in vitro and in animal models suggest protective and inhibitory effects of squalene against cancer. To study its effect on cells, and to overcome its insolubility in water, we have designed and produced large unilamellar liposomes containing different quantities of this terpene (0%, 2.8%, 5% w/w). Liposomes have been characterized by different biophysical techniques. Size-exclusion and affinity chromatography showed a unimodal size distribution and confirmed the squalene loaded dose. Laurdan fluorescence evidenced the changes in the hydration of the external layer of liposomes as a function of squalene concentration. Dynamic light scattering and small angle X-ray scattering revealed squalene induced structural differences in the hydrodynamic radius distribution and in the bilayer thickness respectively. Finally, preliminary experiments on the effects of liposome-delivered squalene on tumor and non-tumor cell lines showed time- and dose-dependent cytotoxic effects on LAN5 tumor cells and no effect on NIH-3T3 normal cells.
Collapse
Affiliation(s)
- Maria Assunta Costa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Maria Rosalia Mangione
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Radha Santonocito
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Rosa Passantino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Fabio Librizzi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy.
| | - Rita Carrotta
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
29
|
Owen MC, Kulig W, Poojari C, Rog T, Strodel B. Physiologically-relevant levels of sphingomyelin, but not GM1, induces a β-sheet-rich structure in the amyloid-β(1-42) monomer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1709-1720. [PMID: 29626441 DOI: 10.1016/j.bbamem.2018.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 01/07/2023]
Abstract
To resolve the contribution of ceramide-containing lipids to the aggregation of the amyloid-β protein into β-sheet rich toxic oligomers, we employed molecular dynamics simulations to study the effect of cholesterol-containing bilayers comprised of POPC (70% POPC, and 30% cholesterol) and physiologically relevant concentrations of sphingomyelin (SM) (30% SM, 40% POPC, and 30% cholesterol), and the GM1 ganglioside (5% GM1, 70% POPC, and 25% cholesterol). The increased bilayer rigidity provided by SM (and to a lesser degree, GM1) reduced the interactions between the SM-enriched bilayer and the N-terminus of Aβ42 (and also residues Ser26, Asn27, and Lys28), which facilitated the formation of a β-sheet in the normally disordered N-terminal region. Aβ42 remained anchored to the SM-enriched bilayer through hydrogen bonds with the side chain of Arg5. With β-sheets in the at the N and C termini, the structure of Aβ42 in the sphingomyelin-enriched bilayer most resembles β-sheet-rich structures found in higher-ordered Aβ fibrils. Conversely, when bound to a bilayer comprised of 5% GM1, the conformation remained similar to that observed in the absence of GM1, with Aβ42 only making contact with one or two GM1 molecules. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Chetan Poojari
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Tomasz Rog
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
30
|
Severino P, Silveira EF, Loureiro K, Chaud MV, Antonini D, Lancellotti M, Sarmento VH, da Silva CF, Santana MHA, Souto EB. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci 2017; 106:177-184. [PMID: 28576561 DOI: 10.1016/j.ejps.2017.05.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/14/2017] [Accepted: 05/30/2017] [Indexed: 01/07/2023]
Abstract
Antimicrobial resistance is a current public health concern, limiting the available therapeutic options used for the treatment of common bacterial infections. The development of new drug entities via biotechnological processes is however expensive and time-consuming. Therefore, old antimicrobial agents have been recovered for clinical use. An example of these drugs is polymyxin, which is known for its serious adverse side effects, such as nephrotoxicity, neurotoxicity and promotion of skin pigmentation. To overcome these limitations, the use of biodegradable nanoparticles has been proposed to allow site-specific targeting, increasing the drug's bioavailability and decreasing its side effects. The aim of this work was the development of an optimized pharmaceutical formulation composed of solid lipid nanoparticles (SLN) loading polymyxin B sulphate (PLX) for the treatment of bacterial infections. The PLX-loaded SLN were produced by a double emulsion method (w/o/w), obtaining particles with a mean size of approximately 200nm, polydispersity of 0.3 and zeta potential of -30mV. The encapsulation efficiency reached values above 90% for all developed formulations. SLN remained stable for a period of 6months of storage at room temperature. The occlusive properties of the SLN was shown to be dependent on the type of lipid, while the antimicrobial properties of PLX-loaded SLN were effective against resistant strains of Pseudomonas aeruginosa. Results from the differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) analyses confirmed the crystallinity of the inner SLN matrices, suggesting the capacity of these particles to modify the release profile of the loaded drug.
Collapse
Affiliation(s)
- Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMed), University of Tiradentes (Unit), and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Elisânia F Silveira
- Laboratory of Nanotechnology and Nanomedicine (LNMed), University of Tiradentes (Unit), and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Kahynna Loureiro
- Laboratory of Nanotechnology and Nanomedicine (LNMed), University of Tiradentes (Unit), and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology for the Development and Evaluation of Bioactive Substances, University of Sorocaba, Rodovia, Raposo Tavares km 92.5, 18023-000 Sorocaba, São Paulo, Brazil
| | - Danilo Antonini
- Department of Chemistry, Federal University of Sergipe, 49500-000 Itabaiana, SE, Brazil
| | - Marcelo Lancellotti
- Department of Chemistry, Federal University of Sergipe, 49500-000 Itabaiana, SE, Brazil
| | - Victor Hugo Sarmento
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Classius F da Silva
- Biochemical Department, Biology Institute, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Maria Helena A Santana
- Laboratory for the Development of Biotechnological Processes, School of Chemical Engineering, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
31
|
Lindberg DJ, Wesén E, Björkeroth J, Rocha S, Esbjörner EK. Lipid membranes catalyse the fibril formation of the amyloid-β (1-42) peptide through lipid-fibril interactions that reinforce secondary pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1921-1929. [PMID: 28564579 DOI: 10.1016/j.bbamem.2017.05.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/28/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is associated with the aggregation of amyloid-β (Aβ) peptides into oligomers and fibrils. We have explored how model lipid membranes modulate the rate and mechanisms of Aβ(1-42) self-assembly, in order to shed light on how this pathological reaction may occur in the lipid-rich environments that the peptide encounters in the brain. Using a combination of in vitro biophysical experiments and theoretical approaches, we show that zwitterionic DOPC lipid vesicles accelerate the Aβ(1-42) fibril growth rate by interacting specifically with the growing fibrils. We probe this interaction with help of a purpose-developed Förster resonance energy transfer assay that monitors the proximity between a fibril-specific dye and fluorescent lipids in the lipid vesicle membrane. To further rationalise these findings we use mathematical models to fit the aggregation kinetics of Aβ(1-42) and find that lipid vesicles alter specific mechanistic steps in the aggregation reaction; they augment monomer-dependent secondary nucleation at the surface of existing fibrils and facilitate monomer-independent catalytic processes consistent with fibril fragmentation. We further show that DOPC vesicles have no effect on primary nucleation. This finding is consistent with experiments showing that Aβ(1-42) monomers do not directly bind to the lipid bilayer. Taken together, our results show that plain lipid membranes with charge and composition that is representative of outer cell membranes can significantly augment autocatalytic steps in the self-assembly of Aβ(1-42) into fibrils. This new insight suggests that strategies to reduce fibril-lipid interactions in the brain may have therapeutic value.
Collapse
Affiliation(s)
- David J Lindberg
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Emelie Wesén
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Johan Björkeroth
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Sandra Rocha
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| |
Collapse
|
32
|
Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release 2017; 260:61-77. [PMID: 28549949 DOI: 10.1016/j.jconrel.2017.05.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
Abstract
In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease.
Collapse
|
33
|
Matthews JR, Shirazinejad CR, Isakson GA, Demers SME, Hafner JH. Structural Analysis by Enhanced Raman Scattering. NANO LETTERS 2017; 17:2172-2177. [PMID: 28166410 DOI: 10.1021/acs.nanolett.6b04509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gold nanostructures focus light to a molecular length scale at their surface, creating the possibility to visualize molecular structure. The high optical intensity leads to surface enhanced Raman scattering (SERS) from nearby molecules. SERS spectra contain information on molecular position and orientation relative to the surface but are difficult to interpret quantitatively. Here we describe a ratiometric analysis method that combines SERS and unenhanced Raman spectra with theoretical calculations of the optical field and molecular polarizability. When applied to the surfactant layer on gold nanorods, the alkane chain is found to be tilted 25° to the surface normal, which matches previous reports of the layer thickness. The analysis was also applied to fluid phase phospholipid bilayers that contain tryptophan on the surface of gold nanorods. The lipid double bond was found to be oriented normal to the bilayer and 13 Å from the nitrogen atom. Tryptophan was found to sit near the glycerol headgroup region with its indole ring 43° from the bilayer normal. This new method can determine specific interfacial structure under ambient conditions, with microscopic quantities of material, and without molecular labels.
Collapse
Affiliation(s)
- James R Matthews
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Cyna R Shirazinejad
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Grace A Isakson
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Steven M E Demers
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Jason H Hafner
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
34
|
Colin J, Gregory-Pauron L, Lanhers MC, Claudepierre T, Corbier C, Yen FT, Malaplate-Armand C, Oster T. Membrane raft domains and remodeling in aging brain. Biochimie 2016; 130:178-187. [DOI: 10.1016/j.biochi.2016.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
|
35
|
Bera S, Kar RK, Mondal S, Pahan K, Bhunia A. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier. Biochemistry 2016; 55:4982-96. [PMID: 27532224 PMCID: PMC5014585 DOI: 10.1021/acs.biochem.6b00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| |
Collapse
|
36
|
Bera S, Korshavn KJ, Kar RK, Lim MH, Ramamoorthy A, Bhunia A. Biophysical insights into the membrane interaction of the core amyloid-forming Aβ40fragment K16–K28 and its role in the pathogenesis of Alzheimer's disease. Phys Chem Chem Phys 2016; 18:16890-901. [DOI: 10.1039/c6cp02023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Role of central hydrophobic region of Aβ40 in membrane interaction.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics
- Bose Institute
- Kolkata 700 054
- India
| | | | - Rajiv K. Kar
- Department of Biophysics
- Bose Institute
- Kolkata 700 054
- India
| | - Mi Hee Lim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | | | - Anirban Bhunia
- Department of Biophysics
- Bose Institute
- Kolkata 700 054
- India
| |
Collapse
|