1
|
Moutachi D, Hyzewicz J, Roy P, Lemaitre M, Bachasson D, Amthor H, Ritvos O, Li Z, Furling D, Agbulut O, Ferry A. Treadmill running and mechanical overloading improved the strength of the plantaris muscle in the dystrophin-desmin double knockout (DKO) mouse. J Physiol 2024; 602:3641-3660. [PMID: 38980963 DOI: 10.1113/jp286425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
Limited knowledge exists regarding the chronic effect of muscular exercise on muscle function in a murine model of severe Duchenne muscular dystrophy (DMD). Here we determined the effects of 1 month of voluntary wheel running (WR), 1 month of enforced treadmill running (TR) and 1 month of mechanical overloading resulting from the removal of the synergic muscles (OVL) in mice lacking both dystrophin and desmin (DKO). Additionally, we examined the effect of activin receptor administration (AR). DKO mice, displaying severe muscle weakness, atrophy and greater susceptibility to contraction-induced functional loss, were exercised or treated with AR at 1 month of age and in situ force production of lower leg muscle was measured at the age of 2 months. We found that TR and OVL increased absolute maximal force and the rate of force development of the plantaris muscle in DKO mice. In contrast, those of the tibialis anterior (TA) muscle remained unaffected by TR and WR. Furthermore, the effects of TR and OVL on plantaris muscle function in DKO mice closely resembled those in mdx mice, a less severe murine DMD model. AR also improved absolute maximal force and the rate of force development of the TA muscle in DKO mice. In conclusion, exercise training improved plantaris muscle weakness in severely affected dystrophic mice. Consequently, these preclinical results may contribute to fostering further investigations aimed at assessing the potential benefits of exercise for DMD patients, particularly resistance training involving a low number of intense muscle contractions. KEY POINTS: Very little is known about the effects of exercise training in a murine model of severe Duchenne muscular dystrophy (DMD). One reason is that it is feared that chronic muscular exercise, particularly that involving intense muscle contractions, could exacerbate the disease. In DKO mice lacking both dystrophin and desmin, characterized by severe lower leg muscle weakness, atrophy and fragility in comparison to the less severe DMD mdx model, we found that enforced treadmill running improved absolute maximal force of the plantaris muscle, while that of tibialis anterior muscle remained unaffected by both enforced treadmill and voluntary wheel running. Furthermore, mechanical overloading, a non-physiological model of chronic resistance exercise, reversed plantaris muscle weakness. Consequently, our findings may have the potential to alleviate concerns and pave the way for exploring the prescription of endurance and resistance training as a viable therapeutic approach for the treatment of dystrophic patients. Additionally, such interventions may serve in mitigating the pathophysiological mechanisms induced by physical inactivity.
Collapse
Affiliation(s)
- Dylan Moutachi
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Janek Hyzewicz
- Integrare Research Unit UMRS951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Pauline Roy
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Damien Bachasson
- Institute of Myology, Neuromuscular Investigation Center, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179, Montigny-le-Bretonneux, France
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denis Furling
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Vanegas C, Ursitti J, Kallenbach JG, Pinto K, Harriot A, Coleman AK, Shi G, Ward CW. Acute microtubule changes linked to DMD pathology are insufficient to impair contractile function or enhance contraction-induced injury in healthy muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599775. [PMID: 38948772 PMCID: PMC11212994 DOI: 10.1101/2024.06.19.599775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Duchenne muscular dystrophy (DMD) is marked by the genetic deficiency of the dystrophin protein in striated muscle whose consequence is a cascade of cellular changes that predispose the susceptibility to contraction injury central to DMD pathology. Recent evidence identified the proliferation of microtubules enriched in post-translationally modified tubulin as a consequence of dystrophins absence that increases the passive mechanics of the muscle fiber and the excess mechanotransduction elicited reactive oxygen species and calcium signals that promote contraction injury. Motivated by evidence that acutely normalizing the disease microtubule alterations reduced contraction injury in murine DMD muscle (mdx), here we sought the direct impact of these microtubule alterations independent of dystrophins absence and the multitude of other changes consequent to dystrophic disease. To this end we used acute pharmacologic (epithiolone-D, EpoD; 4 hours) or genetic (vashohibin-2 and small vasohibin binding protein overexpression via AAV9; 2 weeks) strategies to effectively model the proliferation of detyrosination enriched microtubules in the mdx muscle. Quantifying in vivo nerve evoked plantarflexor function we find no alteration in peak torque nor contraction kinetics in WT mice modeling these DMD relevant MT alterations. Quantifying the susceptibility to eccentric contraction injury we show EpoD treatment proffered a small but significant protection from contraction injury while VASH/SVBP had no discernable impact. We conclude that the disease dependent MT alterations act in concert with additional cellular changes to predispose contraction injury in DMD.
Collapse
Affiliation(s)
- Camilo Vanegas
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeanine Ursitti
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacob G Kallenbach
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaylie Pinto
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anicca Harriot
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew K Coleman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guoli Shi
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher W Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Uçar N, Öner H, Kuş MA, Karaca H, Fırat T. The effect of neuromuscular electrical stimulation applied at different muscle lengths on muscle architecture and sarcomere morphology in rats. Anat Rec (Hoboken) 2024; 307:356-371. [PMID: 37194371 DOI: 10.1002/ar.25240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Neuromuscular electrical stimulation (NMES) is often used to increase muscle strength and functionality. Muscle architecture is important for the skeletal muscle functionality. The aim of this study was to investigate the effects of NMES applied at different muscle lengths on skeletal muscle architecture. Twenty-four rats were randomly assigned to four groups (two NMES groups and two control groups). NMES was applied on the extensor digitorum longus muscle at long muscle length, which is the longest and stretched position of the muscle at 170° plantar flexion, and at medium muscle length, which is the length of the muscle at 90° plantar flexion. A control group was created for each NMES group. NMES was applied for 8 weeks, 10 min/day, 3 days/week. After 8 weeks, muscle samples were removed at the NMES intervention lengths and examined macroscopically, and microscopically using a transmission electron microscope and streo-microscope. Muscle damage, and architectural properties of the muscle including pennation angle, fibre length, muscle length, muscle mass, physiological cross-sectional area, fibre length/muscle length, sarcomere length, sarcomere number were then evaluated. There was an increase in fibre length and sarcomere number, and a decrease in pennation angle at both lengths. In the long muscle length group, muscle length was increased, but widespread muscle damage was observed. These results suggest that the intervention of NMES at long muscle length can increase the muscle length but also causes muscle damage. In addition, the greater longitudinal increase in muscle length may be a result of the continuous degeneration-regeneration cycle.
Collapse
Affiliation(s)
- Nehir Uçar
- Department of Therapy and Rehabilitation, Vocational School of Health Sciences, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Hakan Öner
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Murat Abdulgani Kuş
- Department of Emergency Aid and Disaster Management, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Tüzün Fırat
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
García-Quintáns N, Sacristán S, Márquez-López C, Sánchez-Ramos C, Martinez-de-Benito F, Siniscalco D, González-Guerra A, Camafeita E, Roche-Molina M, Lytvyn M, Morera D, Guillen MI, Sanguino MA, Sanz-Rosa D, Martín-Pérez D, Garcia R, Bernal JA. MYH10 activation rescues contractile defects in arrhythmogenic cardiomyopathy (ACM). Nat Commun 2023; 14:6461. [PMID: 37833253 PMCID: PMC10575922 DOI: 10.1038/s41467-023-41981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.
Collapse
Affiliation(s)
| | - Silvia Sacristán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Fernando Martinez-de-Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Siniscalco
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | | | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Morera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María I Guillen
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Sanguino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Europea, Madrid, Spain
| | | | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
5
|
Mühlberg A, Ritter P, Langer S, Goossens C, Nübler S, Schneidereit D, Taubmann O, Denzinger F, Nörenberg D, Haug M, Schürmann S, Horstmeyer R, Maier AK, Goldmann WH, Friedrich O, Kreiss L. SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for Prior-Informed Assessment of Muscle Function and Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206319. [PMID: 37582656 PMCID: PMC10558688 DOI: 10.1002/advs.202206319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis-driven and extensive prior knowledge (priors) exists. To address this, the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)-based laboratory research is presented. It utilizes meta-learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi-task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state-of-the-art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior-only approaches.
Collapse
Affiliation(s)
- Alexander Mühlberg
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Paul Ritter
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Simon Langer
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care MedicineKU LeuvenUZ Herestraat 49 – P.O. box 7003Leuven3000Belgium
| | - Stefanie Nübler
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Dominik Schneidereit
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Oliver Taubmann
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Felix Denzinger
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear MedicineUniversity Medical Center MannheimMedical Faculty MannheimTheodor‐Kutzer‐Ufer 1–368167MannheimGermany
| | - Michael Haug
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Sebastian Schürmann
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Roarke Horstmeyer
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| | - Andreas K. Maier
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Wolfgang H. Goldmann
- Biophysics GroupDepartment of PhysicsFriedrich‐Alexander University Erlangen‐NurembergHenkestr. 9191052ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Lucas Kreiss
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| |
Collapse
|
6
|
Markus MA, Ferrari DP, Alves F, Ramos-Gomes F. Effect of tissue fixation on the optical properties of structural components assessed by non-linear microscopy imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:3988-4002. [PMID: 37799688 PMCID: PMC10549744 DOI: 10.1364/boe.488453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 10/07/2023]
Abstract
Fixation methods such as formalin are commonly used for the preservation of tissue with the aim of keeping their structure as close as possible to the native condition. However, fixatives chemically interact with tissue molecules, such as collagen in the extracellular matrix (ECM) or myosin, and may thus modify their structure. Taking advantage of the second- and third-harmonic generation (SHG and THG) emission capabilities of such components, we used nonlinear two-photon microscopy (NL2PM) to evaluate the effect that preservation methods, such as chemical fixatives, have on the nonlinear capabilities of protein components within mouse tissues. Our results show that depending on the preservation technique used, the nonlinear capabilities of collagen, lipid droplets and myosin microarchitecture are strongly affected. Parameters of collagen fibers, such as density and branch points, especially in collagen-sparse regions, e.g., in kidneys, were found to be altered upon formalin fixation. Moreover, cryo-freezing drastically reduced SHG signals from myosin. Our findings provide valuable information to select the best tissue fixation method for visualization and quantification of structural proteins, such as collagen and myosin by advanced NL2PM imaging techniques. This may advance the interpretation of the role these proteins play in disease.
Collapse
Affiliation(s)
- M. Andrea Markus
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Daniele P. Ferrari
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- Clinic of Haematology and Medical Oncology, Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Mnuskina S, Bauer J, Wirth-Hücking A, Schneidereit D, Nübler S, Ritter P, Cacciani N, Li M, Larsson L, Friedrich O. Single fibre cytoarchitecture in ventilator-induced diaphragm dysfunction (VIDD) assessed by quantitative morphometry second harmonic generation imaging: Positive effects of BGP-15 chaperone co-inducer and VBP-15 dissociative corticosteroid treatment. Front Physiol 2023; 14:1207802. [PMID: 37440999 PMCID: PMC10333583 DOI: 10.3389/fphys.2023.1207802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Ventilator-induced diaphragm dysfunction (VIDD) is a common sequela of intensive care unit (ICU) treatment requiring mechanical ventilation (MV) and neuromuscular blockade (NMBA). It is characterised by diaphragm weakness, prolonged respirator weaning and adverse outcomes. Dissociative glucocorticoids (e.g., vamorolone, VBP-15) and chaperone co-inducers (e.g., BGP-15) previously showed positive effects in an ICU-rat model. In limb muscle critical illness myopathy, preferential myosin loss prevails, while myofibrillar protein post-translational modifications are more dominant in VIDD. It is not known whether the marked decline in specific force (force normalised to cross-sectional area) is a pure consequence of altered contractility signaling or whether diaphragm weakness also has a structural correlate through sterical remodeling of myofibrillar cytoarchitecture, how quickly it develops, and to which extent VBP-15 or BGP-15 may specifically recover myofibrillar geometry. To address these questions, we performed label-free multiphoton Second Harmonic Generation (SHG) imaging followed by quantitative morphometry in single diaphragm muscle fibres from healthy rats subjected to five or 10 days of MV + NMBA to simulate ICU treatment without underlying confounding pathology (like sepsis). Rats received daily treatment of either Prednisolone, VBP-15, BGP-15 or none. Myosin-II SHG signal intensities, fibre diameters (FD) as well as the parameters of myofibrillar angular parallelism (cosine angle sum, CAS) and in-register of adjacent myofibrils (Vernier density, VD) were computed from SHG images. ICU treatment caused a decline in FD at day 10 as well as a significant decline in CAS and VD from day 5. Vamorolone effectively recovered FD at day 10, while BGP-15 was more effective at day 5. BGP-15 was more effective than VBP-15 in recovering CAS at day 10 although not to control levels. In-register VD levels were restored at day 10 by both compounds. Our study is the first to provide quantitative insights into VIDD-related myofibrillar remodeling unravelled by SHG imaging, suggesting that both VBP-15 and BGP-15 can effectively ameliorate the structure-related dysfunction in VIDD.
Collapse
Affiliation(s)
- Sofia Mnuskina
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Bauer
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anette Wirth-Hücking
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
- Viron Molecular Medicine Institute, Boston, MA, United States
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| |
Collapse
|
8
|
Schneidereit D, Nübler S, Friedrich O. Second Harmonic Generation Morphometry of Muscle Cytoarchitecture in Living Cells. Methods Mol Biol 2023; 2644:267-285. [PMID: 37142928 DOI: 10.1007/978-1-0716-3052-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The architectural structure of cells is essential for the cells' function, which becomes especially apparent in the highly "structure functionally" tuned skeletal muscle cells. Here, structural changes in the microstructure can have a direct impact on performance parameters, such as isometric or tetanic force production. The microarchitecture of the actin-myosin lattice in muscle cells can be detected noninvasively in living cells and in 3D by using second harmonic generation (SHG) microscopy, forgoing the need to alter samples by introducing fluorescent probes into them. Here, we provide tools and step-by-step protocols to guide the processes of obtaining SHG microscopy image data from samples, as well as extracting characteristic values from the image data to quantify the cellular microarchitecture using characteristic patterns of myofibrillar lattice alignments.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Ritter P, Nübler S, Buttgereit A, Smith LR, Mühlberg A, Bauer J, Michael M, Kreiß L, Haug M, Barton E, Friedrich O. Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic mdx ( mdx Cmah-/-) Model. Int J Mol Sci 2022; 23:ijms231810841. [PMID: 36142754 PMCID: PMC9500669 DOI: 10.3390/ijms231810841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mdx mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the Cmah gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of ‘structural weakness’, intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from extensor digitorum longus (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in mdx Cmah−/− diaphragm was similar to wt mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in mdx Cmah−/− diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in mdx Cmah−/− single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the mdx Cmah−/− genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.
Collapse
Affiliation(s)
- Paul Ritter
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Correspondence:
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Lucas R. Smith
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618, USA
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Mena Michael
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Lucas Kreiß
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Michael Haug
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Elisabeth Barton
- College of Health & Human Performance, University of Florida, Gainesville, FL 32611, USA
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High Str., Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Haug M, Reischl B, Nübler S, Kiriaev L, Mázala DAG, Houweling PJ, North KN, Friedrich O, Head SI. Absence of the Z-disc protein α-actinin-3 impairs the mechanical stability of Actn3KO mouse fast-twitch muscle fibres without altering their contractile properties or twitch kinetics. Skelet Muscle 2022; 12:14. [PMID: 35733150 PMCID: PMC9219180 DOI: 10.1186/s13395-022-00295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common polymorphism (R577X) in the ACTN3 gene results in the complete absence of the Z-disc protein α-actinin-3 from fast-twitch muscle fibres in ~ 16% of the world's population. This single gene polymorphism has been subject to strong positive selection pressure during recent human evolution. Previously, using an Actn3KO mouse model, we have shown in fast-twitch muscles, eccentric contractions at L0 + 20% stretch did not cause eccentric damage. In contrast, L0 + 30% stretch produced a significant ~ 40% deficit in maximum force; here, we use isolated single fast-twitch skeletal muscle fibres from the Actn3KO mouse to investigate the mechanism underlying this. METHODS Single fast-twitch fibres are separated from the intact muscle by a collagenase digest procedure. We use label-free second harmonic generation (SHG) imaging, ultra-fast video microscopy and skinned fibre measurements from our MyoRobot automated biomechatronics system to study the morphology, visco-elasticity, force production and mechanical strength of single fibres from the Actn3KO mouse. Data are presented as means ± SD and tested for significance using ANOVA. RESULTS We show that the absence of α-actinin-3 does not affect the visco-elastic properties or myofibrillar force production. Eccentric contractions demonstrated that chemically skinned Actn3KO fibres are mechanically weaker being prone to breakage when eccentrically stretched. Furthermore, SHG images reveal disruptions in the myofibrillar alignment of Actn3KO fast-twitch fibres with an increase in Y-shaped myofibrillar branching. CONCLUSIONS The absence of α-actinin-3 from the Z-disc in fast-twitch fibres disrupts the organisation of the myofibrillar proteins, leading to structural weakness. This provides a mechanistic explanation for our earlier findings that in vitro intact Actn3KO fast-twitch muscles are significantly damaged by L0 + 30%, but not L0 + 20%, eccentric contraction strains. Our study also provides a possible mechanistic explanation as to why α-actinin-3-deficient humans have been reported to have a faster decline in muscle function with increasing age, that is, as sarcopenia reduces muscle mass and force output, the eccentric stress on the remaining functional α-actinin-3 deficient fibres will be increased, resulting in fibre breakages.
Collapse
Affiliation(s)
- Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Davi A G Mázala
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, USA
| | - Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia. .,School of Medical Science, University of New South Wales, Sydney, NSW, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Front Physiol 2021; 12:771499. [PMID: 34950049 PMCID: PMC8689589 DOI: 10.3389/fphys.2021.771499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4–22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a “tipping point” is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- *Correspondence: Leonit Kiriaev,
| | - Sindy Kueh
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Kathryn N. North
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Peter J. Houweling
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Stewart I. Head
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Cisterna B, Malatesta M, Zancanaro C, Boschi F. A computational approach to quantitatively define sarcomere dimensions and arrangement in skeletal muscle. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106437. [PMID: 34624632 DOI: 10.1016/j.cmpb.2021.106437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils. In section, each myofibril is organized in serially end-to-end arranged sarcomeres connected by Z lines. In muscle disorders, these structural and functional units can undergo structural alterations in terms of Z-line and sarcomere lengths, as well as lateral alignment of Z-line among adjacent myofibrils. In this view, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. In this work, specific quantitative parameters characterizing the sarcomere and myofibril arrangement were defined using a computerized analysis of ultrastructural images. METHODS computerized analysis was carried out on transmission electron microscopy pictures of the murine vastus lateralis muscle. Samples from both euploid (control) and trisomic (showing myofiber alterations) Ts65Dn mice were used. Two routines were written in MATLAB to measure specific structural parameters on sarcomeres and myofibrils. The output included the Z-line, M-line, and sarcomere lengths, the Aspect Ratio (AsR) and Curviness (Cur) sarcomere shape parameters, myofibril axis (α angle), and the H parameter (evaluation of sequence of Z-lines of adjacent myofibrils). RESULTS Both routines worked well in control (euploid) skeletal muscle yielding consistent quantitative data of sarcomere and myofibril structural organization. In comparison with euploid, trisomic muscle showed statistically significant lower Z-line length, similar M-line length, and statistically significant lower sarcomere length. Both AsR and Cur were statistically significantly lower in trisomic muscle, suggesting the sarcomere is barrel-shaped in the latter. The angle (α) distribution showed that the sarcomere axes are almost parallel in euploid muscle, while a large variability occurs in trisomic tissue. The mean value of H was significantly higher in trisomic versus euploid muscle indicating that Z-lines are not perfectly aligned in trisomic muscle. CONCLUSIONS Our procedure allowed us to accurately extract and quantify sarcomere and myofibril parameters from the high-resolution electron micrographs thereby yielding an effective tool to quantitatively define trisomy-associated muscle alterations. These results pave the way to future objective quantification of skeletal muscle changes in pathological conditions. SHORT ABSTRACT The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils organized in serially end-to-end arranged sarcomeres. Several pieces of evidence have highlighted that in muscle disorders and diseases the sarcomere structure may be altered. Therefore, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. A computerized analysis was carried out on transmission electron microscopy images of euploid (control) and trisomic (showing myofiber alterations) skeletal muscle. Two routines were written in MATLAB to measure nine sarcomere and myofibril structural parameters. Our computational method confirmed and expanded on previous qualitative ultrastructural findings defining several trisomy-associated skeletal muscle alterations. The proposed procedure is a potentially useful tool to quantitatively define skeletal muscle changes in pathological conditions involving the sarcomere.
Collapse
Affiliation(s)
- Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
13
|
Kiriaev L, Kueh S, Morley JW, Houweling PJ, Chan S, North KN, Head SI. Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the mdx mouse. Am J Physiol Cell Physiol 2021; 321:C704-C720. [PMID: 34432537 DOI: 10.1152/ajpcell.00122.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration. Previously, using the mdx mouse model of DMD, we have proposed that once the number and complexity of branched fibers present in dystrophic fast-twitch EDL muscle surpasses a stable level, we term the "tipping point," the branches, in and of themselves, mechanically weaken the muscle by rupturing when subjected to high forces during eccentric contractions. Here, we use the slow-twitch soleus muscle from the dystrophic mdx mouse to study prediseased "periambulatory" dystrophy at 2-3 wk, the peak regenerative "adult" phase at 6-9 wk, and "old" at 58-112 wk. Using isolated mdx soleus muscles, we examined contractile function and response to eccentric contraction correlated with the amount and complexity of regenerated branched fibers. The intact muscle was enzymatically dispersed into individual fibers in order to count fiber branching and some muscles were optically cleared to allow laser scanning confocal microscopy. We demonstrate throughout the lifespan of the mdx mouse that dystrophic slow-twitch soleus muscle is no more susceptible to eccentric contraction-induced injury than age-matched littermate controls and that this is correlated with a reduction in the number and complexity of branched fibers compared with fast-twitch dystrophic EDL muscles.
Collapse
MESH Headings
- Age Factors
- Animals
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Kinetics
- Male
- Mice, Inbred mdx
- Muscle Contraction
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Strength
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation
- Mice
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sindy Kueh
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Stephen Chan
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Goossens C, Weckx R, Derde S, Van Helleputte L, Schneidereit D, Haug M, Reischl B, Friedrich O, Van Den Bosch L, Van den Berghe G, Langouche L. Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model. J Cachexia Sarcopenia Muscle 2021; 12:443-455. [PMID: 33465304 PMCID: PMC8061378 DOI: 10.1002/jcsm.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged critically ill patients frequently develop debilitating muscle weakness that can affect both peripheral nerves and skeletal muscle. In-depth knowledge on the temporal contribution of neural and muscular components to muscle weakness is currently incomplete. METHODS We used a fluid-resuscitated, antibiotic-treated, parenterally fed murine model of prolonged (5 days) sepsis-induced muscle weakness (caecal ligation and puncture; n = 148). Electromyography (EMG) measurements were performed in two nerve-muscle complexes, combined with histological analysis of neuromuscular junction denervation, axonal degeneration, and demyelination. In situ muscle force measurements distinguished neural from muscular contribution to reduced muscle force generation. In myofibres, imaging and biomechanics were combined to evaluate myofibrillar contractile calcium sensitivity, sarcomere organization, and fibre structural properties. Myosin and actin protein content and titin gene expression were measured on the whole muscle. RESULTS Five days of sepsis resulted in increased EMG latency (P = 0.006) and decreased EMG amplitude (P < 0.0001) in the dorsal caudal tail nerve-tail complex, whereas only EMG amplitude was affected in the sciatic nerve-gastrocnemius muscle complex (P < 0.0001). Myelin sheath abnormalities (P = 0.2), axonal degeneration (number of axons; P = 0.4), and neuromuscular junction denervation (P = 0.09) were largely absent in response to sepsis, but signs of axonal swelling [higher axon area (P < 0.0001) and g-ratio (P = 0.03)] were observed. A reduction in maximal muscle force was present after indirect nerve stimulation (P = 0.007) and after direct muscle stimulation (P = 0.03). The degree of force reduction was similar with both stimulations (P = 0.2), identifying skeletal muscle, but not peripheral nerves, as the main contributor to muscle weakness. Myofibrillar calcium sensitivity of the contractile apparatus was unaffected by sepsis (P ≥ 0.6), whereas septic myofibres displayed disorganized sarcomeres (P < 0.0001) and altered myofibre axial elasticity (P < 0.0001). Septic myofibres suffered from increased rupturing in a passive stretching protocol (25% more than control myofibres; P = 0.04), which was associated with impaired myofibre active force generation (P = 0.04), linking altered myofibre integrity to function. Sepsis also caused a reduction in muscle titin gene expression (P = 0.04) and myosin and actin protein content (P = 0.05), but not the myosin-to-actin ratio (P = 0.7). CONCLUSIONS Prolonged sepsis-induced muscle weakness may predominantly be related to a disruption in myofibrillar cytoarchitectural structure, rather than to neural abnormalities.
Collapse
Affiliation(s)
- Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ruben Weckx
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lawrence Van Helleputte
- Experimental Neurology and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ludo Van Den Bosch
- Experimental Neurology and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A, Schürmann S, Friedrich O. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Am J Cancer Res 2021; 11:2876-2891. [PMID: 33456578 PMCID: PMC7806485 DOI: 10.7150/thno.51558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 01/27/2023] Open
Abstract
Rationale: Structural remodeling or damage as a result of disease or injury is often not evenly distributed throughout a tissue but strongly depends on localization and extent of damaging stimuli. Skeletal muscle as a mechanically active organ can express signs of local or even systemic myopathic damage, necrosis, or repair. Conventionally, muscle biopsies (patients) or whole muscles (animal models) are mechanically sliced and stained to assess structural alterations histologically. Three-dimensional tissue information can be obtained by applying deep imaging modalities, e.g. multiphoton or light-sheet microscopy. Chemical clearing approaches reduce scattering, e.g. through matching refractive tissue indices, to overcome optical penetration depth limits in thick tissues. Methods: Here, we optimized a range of different clearing protocols. We find aqueous solution-based protocols employing (20-80%) 2,2'-thiodiethanol (TDE) to be advantageous over organic solvents (dibenzyl ether, cinnamate) regarding the preservation of muscle morphology, ease-of-use, hazard level, and costs. Results: Applying TDE clearing to a mouse model of local cardiotoxin (CTX)-induced muscle necrosis, a complete loss of myosin-II signals was observed in necrotic areas with little change in fibrous collagen or autofluorescence (AF) signals. The 3D aspect of myofiber integrity could be assessed, and muscle necrosis in whole muscle was quantified locally via the ratios of detected AF, forward- and backward-scattered Second Harmonic Generation (fSHG, bSHG) signals. Conclusion: TDE optical clearing is a versatile tool to study muscle architecture in conjunction with label-free multiphoton imaging in 3D in injury/myopathy models and might also be useful in studying larger biofabricated constructs in regenerative medicine.
Collapse
|
16
|
Effect of myofibril architecture on the active contraction of dystrophic muscle. A mathematical model. J Mech Behav Biomed Mater 2020; 114:104214. [PMID: 33234495 DOI: 10.1016/j.jmbbm.2020.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 11/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle degenerative disease caused by a mutation in the dystrophin gene. The lack of dystrophin leads to persistent inflammation, degeneration/regeneration cycles of muscle fibers, Ca2+ dysregulation, incompletely regenerated fibers, necrosis, fibrotic tissue replacement, and alterations in the fiber ultrastructure i.e., myofibril misalignment and branched fibers. This work aims to develop a comprehensive chemo-mechanical model of muscle-skeletal tissue accounting for dispersion in myofibrillar orientations, in addition to the disorders in sarcomere pattern and the fiber branching. The model results confirm a significant correlation between the myofibrillar dispersion and the reduction of isometric force in the dystrophic muscle and indicate that the reduction of contraction velocity in the dystrophic muscle seems to be associated with the local disorders in the sarcomere patterns of the myofibrils. Also, the implemented model can predict the force-velocity response to both concentric and eccentric loading. The resulting model represents an original approach to account for defects in the muscle ultrastructure caused by pathologies as DMD.
Collapse
|
17
|
Varga B, Meli AC, Radoslavova S, Panel M, Lacampagne A, Gergely C, Cazorla O, Cloitre T. Internal structure and remodeling in dystrophin-deficient cardiomyocytes using second harmonic generation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102295. [PMID: 32889047 DOI: 10.1016/j.nano.2020.102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining. Images were acquired on alive DMD (mdx) and wild type cardiomyocytes at different ages and at various external calcium concentrations. An automated image processing was developed to identify individual myofibrils and extract data about their organization. We observed a structural aging-dependent remodeling in mdx cardiomyocytes affecting sarcomere sinuosity, orientation and length that could not be anticipated from standard optical imaging. These results revealed for the first time the interest of SHG to evaluate the intracellular and sarcomeric remodeling of DMD cardiac tissue in an age-dependent manner that could participate in progressive contractile dysfunction.
Collapse
Affiliation(s)
- Béla Varga
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Silviya Radoslavova
- L2C, University of Montpellier, CNRS, Montpellier, France; PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Mathieu Panel
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Csilla Gergely
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
18
|
Willingham TB, Kim Y, Lindberg E, Bleck CKE, Glancy B. The unified myofibrillar matrix for force generation in muscle. Nat Commun 2020; 11:3722. [PMID: 32709902 PMCID: PMC7381600 DOI: 10.1038/s41467-020-17579-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Human movement occurs through contraction of the basic unit of the muscle cell, the sarcomere. Sarcomeres have long been considered to be arranged end-to-end in series along the length of the muscle into tube-like myofibrils with many individual, parallel myofibrils comprising the bulk of the muscle cell volume. Here, we demonstrate that striated muscle cells form a continuous myofibrillar matrix linked together by frequently branching sarcomeres. We find that all muscle cells contain highly connected myofibrillar networks though the frequency of sarcomere branching goes down from early to late postnatal development and is higher in slow-twitch than fast-twitch mature muscles. Moreover, we show that the myofibrillar matrix is united across the entire width of the muscle cell both at birth and in mature muscle. We propose that striated muscle force is generated by a singular, mesh-like myofibrillar network rather than many individual, parallel myofibrils. Skeletal muscle cells have long been considered to be made primarily of many individual, parallel myofibrils. Here, the authors show that the striated muscle contractile machinery forms a highly branched, mesh-like myofibrillar matrix connected across the entire length and width of the muscle cell.
Collapse
Affiliation(s)
- T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Lindberg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Oddoux S, Randazzo D, Kenea A, Alonso B, Zaal KJM, Ralston E. Misplaced Golgi Elements Produce Randomly Oriented Microtubules and Aberrant Cortical Arrays of Microtubules in Dystrophic Skeletal Muscle Fibers. Front Cell Dev Biol 2019; 7:176. [PMID: 31620435 PMCID: PMC6759837 DOI: 10.3389/fcell.2019.00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Differentiated mammalian cells and tissues, such as skeletal muscle fibers, acquire an organization of Golgi complex and microtubules profoundly different from that in proliferating cells and still poorly understood. In adult rodent skeletal muscle, the multinucleated muscle fibers have hundreds of Golgi elements (GE), small stacks of cisternae that serve as microtubule-organizing centers. We are interested in the role of the GE in organizing a peculiar grid of microtubules located in the fiber cortex, against the sarcolemma. Modifications of this grid in the mdx mouse model of Duchenne muscular dystrophy have led to identifying dystrophin, the protein missing in both human disease and mouse model, as a microtubule guide. Compared to wild-type (WT), mdx microtubules are disordered and more dense and they have been linked to the dystrophic pathology. GE themselves are disordered in mdx. Here, to identify the causes of GE and microtubule alterations in the mdx muscle, we follow GFP-tagged microtubule markers in live mdx fibers and investigate the recovery of GE and microtubules after treatment with nocodazole. We find that mdx microtubules grow 10% faster but in 30% shorter bouts and that they begin to form a tangled network, rather than an orthogonal grid, right after nucleation from GE. Strikingly, a large fraction of microtubules in mdx muscle fibers seem to dissociate from GE after nucleation. Moreover, we report that mdx GE are mispositioned and increased in number and size. These results were replicated in WT fibers overexpressing the beta-tubulin tubb6, which is elevated in Duchenne muscular dystrophy, in mdx and in regenerating muscle. Finally, we examine the association of GE with ER exit sites and ER-to-Golgi intermediate compartment, which starts during muscle differentiation, and find it persisting in mdx and tubb6 overexpressing fibers. We conclude that GE are full, small, Golgi complexes anchored, and positioned through ER Exit Sites. We propose a model in which GE mispositioning, together with the absence of microtubule guidance due to the lack of dystrophin, determines the differences in GE and microtubule organization between WT and mdx muscle fibers.
Collapse
Affiliation(s)
- Sarah Oddoux
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aster Kenea
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno Alonso
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kristien J M Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Pinsard M, Schmeltz M, van der Kolk J, Patten SA, Ibrahim H, Ramunno L, Schanne-Klein MC, Légaré F. Elimination of imaging artifacts in second harmonic generation microscopy using interferometry. BIOMEDICAL OPTICS EXPRESS 2019; 10:3938-3952. [PMID: 31452986 PMCID: PMC6701527 DOI: 10.1364/boe.10.003938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/26/2023]
Abstract
Conventional second harmonic generation (SHG) microscopy might not clearly reveal the structure of complex samples if the interference between all scatterers in the focal volume results in artefactual patterns. We report here the use of interferometric second harmonic generation (I-SHG) microscopy to efficiently remove these artifacts from SHG images. Interfaces between two regions of opposite polarity are considered because they are known to produce imaging artifacts in muscle for instance. As a model system, such interfaces are first studied in periodically-poled lithium niobate (PPLN), where an artefactual incoherent SH signal is obtained because of irregularities at the interfaces, that overshadow the sought-after coherent contribution. Using I-SHG allows to remove the incoherent part completely without any spatial filtering. Second, I-SHG is also proven to resolve the double-band pattern expected in muscle where standard SHG exhibits in some regions artefactual single-band patterns. In addition to removing the artifacts at the interfaces between antiparallel domains in both structures (PPLN and muscle), I-SHG also increases their visibility by up to a factor of 5. This demonstrates that I-SHG is a powerful technique to image biological samples at enhanced contrast while suppressing artifacts.
Collapse
Affiliation(s)
- Maxime Pinsard
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| | - Margaux Schmeltz
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Jarno van der Kolk
- Department of Physics and Centre for Research in Photonics, University of Ottawa, Ottawa (ON), K1N 6N5, Canada
| | | | - Heide Ibrahim
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| | - Lora Ramunno
- Department of Physics and Centre for Research in Photonics, University of Ottawa, Ottawa (ON), K1N 6N5, Canada
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - François Légaré
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| |
Collapse
|
21
|
Schneidereit D, Nübler S, Prölß G, Reischl B, Schürmann S, Müller OJ, Friedrich O. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. LIGHT, SCIENCE & APPLICATIONS 2018; 7:79. [PMID: 30374401 PMCID: PMC6199289 DOI: 10.1038/s41377-018-0080-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
Skeletal muscle is an archetypal organ whose structure is tuned to match function. The magnitude of order in muscle fibers and myofibrils containing motor protein polymers determines the directed force output of the summed force vectors and, therefore, the muscle's power performance on the structural level. Structure and function can change dramatically during disease states involving chronic remodeling. Cellular remodeling of the cytoarchitecture has been pursued using noninvasive and label-free multiphoton second harmonic generation (SHG) microscopy. Hereby, structure parameters can be extracted as a measure of myofibrillar order and thus are suggestive of the force output that a remodeled structure can still achieve. However, to date, the parameters have only been an indirect measure, and a precise calibration of optical SHG assessment for an exerted force has been elusive as no technology in existence correlates these factors. We engineered a novel, automated, high-precision biomechatronics system into a multiphoton microscope allows simultaneous isometric Ca2+-graded force or passive viscoelasticity measurements and SHG recordings. Using this MechaMorph system, we studied force and SHG in single EDL muscle fibers from wt and mdx mice; the latter serves as a model for compromised force and abnormal myofibrillar structure. We present Ca2+-graded isometric force, pCa-force curves, passive viscoelastic parameters and 3D structure in the same fiber for the first time. Furthermore, we provide a direct calibration of isometric force to morphology, which allows noninvasive prediction of the force output of single fibers from only multiphoton images, suggesting a potential application in the diagnosis of myopathies.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Gerhard Prölß
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Friedrich O, Diermeier S, Larsson L. Weak by the machines: muscle motor protein dysfunction - a side effect of intensive care unit treatment. Acta Physiol (Oxf) 2018; 222. [PMID: 28387014 DOI: 10.1111/apha.12885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
Intensive care interventions involve periods of mechanical ventilation, sedation and complete mechanical silencing of patients. Critical illness myopathy (CIM) is an ICU-acquired myopathy that is associated with limb muscle weakness, muscle atrophy, electrical silencing of muscle and motor proteinopathy. The hallmark of CIM is a preferential muscle myosin loss due to increased catabolic and reduced anabolic activity. The ubiquitin proteasome pathway plays an important role, apart from recently identified novel mechanisms affecting non-lysosomal protein degradation or autophagy. CIM is not reproduced by pure disuse atrophy, denervation atrophy, steroid-induced atrophy or septic myopathy, although combinations of high-dose steroids and denervation can mimic CIM. New animal models of critical illness and ICU treatment (i.e. mechanical ventilation and complete immobilization) provide novel insights regarding the time course of protein synthesis and degradation alterations, and the role of protective chaperone activities in the process of myosin loss. Altered mechano-signalling seems involved in triggering a major part of myosin loss in experimental CIM models, and passive loading of muscle potently ameliorates the CIM phenotype. We provide a systematic overview of similarities and distinct differences in the signalling pathways involved in triggering muscle atrophy in CIM and isolated trigger factors. As preferential myosin loss is mostly determined from biochemistry analyses providing no spatial resolution of myosin loss processes within myofibres, we also provide first results monitoring myosin signal intensities during experimental ICU intervention using multi-photon Second Harmonic Generation microscopy. Our results confirm that myosin loss is an evenly distributed process within myofibres rather than being confined to hot spots.
Collapse
Affiliation(s)
- O. Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - S. Diermeier
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - L. Larsson
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
- Section of Clinical Neurophysiology; Department of Clinical Neuroscience; Karolinska Institutet; Stockholm Sweden
- Department of Biobehavioral Health; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
23
|
Suchyna TM. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:244-253. [PMID: 28778608 DOI: 10.1016/j.pbiomolbio.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K+ selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy.
Collapse
Affiliation(s)
- Thomas M Suchyna
- University of Buffalo, Dept. of Physiology and Biophysics, Buffalo, NY, USA.
| |
Collapse
|
24
|
Diermeier S, Buttgereit A, Schürmann S, Winter L, Xu H, Murphy RM, Clemen CS, Schröder R, Friedrich O. Preaged remodeling of myofibrillar cytoarchitecture in skeletal muscle expressing R349P mutant desmin. Neurobiol Aging 2017; 58:77-87. [PMID: 28715662 DOI: 10.1016/j.neurobiolaging.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022]
Abstract
The majority of hereditary and acquired myopathies are clinically characterized by progressive muscle weakness. We hypothesized that ongoing derangement of skeletal muscle cytoarchitecture at the single fiber level may precede and be responsible for the progressive muscle weakness. Here, we analyzed the effects of aging in wild-type (wt) and heterozygous (het) and homozygous (hom) R349P desmin knock-in mice. The latter harbor the ortholog of the most frequently encountered human R350P desmin missense mutation. We quantitatively analyzed the subcellular cytoarchitecture of fast- and slow-twitch muscles from young, intermediate, and aged wt as well as desminopathy mice. We recorded multiphoton second harmonic generation and nuclear fluorescence signals in single muscle fibers to compare aging-related effects in all genotypes. The analysis of wt mice revealed that the myofibrillar cytoarchitecture remained stable with aging in fast-twitch muscles, whereas slow-twitch muscle fibers displayed structural derangements during aging. In contrast, the myofibrillar cytoarchitecture and nuclear density were severely compromised in fast- and slow-twitch muscle fibers of hom R349P desmin mice at all ages. Het mice only showed a clear degradation in their fiber structure in fast-twitch muscles from the adult to the presenescent age bin. Our study documents distinct signs of normal and R349P mutant desmin-related remodeling of the 3D myofibrillar architecture during aging, which provides a structural basis for the progressive muscle weakness.
Collapse
Affiliation(s)
- Stefanie Diermeier
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; SAOT, Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; SAOT, Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Lilli Winter
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Hongyang Xu
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Christoph S Clemen
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany; Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; SAOT, Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
25
|
Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci Rep 2017; 7:1391. [PMID: 28469177 PMCID: PMC5431221 DOI: 10.1038/s41598-017-01485-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
In striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network’s pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P. We demonstrate that mutant desmin alters myofibrillar cytoarchitecture, markedly disrupts the lateral sarcomere lattice and distorts myofibrillar angular axial orientation. Biomechanical assessment revealed a high predisposition to stretch-induced damage in fiber bundles of R349P mice. Notably, Ca2+-sensitivity and passive myofibrillar tension were decreased in heterozygous fiber bundles, but increased in homozygous fiber bundles compared to wildtype mice. In a parallel approach, we generated and subsequently subjected immortalized heterozygous R349P desmin knock-in myoblasts to magnetic tweezer experiments that revealed a significantly increased sarcolemmal lateral stiffness. Our data suggest that mutated desmin already markedly impedes myocyte structure and function at pre-symptomatic stages of myofibrillar myopathies.
Collapse
|
26
|
Buttgereit A. Second Harmonic Generation Microscopy of Muscle Cell Morphology and Dynamics. Methods Mol Biol 2017; 1601:229-241. [PMID: 28470530 DOI: 10.1007/978-1-4939-6960-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microscopy in combination with contrast-increasing dyes allows the visualization and analysis of organs, tissues, and various cells. Because of their better resolution, the development of confocal and laser microscopes enables the investigations of cell components, which are labeled with fluorescent dyes. The imaging of living cells on subcellular level (also in vivo) needs a labeling by gene transfection of GFP or similar labeled proteins. We present a method for visualization of cell structure in skeletal and heart muscle by label-free Second Harmonic Generation (SHG) microscopy and describe analytic methods for quantitative measurements of morphology and dynamics in skeletal muscle fibers.
Collapse
Affiliation(s)
- Andreas Buttgereit
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
27
|
Iyer SR, Shah SB, Valencia AP, Schneider MF, Hernández-Ochoa EO, Stains JP, Blemker SS, Lovering RM. Altered nuclear dynamics in MDX myofibers. J Appl Physiol (1985) 2016; 122:470-481. [PMID: 27979987 DOI: 10.1152/japplphysiol.00857.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to progressive muscle degeneration and weakness. Although the genetic basis is known, the pathophysiology of dystrophic skeletal muscle remains unclear. We examined nuclear movement in wild-type (WT) and muscular dystrophy mouse model for DMD (MDX) (dystrophin-null) mouse myofibers. We also examined expression of proteins in the linkers of nucleoskeleton and cytoskeleton (LINC) complex, as well as nuclear transcriptional activity via histone H3 acetylation and polyadenylate-binding nuclear protein-1. Because movement of nuclei is not only LINC dependent but also microtubule dependent, we analyzed microtubule density and organization in WT and MDX myofibers, including the application of a unique 3D tool to assess microtubule core structure. Nuclei in MDX myofibers were more mobile than in WT myofibers for both distance traveled and velocity. MDX muscle shows reduced expression and labeling intensity of nesprin-1, a LINC protein that attaches the nucleus to the microtubule and actin cytoskeleton. MDX nuclei also showed altered transcriptional activity. Previous studies established that microtubule structure at the cortex is disrupted in MDX myofibers; our analyses extend these findings by showing that microtubule structure in the core is also disrupted. In addition, we studied malformed MDX myofibers to better understand the role of altered myofiber morphology vs. microtubule architecture in the underlying susceptibility to injury seen in dystrophic muscles. We incorporated morphological and microtubule architectural concepts into a simplified finite element mathematical model of myofiber mechanics, which suggests a greater contribution of myofiber morphology than microtubule structure to muscle biomechanical performance.NEW & NOTEWORTHY Microtubules provide the means for nuclear movement but show altered organization in the muscular dystrophy mouse model (MDX) (dystrophin-null) muscle. Here, MDX myofibers show increased nuclear movement, altered transcriptional activity, and altered linkers of nucleoskeleton and cytoskeleton complex expression compared with healthy myofibers. Microtubule architecture was incorporated in finite element modeling of passive stretch, revealing a role of fiber malformation, commonly found in MDX muscle. The results suggest that alterations in microtubule architecture in MDX muscle affect nuclear movement, which is essential for muscle function.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, California
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Silvia S Blemker
- Department of Biomedical Engineering and Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia; and
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Sanchez GN, Sinha S, Liske H, Chen X, Nguyen V, Delp SL, Schnitzer MJ. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units. Neuron 2016; 88:1109-1120. [PMID: 26687220 DOI: 10.1016/j.neuron.2015.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022]
Abstract
Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans.
Collapse
Affiliation(s)
- Gabriel N Sanchez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Supriyo Sinha
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Holly Liske
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xuefeng Chen
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Viet Nguyen
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Scott L Delp
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
De Arcangelis V, Strimpakos G, Gabanella F, Corbi N, Luvisetto S, Magrelli A, Onori A, Passananti C, Pisani C, Rome S, Severini C, Naro F, Mattei E, Di Certo MG, Monaco L. Pathways Implicated in Tadalafil Amelioration of Duchenne Muscular Dystrophy. J Cell Physiol 2016; 231:224-32. [PMID: 26097015 DOI: 10.1002/jcp.25075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk.
Collapse
Affiliation(s)
- Valeria De Arcangelis
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Nicoletta Corbi
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Armando Magrelli
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Onori
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Passananti
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Pisani
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sophie Rome
- CarMen Laboratory (INSERM 1060, INRA 1362, INSA), University of Lyon, Lyon, France
| | - Cinzia Severini
- CNR-IBCN, Rome, Italy.,European Brain Research Institute, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Dempsey WP, Hodas NO, Ponti A, Pantazis P. Determination of the source of SHG verniers in zebrafish skeletal muscle. Sci Rep 2015; 5:18119. [PMID: 26657568 PMCID: PMC4676038 DOI: 10.1038/srep18119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/12/2015] [Indexed: 01/24/2023] Open
Abstract
SHG microscopy is an emerging microscopic technique for medically relevant imaging because certain endogenous proteins, such as muscle myosin lattices within muscle cells, are sufficiently spatially ordered to generate detectable SHG without the use of any fluorescent dye. Given that SHG signal is sensitive to the structural state of muscle sarcomeres, SHG functional imaging can give insight into the integrity of muscle cells in vivo. Here, we report a thorough theoretical and experimental characterization of myosin-derived SHG intensity profiles within intact zebrafish skeletal muscle. We determined that “SHG vernier” patterns, regions of bifurcated SHG intensity, are illusory when sarcomeres are staggered with respect to one another. These optical artifacts arise due to the phase coherence of SHG signal generation and the Guoy phase shift of the laser at the focus. In contrast, two-photon excited fluorescence images obtained from fluorescently labeled sarcomeric components do not contain such illusory structures, regardless of the orientation of adjacent myofibers. Based on our results, we assert that complex optical artifacts such as SHG verniers should be taken into account when applying functional SHG imaging as a diagnostic readout for pathological muscle conditions.
Collapse
Affiliation(s)
- William P Dempsey
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Nathan O Hodas
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron Ponti
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
32
|
Awasthi S, Izu LT, Mao Z, Jian Z, Landas T, Lerner A, Shimkunas R, Woldeyesus R, Bossuyt J, Wood BM, Chen YJ, Matthews DL, Lieu DK, Chiamvimonvat N, Lam KS, Chen-Izu Y, Chan JW. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes. Circ Res 2015; 118:e19-28. [PMID: 26643875 DOI: 10.1161/circresaha.115.307919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023]
Abstract
RATIONALE Cardiac myocyte contraction is caused by Ca(2+) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca(2+) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca(2+) release, such as Ca(2+) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca(2+)-contraction coupling in live cardiac myocytes. OBJECTIVE To develop a method for imaging sarcomere level Ca(2+)-contraction coupling in healthy and disease model cardiac myocytes. METHODS AND RESULTS Freshly isolated cardiac myocytes were loaded with the Ca(2+)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca(2+) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca(2+) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca(2+) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca(2+) waves and correlated local contraction in pressure-overload-induced cardiomyopathy. CONCLUSIONS Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca(2+) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca(2+) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca(2+)-contraction coupling and mechanochemotransduction in both health and disease.
Collapse
Affiliation(s)
- Samir Awasthi
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Leighton T Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ziliang Mao
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Zhong Jian
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Trevor Landas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Aaron Lerner
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rafael Shimkunas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rahwa Woldeyesus
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Julie Bossuyt
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Brent M Wood
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Yi-Je Chen
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Dennis L Matthews
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Deborah K Lieu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Nipavan Chiamvimonvat
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Kit S Lam
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ye Chen-Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| | - James W Chan
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| |
Collapse
|
33
|
Georgiev T, Zapiec B, Förderer M, Fink RHA, Vogel M. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers. J Struct Biol 2015; 192:366-375. [PMID: 26431893 DOI: 10.1016/j.jsb.2015.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.
Collapse
Affiliation(s)
- Tihomir Georgiev
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | - Bolek Zapiec
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt am Main, Germany
| | - Moritz Förderer
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Martin Vogel
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Tian N, Fu L, Gu M. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam. Sci Rep 2015; 5:13580. [PMID: 26364733 PMCID: PMC4568467 DOI: 10.1038/srep13580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verify the feasibility of the subtractive imaging method in polarization dependent SHG microscopy. The resolution and contrast enhancement in different biological samples is demonstrated. This work will open a new avenue for the applications of SHG microscopy in biomedical research.
Collapse
Affiliation(s)
- Nian Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.,Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.,Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Gu
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
35
|
Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier JM, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquié O. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 2015; 33:962-9. [PMID: 26237517 DOI: 10.1038/nbt.3297] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France.,Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden, France
| | - Fanny Bousson
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden, France
| | - Yasmine Zidouni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Caroline Mursch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Stéphane Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Marie Hestin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Shinichiro Hayashi
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | - Bernadette Drayton
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | | | - Emanuela Gussoni
- Division of Genetics and Genomics Boston Children's Hospital, Boston, Massachusetts, USA
| | - Frédéric Relaix
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | | | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France.,Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Kansas City, Missouri, USA
| |
Collapse
|
36
|
Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B. Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 2015; 191:224-35. [PMID: 26057347 DOI: 10.1016/j.jsb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/25/2023]
Abstract
Pseudodiaptomus marinus copepods are small crustaceans living in estuarine areas endowed with exceptional swimming and adaptative performances. Since the external cuticle acts as an impermeable barrier for most dyes and molecular tools for labeling copepod proteins with fluorescent tags are not available, imaging cellular organelles in these organisms requires label free microscopy. Complementary nonlinear microscopy techniques have been used to investigate the structure and the response of their myofibrils to abrupt changes of temperature or/and salinity. In contrast with previous observations in vertebrates and invertebrates, the flavin autofluorescence which is a signature of mitochondria activity and the Coherent Anti-Stokes Raman Scattering (CARS) pattern assigned to T-tubules overlapped along myofibrils with the second harmonic generation (SHG) striated pattern generated by myosin tails in sarcomeric A bands. Temperature jumps from 18 to 4 °C or salinity jumps from 30 to 15 psu mostly affected flavin autofluorescence. Severe salinity jumps from 30 to 0 psu dismantled myofibril organization with major changes both in the SHG and CARS patterns. After a double stress (from 18 °C/30 psu to 4° C/0 psu) condensed and distended regions appeared within single myofibrils, with flavin autofluorescence bands located between sarcomeric A bands. These results shed light on the interactions between the different functional compartments which provide fast acting excitation-contraction coupling and adequate power supply in copepods muscles.
Collapse
Affiliation(s)
- Ali Ibrahim
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France; Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Charles Henri Hage
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Anissa Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Aymeric Leray
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Bernard Vandenbunder
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| |
Collapse
|
37
|
Vogel M, Wingert A, Fink RHA, Hagl C, Ganikhanov F, Pfeffer CP. Enabling the detection of UV signal in multimodal nonlinear microscopy with catalogue lens components. J Microsc 2015; 260:62-72. [PMID: 26016390 DOI: 10.1111/jmi.12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 04/26/2015] [Indexed: 12/01/2022]
Abstract
Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm.
Collapse
Affiliation(s)
- Martin Vogel
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts, U.S.A
| | - Axel Wingert
- Medical Biophysics Group, University of Heidelberg, Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Group, University of Heidelberg, Heidelberg, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig-Maximilians-Universitaet, Munchen, Germany
| | - Feruz Ganikhanov
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, U.S.A
| | - Christian P Pfeffer
- Department of Cardiac Surgery, Ludwig-Maximilians-Universitaet, Munchen, Germany.,Department of Craniofacial and Developmental Biology, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
38
|
Hernández-Ochoa EO, Pratt SJP, Garcia-Pelagio KP, Schneider MF, Lovering RM. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice. Physiol Rep 2015; 3:3/4/e12366. [PMID: 25907787 PMCID: PMC4425971 DOI: 10.14814/phy2.12366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Karla P Garcia-Pelagio
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Recher G, Coumailleau P, Rouède D, Tiaho F. Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles. J Struct Biol 2015; 190:1-10. [PMID: 25770062 DOI: 10.1016/j.jsb.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 01/27/2023]
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.
Collapse
Affiliation(s)
- Gaëlle Recher
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Pascal Coumailleau
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - Denis Rouède
- IPR, CNRS, UMR-CNRS UR1-6251, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - François Tiaho
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France.
| |
Collapse
|
40
|
Brenner B, Seebohm B, Tripathi S, Montag J, Kraft T. Familial hypertrophic cardiomyopathy: functional variance among individual cardiomyocytes as a trigger of FHC-phenotype development. Front Physiol 2014; 5:392. [PMID: 25346696 PMCID: PMC4193225 DOI: 10.3389/fphys.2014.00392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/22/2014] [Indexed: 11/13/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is the most frequent inherited cardiac disease. It has been related to numerous mutations in many sarcomeric and even some non-sarcomeric proteins. So far, however, no common mechanism has been identified by which the many different mutations in different sarcomeric and non-sarcomeric proteins trigger development of the FHC phenotype. Here we show for different MYH7 mutations variance in force pCa-relations from normal to highly abnormal as a feature common to all mutations we studied, while direct functional effects of the different FHC-mutations, e.g., on force generation, ATPase or calcium sensitivity of the contractile system, can be quite different. The functional variation among individual M. soleus fibers of FHC-patients is accompanied by large variation in mutant vs. wildtype β-MyHC-mRNA. Preliminary results show a similar variation in mutant vs. wildtype β-MyHC-mRNA among individual cardiomyocytes. We discuss our previously proposed concept as to how different mutations in the β-MyHC and possibly other sarcomeric and non-sarcomeric proteins may initiate an FHC-phenotype by functional variation among individual cardiomyocytes that results in structural distortions within the myocardium, leading to cellular and myofibrillar disarray. In addition, distortions can activate stretch-sensitive signaling in cardiomyocytes and non-myocyte cells which is known to induce cardiac remodeling with interstitial fibrosis and hypertrophy. Such a mechanism will have major implications for therapeutic strategies to prevent FHC-development, e.g., by reducing functional imbalances among individual cardiomyocytes or by inhibition of their triggering of signaling paths initiating remodeling. Targeting increased or decreased contractile function would require selective targeting of mutant or wildtype protein to reduce functional imbalances.
Collapse
Affiliation(s)
- Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Benjamin Seebohm
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Snigdha Tripathi
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| |
Collapse
|
41
|
Buttgereit A, Weber C, Friedrich O. A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle. Neuromuscul Disord 2014; 24:596-603. [DOI: 10.1016/j.nmd.2014.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
|
42
|
Rouède D, Coumailleau P, Schaub E, Bellanger JJ, Blanchard-Desce M, Tiaho F. Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:858-875. [PMID: 24688819 PMCID: PMC3959848 DOI: 10.1364/boe.5.000858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.
Collapse
Affiliation(s)
- Denis Rouède
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Pascal Coumailleau
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Emmanuel Schaub
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | | | | | - François Tiaho
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| |
Collapse
|
43
|
Wagner S, Knipp S, Weber C, Hein S, Schinkel S, Walther A, Bekeredjian R, Müller OJ, Friedrich O. The heart in Duchenne muscular dystrophy: early detection of contractile performance alteration. J Cell Mol Med 2014; 16:3028-36. [PMID: 22970922 PMCID: PMC4393731 DOI: 10.1111/j.1582-4934.2012.01630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/31/2012] [Indexed: 11/27/2022] Open
Abstract
Progressive cardiomyopathy is a major cause of death in Duchenne muscular dystrophy (DMD) patients. Coupling between Ca(2+) handling and contractile properties in dystrophic hearts is poorly understood. It is also not clear whether developing cardiac failure is dominated by alterations in Ca(2+) pathways or more related to the contractile apparatus. We simultaneously recorded force and Ca(2+) transients in field-stimulated papillary muscles from young (10-14 weeks) wild-type (wt) and dystrophic mdx mice. Force amplitudes were fivefold reduced in mdx muscles despite only 30% reduction in fura-2 ratio amplitudes. This indicated mechanisms other than systolic Ca(2+) to additionally account for force decrements in mdx muscles. pCa-force relations revealed decreased mdx myofibrillar Ca(2+) sensitivity. 'In vitro' motility assays, studied in mdx hearts here for the first time, showed significantly slower sliding velocities. mdx MLC/MHC isoforms were not grossly altered. Dystrophic hearts showed echocardiography signs of early ventricular wall hypertrophy with a significantly enlarged end-diastolic diameter 'in vivo'. However, fractional shortening was still comparable to wt mice. Changes in the contractile apparatus satisfactorily explained force drop in mdx hearts. We give first evidence of early hypertrophy in mdx mice and possible mechanisms for already functional impairment of cardiac muscle in DMD.
Collapse
Affiliation(s)
- Sören Wagner
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Head SI, Houweling PJ, Chan S, Chen G, Hardeman EC. Properties of regenerated mouse extensor digitorum longus muscle following notexin injury. Exp Physiol 2014; 99:664-74. [PMID: 24414176 DOI: 10.1113/expphysiol.2013.077289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscles of mdx mice are known to be more susceptible to contraction-induced damage than wild-type muscle. However, it is not clear whether this is because of dystrophin deficiency or because of the abnormal branching morphology of dystrophic muscle fibres. This distinction has an important bearing on our traditional understanding of the function of dystrophin as a mechanical stabilizer of the sarcolemma. In this study, we address the question: 'Does dystrophin-positive, regenerated muscle containing branched fibres also show an increased susceptibility to contraction-induced damage?' We produced a model of fibre branching by injecting dystrophin-positive extensor digitorum longus muscles with notexin. The regenerated muscle was examined at 21 days postinjection. Notexin-injected muscle contained 29% branched fibres and was not more susceptible to damage from mild eccentric contractions than contralateral saline-injected control muscle. Regenerated muscles also had greater mass, greater cross-sectional area and lower specific force than control muscles. We conclude that the number of branched fibres in this regenerated muscle is below the threshold needed to increase susceptibility to damage. However, it would serve as an ideal control for muscles of young mdx mice, allowing for clearer differentiation of the effects of dystrophin deficiency from the effects of fibre regeneration and morphology.
Collapse
Affiliation(s)
- S I Head
- * Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
45
|
Yang X, Lorenser D, McLaughlin RA, Kirk RW, Edmond M, Simpson MC, Grounds MD, Sampson DD. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. BIOMEDICAL OPTICS EXPRESS 2013; 5:136-48. [PMID: 24466482 PMCID: PMC3891326 DOI: 10.1364/boe.5.000136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/30/2013] [Indexed: 05/16/2023]
Abstract
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ.
Collapse
Affiliation(s)
- Xiaojie Yang
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Dirk Lorenser
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Rodney W. Kirk
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Matthew Edmond
- Photon Factory, School of Chemical Sciences & Department of Physics, University of Auckland, Auckland, New Zealand
| | - M. Cather Simpson
- Photon Factory, School of Chemical Sciences & Department of Physics, University of Auckland, Auckland, New Zealand
| | - Miranda D. Grounds
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Australia
| |
Collapse
|
46
|
Theoretical and experimental SHG angular intensity patterns from healthy and proteolysed muscles. Biophys J 2013; 104:1959-68. [PMID: 23663839 DOI: 10.1016/j.bpj.2013.02.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/01/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022] Open
Abstract
SHG angular intensity pattern (SHG-AIP) of healthy and proteolysed muscle tissues are simulated and imaged here for the first time to our knowledge. The role of the spatial distribution of second-order nonlinear emitters on SHG-AIP is highlighted. SHG-AIP with two symmetrical spots is found to be a signature of healthy muscle whereas SHG-AIP with one centered spot in pathological mdx muscle is found to be a signature of myofibrillar disorder. We also show that SHG-AIP provides information on the three-dimensional structural organization of myofibrils in physiological and proteolysed muscle. Our results open an avenue for future studies aimed at unraveling more complex physiological and pathological fibrillar tissues organization.
Collapse
|
47
|
Taskin S, Stumpf VI, Bachmann J, Weber C, Martignoni ME, Friedrich O. Motor protein function in skeletal abdominal muscle of cachectic cancer patients. J Cell Mol Med 2013; 18:69-79. [PMID: 24251822 PMCID: PMC3916119 DOI: 10.1111/jcmm.12165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/16/2013] [Indexed: 01/06/2023] Open
Abstract
Cachexia presents with ongoing muscle wasting, altering quality of life in cancer patients. Cachexia is a limiting prognostic factor for patient survival and health care costs. Although animal models and human trials have shown mechanisms of motorprotein proteolysis, not much is known about intrinsic changes of muscle functionality in cancer patients suffering from muscle cachexia, and deeper insights into cachexia pathology in humans are needed. To address this question, rectus abdominis muscle samples were collected from several surgical control, non-cachectic and cachectic cancer patients and processed for skinned fibre biomechanics, molecular in vitro motility assays, myosin isoform protein compositions and quantitative ubiquitin polymer protein analysis. In pre-cachectic and cachectic cancer patient samples, maximum force was significantly compromised compared with controls, but showed an unexpected increase in myofibrillar Ca2+ sensitivity consistent with a shift from slow to fast myosin isoform expression seen in SDS-PAGE analysis and in vitro motility assays. Force deficit was specific for ‘cancer’, but not linked to presence of cachexia. Interestingly, quantitative ubiquitin immunoassays revealed no major changes in static ubiquitin polymer protein profiles, whether cachexia was present or not and were shown to mirror profiles in control patients. Our study on muscle function in cachectic patients shows that abdominal wall skeletal muscle in cancer cachexia shows signs of weakness that can be partially attributed to intrinsic changes to contractile motorprotein function. On protein levels, static ubiquitin polymeric distributions were unaltered, pointing towards evenly up-regulated ubiquitin protein turnover with respect to ubiquitin conjugation, proteasome degradation and de-ubiquitination.
Collapse
Affiliation(s)
- Sultan Taskin
- Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Kariya Y, Honma M, Suzuki H. Systems-based understanding of pharmacological responses with combinations of multidisciplinary methodologies. Biopharm Drug Dispos 2013; 34:489-507. [DOI: 10.1002/bdd.1865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/06/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yoshiaki Kariya
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine; The University of Tokyo; 113-8655 Tokyo Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine; The University of Tokyo; 113-8655 Tokyo Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine; The University of Tokyo; 113-8655 Tokyo Japan
| |
Collapse
|
49
|
Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, Spiegel S, Ruohola-Baker H. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 2013; 7:41-54. [PMID: 24077965 PMCID: PMC3882047 DOI: 10.1242/dmm.013631] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.
Collapse
Affiliation(s)
- Diem-Hang Nguyen-Tran
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vielreicher M, Schürmann S, Detsch R, Schmidt MA, Buttgereit A, Boccaccini A, Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 2013; 10:20130263. [PMID: 23864499 DOI: 10.1098/rsif.2013.0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging.
Collapse
Affiliation(s)
- M Vielreicher
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Strasse 3, 91052 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|