1
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Duque CM, Hall DM, Tyukodi B, Hagan MF, Santangelo CD, Grason GM. Limits of economy and fidelity for programmable assembly of size-controlled triply periodic polyhedra. Proc Natl Acad Sci U S A 2024; 121:e2315648121. [PMID: 38669182 PMCID: PMC11067059 DOI: 10.1073/pnas.2315648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies-in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)-is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.
Collapse
Affiliation(s)
- Carlos M. Duque
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Department of Physics, University of Massachusetts, Amherst, MA01003
| | - Douglas M. Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| | - Botond Tyukodi
- Department of Physics, Babes-Bolyai University, Cluj-Napoca400084, Romania
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Christian D. Santangelo
- Department of Physics, University of Massachusetts, Amherst, MA01003
- Department of Physics, Syracuse University, Syracuse, NY13210
| | - Gregory M. Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
3
|
Luque A, Reguera D. Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses. Subcell Biochem 2024; 105:693-741. [PMID: 39738961 DOI: 10.1007/978-3-031-65187-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the viral capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be explained using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - David Reguera
- Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
| |
Collapse
|
4
|
Konevtsova OV, Chalin DV, Rochal SB. Theory of density waves and organization of proteins in icosahedral virus capsids. Phys Chem Chem Phys 2023; 26:569-580. [PMID: 38086647 DOI: 10.1039/d3cp05384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Understanding the physical principles underlying the structural organization of the proteinaceous viral shells is of major importance to advance antiviral strategies. Here, we develop a phenomenological thermodynamic theory, which considers structures of small and middle-size icosahedral viral shells as a result of condensation of a minimum number of protein density waves on a spherical surface. Each of these irreducible critical waves has icosahedral symmetry and can be expressed as a specific series of the spherical harmonics Ylm with the same wave number l. As we demonstrate, in small viral shells self-assembled from individual proteins, the maxima of one critical density wave determine the positions of proteins, while the spatial derivatives of the second one control the protein orientations on the shell surface. In contrast to the small shells, the middle-size ones are always formed from pentamers and hexamers (referred to as capsomers). Considering all such structures deposited in the Protein Data Bank, we unexpectedly found that the positions of capsomeres in these shells correspond to the maxima of interference patterns produced by no more than two critical waves with close wave numbers. This fact allows us to explain the observed limit size of the icosahedral shells assembled from pentamers and hexamers. We also construct nonequilibrium thermodynamic potentials describing the protein crystallization and discuss the reasons behind the specific handedness of the viral shells.
Collapse
Affiliation(s)
- Olga V Konevtsova
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - Dmitrii V Chalin
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - Sergei B Rochal
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| |
Collapse
|
5
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 PMCID: PMC11827716 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
6
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Mohajerani F, Tyukodi B, Schlicksup CJ, Hadden-Perilla JA, Zlotnick A, Hagan MF. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS NANO 2022; 16:13845-13859. [PMID: 36054910 PMCID: PMC10273259 DOI: 10.1021/acsnano.2c02119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar-Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein-protein binding affinities.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
- Department of Physics, Babeş-Bolyai University, 400084Cluj-Napoca, Romania
| | - Christopher J Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| |
Collapse
|
8
|
Akatay AA, Wu T, Djakbarova U, Thompson C, Cocucci E, Zandi R, Rudnick J, Kural C. Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension. Front Mol Biosci 2022; 9:959737. [PMID: 36213118 PMCID: PMC9532848 DOI: 10.3389/fmolb.2022.959737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.
Collapse
Affiliation(s)
- Ahmet Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Umidahan Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Cristopher Thompson
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA, United States
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, CA, United States
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Comert Kural,
| |
Collapse
|
9
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
10
|
Tyukodi B, Mohajerani F, Hall DM, Grason GM, Hagan MF. Thermodynamic Size Control in Curvature-Frustrated Tubules: Self-Limitation with Open Boundaries. ACS NANO 2022; 16:9077-9085. [PMID: 35638478 PMCID: PMC10362403 DOI: 10.1021/acsnano.2c00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We use computational modeling to investigate the assembly thermodynamics of a particle-based model for geometrically frustrated assembly, in which the local packing geometry of subunits is incompatible with uniform, strain-free large-scale assembly. The model considers discrete triangular subunits that drive assembly toward a closed, hexagonal-ordered tubule, but have geometries that locally favor negative Gaussian curvature. We use dynamical Monte Carlo simulations and enhanced sampling methods to compute the free energy landscape and corresponding self-assembly behavior as a function of experimentally accessible parameters that control assembly driving forces and the magnitude of frustration. The results determine the parameter range where finite-temperature self-limiting assembly occurs, in which the equilibrium assembly size distribution is sharply peaked around a well-defined finite size. The simulations also identify two mechanisms by which the system can escape frustration and assemble to unlimited size, and determine the particle-scale properties of subunits that suppress unbounded growth.
Collapse
Affiliation(s)
- Botond Tyukodi
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Farzaneh Mohajerani
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas M Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
11
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Abstract
Simple RNA viruses self-assemble spontaneously and encapsulate their genome into a shell called the capsid. This process is mainly driven by the attractive electrostatics interaction between the positive charges on capsid proteins and the negative charges on the genome. Despite its importance and many decades of intense research, how the virus selects and packages its native RNA inside the crowded environment of a host cell cytoplasm in the presence of an abundance of nonviral RNA and other anionic polymers has remained a mystery. In this paper, we perform a series of simulations to monitor the growth of viral shells and find the mechanism by which cargo-coat protein interactions can impact the structure and stability of the viral shells. We show that coat protein subunits can assemble around a globular nucleic acid core by forming nonicosahedral cages, which have been recently observed in assembly experiments involving small pieces of RNA. We find that the resulting cages are strained and can easily be split into fragments along stress lines. This suggests that such metastable nonicosahedral intermediates could be easily reassembled into the stable native icosahedral shells if the larger wild-type genome becomes available, despite the presence of a myriad of nonviral RNAs.
Collapse
Affiliation(s)
- Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Siyu Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
13
|
Willy NM, Ferguson JP, Akatay A, Huber S, Djakbarova U, Silahli S, Cakez C, Hasan F, Chang HC, Travesset A, Li S, Zandi R, Li D, Betzig E, Cocucci E, Kural C. De novo endocytic clathrin coats develop curvature at early stages of their formation. Dev Cell 2021; 56:3146-3159.e5. [PMID: 34774130 PMCID: PMC11414472 DOI: 10.1016/j.devcel.2021.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
Sculpting a flat patch of membrane into an endocytic vesicle requires curvature generation on the cell surface, which is the primary function of the endocytosis machinery. Using super-resolved live cell fluorescence imaging, we demonstrate that curvature generation by individual clathrin-coated pits can be detected in real time within cultured cells and tissues of developing organisms. Our analyses demonstrate that the footprint of clathrin coats increases monotonically during the formation of pits at different levels of plasma membrane tension. These findings are only compatible with models that predict curvature generation at the early stages of endocytic clathrin pit formation. We also found that CALM adaptors associated with clathrin plaques form clusters, whereas AP2 distribution is more homogenous. Considering the curvature sensing and driving roles of CALM, we propose that CALM clusters may increase the strain on clathrin lattices locally, eventually giving rise to rupture and subsequent pit completion at the edges of plaques.
Collapse
Affiliation(s)
- Nathan M Willy
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua P Ferguson
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Huber
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Salih Silahli
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Cemal Cakez
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Farah Hasan
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Ames Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Betzig
- Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Jones PE, Pérez-Segura C, Bryer AJ, Perilla JR, Hadden-Perilla JA. Molecular dynamics of the viral life cycle: progress and prospects. Curr Opin Virol 2021; 50:128-138. [PMID: 34464843 PMCID: PMC8651149 DOI: 10.1016/j.coviro.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Molecular dynamics (MD) simulations across spatiotemporal resolutions are widely applied to study viruses and represent the central technique uniting the field of computational virology. We discuss the progress of MD in elucidating the dynamics of the viral life cycle, including the status of modeling intact extracellular virions and leveraging advanced simulations to mimic active life cycle processes. We further remark on the prospects of MD for continued contributions to the basic science characterization of viruses, especially given the increasing availability of high-quality experimental data and supercomputing power. Overall, integrative computational methods that are closely guided by experiments are unmatched in the level of detail they provide, enabling-now and in the future-new discoveries relevant to thwarting viral infection.
Collapse
Affiliation(s)
- Peter Eugene Jones
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
15
|
Li S, Matoz-Fernandez DA, Olvera de la Cruz M. Effect of Mechanical Properties on Multicomponent Shell Patterning. ACS NANO 2021; 15:14804-14812. [PMID: 34402621 DOI: 10.1021/acsnano.1c04795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-organized shells are fundamental in biological compartmentalization. They protect genomic material or enclose enzymes to aid the metabolic process. Studies of crystalline shells have shown the importance of the mechanical properties of building units in the shell morphology. However, the mechanism underlying the morphology of multicomponent assemblies is still poorly understood. Here, we analyze multicomponent closed shells that have different mechanical properties. By minimizing elastic energy, we show that heterogeneous bending rigidities regulate the surface pattern into circular, spikes, and ridge shapes. Interestingly, our continuum elasticity model recovers the patterns that have been proposed in bacterial microcompartments (BMCs), which are self-organized protein shells that aid the breakdown of complex molecules and allow bacteria to survive in hostile environments. In addition, our work elucidates the principles of pattern formation that can be used to design and engineer multicomponent microcompartments with a specific surface distribution of the components.
Collapse
Affiliation(s)
- Siyu Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel A Matoz-Fernandez
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
17
|
Emanuel MD, Cherstvy AG, Metzler R, Gompper G. Buckling transitions and soft-phase invasion of two-component icosahedral shells. Phys Rev E 2021; 102:062104. [PMID: 33465945 DOI: 10.1103/physreve.102.062104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.
Collapse
Affiliation(s)
- Marc D Emanuel
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Kavli Institute for Nanoscience, Technical University Delft, 2628 CJ Delft, Netherlands
| | - Andrey G Cherstvy
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
18
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
19
|
Bond K, Tsvetkova IB, Wang JCY, Jarrold MF, Dragnea B. Virus Assembly Pathways: Straying Away but Not Too Far. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004475. [PMID: 33241653 DOI: 10.1002/smll.202004475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Non-enveloped RNA viruses pervade all domains of life. In a cell, they co-assemble from viral RNA and capsid proteins. Virus-like particles can form in vitro where virtually any non-cognate polyanionic cargo can be packaged. How only viral RNA gets selected for packaging in vivo, in presence of myriad other polyanionic species, has been a puzzle. Through a combination of charge detection mass spectrometry and cryo-electron microscopy, it is determined that co-assembling brome mosaic virus (BMV) coat proteins and nucleic acid oligomers results in capsid structures and stoichiometries that differ from the icosahedral virion. These previously unknown shell structures are strained and less stable than the native one. However, they contain large native structure fragments that can be recycled to form BMV virions, should a viral genome become available. The existence of such structures suggest the possibility of a previously unknown regulatory pathway for the packaging process inside cells.
Collapse
Affiliation(s)
- Kevin Bond
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
20
|
Tsai K, Britton S, Nematbakhsh A, Zandi R, Chen W, Alber M. Role of combined cell membrane and wall mechanical properties regulated by polarity signals in cell budding. Phys Biol 2020; 17:065011. [PMID: 33085651 DOI: 10.1088/1478-3975/abb208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Budding yeast, Saccharomyces cerevisiae, serves as a prime biological model to study mechanisms underlying asymmetric growth. Previous studies have shown that prior to bud emergence, polarization of a conserved small GTPase Cdc42 must be established on the cell membrane of a budding yeast. Additionally, such polarization contributes to the delivery of cell wall remodeling enzymes and hydrolase from cytosol through the membrane, to change the mechanical properties of the cell wall. This leads to the hypothesis that Cdc42 and its associated proteins at least indirectly regulate cell surface mechanical properties. However, how the surface mechanical properties in the emerging bud are changed and whether such change is important are not well understood. To test several hypothesised mechanisms, a novel three-dimensional coarse-grained particle-based model has been developed which describes inhomogeneous mechanical properties of the cell surface. Model simulations predict alternation of the levels of stretching and bending stiffness of the cell surface in the bud region by the polarized Cdc42 signals is essential for initiating bud formation. Model simulations also suggest that bud shape depends strongly on the distribution of the polarized signaling molecules while the neck width of the emerging bud is strongly impacted by the mechanical properties of the chitin and septin rings. Moreover, the temporal change of the bud mechanical properties is shown to affect the symmetry of the bud shape. The 3D model of asymmetric cell growth can also be used for studying viral budding and other vegetative reproduction processes performed via budding, as well as detailed studies of cell growth.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America. Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Valbuena A, Maity S, Mateu MG, Roos WH. Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways. ACS NANO 2020; 14:8724-8734. [PMID: 32633498 PMCID: PMC7392527 DOI: 10.1021/acsnano.0c03207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Mauricio G. Mateu
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
22
|
Panahandeh S, Li S, Marichal L, Leite Rubim R, Tresset G, Zandi R. How a Virus Circumvents Energy Barriers to Form Symmetric Shells. ACS NANO 2020; 14:3170-3180. [PMID: 32115940 DOI: 10.1021/acsnano.9b08354] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previous self-assembly experiments on a model icosahedral plant virus have shown that, under physiological conditions, capsid proteins initially bind to the genome through an en masse mechanism and form nucleoprotein complexes in a disordered state, which raises the question as to how virions are assembled into a highly ordered structure in the host cell. Using small-angle X-ray scattering, we find out that a disorder-order transition occurs under physiological conditions upon an increase in capsid protein concentrations. Our cryo-transmission electron microscopy reveals closed spherical shells containing in vitro transcribed viral RNA even at pH 7.5, in marked contrast with the previous observations. We use Monte Carlo simulations to explain this disorder-order transition and find that, as the shell grows, the structures of disordered intermediates in which the distribution of pentamers does not belong to the icosahedral subgroups become energetically so unfavorable that the caps can easily dissociate and reassemble, overcoming the energy barriers for the formation of perfect icosahedral shells. In addition, we monitor the growth of capsids under the condition that the nucleation and growth is the dominant pathway and show that the key for the disorder-order transition in both en masse and nucleation and growth pathways lies in the strength of elastic energy compared to the other forces in the system including protein-protein interactions and the chemical potential of free subunits. Our findings explain, at least in part, why perfect virions with icosahedral order form under different conditions including physiological ones.
Collapse
Affiliation(s)
- Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Rafael Leite Rubim
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
23
|
Li S, Zandi R, Travesset A, Grason GM. Ground States of Crystalline Caps: Generalized Jellium on Curved Space. PHYSICAL REVIEW LETTERS 2019; 123:145501. [PMID: 31702180 DOI: 10.1103/physrevlett.123.145501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 06/10/2023]
Abstract
We study the ground states of crystals on spherical surfaces. These ground states consist of positive disclination defects in structures spanning from flat and weakly curved caps to closed shells. Comparing two continuum theories and one discrete-lattice simulation, we first investigate the transition between defect-free caps to single-disclination ground states and show it to be continuous and symmetry breaking. Further, we show that ground states adopt icosahedral subgroup symmetries across the full range of curvatures, even far from the closure of complete shells. While superficially similar to other models of 2D "jellium" (e.g., superconducting disks and 2D Wigner crystals), the interplay between the free edge of caps and the non-Euclidean geometry of its embedding leads to nontrivial ground state behavior that is without counterpart in planar jellium models.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
24
|
Menou L, Castelnovo M. Mechanical stress relaxation in molecular self-assembly. SOFT MATTER 2019; 15:6180-6189. [PMID: 31328201 DOI: 10.1039/c9sm00761j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular self-assembly on a curved substrate leads to the spontaneous inclusion of topological defects in the growing bidimensional crystal, unlike assembly on a flat substrate. We propose in this work a quantitative mechanism for this phenomenon by using standard thin shell elasticity. The Gaussian curvature of the substrate induces large in-plane compressive stress as the surface grows, in particular at the rim of the assembly, and the addition of a single defect relaxes this mechanical stress. We found out that the value of azimuthal stress at the rim of the assembly determines the preferred directions for defect nucleation. These results are also discussed as a function of different defect combinations, like dislocations and grain boundaries or scars. In particular, the elastic model permits us to compare quantitatively the ability of various defects to relax mechanical stress. Moreover, these findings allow us to understand the progressive building-up of the typical disclination and grain boundary pattern observed for ground states of large 2D spherical crystals.
Collapse
Affiliation(s)
- Lucas Menou
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Martin Castelnovo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| |
Collapse
|
25
|
Li S, Zandi R, Travesset A. Elasticity in curved topographies: Exact theories and linear approximations. Phys Rev E 2019; 99:063005. [PMID: 31330662 DOI: 10.1103/physreve.99.063005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 06/10/2023]
Abstract
Almost all available results in elasticity on curved topographies are obtained within either a small curvature expansion or an empirical covariant generalization that accounts for screening between Gaussian curvature and disclinations. In this paper, we present a formulation of elasticity theory in curved geometries that unifies its underlying geometric and topological content with the theory of defects. The two different linear approximations widely used in the literature are shown to arise as systematic expansions in reference and actual space. Taking the concrete example of a two-dimensional crystal, with and without a central disclination, constrained on a spherical cap, we compare the exact results with different approximations and evaluate their range of validity. We conclude with some general discussion about the universality of nonlinear elasticity.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames Laboratory, Ames, Iowa 50011, USA
| |
Collapse
|
26
|
Bentley EP, Frey BB, Deniz AA. Physical Chemistry of Cellular Liquid-Phase Separation. Chemistry 2019; 25:5600-5610. [PMID: 30589142 PMCID: PMC6551525 DOI: 10.1002/chem.201805093] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Indexed: 01/05/2023]
Abstract
Compartmentalization of biochemical processes is essential for cell function. Although membrane-bound organelles are well studied in this context, recent work has shown that phase separation is a key contributor to cellular compartmentalization through the formation of liquid-like membraneless organelles (MLOs). In this Minireview, the key mechanistic concepts that underlie MLO dynamics and function are first briefly discussed, including the relevant noncovalent interaction chemistry and polymer physical chemistry. Next, a few examples of MLOs and relevant proteins are given, along with their functions, which highlight the relevance of the above concepts. The developing area of active matter and non-equilibrium systems, which can give rise to unexpected effects in fluctuating cellular conditions, are also discussed. Finally, our thoughts for emerging and future directions in the field are discussed, including in vitro and in vivo studies of MLO physical chemistry and function.
Collapse
Affiliation(s)
- Emily P Bentley
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Benjamin B Frey
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Ashok A Deniz
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| |
Collapse
|
27
|
Lázaro GR, Mukhopadhyay S, Hagan MF. Why Enveloped Viruses Need Cores-The Contribution of a Nucleocapsid Core to Viral Budding. Biophys J 2019; 114:619-630. [PMID: 29414708 DOI: 10.1016/j.bpj.2017.11.3782] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
During the lifecycle of many enveloped viruses, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding that occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts
| | | | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
28
|
A New Model System for Exploring Assembly Mechanisms of the HIV-1 Immature Capsid In Vivo. Bull Math Biol 2019; 81:1506-1526. [PMID: 30706326 DOI: 10.1007/s11538-019-00571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
The assembly of the HIV-1 immature capsid (HIC) is an essential step in the virus life cycle. In vivo, the HIC is composed of [Formula: see text] hexameric building blocks, and it takes 5-6 min to complete the assembly process. The involvement of numerous building blocks and the rapid timecourse makes it difficult to understand the HIC assembly process. In this work, we study HIC assembly in vivo by using differential equations. We first obtain a full model with 420 differential equations. Then, we reduce six addition reactions for separate building blocks to a single complex reaction. This strategy reduces the full model to 70 equations. Subsequently, the theoretical analysis of the reduced model shows that it might not be an effective way to decrease the HIC concentration at the equilibrium state by decreasing the microscopic on-rate constants. Based on experimental data, we estimate that the nucleating structure is much smaller than the HIC. We also estimate that the microscopic on-rate constant for nucleation reactions is far less than that for elongation reactions. The parametric collinearity investigation testifies the reliability of these two characteristics, which might explain why free building blocks do not readily polymerize into higher-order polymers until their concentration reaches a threshold value. These results can provide further insight into the assembly mechanisms of the HIC in vivo.
Collapse
|
29
|
Panahandeh S, Li S, Zandi R. The equilibrium structure of self-assembled protein nano-cages. NANOSCALE 2018; 10:22802-22809. [PMID: 30516220 DOI: 10.1039/c8nr07202g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding how highly symmetric, robust, monodisperse protein nano-cages self-assemble can have major applications in various areas of bio-nanotechnology, such as drug delivery, biomedical imaging and gene therapy. We develop a model to investigate the assembly of protein subunits into the structures with different sizes and symmetries. Using Monte Carlo simulation, we obtain global minimum energy structures. Our results suggest that the physical properties including the spontaneous curvature, flexibility and bending rigidity of coat proteins are sufficient to predict the size, symmetry and shape selectivity of the assembly products. Further, on a thermodynamic basis, we discuss the polymorphism of nano-cages observed in assembly experiments.
Collapse
Affiliation(s)
- Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
30
|
Abstract
While small single-stranded viral shells encapsidate their genome spontaneously, many large viruses, such as the herpes simplex virus or infectious bursal disease virus (IBDV), typically require a template, consisting of either scaffolding proteins or an inner core. Despite the proliferation of large viruses in nature, the mechanisms by which hundreds or thousands of proteins assemble to form structures with icosahedral order (IO) is completely unknown. Using continuum elasticity theory, we study the growth of large viral shells (capsids) and show that a nonspecific template not only selects the radius of the capsid, but also leads to the error-free assembly of protein subunits into capsids with universal IO. We prove that as a spherical cap grows, there is a deep potential well at the locations of disclinations that later in the assembly process will become the vertices of an icosahedron. Furthermore, we introduce a minimal model and simulate the assembly of a viral shell around a template under nonequilibrium conditions and find a perfect match between the results of continuum elasticity theory and the numerical simulations. Besides explaining available experimental results, we provide a number of predictions. Implications for other problems in spherical crystals are also discussed.
Collapse
|
31
|
Sun X, Li D, Wang Z, Liu Q, Wei Y, Liu T. A dimorphism shift of hepatitis B virus capsids in response to ionic conditions. NANOSCALE 2018; 10:16984-16989. [PMID: 30183040 DOI: 10.1039/c8nr03370f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The dimorphism of HBV capsids (coexistence of T = 3 and T = 4 capsids) was found to be regulatable by controlling the rate of capsid nucleation using cations such as K+ or Ca2+: a quick addition of highly concentrated monovalent and/or multivalent counter-cations resulted in a morphism transition from a thermodynamically more stable, T = 4 capsid-dominant state (>80% of total capsids) to a new state containing ∼1 : 1 amounts of T = 3 and T = 4 capsids. These results suggested that the salts with strong charge screening ability could narrow the difference in nucleation energy barriers between the two states, which were not inter-convertible once formed. The effect of salts was more significant than other factors such as pH or protein concentration in achieving such a dimorphism shift. The general mechanism of HBV capsid dimorphism described here provides a new perspective in understanding the virus assembly during infection and directing the design of non-infectious capsids for nanotechnology applications.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Polymer Science, University of Akron, Akron, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Mohajerani F, Hagan MF. The role of the encapsulated cargo in microcompartment assembly. PLoS Comput Biol 2018; 14:e1006351. [PMID: 30063715 PMCID: PMC6086489 DOI: 10.1371/journal.pcbi.1006351] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments are large, roughly icosahedral shells that assemble around enzymes and reactants involved in certain metabolic pathways in bacteria. Motivated by microcompartment assembly, we use coarse-grained computational and theoretical modeling to study the factors that control the size and morphology of a protein shell assembling around hundreds to thousands of molecules. We perform dynamical simulations of shell assembly in the presence and absence of cargo over a range of interaction strengths, subunit and cargo stoichiometries, and the shell spontaneous curvature. Depending on these parameters, we find that the presence of a cargo can either increase or decrease the size of a shell relative to its intrinsic spontaneous curvature, as seen in recent experiments. These features are controlled by a balance of kinetic and thermodynamic effects, and the shell size is assembly pathway dependent. We discuss implications of these results for synthetic biology efforts to target new enzymes to microcompartment interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
33
|
Abstract
Cyanobacteria sequester photosynthetic enzymes into microcompartments which facilitate the conversion of carbon dioxide into sugars. Geometric similarities between these structures and self-assembling viral capsids have inspired models that posit microcompartments as stable equilibrium arrangements of the constituent proteins. Here we describe a different mechanism for microcompartment assembly, one that is fundamentally nonequilibrium and yet highly reliable. This pathway is revealed by simulations of a molecular model resolving the size and shape of a cargo droplet and the extent and topography of an elastic shell. The resulting metastable microcompartment structures closely resemble those of carboxysomes, with a narrow size distribution and faceted shells. The essence of their assembly dynamics can be understood from a simpler mathematical model that combines elements of classical nucleation theory with continuum elasticity. These results highlight important control variables for achieving nanoscale encapsulation in general and for modulating the size and shape of carboxysomes in particular.
Collapse
|
34
|
Li S, Orland H, Zandi R. Self consistent field theory of virus assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:144002. [PMID: 29460850 PMCID: PMC7104907 DOI: 10.1088/1361-648x/aab0c6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 05/04/2023]
Abstract
The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No.10 East Xibeiwang Road, Haidan District, Beijing 100193, People’s Republic of China
| | - Henri Orland
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No.10 East Xibeiwang Road, Haidan District, Beijing 100193, People’s Republic of China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
35
|
van der Holst B, Kegel WK, Zandi R, van der Schoot P. The different faces of mass action in virus assembly. J Biol Phys 2018; 44:163-179. [PMID: 29616429 PMCID: PMC5928020 DOI: 10.1007/s10867-018-9487-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
The spontaneous encapsulation of genomic and non-genomic polyanions by coat proteins of simple icosahedral viruses is driven, in the first instance, by electrostatic interactions with polycationic RNA binding domains on these proteins. The efficiency with which the polyanions can be encapsulated in vitro, and presumably also in vivo, must in addition be governed by the loss of translational and mixing entropy associated with co-assembly, at least if this co-assembly constitutes a reversible process. These forms of entropy counteract the impact of attractive interactions between the constituents and hence they counteract complexation. By invoking mass action-type arguments and a simple model describing electrostatic interactions, we show how these forms of entropy might settle the competition between negatively charged polymers of different molecular weights for co-assembly with the coat proteins. In direct competition, mass action turns out to strongly work against the encapsulation of RNAs that are significantly shorter, which is typically the case for non-viral (host) RNAs. We also find that coat proteins favor forming virus particles over nonspecific binding to other proteins in the cytosol even if these are present in vast excess. Our results rationalize a number of recent in vitro co-assembly experiments showing that short polyanions are less effective at attracting virus coat proteins to form virus-like particles than long ones do, even if both are present at equal weight concentrations in the assembly mixture.
Collapse
Affiliation(s)
- Bart van der Holst
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willem K Kegel
- Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, USA
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Milin AN, Deniz AA. Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles. Biochemistry 2018; 57:2470-2477. [PMID: 29569441 DOI: 10.1021/acs.biochem.8b00001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation. However, less is known about MLO dissociation, with phosphorylation being the primary mechanism demonstrated thus far. In this Perspective, we focus on another mechanism for MLO dissociation that has been described in recent work, namely a reentrant phase transition (RPT). This concept, which emerges from the polymer physics field, provides a mechanistic basis for both formation and dissolution of MLOs by monotonic tuning of RNA concentration, which is an outcome of cellular processes such as transcription. Furthermore, the RPT model also predicts the formation of dynamic substructures (vacuoles) of the kind that have been observed in cellular MLOs. We end with a discussion of future directions in terms of open questions and methods that can be used to answer them, including further exploration of RPTs in vitro, in cells, and in vivo using ensemble and single-molecule methods as well as theory and computation. We anticipate that continued studies will further illuminate the important roles of reentrant phase transitions and associated non-equilibrium dynamics in the spatial patterning of the biochemistry and biology of the cell.
Collapse
Affiliation(s)
- Anthony N Milin
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
37
|
Li S, Erdemci-Tandogan G, van der Schoot P, Zandi R. The effect of RNA stiffness on the self-assembly of virus particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:044002. [PMID: 29235442 PMCID: PMC7104906 DOI: 10.1088/1361-648x/aaa159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 05/21/2023]
Abstract
Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States of America
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
38
|
Wang Y, He X. Self-assembly of amphiphilic truncated cones to form hollow nanovesicles. RSC Adv 2018; 8:13526-13536. [PMID: 35542532 PMCID: PMC9079828 DOI: 10.1039/c8ra01100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/04/2018] [Indexed: 11/21/2022] Open
Abstract
To mimic the unique properties of capsid (protein shell of a virus), we performed Brownian dynamics simulations of the self-assembly of amphiphilic truncated cone particles with anisotropic interactions. The particle shape of a truncated cone in our simulations depended on the cone angle θ, truncated height hc and particle type (AxBy and BxAyBz). The hydrophobic A moieties and hydrophilic B moieties are responsible for attractive and repulsive interactions, respectively. By varying the particle shape, truncated cones can assemble into hollow and vesicle-like clusters with a specific cluster size N. To assemble into hollow vesicles, the truncated height hc must be below a critical value. When hc exceeds this critical value, malformation will occur. The dynamics shows that the vesicle formation occurs in three stages: initially the growth is slow, then rapid, and finally it slows down. The truncated height hc has a stronger impact on the growth kinetics than the cone angle θ or the particle type. We explored how the cluster packing depended on the cooling rate and particle number as well as discussing the relationship between the cluster geometry and the interparticle interactions. Further, we also discuss possible methods to experimentally prepare the truncated cones. The results of our work deepen our understanding of the self-assembly behavior of truncated cones and our results will aid the effective design of particle building blocks for novel nanostructures. To mimic the unique properties of capsid (protein shell of a virus), we performed Brownian dynamics simulations of the self-assembly of amphiphilic truncated cone particles with anisotropic interactions.![]()
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300350
- China
| | - Xuehao He
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
39
|
Beyond icosahedral symmetry in packings of proteins in spherical shells. Proc Natl Acad Sci U S A 2017; 114:9014-9019. [PMID: 28790186 DOI: 10.1073/pnas.1706825114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations and (ii) optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.
Collapse
|
40
|
Li S, Erdemci-Tandogan G, Wagner J, van der Schoot P, Zandi R. Impact of a nonuniform charge distribution on virus assembly. Phys Rev E 2017; 96:022401. [PMID: 28950450 DOI: 10.1103/physreve.96.022401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 01/04/2023]
Abstract
Many spherical viruses encapsulate their genomes in protein shells with icosahedral symmetry. This process is spontaneous and driven by electrostatic interactions between positive domains on the virus coat proteins and the negative genomes. We model the effect of the nonuniform icosahedral charge distribution from the protein shell instead using a mean-field theory. We find that this nonuniform charge distribution strongly affects the optimal genome length and that it can explain the experimentally observed phenomenon of overcharging of virus and viruslike particles.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
41
|
Beren C, Dreesens LL, Liu KN, Knobler CM, Gelbart WM. The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids. Biophys J 2017; 113:339-347. [PMID: 28711172 DOI: 10.1016/j.bpj.2017.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Previous work has shown that purified capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) is capable of packaging both purified single-stranded RNA molecules of normal composition (comparable numbers of A, U, G, and C nucleobases) and of varying length and sequence, and anionic synthetic polymers such as polystyrene sulfonate. We find that CCMV CP is also capable of packaging polyU RNAs, which-unlike normal-composition RNAs-do not form secondary structures and which act as essentially structureless linear polymers. Following our canonical two-step assembly protocol, polyU RNAs ranging in length from 1000 to 9000 nucleotides (nt) are completely packaged. Surprisingly, negative-stain electron microscopy shows that all lengths of polyU are packaged into 22-nm-diameter particles despite the fact that CCMV CP prefers to form 28-nm-diameter (T = 3) particles when packaging normal-composition RNAs. PolyU RNAs >5000 nt in length are packaged into multiplet capsids, in which a single RNA molecule is shared between two or more 22-nm-diameter capsids, in analogy with the multiplets of 28-nm-diameter particles formed with normal-composition RNAs >5000 nt long. Experiments in which viral RNA competes for viral CP with polyUs of equal length show that polyU, despite its lack of secondary structure, is packaged more efficiently than viral RNA. These findings illustrate that the secondary structure of the RNA molecule-and its absence-plays an essential role in determining capsid structure during the self-assembly of CCMV-like particles.
Collapse
Affiliation(s)
- Christian Beren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Lisa L Dreesens
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Katherine N Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California.
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
42
|
Castelnovo M. Viral self-assembly pathway and mechanical stress relaxation. Phys Rev E 2017; 95:052405. [PMID: 28618516 DOI: 10.1103/physreve.95.052405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 12/23/2022]
Abstract
The final shape of a virus is dictated by the self-assembly pathway of its constituents. Using standard thin-shell elasticity, we highlight the prominent role of the viral shell's spontaneous curvature in determining the assembly pathway. In particular, we demonstrate that the mechanical stress inherent to the growth of a curved surface can be relaxed in two different ways in the early steps of assembly, depending on the value of the spontaneous curvature of the surface. This important result explains why most viral shells have either a compact shape with icosahedral symmetry or an elongated shape lacking this symmetry.
Collapse
Affiliation(s)
- Martin Castelnovo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
43
|
Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA, Zhao G, Aiken C, Zandi R, Zhang P. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 2016; 7:13689. [PMID: 27958264 PMCID: PMC5159922 DOI: 10.1038/ncomms13689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation. Two competing models—disassembly/reassembly and displacive—have been proposed for how immature spherical HIV virions transform into mature particles with conical cores. Here the authors provide evidence that both disassembly/reassembly and displacive processes occur sequentially during the maturation process.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ernest L Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
44
|
Aznar M, Reguera D. Physical Ingredients Controlling Stability and Structural Selection of Empty Viral Capsids. J Phys Chem B 2016; 120:6147-59. [PMID: 27114062 DOI: 10.1021/acs.jpcb.6b02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the crucial steps in the viral replication cycle is the self-assembly of its protein shell. Typically, each native virus adopts a unique architecture, but the coat proteins of many viruses have the capability to self-assemble in vitro into different structures by changing the assembly conditions. However, the mechanisms determining which of the possible capsid shapes and structures is selected by a virus are still not well-known. We present a coarse-grained model to analyze and understand the physical mechanisms controlling the size and structure selection in the assembly of empty viral capsids. Using this model and Monte Carlo simulations, we have characterized the phase diagram and stability of T = 1,3,4,7 and snub cube shells. In addition, we have studied the tolerance of different shells to changes in physical parameters related to ambient conditions, identifying possible strategies to induce misassembly or failure. Finally, we discuss the factors that select the shape of a capsid as spherical, faceted, elongated, or decapsidated. Our model sheds important light on the ingredients that control the assembly and stability of viral shells. This knowledge is essential to get capsids with well-defined size and structure that could be used for promising applications in medicine or bionanotechnology.
Collapse
Affiliation(s)
- María Aznar
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| | - David Reguera
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| |
Collapse
|
45
|
Erdemci-Tandogan G, Wagner J, van der Schoot P, Zandi R. Role of Genome in the Formation of Conical Retroviral Shells. J Phys Chem B 2016; 120:6298-305. [PMID: 27128962 DOI: 10.1021/acs.jpcb.6b02712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) capsid proteins spontaneously assemble around the genome into a protective protein shell called the capsid, which can take on a variety of shapes broadly classified as conical, cylindrical, and irregular. The majority of capsids seen in in vivo studies are conical in shape, while in vitro experiments have shown a preference for cylindrical capsids. The factors involved in the selection of the unique shape of HIV capsids are not well understood, and in particular the impact of RNA on the formation of the capsid is not known. In this work, we study the role of the genome and its interaction with the capsid protein by modeling the genomic RNA through a mean-field theory. Our results show that the confinement free energy for a homopolymeric model genome confined in a conical capsid is lower than that in a cylindrical capsid, at least when the genome does not interact with the capsid, which seems to be the case in in vivo experiments. Conversely, the confinement free energy for the cylinder is lower than that for a conical capsid if the genome is attracted to the capsid proteins as the in vitro experiments. Understanding the factors that contribute to the formation of conical capsids may shed light on the infectivity of HIV particles.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - Jef Wagner
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University , Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| |
Collapse
|
46
|
Shojaei HR, Božič AL, Muthukumar M, Podgornik R. Effects of long-range interactions on curvature energies of viral shells. Phys Rev E 2016; 93:052415. [PMID: 27300932 DOI: 10.1103/physreve.93.052415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 06/06/2023]
Abstract
We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.
Collapse
Affiliation(s)
- Hamid R Shojaei
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, Materials Research Science and Engineering Center, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Rudolf Podgornik
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Theoretical Physics, J. Stefan Institute, Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol 2016; 18:36-43. [PMID: 27016708 DOI: 10.1016/j.coviro.2016.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| |
Collapse
|