1
|
Yang Q, Failla AV, Turunen P, Mateos-Maroto A, Gai M, Zuschratter W, Westendorf S, Gelléri M, Chen Q, Goudappagouda, Zhao H, Zhu X, Morsbach S, Scheele M, Yan W, Landfester K, Kabe R, Bonn M, Narita A, Liu X. Reactivatable stimulated emission depletion microscopy using fluorescence-recoverable nanographene. Nat Commun 2025; 16:1341. [PMID: 39904997 PMCID: PMC11794581 DOI: 10.1038/s41467-025-56401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Stimulated emission depletion (STED) microscopy, a key optical super-resolution imaging method, has extended our ability to view details to resolution levels of tens of nanometers. Its resolution depends on fluorophore de-excitation efficiency, and increases with depletion laser power. However, high-power irradiation permanently turns off the fluorescence due to photo-bleaching of the fluorophores. As a result, there is a trade-off between spatial resolution and imaging time. Here, we overcome this limitation by introducing reactivatable STED (ReSTED) based on the photophysical properties of the nanographene dibenzo[hi,st]ovalene (DBOV). In contrast to the photo-induced decomposition of other fluorophores, the fluorescence of DBOV is only temporarily deactivated and can be reactivated by near-infrared light (including the 775 nm depletion beam). As a result, this fluorophore allows for hours-long, high-resolution 3D STED imaging, greatly expanding the applications of STED microscopy.
Collapse
Affiliation(s)
- Qiqi Yang
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petri Turunen
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | | | - Meiyu Gai
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Sophia Westendorf
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Tuebingen, Germany
| | | | - Qiang Chen
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Goudappagouda
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Hao Zhao
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Xingfu Zhu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Tuebingen, Germany
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
| | | | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Mainz, Germany.
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
2
|
Ernst M, Mahoney-Kruszka R, Zelt NB, Robertson JL. A roadmap to cysteine specific labeling of membrane proteins for single-molecule photobleaching studies. Methods 2025; 234:21-35. [PMID: 39586432 DOI: 10.1016/j.ymeth.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Single-molecule photobleaching analysis is a useful approach for quantifying reactive membrane protein oligomerization in membranes. It provides a binary readout of a fluorophore attached to a protein subunit at dilute conditions. However, quantification of protein stoichiometry from this data requires information about the subunit labeling yields and whether there is non-specific background labeling. Any increases in subunit-specific labeling improves the ability to determine oligomeric states with confidence. A common strategy for site-specific labeling is by conjugation of a fluorophore bearing a thiol-reactive maleimide group to a substituted cysteine. Yet, cysteine reactivity can be difficult to predict as it depends on many factors such as solvent accessibility and electrostatics from the surrounding protein structure. Here we report a general methodology for screening potential cysteine labeling sites on purified membrane proteins. We present the results of two example systems for which the dimerization reactions in membranes have been characterized: (1) the CLC-ec1 Cl-/H+ antiporter, an Escherichia coli homologue of voltage-gated chloride ion channels in humans and (2) a mutant form of a member of the family of fluoride channels Fluc from Bordetella pertussis (Fluc-Bpe-N43S). To demonstrate how we identify such sites, we first discuss considerations of residue positions hypothesized to be suitable and then describe the specific steps to rigorously assess site-specific labeling while maintaining functional activity and robust single-molecule fluorescence signals. We find that our initial, well rationalized choices are not strong predictors of success, as rigorous testing of the labeling sites shows that only ≈ 30 % of sites end up being useful for single-molecule photobleaching studies.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan B Zelt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Miao Y, Cheng Y, Xia Y, Hei Y, Wang W, Dai Q, Suo J, Chen C. Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget. Nat Commun 2025; 16:74. [PMID: 39746928 PMCID: PMC11697068 DOI: 10.1038/s41467-024-54652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame. In practice, MUFFLE extends the total number of observation frames by a factor of 10 or more, greatly relieving the trade-off between temporal resolution and observation length and allowing for long-term measurements even without the need for oxygen scavenging systems and triplet state quenchers.
Collapse
Affiliation(s)
- Yu Miao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxiao Cheng
- Department of Automation, Tsinghua University, Beijing, China
| | - Yushi Xia
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhen Hei
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
| | - Jinli Suo
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Lin HH, Lim I, Sletten EM. Counterion Exchange Enhances the Brightness and Photostability of a Fluorous Cyanine Dye. Chemistry 2024; 30:e202402514. [PMID: 39231339 PMCID: PMC12068422 DOI: 10.1002/chem.202402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Fluorofluorophores are a unique class of fluorophores that can be solubilized in perfluorocarbons (PFCs) and used to study biological systems. However, because of the low dielectric constant and high oxygen solubility in the fluorous phase, the brightness and photostability of the fluorofluorophores are significantly diminished. Here, we leveraged the tight ion pairing in the fluorous phase to improve the photophysical properties of a fluorous soluble pentamethine dye (FCy5) via counterion exchange. We found that larger, softer, fluorinated, aryl borate counterions promote the ideal polymethine state where charge delocalization across the polymethine chain increases the brightness (6-fold) and photostability (55-fold) of FCy5.
Collapse
Affiliation(s)
- Helen H Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
- Present Address: Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Peyear TA, Andersen OS. Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function. J Gen Physiol 2023; 155:e202213247. [PMID: 36763053 PMCID: PMC9948646 DOI: 10.1085/jgp.202213247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.
Collapse
Affiliation(s)
- Thasin A. Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences. New York, NY, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Martin MI, Pati AK, Abeywickrama CS, Bar S, Kilic Z, Altman RB, Blanchard SC. Leveraging Baird aromaticity for advancement of bioimaging applications. J PHYS ORG CHEM 2023; 36:e4449. [PMID: 36590885 PMCID: PMC9799245 DOI: 10.1002/poc.4449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023]
Abstract
In this perspective, we highlight the recent progress in utilizing Baird aromatic species to improve fluorophore performance in microscopy and imaging applications. We specifically focus on the origins of the use of Baird aromaticity in fluorescence applications, the development of “self‐healing” fluorophores leveraging cyclooctatetraene’ Baird aromaticity, and where developments need to occur to optimize this technology.
Collapse
Affiliation(s)
- Maxwell I. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Avik K. Pati
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Chathura S. Abeywickrama
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Sukanta Bar
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Zeliha Kilic
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Roger B. Altman
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Scott C. Blanchard
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| |
Collapse
|
9
|
Grenier V, Martinez KN, Benlian BR, García-Almedina DM, Raliski BK, Boggess SC, Maza JC, Yang SJ, Gest AMM, Miller EW. Molecular Prosthetics for Long-Term Functional Imaging with Fluorescent Reporters. ACS CENTRAL SCIENCE 2022; 8:118-121. [PMID: 35111902 PMCID: PMC8802189 DOI: 10.1021/acscentsci.1c01153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Voltage-sensitive fluorescent reporters can reveal fast changes in the membrane potential in neurons and cardiomyocytes. However, in many cases, illumination in the presence of the fluorescent reporters results in disruptions to the action potential shape that limits the length of recording sessions. We show here that a molecular prosthetic approach, previously limited to fluorophores, rather than indicators, can be used to substantially prolong imaging in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Vincent Grenier
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Kayli N. Martinez
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Brittany R. Benlian
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Derek M. García-Almedina
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Benjamin K. Raliski
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Steven C. Boggess
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Johnathan C. Maza
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Samantha J. Yang
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Anneliese M. M. Gest
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department
of Chemistry and Department of Molecular and Cell Biology and Helen Wills Neuroscience
Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Mechanisms underlying drug-mediated regulation of membrane protein function. Proc Natl Acad Sci U S A 2021; 118:2113229118. [PMID: 34753824 DOI: 10.1073/pnas.2113229118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.
Collapse
|
11
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
12
|
Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol 2021; 4:64. [PMID: 33441912 PMCID: PMC7806905 DOI: 10.1038/s42003-020-01574-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
Benefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2–0.5 s−1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction. With fluorescence based-TIRF microspectroscopy, Ušaj et al. unveil mechanistic details about the ATP turnover rates by myosin and actomyosin with enzymatic reaction pathways that were not possible to obtain from ensemble studies. This study could be important to the field of molecular motors.
Collapse
Affiliation(s)
- Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| |
Collapse
|
13
|
Sun D, Peyear TA, Bennett WFD, Holcomb M, He S, Zhu F, Lightstone FC, Andersen OS, Ingólfsson HI. Assessing the Perturbing Effects of Drugs on Lipid Bilayers Using Gramicidin Channel-Based In Silico and In Vitro Assays. J Med Chem 2020; 63:11809-11818. [PMID: 32945672 PMCID: PMC7586341 DOI: 10.1021/acs.jmedchem.0c00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 01/07/2023]
Abstract
Partitioning of bioactive molecules, including drugs, into cell membranes may produce indiscriminate changes in membrane protein function. As a guide to safe drug development, it therefore becomes important to be able to predict the bilayer-perturbing potency of hydrophobic/amphiphilic drugs candidates. Toward this end, we exploited gramicidin channels as molecular force probes and developed in silico and in vitro assays to measure drugs' bilayer-modifying potency. We examined eight drug-like molecules that were found to enhance or suppress gramicidin channel function in a thick 1,2-dierucoyl-sn-glycero-3-phosphocholine (DC22:1PC) but not in thin 1,2-dioleoyl-sn-glycero-3-phosphocholine (DC18:1PC) lipid bilayer. The mechanism underlying this difference was attributable to the changes in gramicidin dimerization free energy by drug-induced perturbations of lipid bilayer physical properties and bilayer-gramicidin interactions. The combined in silico and in vitro approaches, which allow for predicting the perturbing effects of drug candidates on membrane protein function, have implications for preclinical drug safety assessment.
Collapse
Affiliation(s)
- Delin Sun
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Thasin A. Peyear
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10065, United States
| | - W. F. Drew Bennett
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Matthew Holcomb
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Stewart He
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Fangqiang Zhu
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Felice C. Lightstone
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Olaf S. Andersen
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10065, United States
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
14
|
Bolmatov D, Carrillo JMY, Sumpter BG, Katsaras J, Lavrentovich MO. Double membrane formation in heterogeneous vesicles. SOFT MATTER 2020; 16:8806-8817. [PMID: 33026033 DOI: 10.1039/d0sm01167c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipids are capable of forming a variety of structures, including multi-lamellar vesicles. Layered lipid membranes are found in cell organelles, such as autophagosomes and mitochondria. Here, we present a mechanism for the formation of a double-walled vesicle (i.e., two lipid bilayers) from a unilamellar vesicle through the partitioning and phase separation of a small molecule. Using molecular dynamics simulations, we show that double membrane formation proceeds via a nucleation and growth process - i.e., after a critical concentration of the small molecules, a patch of double membrane nucleates and grows to cover the entire vesicle. We discuss the implications of this mechanism and theoretical approaches for understanding the evolution and formation of double membranes.
Collapse
Affiliation(s)
- Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. and Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA. and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John Katsaras
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. and Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA. and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Maxim O Lavrentovich
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA. and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
15
|
Ostapko J, Gorski A, Buczyńska J, Golec B, Nawara K, Kharchenko A, Listkowski A, Ceborska M, Pietrzak M, Waluk J. Towards More Photostable, Brighter, and Less Phototoxic Chromophores: Synthesis and Properties of Porphyrins Functionalized with Cyclooctatetraene. Chemistry 2020; 26:16666-16675. [DOI: 10.1002/chem.202001804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Jakub Ostapko
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Aleksander Gorski
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Joanna Buczyńska
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Barbara Golec
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Krzysztof Nawara
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Faculty of Mathematics and Science Cardinal Stefan Wyszyński University Dewajtis 5 01-815 Warsaw Poland
| | - Anastasiia Kharchenko
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Arkadiusz Listkowski
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Faculty of Mathematics and Science Cardinal Stefan Wyszyński University Dewajtis 5 01-815 Warsaw Poland
| | - Magdalena Ceborska
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jacek Waluk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Faculty of Mathematics and Science Cardinal Stefan Wyszyński University Dewajtis 5 01-815 Warsaw Poland
| |
Collapse
|
16
|
Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc Natl Acad Sci U S A 2020; 117:24305-24315. [PMID: 32913060 PMCID: PMC7533661 DOI: 10.1073/pnas.2006517117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Collapse
|
17
|
Bittel AJ, Sreetama SC, Bittel DC, Horn A, Novak JS, Yokota T, Zhang A, Maruyama R, Rowel Q. Lim K, Jaiswal JK, Chen YW. Membrane Repair Deficit in Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 21:E5575. [PMID: 32759720 PMCID: PMC7432481 DOI: 10.3390/ijms21155575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Deficits in plasma membrane repair have been identified in dysferlinopathy and Duchenne Muscular Dystrophy, and contribute to progressive myopathy. Although Facioscapulohumeral Muscular Dystrophy (FSHD) shares clinicopathological features with these muscular dystrophies, it is unknown if FSHD is characterized by plasma membrane repair deficits. Therefore, we exposed immortalized human FSHD myoblasts, immortalized myoblasts from unaffected siblings, and myofibers from a murine model of FSHD (FLExDUX4) to focal, pulsed laser ablation of the sarcolemma. Repair kinetics and success were determined from the accumulation of intracellular FM1-43 dye post-injury. We subsequently treated FSHD myoblasts with a DUX4-targeting antisense oligonucleotide (AON) to reduce DUX4 expression, and with the antioxidant Trolox to determine the role of DUX4 expression and oxidative stress in membrane repair. Compared to unaffected myoblasts, FSHD myoblasts demonstrate poor repair and a greater percentage of cells that failed to repair, which was mitigated by AON and Trolox treatments. Similar repair deficits were identified in FLExDUX4 myofibers. This is the first study to identify plasma membrane repair deficits in myoblasts from individuals with FSHD, and in myofibers from a murine model of FSHD. Our results suggest that DUX4 expression and oxidative stress may be important targets for future membrane-repair therapies.
Collapse
Affiliation(s)
- Adam J. Bittel
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Sen Chandra Sreetama
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Daniel C. Bittel
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Adam Horn
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - James S. Novak
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Jyoti K. Jaiswal
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St. NW, Washington, DC 20052, USA
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St. NW, Washington, DC 20052, USA
| |
Collapse
|
18
|
Isselstein M, Zhang L, Glembockyte V, Brix O, Cosa G, Tinnefeld P, Cordes T. Self-Healing Dyes-Keeping the Promise? J Phys Chem Lett 2020; 11:4462-4480. [PMID: 32401520 DOI: 10.1021/acs.jpclett.9b03833] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-healing dyes have emerged as a new promising class of fluorescent labels. They consist of two units, a fluorescent dye and a photostabilizer. The latter heals whenever the fluorescent dye is in danger of taking a reaction pathway toward photobleaching. We describe the underlying concepts and summarize the developmental history and state-of-the-art, including latest applications in high-resolution microscopy, live-cell, and single-molecule imaging. We further discuss remaining limitations, which are (i) lower photostabilization of most self-healing dyes when compared to solution additives, (ii) limited mechanistic understanding on the influence of the biochemical environment and molecular oxygen on self-healing, and (iii) the lack of cheap and facile bioconjugation strategies. Finally, we provide ideas on how to further advance self-healing dyes, show new data on redox blinking caused by double-stranded DNA, and highlight forthcoming work on intramolecular photostabilization of fluorescent proteins.
Collapse
Affiliation(s)
- Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Oliver Brix
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus E 81377 München, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Kiepas A, Voorand E, Mubaid F, Siegel PM, Brown CM. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J Cell Sci 2020; 133:jcs242834. [PMID: 31988150 DOI: 10.1242/jcs.242834] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 08/31/2023] Open
Abstract
Fluorescence illumination can cause phototoxicity that negatively affects living samples. This study demonstrates that much of the phototoxicity and photobleaching experienced with live-cell fluorescence imaging occurs as a result of 'illumination overhead' (IO). This occurs when a sample is illuminated but fluorescence emission is not being captured by the microscope camera. Several technological advancements have been developed, including fast-switching LED lamps and transistor-transistor logic (TTL) circuits, to diminish phototoxicity caused by IO. These advancements are not standard features on most microscopes and many biologists are unaware of their necessity for live-cell imaging. IO is particularly problematic when imaging rapid processes that require short exposure times. This study presents a workflow to optimize imaging conditions for measuring both slow and dynamic processes while minimizing phototoxicity on any standard microscope. The workflow includes a guide on how to (1) determine the maximum image exposure time for a dynamic process, (2) optimize excitation light intensity and (3) assess cell health with mitochondrial markers.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
| | - Firas Mubaid
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
- Department of Medicine, McGill University, Montreal, Canada, H4A 3J1
- Department of Anatomy & Cell Biology, McGill University, Canada, H3G 0B1
| | - Claire M Brown
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
- Department of Anatomy & Cell Biology, McGill University, Canada, H3G 0B1
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Canada, H3A 0C7
- Cell Information Systems, McGill University, Montreal, Canada, H3G 0B1
- Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Canada, H3G 1Y6
| |
Collapse
|
20
|
Gutzeit VA, Thibado J, Stor DS, Zhou Z, Blanchard SC, Andersen OS, Levitz J. Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor. eLife 2019; 8:45116. [PMID: 31172948 PMCID: PMC6588349 DOI: 10.7554/elife.45116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are class C, synaptic G-protein-coupled receptors (GPCRs) that contain large extracellular ligand binding domains (LBDs) and form constitutive dimers. Despite the existence of a detailed picture of inter-LBD conformational dynamics and structural snapshots of both isolated domains and full-length receptors, it remains unclear how mGluR activation proceeds at the level of the transmembrane domains (TMDs) and how TMD-targeting allosteric drugs exert their effects. Here, we use time-resolved functional and conformational assays to dissect the mechanisms by which allosteric drugs activate and modulate mGluR2. Single-molecule subunit counting and inter-TMD fluorescence resonance energy transfer measurements in living cells reveal LBD-independent conformational rearrangements between TMD dimers during receptor modulation. Using these assays along with functional readouts, we uncover heterogeneity in the magnitude, direction, and the timing of the action of both positive and negative allosteric drugs. Together our experiments lead to a three-state model of TMD activation, which provides a framework for understanding how inter-subunit rearrangements drive class C GPCR activation.
Collapse
Affiliation(s)
- Vanessa A Gutzeit
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Jordana Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Daniel Starer Stor
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Scott C Blanchard
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, New York, United States
| | - Olaf S Andersen
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, New York, United States.,Department of Biochemistry, Weill Cornell Medicine, New York, United States
| |
Collapse
|
21
|
Elías-Wolff F, Lindén M, Lyubartsev AP, Brandt EG. Curvature sensing by cardiolipin in simulated buckled membranes. SOFT MATTER 2019; 15:792-802. [PMID: 30644502 DOI: 10.1039/c8sm02133c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cardiolipin is a non-bilayer phospholipid with a unique dimeric structure. It localizes to negative curvature regions in bacteria and is believed to stabilize respiratory chain complexes in the highly curved mitochondrial membrane. Cardiolipin's localization mechanism remains unresolved, because important aspects such as the structural basis and strength for lipid curvature preferences are difficult to determine, partly due to the lack of efficient simulation methods. Here, we report a computational approach to study curvature preferences of cardiolipin by simulated membrane buckling and quantitative modeling. We combine coarse-grained molecular dynamics with simulated buckling to determine the curvature preferences in three-component bilayer membranes with varying concentrations of cardiolipin, and extract curvature-dependent concentrations and lipid acyl chain order parameter profiles. Cardiolipin shows a strong preference for negative curvatures, with a highly asymmetric chain order parameter profile. The concentration profiles are consistent with an elastic model for lipid curvature sensing that relates lipid segregation to local curvature via the material constants of the bilayers. These computations constitute new steps to unravel the molecular mechanism by which cardiolipin senses curvature in lipid membranes, and the method can be generalized to other lipids and membrane components as well.
Collapse
Affiliation(s)
- Federico Elías-Wolff
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Martin Lindén
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Erik G Brandt
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
22
|
Glembockyte V, Wieneke R, Gatterdam K, Gidi Y, Tampé R, Cosa G. Tris-N-Nitrilotriacetic Acid Fluorophore as a Self-Healing Dye for Single-Molecule Fluorescence Imaging. J Am Chem Soc 2018; 140:11006-11012. [DOI: 10.1021/jacs.8b04681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Viktorija Glembockyte
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, and Cluster of Excellence − Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Karl Gatterdam
- Institute of Biochemistry, Biocenter, and Cluster of Excellence − Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Yasser Gidi
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, and Cluster of Excellence − Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Centre for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street W., H3A 0B8 Montreal, Quebec, Canada
| |
Collapse
|
23
|
Schwechheimer C, Rönicke F, Schepers U, Wagenknecht HA. A new structure-activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging. Chem Sci 2018; 9:6557-6563. [PMID: 30310587 PMCID: PMC6115680 DOI: 10.1039/c8sc01574k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
A new set of cyanine-indole dyes was synthesized, characterized by optical and cytotoxic properties and subsequently applied for live cell imaging. Furthermore, these dyes were postsynthetically linked covalently to the 2'-position of uridine anchors in presynthesized oligonucleotides using the copper(i)-catalyzed azide-alkyne cycloaddition in order to evaluate their photostability and imaging properties in living cells. The nucleophilicity at position C-2 of the indole part of the dyes was elucidated as key for a new structure-activity relationship that served as a rational guide to improve the photostability and optical properties of these green-emitting dyes for live cell imaging of nucleic acids. While the photostability rises exponentially with decreasing nucleophilicity, thermal bleaching experiments confirmed an opposite trend supposing that the superoxide radical anion is mainly responsible for the photobleaching of the dyes. Furthermore, the cytotoxicities of the dyes were tested in HeLa cells and moderate to low LD50 values were obtained. This interdisciplinary strategy allowed us to identify one dye with excellent optical properties and even better photostability and decreased cytotoxicity compared to a cyanine-indole dye that bears an additional cyclooctatetraene group as a triplet state quencher.
Collapse
Affiliation(s)
- Christian Schwechheimer
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Franziska Rönicke
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Ute Schepers
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen , Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| |
Collapse
|
24
|
Li T, Liu L, Jing T, Ruan Z, Yuan P, Yan L. Self-Healing Organic Fluorophore of Cyanine-Conjugated Amphiphilic Polypeptide for Near-Infrared Photostable Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14517-14530. [PMID: 29652128 DOI: 10.1021/acsami.8b02621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photobleaching and biotoxicity are the main bottlenecks for organic fluorescent dyes applied in real-time dynamic monitoring of living cells. Here, an unnatural amino acid, 4-nitro-3-phenyl-l-alanine (NPA), was used as a scaffold to covalently link a near-infrared fluorophore Cy5.5 and an amphiphilic polypeptide, poly[oligo(ethylene glycol) methyl ether methacrylate]- block-poly[2-amino-N4-(2-diisopropylamino-ethyl)-l-aspartic acid] (P(OEGMA)21-P(Asp)16-iPr), was then conjugated for increasing the photostability and improving the biocompatibility simultaneously. The protective agent of NPA can service as an effective triplet state quenching by intramolecular electron transfer between Cy5.5 and NPA. The less sensitivity of the electron-transfer process for molecular oxygen makes it an ideal photostabilized strategy for fluorophores applied in live-cell imaging. Bonding to copolymer is a common way for hydrophobic dyes to expand their application in biomedical imaging and increase their functionality, depending on the delivery system. The results indicate that Cy5.5-NPA-linked polypeptide copolymer exhibited an enhanced photostability and an excellent biocompatibility, which means this scaffolding strategy has a potential application in fluorescence-guided surgery, lived-cell imaging, and super-resolution microscopy.
Collapse
Affiliation(s)
- Tuanwei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Le Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Titao Jing
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Zheng Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Pan Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Lifeng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
25
|
Tsunoyama TA, Watanabe Y, Goto J, Naito K, Kasai RS, Suzuki KGN, Fujiwara TK, Kusumi A. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat Chem Biol 2018; 14:497-506. [DOI: 10.1038/s41589-018-0032-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 01/19/2023]
|
26
|
Elías-Wolff F, Lindén M, Lyubartsev AP, Brandt EG. Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling. J Chem Theory Comput 2018; 14:1643-1655. [PMID: 29350922 DOI: 10.1021/acs.jctc.7b00878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane-associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.
Collapse
Affiliation(s)
- Federico Elías-Wolff
- Department of Biochemistry and Biophysics , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Martin Lindén
- Department of Cell and Molecular Biology , Uppsala University , SE-751 05 Uppsala , Sweden
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Erik G Brandt
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| |
Collapse
|
27
|
Posson DJ, Rusinova R, Andersen OS, Nimigean CM. Stopped-Flow Fluorometric Ion Flux Assay for Ligand-Gated Ion Channel Studies. Methods Mol Biol 2018; 1684:223-235. [PMID: 29058195 DOI: 10.1007/978-1-4939-7362-0_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantitative investigations into functional properties of purified ion channel proteins using standard electrophysiological methods are challenging, in particular for the determination of average ion channel behavior following rapid changes in experimental conditions (e.g., ligand concentration). Here, we describe a method for determining the functional activity of liposome-reconstituted K+ channels using a stopped-flow fluorometric ion flux assay. Channel activity is quantified by measuring the rate of fluorescence decrease of a liposome-encapsulated fluorophore, specifically quenched by thallium ions entering the liposomes via open channels. This method is well suited for studying the lipid bilayer dependence of channel activity, the activation and desensitization kinetics of ligand-dependent K+ channels, and channel modulation by channel agonists, blockers, or other antagonists.
Collapse
Affiliation(s)
- David J Posson
- Department of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA.,Vertex Pharmaceuticals Inc., 50 Northern Ave., Boston, MA, 02210, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA. .,Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA. .,Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
28
|
Sirbu D, Woodford OJ, Benniston AC, Harriman A. Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY. Photochem Photobiol Sci 2018; 17:750-762. [DOI: 10.1039/c8pp00162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two Chromophore-Quencher Conjugates (CQCs) have been synthesized by covalent attachment of the anti-oxidant dibutylated-hydroxytoluene (BHT) to a pyrrole-BF2 chromophore (BOPHY) in an effort to protect the latter against photofading.
Collapse
Affiliation(s)
- Dumitru Sirbu
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| | - Owen J. Woodford
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| | - Andrew C. Benniston
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| | - Anthony Harriman
- Molecular Photonics Laboratory
- School of Natural and Environmental Sciences (Chemistry)
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
| |
Collapse
|
29
|
Wu J, Lewis AH, Grandl J. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels. Trends Biochem Sci 2016; 42:57-71. [PMID: 27743844 DOI: 10.1016/j.tibs.2016.09.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 02/03/2023]
Abstract
In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function.
Collapse
Affiliation(s)
- Jason Wu
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA
| | - Amanda H Lewis
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA
| | - Jörg Grandl
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Chadda R, Robertson JL. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy. Methods Enzymol 2016; 581:53-82. [PMID: 27793292 PMCID: PMC5568537 DOI: 10.1016/bs.mie.2016.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dimerization of membrane protein interfaces occurs during membrane protein folding and cell receptor signaling. Here, we summarize a method that allows for measurement of equilibrium dimerization reactions of membrane proteins in lipid bilayers, by measuring the Poisson distribution of subunit capture into liposomes by single-molecule photobleaching analysis. This strategy is grounded in the fact that given a comparable labeling efficiency, monomeric or dimeric forms of a membrane protein will give rise to distinctly different photobleaching probability distributions. These methods have been used to verify the dimer stoichiometry of the Fluc F- ion channel and the dimerization equilibrium constant of the ClC-ec1 Cl-/H+ antiporter in lipid bilayers. This approach can be applied to any membrane protein system provided it can be purified, fluorescently labeled in a quantitative manner, and verified to be correctly folded by functional assays, even if the structure is not yet known.
Collapse
Affiliation(s)
- R Chadda
- The University of Iowa, Iowa City, IA, United States
| | - J L Robertson
- The University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
31
|
Zheng Q, Jockusch S, Zhou Z, Altman RB, Zhao H, Asher W, Holsey M, Mathiasen S, Geggier P, Javitch JA, Blanchard SC. Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging. Chem Sci 2016; 8:755-762. [PMID: 28377799 PMCID: PMC5299821 DOI: 10.1039/c6sc02976k] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mechanistic investigation of self-healing fluorophores leads to a general approach for highly photostable fluorophores across the spectrum.
Bright, long-lasting organic fluorophores enable a broad range of imaging applications. “Self-healing” fluorophores, in which intra-molecularly linked protective agents quench photo-induced reactive species, exhibit both enhanced photostability and biological compatibility. However, the self-healing strategy has yet to achieve its predicted potential, particularly in the presence of ambient oxygen where live-cell imaging studies must often be performed. To identify key bottlenecks in this technology that can be used to guide further engineering developments, we synthesized a series of Cy5 derivatives linked to the protective agent cyclooctatetraene (COT) and examined the photophysical mechanisms curtailing their performance. The data obtained reveal that the photostability of self-healing fluorophores is limited by reactivity of the COT protective agent. The addition of electron withdrawing substituents to COT reduced its susceptibility to reactions with molecular oxygen and the fluorophore to which it is attached and increased its capacity to participate in triplet energy transfer. Exploiting these insights, we designed and synthesized a suite of modified COT-fluorophores spanning the visible spectrum that exhibited markedly increased intra-molecular photostabilization. Under ambient oxygen conditions, the photostability of Cy3 and Cy5 fluorophore derivatives increased by 3- and 9-fold in vitro and by 2- and 6-fold in living cells, respectively. We further show that this approach can improve a silicon rhodamine fluorophore. These findings offer a clear strategy for achieving the full potential of the self-healing approach and its application to the gamut of fluorophore species commonly used for biomedical imaging.
Collapse
Affiliation(s)
- Qinsi Zheng
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY
| | | | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Hong Zhao
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Wesley Asher
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians & Surgeons
| | - Michael Holsey
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians & Surgeons
| | - Signe Mathiasen
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians & Surgeons
| | - Peter Geggier
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians & Surgeons
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians & Surgeons; Division of Molecular Therapeutics, New York State Psychiatric Institute
| | - Scott C Blanchard
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
32
|
Chadda R, Krishnamani V, Mersch K, Wong J, Brimberry M, Chadda A, Kolmakova-Partensky L, Friedman LJ, Gelles J, Robertson JL. The dimerization equilibrium of a ClC Cl(-)/H(+) antiporter in lipid bilayers. eLife 2016; 5. [PMID: 27484630 PMCID: PMC5010387 DOI: 10.7554/elife.17438] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers a new approach to the problem, as individual subunits adopt a stable and functionally verifiable fold that constrains the system to two states - monomer or dimer. Here, we use single-molecule photobleaching analysis to measure the probability of ClC-ec1 subunit capture into liposomes during extrusion of large, multilamellar membranes. The capture statistics describe a monomer to dimer transition that is dependent on the subunit/lipid mole fraction density and follows an equilibrium dimerization isotherm. This allows for the measurement of the free energy of ClC-ec1 dimerization in lipid bilayers, revealing that it is one of the strongest membrane protein complexes measured so far, and introduces it as new type of dimerization model to investigate the physical forces that drive membrane protein association in membranes.
Collapse
Affiliation(s)
- Rahul Chadda
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | | | - Kacey Mersch
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Jason Wong
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States.,Department of Natural Sciences, University of Bath, Bath, United Kingdom
| | - Marley Brimberry
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ankita Chadda
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | | | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Janice L Robertson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
33
|
van der Velde JHM, Oelerich J, Huang J, Smit JH, Aminian Jazi A, Galiani S, Kolmakov K, Guoridis G, Eggeling C, Herrmann A, Roelfes G, Cordes T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nat Commun 2016; 7:10144. [PMID: 26751640 PMCID: PMC4729898 DOI: 10.1038/ncomms10144] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/05/2015] [Indexed: 11/09/2022] Open
Abstract
Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.
Collapse
Affiliation(s)
- Jasper H M van der Velde
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jens Oelerich
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jingyi Huang
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Atieh Aminian Jazi
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Kirill Kolmakov
- Department NanoBiophotonics, Max-Planck-Institute of Molecular Medicine, Am Fassberg 1, 37077 Goettingen, Germany
| | - Giorgos Guoridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Zheng Q, Jockusch S, Rodríguez-Calero GG, Zhou Z, Zhao H, Altman RB, Abruña HD, Blanchard SC. Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochem Photobiol Sci 2015; 15:196-203. [PMID: 26700693 DOI: 10.1039/c5pp00400d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability.
Collapse
Affiliation(s)
- Qinsi Zheng
- Tri-Institutional Training Program in Chemical Biology, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.
Collapse
Affiliation(s)
- Nicole B. Ramsey
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, United States of America
- Graduate Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States of America
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
36
|
Reilly DT, Kim SH, Katzenellenbogen JA, Schroeder CM. Fluorescent Nanoconjugate Derivatives with Enhanced Photostability for Single Molecule Imaging. Anal Chem 2015; 87:11048-57. [DOI: 10.1021/acs.analchem.5b03059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel T. Reilly
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sung Hoon Kim
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - John A. Katzenellenbogen
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, Khelashvili G, Altman RB, Terry DS, Freed JH, Weinstein H, Boudker O, Blanchard SC. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 2015; 518:68-73. [PMID: 25652997 PMCID: PMC4351760 DOI: 10.1038/nature14158] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022]
Abstract
Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signaling and preventing glutamate-mediated excitotoxicity. Crystallographic studies on an archaeal homologue, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here, we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two “humanizing” mutations exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motions and substrate uptake. Crystallographic and computational investigations reveal that these mutations favor structurally “unlocked” states with increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.
Collapse
Affiliation(s)
- Nurunisa Akyuz
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Elka R Georgieva
- 1] National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, USA [2] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Sebastian Stolzenberg
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Michel A Cuendet
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Jack H Freed
- 1] National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, USA [2] Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Harel Weinstein
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, 1305 York Avenue, New York, New York 10065, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Scott C Blanchard
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA [2] Tri-Institutional Training Program in Chemical Biology, 445 East 69th Street, New York, New York 10065, USA
| |
Collapse
|
38
|
Glembockyte V, Lincoln R, Cosa G. Cy3 photoprotection mediated by Ni2+ for extended single-molecule imaging: old tricks for new techniques. J Am Chem Soc 2015; 137:1116-22. [PMID: 25594101 DOI: 10.1021/ja509923e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photostability of reporter fluorophores in single-molecule fluorescence imaging is of paramount importance, as it dictates the amount of relevant information that may be acquired before photobleaching occurs. Quenchers of triplet excited states are thus required to minimize blinking and sensitization of singlet oxygen. Through a combination of single-molecule studies and ensemble mechanistic studies including laser flash photolysis and time-resolved fluorescence, we demonstrate herein that Ni(2+) provides a much desired physical route (chemically inert) to quench the triplet excited state of Cy3, the most ubiquitous green emissive dye utilized in single-molecule studies.
Collapse
Affiliation(s)
- Viktorija Glembockyte
- Department of Chemistry and Center for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | | | | |
Collapse
|
39
|
Herold KF, Sanford RL, Lee W, Schultz MF, Ingólfsson HI, Andersen OS, Hemmings HC. Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties. J Gen Physiol 2014; 144:545-60. [PMID: 25385786 PMCID: PMC4242807 DOI: 10.1085/jgp.201411172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023] Open
Abstract
Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Na(v)). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Na(v) function and lipid bilayer properties. We examined the effects of these agents on Na(v) in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Na(v) and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Na(v) function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia.
Collapse
Affiliation(s)
- Karl F Herold
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - R Lea Sanford
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - William Lee
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Margaret F Schultz
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Helgi I Ingólfsson
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Olaf S Andersen
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Hugh C Hemmings
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065 Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
40
|
Bavishi K, Hatzakis NS. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 2014; 19:19407-34. [PMID: 25429564 PMCID: PMC6272019 DOI: 10.3390/molecules191219407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.
Collapse
Affiliation(s)
- Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Center for Synthetic Biology "bioSYNergy", Villum Research Center "Plant Plasticity", University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Nikos S Hatzakis
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
41
|
van der Velde JHM, Oelerich J, Huang J, Smit JH, Hiermaier M, Ploetz E, Herrmann A, Roelfes G, Cordes T. The Power of Two: Covalent Coupling of Photostabilizers for Fluorescence Applications. J Phys Chem Lett 2014; 5:3792-3798. [PMID: 26278749 DOI: 10.1021/jz501874f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence is a versatile tool for spectroscopic investigations and imaging of dynamic processes and structures across various scientific disciplines. The photophysical performance, that is, signal stability and signal duration, of the employed fluorophores is a major limiting factor. In this Letter, we propose a general concept to covalently link molecules, which are known for their positive effect in photostabilization, to form a combined photostabilizer with new properties. The direct linkage of two (or more) photostabilizers will allow one to obtain combined or synergetic effects in fluorophore stabilization and can simplify the preparation of imaging buffers that would otherwise require a mixture of photostabilizers for optimal performance. This concept was explored by synthesizing a molecule with a reducing and oxidizing moiety that is referred to as internal ROXS or "iROXS". Using single-molecule fluorescence microscopy, inter- and intramolecular healing of iROXS was observed, that is, strongly reduced blinking and increased photostability of the cyanine fluorophore Cy5. Moreover, it is shown that a covalently coupled photostabilizer can replace a mixture of molecules needed to make a functional photostabilizing ROXS buffer and might hence represent the new standard for defined and reproducible imaging conditions in single-molecule experiments. In self-healing fluorophores with intramolecular triplet-state quenching, an unprecedented photostability increase of >100-fold was obtained when using iROXS, which is even competitive with solution-based healing. Control experiments show that the oxidizing part of the iROXS molecule, an aromatic nitro group, dominates the healing process. The suggested synthetic concept and the proof-of-concept experiments represent the starting point for the quest to identify optimal combinations of linked photostabilizers for various fluorescence applications.
Collapse
|
42
|
Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC. The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 2014; 20:103-11. [PMID: 24956235 DOI: 10.1016/j.cbpa.2014.05.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is an essential and maturing tool to probe biomolecular interactions and conformational dynamics in vitro and, increasingly, in living cells. Multi-color smFRET enables the correlation of multiple such events and the precise dissection of their order and timing. However, the requirements for good spectral separation, high time resolution, and extended observation times place extraordinary demands on the fluorescent labels used in such experiments. Together with advanced experimental designs and data analysis, the development of long-lasting, non-fluctuating fluorophores is therefore proving key to progress in the field. Recently developed strategies for obtaining ultra-stable organic fluorophores spanning the visible spectrum are underway that will enable multi-color smFRET studies to deliver on their promise of previously unachievable biological insights.
Collapse
Affiliation(s)
- Manuel F Juette
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Michael R Wasserman
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Qinsi Zheng
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States; Tri-Institutional Training Program in Chemical Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States; Tri-Institutional Training Program in Chemical Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
43
|
Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC. Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 2014; 43:1044-56. [PMID: 24177677 PMCID: PMC3946787 DOI: 10.1039/c3cs60237k] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence provides a mechanism for achieving contrast in biological imaging that enables investigations of molecular structure, dynamics, and function at high spatial and temporal resolution. Small-molecule organic fluorophores have proven essential for such efforts and are widely used in advanced applications such as single-molecule and super-resolution microscopy. Yet, organic fluorophores, like all fluorescent species, exhibit instabilities in their emission characteristics, including blinking and photobleaching that limit their utility and performance. Here, we review the photophysics and photochemistry of organic fluorophores as they pertain to mitigating such instabilities, with a specific focus on the development of stabilized fluorophores through derivatization. Self-healing organic fluorophores, wherein the triplet state is intramolecularly quenched by a covalently attached protective agent, exhibit markedly improved photostabilities. We discuss the potential for further enhancements towards the goal of developing "ultra-stable" fluorophores spanning the visible spectrum and how such fluorophores are likely to impact the future of single-molecule research.
Collapse
Affiliation(s)
- Qinsi Zheng
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
van der Velde JHM, Ploetz E, Hiermaier M, Oelerich J, de Vries JW, Roelfes G, Cordes T. Mechanism of intramolecular photostabilization in self-healing cyanine fluorophores. Chemphyschem 2013; 14:4084-93. [PMID: 24302532 DOI: 10.1002/cphc.201300785] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 11/06/2022]
Abstract
Organic fluorophores, which are popular labels for microscopy applications, intrinsically suffer from transient and irreversible excursions to dark-states. An alternative to adding photostabilizers at high concentrations to the imaging buffer relies on the direct linkage to the fluorophore. However, the working principles of this approach are not yet fully understood. In this contribution, we investigate the mechanism of intramolecular photostabilization in self-healing cyanines, in which photodamage is automatically repaired. Experimental evidence is provided to demonstrate that a single photostabilizer, that is, the vitamin E derivative Trolox, efficiently heals the cyanine fluorophore Cy5 in the absence of any photostabilizers in solution. A plausible mechanism is that Trolox interacts with the fluorophore through intramolecular quenching of triplet-related dark-states, which is a mechanism that appears to be common for both triplet-state quenchers (cyclooctatetraene) and redox-active compounds (Trolox, ascorbic acid, methylviologen). Additionally, the influence of solution-additives, such as cysteamine and procatechuic acid, on the self-healing process are studied. The results suggest the potential applicability of self-healing fluorophores in stochastic optical reconstruction microscopy (STORM) with optical super-resolution. The presented data contributes to an improved understanding of the mechanism involved in intramolecular photostabilization and has high relevance for the future development of self-healing fluorophores, including their applications in various research fields.
Collapse
Affiliation(s)
- Jasper H M van der Velde
- Molecular Microscopy Research Group & Single-molecule Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands), Fax: (+31) 50-363-9199
| | | | | | | | | | | | | |
Collapse
|
45
|
Zheng Q, Jockusch S, Zhou Z, Blanchard SC. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem Photobiol 2013; 90:448-454. [PMID: 24188468 DOI: 10.1111/php.12204] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022]
Abstract
Photoexcitation of fluorophores commonly used for biological imaging applications generates reactive oxygen species (ROS) which can cause bleaching of the fluorophore and damage to the biological system under investigation. In this study, we show that singlet oxygen contributes relatively little to Cy5 and ATTO 647N photobleaching at low concentrations in aqueous solution. We also show that Cy5 generates significantly less ROS when covalently linked to the protective agents, cyclooctatetraene (COT), nitrobenzyl alcohol (NBA) or Trolox. Such fluorophores exhibit enhanced photostability both in bulk solutions and in single-molecule fluorescence measurements. While the fluorophores ATTO 647N and ATTO 655 showed greater photostability than Cy5 and the protective-agent-linked Cy5 derivatives investigated here, both of ATTO 647N and ATTO 655 generated singlet oxygen and hydroxyl radicals at relatively rapid rates, suggesting that they may be substantially more phototoxic than Cy5 and its derivatives.
Collapse
Affiliation(s)
- Qinsi Zheng
- Department of Physiology and Biophysics, Weill Medical College of Cornell University.,Tri-Institutional Training Program in Chemical Biology, 1300 York Avenue, New York, NY 10065, USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Medical College of Cornell University
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Medical College of Cornell University.,Tri-Institutional Training Program in Chemical Biology, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|