1
|
Ueki M, Maki T, Iwamoto M. Evaluation of aquaporin Z water permeability in bilayers using droplet interface systems with internal-pressure-defined membrane tension. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184425. [PMID: 40409660 DOI: 10.1016/j.bbamem.2025.184425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/30/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Cell membranes regulate water flow to maintain homeostasis, cell volume, and osmotic balance. Aquaporins (AQPs) enable selective water transport, making precise permeability measurements essential for understanding their function. The current methods have limitations, including high resource demands and poor control over membrane properties like bilayer tension. In this study, the droplet interface bilayer (DIB) system was used to measure aquaporin water channel activity. Unlike conventional water permeability assays, this method uniquely quantifies lipid bilayer tension by determining droplet internal pressure. This pressure-determined DIB (PDIB) method was used to investigate the water permeability of a lipid bilayer reconstituted with Escherichia coli aquaporin Z (AqpZ). Water permeability increased in an AqpZ concentration-dependent manner at bilayer tensions of 2.2-3.0 mN/m and was inhibited by mercury (IC50, 340 μM). Fluorescence microscopy was performed to visualize and quantify AqpZ molecules, thereby allowing us to derive an approximate estimate of the unitary water permeability. Although this study established the PDIB method and demonstrated its applicability to AqpZ, this technique may also facilitate future investigations on the effects of lipid bilayer tension on aquaporin function and the fundamental mechanisms of water transport across biological membranes.
Collapse
Affiliation(s)
- Misuzu Ueki
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan.
| |
Collapse
|
2
|
Lapshin NK, Piotrovskii MS, Trofimova MS. How sterols affect protoplasts plasma membrane water permeability and their volume under osmotic shock. JOURNAL OF PLANT RESEARCH 2025; 138:161-172. [PMID: 39609337 DOI: 10.1007/s10265-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
Protoplasts isolated from Arabidopsis leaves were used to study the initial stages of the plant cell response to osmotic stress. The role of sterols in these processes was investigated by their extraction from the protoplast plasma membrane in the presence of the oligosaccharide - methyl-β-cyclodextrin (MβCD). Depletion of membrane sterols caused by MβCD treatment did not alter protoplast volume under isosmotic conditions; however, volumes changed significantly when protoplasts were exposed to osmotic stress. Estimation of the plasma membrane water permeability coefficient (Pos), calculated from the initial rate of protoplast osmotic shrinkage, showed that control suspension is characterized by a high dispersion of the Pos values. However, Pos became more homogeneous after plasma membrane sterol depletion. Protoplasts were stained with FM 1-43 to assess how sterol extraction affects vesicular transport under osmotic shock. In order to determine the protoplast non-osmotic volume (Vb) steady-state volumes at different external osmolarities were fitted with linear dependences of the Boyle-van't Hoff (BVH) plot. It was found that sterol extraction is accompanied by a change in the slope of the BVH plot and a decrease in the apparent Vb. Several possible mechanisms behind the change in the protoplast volume and plasma membrane Pos regulation by sterols under osmotic stress are discussed.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
| | | | | |
Collapse
|
3
|
da Cruz-Filho J, Costa DM, Santos TO, da Silva RP, Anjos-Santos HC, Marciano NJDS, Rodríguez-Gúzman R, Henrique-Santos AB, Melo JEC, Badauê-Passos D, Murphy D, Mecawi AS, Lustrino D. Water deprivation induces a systemic procatabolic state that differentially affects oxidative and glycolytic skeletal muscles in male mice. Am J Physiol Regul Integr Comp Physiol 2025; 328:R21-R33. [PMID: 39466171 DOI: 10.1152/ajpregu.00187.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Dehydration, characterized by the loss of total body water and/or electrolytes due to diseases or inadequate fluid intake, is prevalent globally but often underestimated. Its contribution to long-term chronic diseases and sarcopenia is recognized, yet the mechanisms involved in systemic and muscle protein metabolism during dehydration remain unclear. This study investigated metabolic adaptations in a 36-h water deprivation (WD) model of mice. Male C57BL/6 mice underwent 36-h WD or pair-feeding at rest, with assessments of motor skills along with biochemical and metabolic parameters. Dehydration was confirmed by hypernatremia, body mass loss, hyporexia, and increased activity of vasopressinergic and oxytocinergic neurons compared with controls. These results were associated with liver mass loss, decreased glycemia, and increased cholesterolemia. In addition, increased V̇o2 and a decreased respiratory exchange ratio indicated reduced carbohydrate consumption and potentially increased protein use during dehydration. Thus, skeletal muscle protein metabolism was evaluated due to its high protein content. In the oxidative muscles of the WD group, total and proteasomal proteolysis increased, which was associated with decreased Akt-mediated intracellular signaling. Interestingly, there was an increase in fiber cross-sectional area, likely due to higher muscle water content caused by increased intracellular osmolality induced by protein catabolism products. Conversely, no changes were observed in protein turnover or water content in glycolytic muscles. These findings suggest that short-term WD imposes a procatabolic state, depleting protein content in skeletal muscle. However, skeletal muscle may respond differently to dehydration based on its phenotype and might adapt for a limited time.NEW & NOTEWORTHY This study investigated the effects of WD on mouse homeostasis, focusing on energy substrates and skeletal muscle protein metabolism. Our findings revealed a shift toward reduced dependence on carbohydrate degradation and increased reliance on lipid oxidation, or even protein oxidation, as energy sources, since we observed increased proteolysis in one muscle phenotype. Despite body mass loss, soleus and EDL muscle masses were differently affected. These results indicate the procatabolic potential of short-term WD in mice.
Collapse
Affiliation(s)
- João da Cruz-Filho
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Daniely Messias Costa
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Tatiane Oliveira Santos
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Raquel Prado da Silva
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Hevely Catharine Anjos-Santos
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Naima Jamile Dos Santos Marciano
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Roger Rodríguez-Gúzman
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ana Beatriz Henrique-Santos
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Eduardo Conceição Melo
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Daniel Badauê-Passos
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
4
|
Caviglia A, Espinoza‐Muñoz N, Alvear‐Arias JJ, Galizia L, Guastaferri F, Zimmermann R, Sigaut L, Amodeo G, González C, Ozu M, Garate JA. Membrane tension-dependent conformational change of Isoleucine 106 of loop B diminishes water permeability in FaPIP2;1. Protein Sci 2024; 33:e5204. [PMID: 39565066 PMCID: PMC11577455 DOI: 10.1002/pro.5204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Aquaporins (AQPs) are membrane proteins specialized in facilitating water transport across membranes. Mechanical stress is one of the various stimuli that regulate AQPs. Briefly, there are several studies that report a decrease in permeability upon an increase in membrane tension. However, the molecular details of this mechanosensitive (MS) response are still a matter of debate. Our work attempts to close that gap in knowledge by providing evidence of a conformational change that occurs inside the pore of the strawberry aquaporin FaPIP2;1. Via osmotic shock experiments and molecular dynamics (MD) simulations, we found that a residue of loop B, I106, is key to the blocking of the permeation pathway and such a change is almost exclusively found under membrane tensile stress. In detail, osmotic shock experiments exhibited a nonlinear increment in water fluxes for increasing osmolarities, evidencing a decrease in the FaPIP2;1 permeability. MD simulations under membrane tension showed the same trend, with a significant increase in states with a low water permeability. The latter was correlated with a conformational change in I106 that generates a permeation barrier of around 18 kJ mol-1, effectively closing the pore. This work constitutes the first report of a PIP type aquaporin reacting to tensile stress in the membrane. Our findings could pave the way to test whether this conformational change is also responsible for mechanical gating in the other MS aquaporins, both those already reported and those still waiting to be found.
Collapse
Affiliation(s)
- Agustín Caviglia
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Nicolás Espinoza‐Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV)Chile
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
| | - Juan José Alvear‐Arias
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
| | - Luciano Galizia
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Florencia Guastaferri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Present address:
Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET‐UNR)RosarioArgentina
| | - Rosario Zimmermann
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Lorena Sigaut
- Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Física de Buenos Aires (IFIBA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
- Molecular Bioscience DepartmentUniversity of TexasAustinUSA
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - José Antonio Garate
- Millennium Nucleus in NanoBioPhysics (NNBP)Universidad San SebastiánSantiagoChile
- Facultad de Ingeniería, Arquitectura y DiseñoUniversidad San SebastiánChile
- Centro Científico y Tecnológico de ExcelenciaFundacion Ciencia & VidaSantiagoChile
| |
Collapse
|
5
|
Jovanovic Macura I, Milanovic D, Tesic V, Major T, Perovic M, Adzic M, Ivkovic S. The Impact of High-Dose Fish Oil Supplementation on Mfsd2a, Aqp4, and Amyloid-β Expression in Retinal Blood Vessels of 5xFAD Alzheimer's Mouse Model. Int J Mol Sci 2024; 25:9400. [PMID: 39273347 PMCID: PMC11394872 DOI: 10.3390/ijms25179400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In patients with Alzheimer's disease (AD) and in animal models, the increased accumulation of amyloid β (Aβ) in retinal blood vessels strongly correlates with brain amyloid deposits and cognitive decline. The accumulation of Aβ in blood vessels may result from impaired transcytosis and a dysfunctional ocular glymphatic system in AD. High-dose fish oil (FO) supplementation has been shown to significantly change the expression of major facilitator superfamily domain-containing protein 2a (Mfsd2a), a key regulator of transcytosis, and Aquaporin 4 (Aqp4), an essential component of the glymphatic system in the retinas of WT mice. We examined the expression of Mfsd2a and Aqp4 in the retinas of 4-month-old 5xFAD female mice supplemented with high-dose FO for three weeks. There was a significant increase in Mfsd2a expression in 5xFAD retinas supplemented with FO compared to control 5xFAD mice. Additionally, the increase in Aqp4 expression observed in 4-month-old 5xFAD retinas, indicative of an impaired glymphatic system, was significantly decreased. Simultaneously, Aβ accumulation in 5xFAD retinal blood vessels was reduced following FO supplementation. These findings suggest that high-dose FO supplementation could serve as an adjunct in developing new treatments aimed at improving the regulation of transcytosis or the function of the glymphatic system in the AD retina.
Collapse
Affiliation(s)
- Irena Jovanovic Macura
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Desanka Milanovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Tesic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Major
- Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Milka Perovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Adzic
- Vinca-Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanja Ivkovic
- Vinca-Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Lincoff J, Helsell CVM, Marcoline FV, Natale AM, Grabe M. Membrane curvature sensing and symmetry breaking of the M2 proton channel from Influenza A. eLife 2024; 13:e81571. [PMID: 39150863 PMCID: PMC11383528 DOI: 10.7554/elife.81571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/07/2024] [Indexed: 08/18/2024] Open
Abstract
The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative Gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here, we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the fourfold symmetry observed in most structures. Next, we carried out MD simulations with the protein restrained in four- and twofold symmetric conformations to determine the impact on the membrane shape. While each pattern was distinct, all configurations induced pronounced curvature in the outer leaflet, while conversely, the inner leaflets showed minimal curvature and significant lipid tilt around the AHs. The MD-generated profiles at the protein-membrane interface were then extracted and used as boundary conditions in a continuum elastic membrane model to calculate the membrane-bending energy of each conformation embedded in different membrane surfaces characteristic of a budding virus. The calculations show that all three M2 conformations are stabilized in inward-budding, concave spherical caps and destabilized in outward-budding, convex spherical caps, the latter reminiscent of a budding virus. One of the C2-broken symmetry conformations is stabilized by 4 kT in NGC surfaces with the minimum energy conformation occurring at a curvature corresponding to 33 nm radii. In total, our work provides atomistic insight into the curvature sensing capabilities of M2 channels and how enrichment in the nascent viral particle depends on protein shape and membrane geometry.
Collapse
Affiliation(s)
- James Lincoff
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Cole V M Helsell
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Frank V Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Andrew M Natale
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
7
|
Chacko AN, Miller ADC, Dhanabalan KM, Mukherjee A. Exploring the potential of water channels for developing genetically encoded reporters and biosensors for diffusion-weighted MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107743. [PMID: 39053029 PMCID: PMC11687277 DOI: 10.1016/j.jmr.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Genetically encoded reporters for magnetic resonance imaging (MRI) offer a valuable technology for making molecular-scale measurements of biological processes within living organisms with high anatomical resolution and whole-organ coverage without relying on ionizing radiation. However, most MRI reporters rely on synthetic contrast agents, typically paramagnetic metals and metal complexes, which often need to be supplemented exogenously to create optimal contrast. To eliminate the need for synthetic contrast agents, we previously introduced aquaporin-1, a mammalian water channel, as a new reporter gene for the fully autonomous detection of genetically labeled cells using diffusion-weighted MRI. In this study, we aimed to expand the toolbox of diffusion-based genetic reporters by modulating aquaporin membrane trafficking and harnessing the evolutionary diversity of water channels across species. We identified a number of new water channels that functioned as diffusion-weighted reporter genes. In addition, we show that loss-of-function variants of yeast and human aquaporins can be leveraged to design first-in-class diffusion-based sensors for detecting the activity of a model protease within living cells.
Collapse
Affiliation(s)
- Asish N Chacko
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080, USA
| | - Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106-5080, USA
| | - Kaamini M Dhanabalan
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080, USA; Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106-5080, USA; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA; Department of Bioengineering, University of California, Santa Barbara, CA 93106-5080, USA.
| |
Collapse
|
8
|
Nguyen ATP, Weigle AT, Shukla D. Functional regulation of aquaporin dynamics by lipid bilayer composition. Nat Commun 2024; 15:1848. [PMID: 38418487 PMCID: PMC10901782 DOI: 10.1038/s41467-024-46027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics are examined. We demonstrate that SoPIP2;1's structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Chacko AN, Miller AD, Dhanabalan KM, Mukherjee A. Exploring the potential of water channels for developing MRI reporters and sensors without the need for exogenous contrast agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576580. [PMID: 38328035 PMCID: PMC10849501 DOI: 10.1101/2024.01.21.576580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Genetically encoded reporters for magnetic resonance imaging (MRI) offer a valuable technology for making molecular-scale measurements of biological processes within living organisms with high anatomical resolution and whole-organ coverage without relying on ionizing radiation. However, most MRI reporters rely on contrast agents, typically paramagnetic metals and metal complexes, which often need to be supplemented exogenously to create optimal contrast. To eliminate the need for contrast agents, we previously introduced aquaporin-1, a mammalian water channel, as a new reporter gene for the fully autonomous detection of genetically labeled cells using diffusion-weighted MRI. In this study, we aimed to expand the toolbox of diffusion-based genetic reporters by modulating aquaporin membrane trafficking and harnessing the evolutionary diversity of water channels across species. We identified a number of new water channels that functioned as diffusion-weighted reporter genes. In addition, we show that loss-of-function variants of yeast and human aquaporins can be leveraged to design first-in-class diffusion-based sensors for detecting the activity of a model protease within living cells.
Collapse
Affiliation(s)
| | | | | | - Arnab Mukherjee
- Department of Chemistry
- Biomolecular Science and Engineering Graduate Program
- Department of Chemical Engineering
| |
Collapse
|
10
|
Ozu M, Galizia L, Alvear-Arias JJ, Fernández M, Caviglia A, Zimmermann R, Guastaferri F, Espinoza-Muñoz N, Sutka M, Sigaut L, Pietrasanta LI, González C, Amodeo G, Garate JA. Mechanosensitive aquaporins. Biophys Rev 2023; 15:497-513. [PMID: 37681084 PMCID: PMC10480384 DOI: 10.1007/s12551-023-01098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cellular systems must deal with mechanical forces to satisfy their physiological functions. In this context, proteins with mechanosensitive properties play a crucial role in sensing and responding to environmental changes. The discovery of aquaporins (AQPs) marked a significant breakthrough in the study of water transport. Their transport capacity and regulation features make them key players in cellular processes. To date, few AQPs have been reported to be mechanosensitive. Like mechanosensitive ion channels, AQPs respond to tension changes in the same range. However, unlike ion channels, the aquaporin's transport rate decreases as tension increases, and the molecular features of the mechanism are unknown. Nevertheless, some clues from mechanosensitive ion channels shed light on the AQP-membrane interaction. The GxxxG motif may play a critical role in the water permeation process associated with structural features in AQPs. Consequently, a possible gating mechanism triggered by membrane tension changes would involve a conformational change in the cytoplasmic extreme of the single file region of the water pathway, where glycine and histidine residues from loop B play a key role. In view of their transport capacity and their involvement in relevant processes related to mechanical forces, mechanosensitive AQPs are a fundamental piece of the puzzle for understanding cellular responses.
Collapse
Affiliation(s)
- Marcelo Ozu
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Galizia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Miguel Fernández
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Agustín Caviglia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosario Zimmermann
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Guastaferri
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Present Address: Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Nicolás Espinoza-Muñoz
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Moira Sutka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lía Isabel Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
- Present Address: Molecular Bioscience Department, University of Texas, Austin, TX 78712 USA
| | - Gabriela Amodeo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Universidad San Sebastián, 7750000 Santiago, Chile
| |
Collapse
|
11
|
Nguyen ATP, Weigle AT, Shukla D. Functional Regulation of Aquaporin Dynamics by Lipid Bilayer Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549977. [PMID: 37502896 PMCID: PMC10370204 DOI: 10.1101/2023.07.20.549977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics were examined. We demonstrate that SoPIP2;1s structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL 61801
| | - Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, IL 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, IL 61801
| |
Collapse
|
12
|
Wachlmayr J, Fläschner G, Pluhackova K, Sandtner W, Siligan C, Horner A. Entropic barrier of water permeation through single-file channels. Commun Chem 2023; 6:135. [PMID: 37386127 PMCID: PMC10310842 DOI: 10.1038/s42004-023-00919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Facilitated water permeation through narrow biological channels is fundamental for all forms of life. Despite its significance in health and disease as well as for biotechnological applications, the energetics of water permeation are still elusive. Gibbs free energy of activation is composed of an enthalpic and an entropic component. Whereas the enthalpic contribution is readily accessible via temperature dependent water permeability measurements, estimation of the entropic contribution requires information on the temperature dependence of the rate of water permeation. Here, we estimate, by means of accurate activation energy measurements of water permeation through Aquaporin-1 and by determining the accurate single channel permeability, the entropic barrier of water permeation through a narrow biological channel. Thereby the calculated value for [Formula: see text] = 2.01 ± 0.82 J/(mol·K) links the activation energy of 3.75 ± 0.16 kcal/mol with its efficient water conduction rate of ~1010 water molecules/second. This is a first step in understanding the energetic contributions in various biological and artificial channels exhibiting vastly different pore geometries.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Basel, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17A, 1090, Vienna, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
13
|
Role of NKCC1 and KCC2 during hypoxia-induced neuronal swelling in the neonatal neocortex. Neurobiol Dis 2023; 178:106013. [PMID: 36706928 PMCID: PMC9945323 DOI: 10.1016/j.nbd.2023.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Neonatal hypoxia causes cytotoxic neuronal swelling by the entry of ions and water. Multiple water pathways have been implicated in neurons because these cells lack water channels, and their membrane has a low water permeability. NKCC1 and KCC2 are cation-chloride cotransporters (CCCs) involved in water movement in various cell types. However, the role of CCCs in water movement in neonatal neurons during hypoxia is unknown. We studied the effects of modulating CCCs pharmacologically on neuronal swelling in the neocortex (layer IV/V) of neonatal mice (post-natal day 8-13) during prolonged and brief hypoxia. We used acute brain slices from Clomeleon mice which express a ratiometric fluorophore sensitive to Cl- and exposed them to oxygen-glucose deprivation (OGD) while imaging neuronal size and [Cl-]i by multiphoton microscopy. Neurons were identified using a convolutional neural network algorithm, and changes in the somatic area and [Cl-]i were evaluated using a linear mixed model for repeated measures. We found that (1) neuronal swelling and Cl- accumulation began after OGD, worsened during 20 min of OGD, or returned to baseline during reoxygenation if the exposure to OGD was brief (10 min). (2) Neuronal swelling did not occur when the extracellular Cl- concentration was low. (3) Enhancing KCC2 activity did not alter OGD-induced neuronal swelling but prevented Cl- accumulation; (4) blocking KCC2 led to an increase in Cl- accumulation during prolonged OGD and aggravated neuronal swelling during reoxygenation; (5) blocking NKCC1 reduced neuronal swelling during early but not prolonged OGD and aggravated Cl- accumulation during prolonged OGD; and (6) treatment with the "broad" CCC blocker furosemide reduced both swelling and Cl- accumulation during prolonged and brief OGD, whereas simultaneous NKCC1 and KCC2 inhibition using specific pharmacological blockers aggravated neuronal swelling during prolonged OGD. We conclude that CCCs, and other non-CCCs, contribute to water movement in neocortical neurons during OGD in the neonatal period.
Collapse
|
14
|
Umebayashi M, Takemoto S, Reymond L, Sundukova M, Hovius R, Bucci A, Heppenstall PA, Yokota H, Johnsson K, Riezman H. A covalently linked probe to monitor local membrane properties surrounding plasma membrane proteins. J Cell Biol 2022; 222:213783. [PMID: 36571579 PMCID: PMC9802683 DOI: 10.1083/jcb.202206119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Functional membrane proteins in the plasma membrane are suggested to have specific membrane environments that play important roles to maintain and regulate their function. However, the local membrane environments of membrane proteins remain largely unexplored due to the lack of available techniques. We have developed a method to probe the local membrane environment surrounding membrane proteins in the plasma membrane by covalently tethering a solvatochromic, environment-sensitive dye, Nile Red, to a GPI-anchored protein and the insulin receptor through a flexible linker. The fluidity of the membrane environment of the GPI-anchored protein depended upon the saturation of the acyl chains of the lipid anchor. The local environment of the insulin receptor was distinct from the average plasma membrane fluidity and was quite dynamic and heterogeneous. Upon addition of insulin, the local membrane environment surrounding the receptor specifically increased in fluidity in an insulin receptor-kinase dependent manner and on the distance between the dye and the receptor.
Collapse
Affiliation(s)
- Miwa Umebayashi
- https://ror.org/01swzsf04Department of Biochemistry and National Centre for Competence in Research in Chemical Biology, Sciences II, University of Geneva, Geneva, Switzerland,Myoridge Co. Ltd., Kyoto, Japan
| | - Satoko Takemoto
- Image Processing Research Team, RIKEN Centre for Advanced Photonics, Wako, Japan
| | - Luc Reymond
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, Lausanne, Switzerland
| | - Mayya Sundukova
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory Rome, Monterotondo, Italy,https://ror.org/000xsnr85Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
| | - Ruud Hovius
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, Lausanne, Switzerland
| | - Annalisa Bucci
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory Rome, Monterotondo, Italy
| | - Paul A. Heppenstall
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory Rome, Monterotondo, Italy
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Centre for Advanced Photonics, Wako, Japan
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Howard Riezman
- https://ror.org/01swzsf04Department of Biochemistry and National Centre for Competence in Research in Chemical Biology, Sciences II, University of Geneva, Geneva, Switzerland,Correspondence to Howard Riezman:
| |
Collapse
|
15
|
Cibelli A, Scemes E, Spray DC. Activity and Stability of Panx1 Channels in Astrocytes and Neuroblastoma Cells Are Enhanced by Cholesterol Depletion. Cells 2022; 11:3219. [PMID: 36291086 PMCID: PMC9600160 DOI: 10.3390/cells11203219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pannexin1 (Panx1) is expressed in both neurons and glia where it forms ATP-permeable channels that are activated under pathological conditions such as epilepsy, migraine, inflammation, and ischemia. Membrane lipid composition affects proper distribution and function of receptors and ion channels, and defects in cholesterol metabolism are associated with neurological diseases. In order to understand the impact of membrane cholesterol on the distribution and function of Panx1 in neural cells, we used fluorescence recovery after photobleaching (FRAP) to evaluate its mobility and electrophysiology and dye uptake to assess channel function. We observed that cholesterol extraction (using methyl-β-cyclodextrin) and inhibition of its synthesis (lovastatin) decreased the lateral diffusion of Panx1 in the plasma membrane. Panx1 channel activity (dye uptake, ATP release and ionic current) was enhanced in cholesterol-depleted Panx1 transfected cells and in wild-type astrocytes compared to non-depleted or Panx1 null cells. Manipulation of cholesterol levels may, therefore, offer a novel strategy by which Panx1 channel activation might modulate various pathological conditions.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, NY10595, USA
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
17
|
McGuire H, Blunck R. Studying KcsA Channel Clustering Using Single Channel Voltage-Clamp Fluorescence Imaging*. Front Physiol 2022; 13:863375. [PMID: 35721536 PMCID: PMC9204084 DOI: 10.3389/fphys.2022.863375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Oligomerization and complex formation play a key role for many membrane proteins and has been described to influence ion channel function in both neurons and the heart. In this study, we observed clustering of single KcsA channels in planar lipid bilayer using single molecule fluorescence, while simultaneously measuring single channel currents. Clustering coincided with cooperative opening of KcsA. We demonstrate that clustering was not caused by direct protein-protein interactions or hydrophobic mismatch with the lipid environment, as suggested earlier, but was mediated via microdomains induced by the channel in the lipid matrix. We found that single channel activity of KcsA requires conically-shaped lipids in the lamellar liquid-crystalline (Lα) phase, and the need for a negative spontaneous curvature seem to lead to the deformations in the membrane that cause the clustering. The method introduced here will be applicable to follow oligomerization of a wide range of membrane proteins.
Collapse
Affiliation(s)
- Hugo McGuire
- Department of Physics, Université de Montréal, Montréal, QC, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC, Canada
- *Correspondence: Rikard Blunck,
| |
Collapse
|
18
|
Steffen JH, Missel JW, Al-Jubair T, Kitchen P, Salman MM, Bill RM, Törnroth-Horsefield S, Gourdon P. Assessing water permeability of aquaporins in a proteoliposome-based stopped-flow setup. STAR Protoc 2022; 3:101312. [PMID: 35496800 PMCID: PMC9038760 DOI: 10.1016/j.xpro.2022.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
|
19
|
Relevance of Aquaporins for Gamete Function and Cryopreservation. Animals (Basel) 2022; 12:ani12050573. [PMID: 35268142 PMCID: PMC8909058 DOI: 10.3390/ani12050573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The interaction between cells and the extracellular medium is of great importance; changes in medium composition can drive water movement across plasma membranes. Aquaporins (AQPs) are membrane channels involved in the transport of water and some solutes across membranes. When sperm enter the female reproductive tract after ejaculation, they encounter a drastic change in extracellular composition, which leads to water flowing across the plasma membrane. This triggers a series of events that are crucial to allowing fertilization to take place, such as regulation of sperm motility. In the context of assisted reproduction techniques (ART), long-term storage of gametes is sometimes required, and, during cryopreservation, these cells undergo drastic changes in extracellular medium composition. As a result, AQPs are crucial in both sperm and oocytes during this process. Cryopreservation is of considerable importance for fertility preservation in livestock, endangered species and for individuals undergoing certain medical treatments that compromise their fertility. Further research to fully elucidate the roles and underlying mechanisms of AQPs in mammalian sperm is therefore warranted. Abstract The interaction between cells and the extracellular medium is of great importance, and drastic changes in extracellular solute concentrations drive water movement across the plasma membrane. Aquaporins (AQPs) are a family of transmembrane channels that allow the transport of water and small solutes across cell membranes. Different members of this family have been identified in gametes. In sperm, they are relevant to osmoadaptation after entering the female reproductive tract, which is crucial for sperm motility activation and capacitation and, thus, for their fertilizing ability. In addition, they are relevant during the cryopreservation process, since some members of this family are also permeable to glycerol, one of the most frequently used cryoprotective agents in livestock. Regarding oocytes, AQPs are very important in their maturation but also during cryopreservation. Further research to define the exact sets of AQPs that are present in oocytes from different species is needed, since the available literature envisages certain AQPs and their roles but does not provide complete information on the whole set of AQPs. This is of considerable importance because, in sperm, specific AQPs are known to compensate the role of non-functional members.
Collapse
|
20
|
Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 2022; 14:181-198. [PMID: 35340612 PMCID: PMC8921385 DOI: 10.1007/s12551-021-00925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042 Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
21
|
Optimization of Aquaporin Loading for Performance Enhancement of Aquaporin-Based Biomimetic Thin-Film Composite Membranes. MEMBRANES 2021; 12:membranes12010032. [PMID: 35054558 PMCID: PMC8777877 DOI: 10.3390/membranes12010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The aquaporin-based biomimetic thin-film composite membrane (ABM-TFC) has demonstrated superior separation performance and achieved successful commercialization. The larger-scale production of the ABM membrane requires an appropriate balance between the performance and manufacturing cost. This study has systematically investigated the effects of proteoliposome concentration, protein-to-lipid ratio, as well as the additive on the separation performance of ABM for the purpose of finding the optimal preparation conditions for the ABM from the perspective of industrial production. Although increasing the proteoliposome concentration or protein-to-lipid ratio within a certain range could significantly enhance the water permeability of ABMs by increasing the loading of aquaporins in the selective layer, the enhancement effect was marginal or even compromised beyond an optimal point. Alternatively, adding cholesterol in the proteoliposome could further enhance the water flux of the ABM membrane, with minor effects on the salt rejection. The optimized ABM not only achieved a nearly doubled water flux with unchanged salt rejection compared to the control, but also demonstrated satisfactory filtration stability within a wide range of operation temperatures. This study provides a practical strategy for the optimization of ABM-TFC membranes to fit within the scheme of industrial-scale production.
Collapse
|
22
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
23
|
Behera BK, Parhi J, Dehury B, Rout AK, Khatei A, Devi AL, Mandal SC. Molecular characterization and structural dynamics of Aquaporin1 from walking catfish in lipid bilayers. Int J Biol Macromol 2021; 196:86-97. [PMID: 34914911 DOI: 10.1016/j.ijbiomac.2021.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
Aquaporin's (AQPs) are the major superfamily of small integral membrane proteins that facilitates transportation of water, urea, ammonia, glycerol and ions across biological cell membranes. Despite of recent advancements made in understanding the biology of Aquaporin's, only few isoforms of aquaporin 1 (AQP1) some of the teleost fish species have been characterized at molecular scale. In this study, we made an attempt to elucidate the molecular mechanism of water transportation in AQP1 from walking catfish (Clarias batrachus), a model species capable of breathing in air and inhabits in challenging environments. Using state-of-the-art computational modelling and all-atoms molecular dynamics simulation, we explored the structural dynamics of full-length aquaporin 1 from walking catfish (CbAQP1) in lipid mimetic bilayers. Unlike AQP1 of human and bovine, structural ensembles of CbAQP1 from MD revealed discrete positioning of pore lining residues at the intracellular end. Snapshots from MD simulation displayed differential dynamics of aromatic/arginine (ar/R) filter and extracellular loop C bridging transmembrane (TM) helix H3 and H4. Distinct conformation of large extracellular loops, loop bridging TM2 domain and HB helix along with positioning of selectivity filter lining residues controls the permeability of water across the bilayer. Moreover, the identified unique and conserved lipid binding sites with 100% lipid occupancy signifies lipid mediated structural dynamics of CbAQP1. All-together, this is the first ever report on structural-dynamics of aquaporin 1 in walking catfish which will be useful to understand the molecular basis of transportation of water and other small molecules under varying degree of hyperosmotic environment.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| | - Janmejay Parhi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India; Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Ananya Khatei
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Asem Lembika Devi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Sagar Chandra Mandal
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| |
Collapse
|
24
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
25
|
Abstract
Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.
Collapse
Affiliation(s)
- Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology; Department of Radiology; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
26
|
Cino EA, Borbuliak M, Hu S, Tieleman DP. Lipid distributions and transleaflet cholesterol migration near heterogeneous surfaces in asymmetric bilayers. Faraday Discuss 2021; 232:103-113. [PMID: 34549760 DOI: 10.1039/d1fd00003a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific and nonspecific protein-lipid interactions in cell membranes have important roles in an abundance of biological functions. We have used coarse-grained (CG) molecular dynamics (MD) simulations to assess lipid distributions and cholesterol flipping dynamics around surfaces in a model asymmetric plasma membrane containing one of six structurally distinct entities: aquaporin-1 (AQP1), the bacterial β-barrel outer membrane proteins OmpF and OmpX, the KcsA potassium channel, the WALP23 peptide and a carbon nanotube (CNT). Our findings revealed varied lipid partitioning and cholesterol flipping times around the different solutes and putative cholesterol binding sites in AQP1 and KcsA. The results suggest that protein-lipid interactions can be highly variable, and that surface-dependent lipid profiles are effectively manifested in CG simulations with the Martini force field.
Collapse
Affiliation(s)
- Elio A Cino
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada. .,Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariia Borbuliak
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Shangnong Hu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
27
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
28
|
Pluhackova K, Horner A. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol 2021; 19:4. [PMID: 33441107 PMCID: PMC7807449 DOI: 10.1186/s12915-020-00936-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lipid-protein interactions stabilize protein oligomers, shape their structure, and modulate their function. Whereas in vitro experiments already account for the functional importance of lipids by using natural lipid extracts, in silico methods lack behind by embedding proteins in single component lipid bilayers. However, to accurately complement in vitro experiments with molecular details at very high spatio-temporal resolution, molecular dynamics simulations have to be performed in natural(-like) lipid environments. RESULTS To enable more accurate MD simulations, we have prepared four membrane models of E. coli polar lipid extract, a typical model organism, each at all-atom (CHARMM36) and coarse-grained (Martini3) representations. These models contain all main lipid headgroup types of the E. coli inner membrane, i.e., phosphatidylethanolamines, phosphatidylglycerols, and cardiolipins, symmetrically distributed between the membrane leaflets. The lipid tail (un)saturation and propanylation stereochemistry represent the bacterial lipid tail composition of E. coli grown at 37∘C until 3/4 of the log growth phase. The comparison of the Simple three lipid component models to the complex 14-lipid component model Avanti over a broad range of physiologically relevant temperatures revealed that the balance of lipid tail unsaturation and propanylation in different positions and inclusion of lipid tails of various length maintain realistic values for lipid mobility, membrane area compressibility, lipid ordering, lipid volume and area, and the bilayer thickness. The only Simple model that was able to satisfactory reproduce most of the structural properties of the complex Avanti model showed worse agreement of the activation energy of basal water permeation with the here performed measurements. The Martini3 models reflect extremely well both experimental and atomistic behavior of the E. coli polar lipid extract membranes. Aquaporin-1 embedded in our native(-like) membranes causes partial lipid ordering and membrane thinning in its vicinity. Moreover, aquaporin-1 attracts and temporarily binds negatively charged lipids, mainly cardiolipins, with a distinct cardiolipin binding site in the crevice at the contact site between two monomers, most probably stabilizing the tetrameric protein assembly. CONCLUSIONS The here prepared and validated membrane models of E. coli polar lipids extract revealed that lipid tail complexity, in terms of double bond and cyclopropane location and varying lipid tail length, is key to stabilize membrane properties over a broad temperature range. In addition, they build a solid basis for manifold future simulation studies on more realistic lipid membranes bridging the gap between simulations and experiments.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Mattenstr. 26, Basel, 4058, Switzerland.
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
29
|
Yepes-Molina L, Bárzana G, Carvajal M. Controversial Regulation of Gene Expression and Protein Transduction of Aquaporins under Drought and Salinity Stress. PLANTS 2020; 9:plants9121662. [PMID: 33261103 PMCID: PMC7761296 DOI: 10.3390/plants9121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Enhancement of the passage of water through membranes is one of the main mechanisms via which cells can maintain their homeostasis under stress conditions, and aquaporins are the main participants in this process. However, in the last few years, a number of studies have reported discrepancies between aquaporin messenger RNA (mRNA) expression and the number of aquaporin proteins synthesised in response to abiotic stress. These observations suggest the existence of post-transcriptional mechanisms which regulate plasma membrane intrinsic protein (PIP) trafficking to the plasma membrane. This indicates that the mRNA synthesis of some aquaporins could be modulated by the accumulation of the corresponding encoded protein, in relation to the turnover of the membranes. This aspect is discussed in terms of the results obtained: on the one hand, with isolated vesicles, in which the level of proteins present provides the membranes with important characteristics such as resistance and stability and, on the other, with isolated proteins reconstituted in artificial liposomes as an in vitro method to address the in vivo physiology of the entire plant.
Collapse
|
30
|
Detergent Resistant Membrane Domains in Broccoli Plasma Membrane Associated to the Response to Salinity Stress. Int J Mol Sci 2020; 21:ijms21207694. [PMID: 33080920 PMCID: PMC7588934 DOI: 10.3390/ijms21207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Detergent-resistant membranes (DRMs) microdomains, or “raft lipids”, are key components of the plasma membrane (PM), being involved in membrane trafficking, signal transduction, cell wall metabolism or endocytosis. Proteins imbibed in these domains play important roles in these cellular functions, but there are few studies concerning DRMs under abiotic stress. In this work, we determine DRMs from the PM of broccoli roots, the lipid and protein content, the vesicles structure, their water osmotic permeability and a proteomic characterization focused mainly in aquaporin isoforms under salinity (80 mM NaCl). Based on biochemical lipid composition, higher fatty acid saturation and enriched sterol content under stress resulted in membranes, which decreased osmotic water permeability with regard to other PM vesicles, but this permeability was maintained under control and saline conditions; this maintenance may be related to a lower amount of total PIP1 and PIP2. Selective aquaporin isoforms related to the stress response such as PIP1;2 and PIP2;7 were found in DRMs and this protein partitioning may act as a mechanism to regulate aquaporins involved in the response to salt stress. Other proteins related to protein synthesis, metabolism and energy were identified in DRMs independently of the treatment, indicating their preference to organize in DMRs.
Collapse
|
31
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
32
|
Kim H, Lee BH, Choi MK, Seo S, Kim MK. Effects of aquaporin-lipid molar ratio on the permeability of an aquaporin Z-phospholipid membrane system. PLoS One 2020; 15:e0237789. [PMID: 32810188 PMCID: PMC7437467 DOI: 10.1371/journal.pone.0237789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
Aquaporins are water-permeable membrane-channel proteins found in biological cell membranes that selectively exclude ions and large molecules and have high water permeability, which makes them promising candidates for water desalination systems. To effectively apply the properties of aquaporins in the desalination process, many studies have been conducted on aquaporin-lipid membrane systems using phospholipids, which are the main component of cell membranes. Many parametric studies have evaluated the permeability of such systems with various aquaporin types and lipid compositions. In this study, we performed molecular dynamics simulations for four cases with different protein-lipid molar ratios (1:50, 1:75, 1:100, and 1:150) between aquaporin Z and the phospholipids, and we propose a possibility of the existence of optimal protein-lipid molar ratio to maximize water permeability. Elucidating these simulation results from a structural viewpoint suggests that there is a relationship between the permeability and changes in the hydrophobic thickness of the lipid membrane adjacent to the aquaporin as a structural parameter. The results of this study can help optimize the design of an aquaporin-lipid membrane by considering its molar ratio at an early stage of development.
Collapse
Affiliation(s)
- Hyunki Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byung Ho Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Moon-ki Choi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sangjae Seo
- Korean Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Moon Ki Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
33
|
Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Törnroth-Horsefield S, Conner MT, Ahmed Z, Conner AC, Bill RM. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 2020; 181:784-799.e19. [PMID: 32413299 PMCID: PMC7242911 DOI: 10.1016/j.cell.2020.03.037] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023]
Abstract
Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.
Collapse
Affiliation(s)
- Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pharmacology, College of Pharmacy, University of Mosul, Mosul 41002, Iraq
| | - Andrea M Halsey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charlotte Clarke-Bland
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hans J Vogel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Julie Winkel Missel
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, PO Box 118, 221 00 Lund, Sweden
| | | | - Matthew T Conner
- School of Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
34
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
35
|
Sosa Y, Egbo D, Akabas MH. Impact of Field Isolate Identified Nonsynonymous Single Nucleotide Polymorphisms on Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitor Efficacy. ACS Infect Dis 2020; 6:205-214. [PMID: 31876139 DOI: 10.1021/acsinfecdis.9b00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria and causes approximately 500 000 deaths per year. P. falciparum parasites resistant to current antimalarial treatments are spreading. Therefore, it is imperative to develop new antimalarial drugs. Malaria parasites are purine auxotrophic. They rely on purine import from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Recently, inhibitors of the P. falciparum ENT1 (PfENT1) that inhibit proliferation of malaria parasites in culture have been identified as promising starting points for antimalarial drug development. Genome sequencing of P. falciparum field isolates has identified nonsynonymous single nucleotide polymorphisms (SNPs) in the gene encoding PfENT1. Here we evaluate the impact of these PfENT1 SNPs on purine substrate affinity and inhibitor efficacy. We expressed each PfENT1-SNP in Saccharomyces cerevisiae. Using PfENT1-SNP-expressing yeast, we characterized the PfENT1 purine substrate affinity using radiolabeled substrate uptake inhibition experiments. Four of the 13 SNPs altered affinity for one or more purines by up to 7-fold. Three of the SNPs reduced the potency of a subset of the inhibitors by up to 7-fold. One SNP, Q284E, reduced the potency of all six inhibitor chemotypes. We tested drug efficacy in available parasite strains containing PfENT1 SNPs. While PfENT1-SNP-expressing yeast had decreased sensitivity to PfENT1 inhibitors, parasite strains containing SNPs showed similar or more potent inhibition of proliferation with all PfENT1 inhibitors. Thus, parasite strains bearing PfENT1 SNPs are not resistant to these PfENT1 inhibitors. This supports PfENT1 as a promising target for further development of novel antimalarial drugs.
Collapse
|
36
|
Vorob'ev VN, Sibgatullin TA, Sterkhova KA, Alexandrov EA, Gogolev YV, Timofeeva OA, Gorshkov VY, Chevela VV. Ytterbium increases transmembrane water transport in Zea mays roots via aquaporin modulation. Biometals 2019; 32:901-908. [PMID: 31587124 DOI: 10.1007/s10534-019-00221-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/28/2019] [Indexed: 11/28/2022]
Abstract
In our study, the rare earth element ytterbium (Yb3+) was demonstrated to affect water exchange in roots of Zea mays seedlings. Herewith, the overall membrane permeability (Pd) increased. The Pd increase was determined by aquaporin activity but not the membrane lipid component since the closure of aquaporin channels due to low intracellular pH abolished the positive effect of Yb3+ on Pd. Additionally, the expression level of aquaporin genes ZmPIP2;2, ZmPIP2;6 and ZmTIP2;2 was increased when plants were grown in the presence of Yb3+. Our results indicate that previously described positive influence of rare earth metals on plant growth and productivity may be mediated (at least partially) by the modification of the plant hydraulic system.
Collapse
Affiliation(s)
- Vladimir N Vorob'ev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. Box 30, Lobachevsky st., 2/13, Kazan, Russia, 420111. .,Kazan (Volga region) Federal University, Kremlyovskaya st., 18, 420008, Kazan, Russia.
| | - Timur A Sibgatullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. Box 30, Lobachevsky st., 2/13, Kazan, Russia, 420111
| | - Kseniya A Sterkhova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. Box 30, Lobachevsky st., 2/13, Kazan, Russia, 420111
| | - Evgeniy A Alexandrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. Box 30, Lobachevsky st., 2/13, Kazan, Russia, 420111
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. Box 30, Lobachevsky st., 2/13, Kazan, Russia, 420111.,Kazan (Volga region) Federal University, Kremlyovskaya st., 18, 420008, Kazan, Russia
| | - Olga A Timofeeva
- Kazan (Volga region) Federal University, Kremlyovskaya st., 18, 420008, Kazan, Russia
| | - Vladimir Y Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. Box 30, Lobachevsky st., 2/13, Kazan, Russia, 420111.,Kazan (Volga region) Federal University, Kremlyovskaya st., 18, 420008, Kazan, Russia
| | - Vladimir V Chevela
- Kazan (Volga region) Federal University, Kremlyovskaya st., 18, 420008, Kazan, Russia
| |
Collapse
|
37
|
Mainali L, Pasenkiewicz-Gierula M, Subczynski WK. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes. Curr Eye Res 2019; 45:162-172. [PMID: 31462080 DOI: 10.1080/02713683.2019.1662058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose/Aim: The goal of this study is to reveal how age-related changes in phospholipid (PL) composition in the fiber cell plasma membranes of the human eye lens affect the cholesterol (Chol) content at which Chol bilayer domains (CBDs) and Chol crystals start to form.Materials and Methods: Saturation-recovery electron paramagnetic resonance with spin-labeled cholesterol analogs and differential scanning calorimetry were used to determine the Chol contents at which CBDs and cholesterol crystals, respectively, start to form in in membranes made of the major PL constituents of the plasma membrane of the human eye lens fiber cells. To preserve compositional homogeneity throughout the membrane suspension, the lipid multilamellar dispersions investigated in this work were prepared using a rapid solvent exchange method. The cholesterol content changed from 0 to 75 mol%.Results: The saturation recovery electron paramagnetic resonance results show that CBDs start to form at 33, 50, 46, and 48 mol% Chol in the phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and sphingomyelin bilayers, respectively. The differential scanning calorimetry results show that Chol crystals start to form at 50, 66, 70, and 66 mol% Chol in the phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and sphingomyelin bilayers, respectively.Conclusions: These results, as well those of our previous studies, indicate that the formation of CBDs precedes the formation of Chol crystals in all of the studied systems, and the appearance of each depends on the type of PL forming the bilayer. These findings contribute to a better understanding of the molecular mechanisms involved in the regulation of Chol-dependent processes in eye lens fiber cell membranes.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
38
|
Patz S, Fovargue D, Schregel K, Nazari N, Palotai M, Barbone PE, Fabry B, Hammers A, Holm S, Kozerke S, Nordsletten D, Sinkus R. Imaging localized neuronal activity at fast time scales through biomechanics. SCIENCE ADVANCES 2019; 5:eaav3816. [PMID: 31001585 PMCID: PMC6469937 DOI: 10.1126/sciadv.aav3816] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed.
Collapse
Affiliation(s)
- Samuel Patz
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Fovargue
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Katharina Schregel
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | - Navid Nazari
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Miklos Palotai
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul E. Barbone
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Sverre Holm
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH, Zurich, Switzerland
| | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| |
Collapse
|
39
|
Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells 2018; 7:E209. [PMID: 30423856 PMCID: PMC6262540 DOI: 10.3390/cells7110209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).
Collapse
Affiliation(s)
- Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Luciano Galizia
- Instituto de investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
| | - Cynthia Acuña
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| |
Collapse
|
40
|
Routray P, Li T, Yamasaki A, Yoshinari A, Takano J, Choi WG, Sams CE, Roberts DM. Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation. PLANT PHYSIOLOGY 2018; 178:1269-1283. [PMID: 30266747 PMCID: PMC6236609 DOI: 10.1104/pp.18.00604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 05/23/2023]
Abstract
Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.
Collapse
Affiliation(s)
- Pratyush Routray
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Tian Li
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Arisa Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai-shi, Osaka 599-8531, Japan
| | - Akira Yoshinari
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai-shi, Osaka 599-8531, Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai-shi, Osaka 599-8531, Japan
| | - Won Gyu Choi
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| | - Carl E Sams
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996
| | - Daniel M Roberts
- Department of Biochemistry and Cellular and Molecular Biology and Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
41
|
Fox AR, Maistriaux LC, Chaumont F. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:179-187. [PMID: 28969798 DOI: 10.1016/j.plantsci.2017.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 05/20/2023]
Abstract
Since the discovery of the first plant aquaporin (AQP) in 1993, our conception of the way plants control cell water homeostasis as well as their global water balance has been revisited. Plant AQPs constitute a large family of evolutionarily related channels that, in addition to water, can also facilitate the membrane diffusion of a number of small solutes, such as urea, CO2, H2O2, ammonia, metalloids, and even ions, indicating a wide range of cellular functions. At the cellular level, AQPs are subject to various regulation mechanisms leading to active/inactive channels in their target membranes. In this review, we discuss several specific questions that need to be addressed in future research. Why are so many different AQPs simultaneously expressed in specific cellular types? How is their selectivity to different solutes controlled (in particular in the case of multiple permeation properties)? What does the molecular interaction between AQPs and other molecules tell us about their regulation and their involvement in specific cellular and physiological processes? Resolving these questions will definitely help us better understand the physiological advantages that plants have to express and regulate so many AQP isoforms.
Collapse
Affiliation(s)
- Ana Romina Fox
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
42
|
Tong J, Wu Z, Briggs MM, Schulten K, McIntosh TJ. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness. Biophys J 2017; 111:90-9. [PMID: 27410737 DOI: 10.1016/j.bpj.2016.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Zhe Wu
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Margaret M Briggs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Klaus Schulten
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois.
| | - Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
43
|
Goldman RP, Jozefkowicz C, Canessa Fortuna A, Sutka M, Alleva K, Ozu M. Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties. FEBS Lett 2017; 591:1555-1565. [PMID: 28486763 DOI: 10.1002/1873-3468.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
Previous works proposed that aquaporins behave as mechanosensitive channels. However, principal issues about mechanosensitivity of aquaporins are not known. In this work, we characterized the mechanosensitive properties of the water channels BvTIP1;2 (TIP1) and BvPIP2;1 (PIP2) from red beet (Beta vulgaris). We simultaneously measured the mechanical behavior and the water transport rates during the osmotic response of emptied-out oocytes expressing TIP1 or PIP2. Our results indicate that TIP1 is a mechanosensitive aquaporin, whereas PIP2 is not. We found that a single exponential function between the osmotic permeability coefficient and the volumetric elastic modulus governs the mechanosensitivity of TIP1. Finally, homology modeling analysis indicates that putative residues involved in mechanosensitivity show different quantity and distribution in TIP1 and PIP2.
Collapse
Affiliation(s)
- Ramiro P Goldman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO Houssay), Laboratorio de Biomembranas, Universidad de Buenos Aires, Argentina
| | - Cintia Jozefkowicz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Agustina Canessa Fortuna
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Moira Sutka
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Karina Alleva
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Marcelo Ozu
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO Houssay), Laboratorio de Biomembranas, Universidad de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
44
|
Mainali L, Raguz M, O’Brien WJ, Subczynski WK. Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Curr Eye Res 2017; 42:721-731. [PMID: 27791387 PMCID: PMC5409882 DOI: 10.1080/02713683.2016.1231325] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/28/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE This research was undertaken to document the changes in the organization and properties of human lens lipid membranes that occur with age. METHODS Human lens lipid membranes prepared from the total lipids extracted from clear lens cortices and nuclei of donors from age groups 0-20 and 21-40 years were investigated. An electron paramagnetic resonance technique and nitroxide spin labels (analogues of phospholipids and cholesterol) were used. RESULTS Two distinct lipid domains, the phospholipid-cholesterol domain (PCD) and the pure cholesterol bilayer domain (CBD), were detected in all investigated membranes. Profiles of the acyl chain order, fluidity, hydrophobicity, and oxygen transport parameter across discriminated coexisting lipid domains were assessed. Independent of the age-related changes in phospholipid composition, the physical properties of the PCD remained the same for all age groups and were practically identical for cortical and nuclear membranes. However, the properties of pure CBDs changed significantly with the age of the donor and were related to the size of the CBD, which increased with the age of the donor and was greater in nuclear than in cortical membranes. A more detailed analysis revealed that the size of the CBD was determined mainly by the cholesterol content in the membrane. CONCLUSIONS This paper presents data from four age groups: 0-20, 21-40, 41-60, and 61-70 years. Data from age groups 41-60 and 61-70 years were published previously. Combining the previously published data with those data obtained in the present work allowed us to show the changes in the organization of cortical and nuclear lens lipid membranes as functions of age and cholesterol. It seems that the balance between age-related changes in membrane phospholipid composition and cholesterol content plays an integral role in the regulation of cholesterol-dependent processes in fiber cell membranes and in the maintenance of fiber cell membrane homeostasis.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J. O’Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
45
|
Wambo TO, Rodriguez RA, Chen LY. Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1310-1316. [PMID: 28455098 DOI: 10.1016/j.bbamem.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/01/2022]
Abstract
Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion. In this paper, we report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF) using the mature particle mesh Ewald technique (PME) for which the established force fields have been optimized with known accuracy. These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the in vitro measurements. The single-file diffusion approximations from our large-scale simulations are consistent with the current literature on smaller systems. From these unambiguous agreements among the in vitro and in silico studies, we observe the quantitative accuracy of the all-atom force fields of the current literature for water-channel biology. We also observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).
Collapse
Affiliation(s)
- Thierry O Wambo
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
46
|
High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochem Biophys 2017; 75:369-385. [PMID: 28417231 DOI: 10.1007/s12013-017-0792-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.
Collapse
|
47
|
|
48
|
|
49
|
Vorob'ev VN, Mirziev SI, Alexandrov EA, Sibgatullin TA. Characteristics of water and ion exchange of Elodea nuttallii cells at high concentrations of lanthanides. CHEMOSPHERE 2016; 165:329-334. [PMID: 27664522 DOI: 10.1016/j.chemosphere.2016.09.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Changes of diffusive permeability of membranes of Elodea nuttallii cells following a short-term (60 min) treatment with high concentrations of lanthanides were recorded by the 1H NMR-diffusometry and conductometry methods. The 1-h infiltration of segments of Elodea nuttallii internodes in 10 mM solutions of nitrates of La, Nd and Lu resulted in the increased leakage of electrolytes from cells, but has no effect on a water diffusive permeability of membranes. In samples subjected to a 30 min pretreatment with a water channel inhibitor HgCl2 the water diffusive permeability of membranes (Pd) drops down under the influence of lanthanides, as well as an outcome of electrolytes. To explain the observed effects the change of spontaneous curvature of membrane lipid layer has been taken into consideration. The interaction of lanthanides with lipids of plasmalemma leads to the negative spontaneous curvature of lipid layer at which membrane channels are unclosed. Blocking of the ionic and water channels by mercury ions compensate the effect of change of spontaneous curvature of lipid layer.
Collapse
Affiliation(s)
- Vladimir N Vorob'ev
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, P.O. Box 30, Lobachevsky st. 2/13, Kazan, 420111, Russia; Kazan (Volga) Federal University, Kremlevsky st. 16, Kazan, 420008, Russia
| | - Samat I Mirziev
- Kazan (Volga) Federal University, Kremlevsky st. 16, Kazan, 420008, Russia
| | | | - Timur A Sibgatullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, P.O. Box 30, Lobachevsky st. 2/13, Kazan, 420111, Russia.
| |
Collapse
|
50
|
Martínez-Ballesta MDC, Carvajal M. Mutual Interactions between Aquaporins and Membrane Components. FRONTIERS IN PLANT SCIENCE 2016; 7:1322. [PMID: 27625676 PMCID: PMC5003842 DOI: 10.3389/fpls.2016.01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/18/2016] [Indexed: 05/08/2023]
Abstract
In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein-protein interaction is an extensive theme that is difficult to tackle and new methodologies are being used to study the physical interactions involved. Bimolecular fluorescence complementation and the identification of cross-linked peptides based on tandem mass spectra, that are complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, are discussed in this review. The chemical composition and the physical characteristics of the lipid bilayer also influence many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the positions of the lipids around aquaporins could define their activity, thereby altering the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is provided. Finally, it is described how the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances.
Collapse
Affiliation(s)
| | - Micaela Carvajal
- Plant Nutrition Department, Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| |
Collapse
|