1
|
Atanasova-Panchevska N, Stojchevski R, Hadzi-Petrushev N, Mitrokhin V, Avtanski D, Mladenov M. Antibacterial and Antiviral Properties of Tetrahydrocurcumin-Based Formulations: An Overview of Their Metabolism in Different Microbiotic Compartments. Life (Basel) 2022; 12:1708. [PMID: 36362863 PMCID: PMC9696410 DOI: 10.3390/life12111708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/29/2023] Open
Abstract
In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut. The microbial effect of pure THC is particularly pronounced in pathophysiological conditions related to the function of the intestinal microbiota, such as type II diabetes. Furthermore, the antiviral characteristics of Cur compared to those of THC are more pronounced in preventing the influenza virus. In the case of HIV infections, the new microemulsion gel formulations of THC possess high retention during preventive application in the vagina and, at the same time, do not disturb the vaginal microbiota, which is critical in maintaining low vaginal pH. Based on the reviewed literature, finding new formulations of THC which can increase its bioavailability and activity and emphasize its antibacterial and antiviral characteristics could be very important. Applying such THC formulations in preventing and treating ailments related to the microbiotic compartments in the body would be beneficial from a medical point of view.
Collapse
Affiliation(s)
- Natalija Atanasova-Panchevska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| |
Collapse
|
2
|
Peralta MF, Usseglio NA, Bracamonte ME, Guzmán ML, Olivera ME, Marco JD, Barroso PA, Carrer DC. Efficacy of topical Miltefosine formulations in an experimental model of cutaneous leishmaniasis. Drug Deliv Transl Res 2022; 12:180-196. [PMID: 33502733 DOI: 10.1007/s13346-021-00896-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease endemic in ~ 90 countries, with an increasing incidence. Presently available pharmacotherapy implies the systemic administration of moderately/very toxic drugs. Miltefosine (Milt) is the only FDA-approved drug to treat CL via the oral route (Impavido®). It produces side effects; in particular, teratogenic effects are of concern. A topical treatment would have the great advantage of minimising the systemic circulation of the drug, preventing side effects. We prepared dispersions containing Milt and liposomes of different compositions to enhance/modulate trans-epidermal penetration and evaluated in vitro and in vivo efficacy and toxicity, in vitro release rate of the drug and particles size stability with time. Treatments were topically administered to BALB/c mice infected with Leishmania (Leishmania) amazonensis. The dispersions containing 0.5% Milt eliminated 99% of the parasites and cured the lesions with a complete re-epithelisation, no visible scar and re-growth of hair. Fluid liposomes decreased the time to heal the lesion and the time needed to eliminate viable amastigotes from the lesion site. Relapse of the infection was not found 1 month after treatment in any case. Ultraflexible liposomes on the other hand had no significant in vitro effect but decreased in vivo efficacy. A topical Milt formulation including fluid liposomes seems a promising treatment against CL.
Collapse
Affiliation(s)
- Ma Florencia Peralta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET- UNC, 5016, Córdoba, Argentina
| | - Nadina A Usseglio
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET- UNC, 5016, Córdoba, Argentina
- Departamento de Ciencias Farmacéuticas, UNITEFA - CONICET - Universidad Nacional de Córdoba, 5016, Córdoba, Argentina
| | - Ma Estefanía Bracamonte
- Instituto de Patología Experimental - CONICET - , Universidad Nacional de Salta, 4400, Salta, Argentina
| | - Ma Laura Guzmán
- Departamento de Ciencias Farmacéuticas, UNITEFA - CONICET - Universidad Nacional de Córdoba, 5016, Córdoba, Argentina
| | - Ma Eugenia Olivera
- Departamento de Ciencias Farmacéuticas, UNITEFA - CONICET - Universidad Nacional de Córdoba, 5016, Córdoba, Argentina
| | - J Diego Marco
- Instituto de Patología Experimental - CONICET - , Universidad Nacional de Salta, 4400, Salta, Argentina
| | - Paola A Barroso
- Instituto de Patología Experimental - CONICET - , Universidad Nacional de Salta, 4400, Salta, Argentina
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET- UNC, 5016, Córdoba, Argentina.
| |
Collapse
|
3
|
Machado RM, Tomás M, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. The vaginal sheet: an innovative form of vaginal film for the treatment of vaginal infections. Drug Dev Ind Pharm 2020; 46:135-145. [PMID: 31893929 DOI: 10.1080/03639045.2019.1711386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: To develop and characterize a new form of vaginal film.Significance: This formulation is intended to overcome some known limitations of traditional dosage forms. It has an absorptive intention to control symptoms and to improve the treatment of vaginal infections characterized by excessive fluid. The vaginal sheet is a thick drug delivery system easy to manipulate, nontoxic and composed by biocompatible macromolecules and polymers, such as gelatin and chitosan.Methods: The sheets were prepared by formulating gelatin or chitosan based gels isolated or in combination, in association with a plasticizer. Gels were subsequently lyophilized. Different proportions of polymer:plasticizer were tested. Lactose was used as a surrogate to study powder incorporation in the formulation. All formulations were analyzed regarding their organoleptic characteristics, texture (hardness and resilience), in vitro absorption efficiency of vaginal fluid simulant - VFS (pH 4 and 5), pH and acid-buffering capacity.Results: Different properties were obtained by varying polymer and plasticizer proportions. Combinations including gelatin with propylene glycol showed the best organoleptic characteristics. The best proportions were 4:3 and 4:5. Up to 10% of powder was successfully incorporated in the formulation. Hardness and resilience of formulations were largely dependent on the concentration of plasticizer. Absorption of vaginal fluid was found to be highly efficient, especially at pH 5. Buffering capacity, upon dilution in normal saline and VFS, was generally higher for VFS pH 4.Conclusions: The vaginal sheet is a promising solid drug delivery system able to further incorporate drugs to treat vaginal clinical conditions characterized by excessive fluid.
Collapse
Affiliation(s)
- Rita Monteiro Machado
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal
| | - Mariana Tomás
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal
| | - José Martinez-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Tetrahydrocurcumin-loaded vaginal nanomicrobicide for prophylaxis of HIV/AIDS: in silico study, formulation development, and in vitro evaluation. Drug Deliv Transl Res 2020; 9:828-847. [PMID: 30900133 DOI: 10.1007/s13346-019-00633-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A vaginal microbicide is a front-line women-dependent approach and an alternative to a condom for prevention of unprotected sexual intercourse-associated HIV. The microbicide research is still in its infancy with several products in the clinical studies being reported to have good efficacy, safe, but with poor adherence. One such molecule reported with an excellent efficacy when tested preclinically is curcumin, a natural polyphenol derived from Curcuma longa. Despite its potential HIV-1 inhibitory activity, it has intense yellow color staining properties, which would result in poor consumer compliance and adherence for vaginal application. To address this issue, tetrahydrocurcumin (THC), a colorless derivative of curcumin, was subjected to in silico screening (molecular docking and dynamics simulation studies) using homology model of gp120-CD4 binding. It was found that THC exhibited equivalent gp120-CD4 binding inhibitory activity as compared with curcumin due to its stable hydrophobic interactions with residues Asp368 and Trp427 deeper in the Phe43 cavity of CD4 receptor. Hence, it can be effectively used as a potential microbicide candidate. THC, a BCS Class II molecule exhibits poor solubility, spreadability, and intracellular uptake when used in the conventional form. Thus, it was decided to develop a lipid-based nanomicrobicide gel for delivery of THC. The developed THC-loaded o/w microemulsion gel was characterized for physicochemical properties (globule size, drug content, drug release, and permeation) and further used for in vitro cell line studies (cell viability, cellular uptake, and anti-HIV activity). The developed formulation was found to be stable with coitus-independent release profile and exhibited a rapid time-independent intracellular uptake. In addition, it exhibited a fourfold increase in efficacy as compared with conventional THC. Thus, the novel THC-loaded o/w microemulsion gel exhibited the potential for prevention of HIV-1 infection associated with unprotected sexual intercourse.
Collapse
|
5
|
Herrera C. The Pre-clinical Toolbox of Pharmacokinetics and Pharmacodynamics: in vitro and ex vivo Models. Front Pharmacol 2019; 10:578. [PMID: 31178736 PMCID: PMC6543330 DOI: 10.3389/fphar.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
Prevention strategies against sexual transmission of human immunodeficiency virus (HIV) are essential to curb the rate of new infections. In the absence of a correlate of protection against HIV infection, pre-clinical evaluation is fundamental to facilitate and accelerate prioritization of prevention candidates and their formulations in a rapidly evolving clinical landscape. Characterization of pharmacokinetic (PK) and pharmacodynamic (PD) properties for candidate inhibitors is the main objective of pre-clinical evaluation. in vitro and ex vivo systems for pharmacological assessment allow experimental flexibility and adaptability at a relatively low cost without raising as significant ethical concerns as in vivo models. Applications and limitations of pre-clinical PK/PD models and future alternatives are reviewed in the context of HIV prevention.
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Cazorla-Luna R, Martín-Illana A, Notario-Pérez F, Bedoya LM, Bermejo P, Ruiz-Caro R, Veiga MD. Dapivirine Bioadhesive Vaginal Tablets Based on Natural Polymers for the Prevention of Sexual Transmission of HIV. Polymers (Basel) 2019; 11:polym11030483. [PMID: 30960467 PMCID: PMC6473508 DOI: 10.3390/polym11030483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Young sub-Saharan women are a group that is vulnerable to the sexual transmission of HIV. Pre-exposure prophylaxis through vaginal microbicides could provide them an option for self-protection. Dapivirine has been demonstrated to have topical inhibitory effects in HIV, and to provide protection against the sexual transmission of this virus. This paper reports on the studies into swelling behaviour, bioadhesion and release carried out on dapivirine tablets based on chitosan, locust bean gum and pectin, to select the most suitable formulation. The modified simulated vaginal fluid led to a high solubility of dapivirine and allowed the dapivirine release profiles to be characterized in sink conditions; this aqueous medium is an alternative to organic solvents, which are not a realistic option when evaluating systems whose behaviour varies in aqueous and organic media. Of the formulations evaluated, dapivirine/pectin tablets containing 290 mg of polymer and 30 mg of dapivirine present the most moderate swelling, making them the most comfortable dosage forms. Their high bioadhesive capacity would also allow the formulation to remain in the action zone and release the drug in a sustained manner, pointing to this formulation as the most promising candidate for future evaluations of vaginal microbicides for the prevention of HIV.
Collapse
Affiliation(s)
- Raúl Cazorla-Luna
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Araceli Martín-Illana
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Fernando Notario-Pérez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Luis-Miguel Bedoya
- Departamento Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Paulina Bermejo
- Departamento Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Kay K, Shah DK, Rohan L, Bies R. Physiologically-based pharmacokinetic model of vaginally administered dapivirine ring and film formulations. Br J Clin Pharmacol 2018; 84:1950-1969. [PMID: 29714824 PMCID: PMC6089833 DOI: 10.1111/bcp.13625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 01/25/2023] Open
Abstract
AIMS A physiologically-based pharmacokinetic (PBPK) model of the vaginal space was developed with the aim of predicting concentrations in the vaginal and cervical space. These predictions can be used to optimize the probability of success of vaginally administered dapivirine (DPV) for HIV prevention. We focus on vaginal delivery using either a ring or film. METHODS A PBPK model describing the physiological structure of the vaginal tissue and fluid was defined mathematically and implemented in MATLAB. Literature reviews provided estimates for relevant physiological and physiochemical parameters. Drug concentration-time profiles were simulated in luminal fluids, vaginal tissue and plasma after administration of ring or film. Patient data were extracted from published clinical trials and used to test model predictions. RESULTS The DPV ring simulations tested the two dosing regimens and predicted PK profiles and area under the curve of luminal fluids (29 079 and 33 067 mg h l-1 in groups A and B, respectively) and plasma (0.177 and 0.211 mg h l-1 ) closely matched those reported (within one standard deviation). While the DPV film study reported drug concentration at only one time point per patient, our simulated profiles pass through reported concentration range. CONCLUSIONS HIV is a major public health issue and vaginal microbicides have the potential to provide a crucial, female-controlled option for protection. The PBPK model successfully simulated realistic representations of drug PK. It provides a reliable, inexpensive and accessible platform where potential effectiveness of new compounds and the robustness of treatment modalities for pre-exposure prophylaxis can be evaluated.
Collapse
Affiliation(s)
- Katherine Kay
- School of Pharmacy and Pharmaceutical SciencesState University of New York at Buffalo
| | - Dhaval K. Shah
- School of Pharmacy and Pharmaceutical SciencesState University of New York at Buffalo
| | - Lisa Rohan
- School of PharmacyUniversity of Pittsburgh
- Magee‐Womens Research Institute
| | - Robert Bies
- School of Pharmacy and Pharmaceutical SciencesState University of New York at Buffalo
- Computational and Data Enabled Sciences and Engineering Program State University of New York at Buffalo
| |
Collapse
|
8
|
Targeted microbicides for preventing sexual HIV transmission. J Control Release 2017; 266:119-128. [PMID: 28951320 DOI: 10.1016/j.jconrel.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Sexual transmission remains one of the most significant hurdles in the fight against HIV infection. The use of vaginal or rectal microbicides has been proposed for topical pre-exposure prophylaxis but available results from clinical trials of candidate products have been, at best, less than optimal. While waiting for the first product to get regulatory approval, novel approaches are being explored in order to enhance efficacy, as well as to assure safety. Strategies involving specific delivery of antiviral agents to key players involved in the early steps of sexual transmission have the potential to help achieving such purposes. Engineering systems that allow targeting cells, tissues or other biological structures of interest may provide a way to modulate local pharmacokinetics of promising microbicide molecules and, thus, maximize protection. This concise review discusses the identification and use of potential targets for such purpose, while detailing on several examples of targeted systems engineered as potential microbicide candidates. Furthermore, remaining challenges and hints for future work in the field of targeted microbicides are addressed.
Collapse
|
9
|
Mashingaidze F, Choonara YE, Kumar P, du Toit LC, Maharaj V, Buchmann E, Pillay V. Submicron Matrices Embedded in a Polymeric Caplet for Extended Intravaginal Delivery of Zidovudine. AAPS JOURNAL 2017; 19:1745-1759. [PMID: 28779379 DOI: 10.1208/s12248-017-0130-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
In this study, an intravaginal delivery system able to deliver an anti-HIV-1 agent for the purpose of potentially reducing HIV-1 transmission acting over an extended duration was successfully formulated. This delivery system was a composite polymeric caplet comprising zidovudine-loaded polyethylene glycol enclatherated pectin-mucin submicron matrices embedded within a poly (D,L-lactide), magnesium stearate, Kollidon® SR, and Carbopol® 974P NF-based polymeric caplet matrix. A three-factor and three-level Box-Behnken statistical design was utilized to optimize the polymeric caplet. The optimized directly compressed composite polymeric caplet hardness was 22.1 ± 0.3 N and the matrix resilience was 62.4 ± 0.6%. The swelling- and diffusion-controlled fractional zidovudine (AZT) release from the optimized caplet was 0.74 ± 0.01 in simulated vaginal fluid (SVF), which increased to 0.81 ± 0.21 in phosphate-buffered saline (PBS) simulating seminal fluid, over 30 days. Caplet matrix swelling was directly related to the percentage Carbopol 974P NF composition. An intravaginal system for AZT delivery was tested in the pig model over 28 days. X-ray analysis depicted delivery system swelling with matrix contrast fading over time as vaginal fluid permeated the matrix core. Plasma, vaginal fluid swab eluates, and tissue AZT concentrations were measured by gradient ultra-performance liquid chromatography (UPLC)-tandem photodiode array detection. Vaginal tissue and vaginal fluid swab eluate AZT concentrations remained above effective levels over 28 days and were higher than plasma AZT concentrations, availing a system with reduced systemic toxicity and more effective inhibition of viral replication at the site of entry.
Collapse
Affiliation(s)
- Felix Mashingaidze
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology,School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology,School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology,School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology,School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Vinesh Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Eckhart Buchmann
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology,School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
10
|
Ceña-Diez R, García-Broncano P, Javier de la Mata F, Gómez R, Resino S, Muñoz-Fernández M. G2-S16 dendrimer as a candidate for a microbicide to prevent HIV-1 infection in women. NANOSCALE 2017; 9:9732-9742. [PMID: 28675217 DOI: 10.1039/c7nr03034g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unprotected heterosexual intercourse is the first route for sustaining the global spread of human immunodeficiency virus type 1 (HIV-1), being responsible for 80% of new HIV-1 infections in the world. The presence of inflammation in the female reproductive tract and the presence of semen increases the risk of heterosexual HIV-1 transmission. This state-of-the-art research based on an innovative nanotechnology design was focused on a toxicological study of the limitation of the activity of the novel H2O-soluble anionic carbosilane dendrimer G2-S16 in the adult cervical and foreskin epithelia. The G2-S16 dendrimer did not cause any irritation or inflammation in the vaginal epithelium, proving that this dendrimer is a safe nanocompound for vaginal application to control viral transmission. It was shown that no significant differences were found in mortality, sublethal or teratogenic effects when the zebra fish embryos were treated with G2-S16. In short, G2-S16 seems to be an ideal candidate for the development of a topical microbicide against HIV-1 infection and the next step is try in clinical trials, because of its great in vivo biocompatibility, as well as its ability to halt HIV-1 infection in the presence of semen.
Collapse
Affiliation(s)
- Rafael Ceña-Diez
- Section Immunology and Laboratorio Inmuno Biología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Timur SS, Şahin A, Aytekin E, Öztürk N, Polat KH, Tezel N, Gürsoy RN, Çalış S. Design and in vitro evaluation of tenofovir-loaded vaginal gels for the prevention of HIV infections. Pharm Dev Technol 2017; 23:301-310. [PMID: 28503983 DOI: 10.1080/10837450.2017.1329835] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with the human immunodeficiency virus (HIV) is affecting women disproportionally with increasing incidence rates over the last decades. Tenofovir is one of the most commonly used antiretroviral agents, which belongs to the nucleoside/nucleotide reverse transcriptase inhibitor family, for the prevention of HIV acquisition. In scope of this study, a thermogelling system containing tenofovir-loaded chitosan nanoparticles for the controlled release of tenofovir was developed and characterized. The in vitro release studies have shown that the burst release effect was decreased to 27% with f-TFV CS NPs-Gel. Gelation temperature of developed formulation was found as 26.6 ± 0.2 °C, which provides ease of administration while gelation occurs after the administration to the vagina. The work of adhesion values was used as parameters for comparison of mucoadhesive performance and the mucoadhesion of f-TFV CS NPs-Gel was found as 0.516 ± 0.136 N.s at 37 °C. The biocompatibility of blank formulations was evaluated by cell viability studies using L929 cells, in which Gel + CS NPs formulation was found to be safe with 82.4% and 90.2% cell viability for 1:16 and 1:32 dilutions, respectively. In conclusion, an improved tenofovir containing vaginal gel formulation was successfully developed and evaluated for preventing HIV transmission.
Collapse
Affiliation(s)
- Selin Seda Timur
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Adem Şahin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Eren Aytekin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Naile Öztürk
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Kerem Heybet Polat
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Nurten Tezel
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Reyhan Neslihan Gürsoy
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Sema Çalış
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| |
Collapse
|
13
|
Halwes ME, Steinbach-Rankins JM, Frieboes HB. Pharmacokinetic modeling of a gel-delivered dapivirine microbicide in humans. Eur J Pharm Sci 2016; 93:410-8. [DOI: 10.1016/j.ejps.2016.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
|
14
|
Zhou T, Hu M, Pearlman A, Rohan LC. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing. Biochem Pharmacol 2016; 116:162-75. [PMID: 27453435 PMCID: PMC5362249 DOI: 10.1016/j.bcp.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/14/2016] [Indexed: 01/18/2023]
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/pharmacokinetics
- Cell Line
- Cervix Uteri/cytology
- Cervix Uteri/drug effects
- Cervix Uteri/metabolism
- Diestrus/drug effects
- Diestrus/metabolism
- Estrus/drug effects
- Estrus/metabolism
- Female
- Gene Expression Regulation/drug effects
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Propionates/pharmacology
- Quinolines/pharmacology
- Rabbits
- Reproductive Control Agents/pharmacology
- Species Specificity
- Tenofovir/metabolism
- Tenofovir/pharmacokinetics
- Tissue Distribution/drug effects
- Vagina/cytology
- Vagina/drug effects
- Vagina/metabolism
- Vaginal Creams, Foams, and Jellies/metabolism
- Vaginal Creams, Foams, and Jellies/pharmacokinetics
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Andrew Pearlman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Lisa C Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States.
| |
Collapse
|
15
|
Safety and Pharmacokinetics of Quick-Dissolving Polymeric Vaginal Films Delivering the Antiretroviral IQP-0528 for Preexposure Prophylaxis. Antimicrob Agents Chemother 2016; 60:4140-50. [PMID: 27139475 DOI: 10.1128/aac.00082-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022] Open
Abstract
For human immunodeficiency virus (HIV) prevention, microbicides or drugs delivered as quick-dissolving films may be more acceptable to women than gels because of their compact size, minimal waste, lack of an applicator, and easier storage and transport. This has the potential to improve adherence to promising products for preexposure prophylaxis. Vaginal films containing IQP-0528, a nonnucleoside reverse transcriptase inhibitor, were evaluated for their pharmacokinetics in pigtailed macaques. Polymeric films (22 by 44 by 0.1 mm; providing 75% of a human dose) containing IQP-0528 (1.5%, wt/wt) with and without poly(lactic-co-glycolic acid) (PLGA) nanoparticle encapsulation were inserted vaginally into pigtailed macaques in a crossover study design (n = 6). With unencapsulated drug, the median (range) vaginal fluid concentrations of IQP-0528 were 160.97 (2.73 to 2,104), 181.79 (1.86 to 15,800), and 484.50 (8.26 to 4,045) μg/ml at 1, 4, and 24 h after film application, respectively. Median vaginal tissue IQP-0528 concentrations at 24 h were 3.10 (0.03 to 222.58) μg/g. The values were similar at locations proximal, medial, and distal to the cervix. The IQP-0528 nanoparticle-formulated films delivered IQP-0528 in vaginal tissue and secretions at levels similar to those obtained with the unencapsulated formulation. A single application of either formulation did not disturb the vaginal microflora or the pH (7.24 ± 0.84 [mean ± standard deviation]). The high mucosal IQP-0528 levels delivered by both vaginal film formulations were between 1 and 5 log higher than the in vitro 90% inhibitory concentration (IC90) of 0.146 μg/ml. The excellent coverage and high mucosal levels of IQP-0528, well above the IC90, suggest that the films may be protective and warrant further evaluation in a vaginal repeated low dose simian-human immunodeficiency virus (SHIV) transmission study in macaques and clinically in women.
Collapse
|
16
|
Triple combination MPT vaginal microbicide using curcumin and efavirenz loaded lactoferrin nanoparticles. Sci Rep 2016; 6:25479. [PMID: 27151598 PMCID: PMC4858693 DOI: 10.1038/srep25479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
We report that a combination of anti-HIV-1 drug efavirenz (EFV), anti-microbial-spermicidal curcumin (Cur) and lactoferrin nanoparticles (ECNPs) act as MPT formulation. These nanoparticles are of well dispersed spherical shape with 40–70 nm size, with encapsulation efficiency of 63 ± 1.9% of Cur & 61.5% ± 1.6 of EFV, significantly higher than that of single drug nanoparticles (Cur, 59 ± 1.34%; EFV: 58.4 ± 1.79). ECNPs were found to be sensitive at pH 5 and 6 and have not effected viability of vaginal micro-flora, Lactobacillus. Studies in rats showed that ECNPs delivers 88–124% more drugs in vaginal lavage as compared to its soluble form, either as single or combination of EFV and Cur. The ECNPs also shows 1.39–4.73 fold lower concentration of absorption in vaginal tissue and plasma compared to soluble EFV + Cur. Furthermore, ECNPs show significant reduction in inflammatory responses by 1.6–3.0 fold in terms of IL-6 and TNF-α in vaginal tissue and plasma compared to soluble EFV + Cur. ECNPs showed improved pharmacokinetics profiles in vaginal lavage with more than 50% of enhancement in AUC, AUMC, Cmax and t1/2 suggesting longer exposure of Cur and EFV in vaginal lavage compared to soluble EFV + Cur. Histopathological analysis of vaginal tissue shows remarkably lower toxicity of ECNPs compared to soluble EFV + Cur. In conclusion, ECNPs are significantly safe and exhibit higher bioavailability thus constitute an effective MPT against HIV.
Collapse
|
17
|
Mashingaidze F, Choonara YE, Kumar P, du Toit LC, Maharaj V, Buchmann E, Pillay V. Poly(ethylene glycol) enclatherated pectin-mucin submicron matrices for intravaginal anti-HIV-1 drug delivery. Int J Pharm 2016; 503:16-28. [DOI: 10.1016/j.ijpharm.2016.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 02/05/2023]
|
18
|
Briz V, Sepúlveda-Crespo D, Diniz AR, Borrego P, Rodes B, de la Mata FJ, Gómez R, Taveira N, Muñoz-Fernández MÁ. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides. NANOSCALE 2015; 7:14669-14683. [PMID: 26274532 DOI: 10.1039/c5nr03644e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.
Collapse
Affiliation(s)
- Verónica Briz
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kovarova M, Council OD, Date AA, Long JM, Nochii T, Belshan M, Shibata A, Vincent H, Baker CE, Thayer WO, Kraus G, Lachaud-Durand S, Williams P, Destache CJ, Garcia JV. Nanoformulations of Rilpivirine for Topical Pericoital and Systemic Coitus-Independent Administration Efficiently Prevent HIV Transmission. PLoS Pathog 2015; 11:e1005075. [PMID: 26271040 PMCID: PMC4536200 DOI: 10.1371/journal.ppat.1005075] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/08/2015] [Indexed: 01/11/2023] Open
Abstract
Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topically applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosensitive gel, which becomes solid at body temperature. PLGA nanoparticles with encapsulated rilpivirine coated the reproductive tract and offered significant protection to BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspension of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using transmitted/founder viruses, which were previously shown to establish de novo infection in humans, we demonstrated that RPV LA offers significant protection from two consecutive high-dose HIV-1 challenges one and four weeks after drug administration. In this experiment, we also showed that, in certain cases, even in the presence of drug, HIV infection could occur without overt or detectable systemic replication until levels of drug were reduced. We also showed that infection in the presence of drug can result in acquisition of multiple viruses after subsequent exposures. These observations have important implications for the implementation of long-acting antiretroviral formulations for HIV prevention. They provide first evidence that occult infections can occur, despite the presence of sustained levels of antiretroviral drugs. Together, our results demonstrate that topically- or systemically administered rilpivirine offers significant coitus-dependent or coitus-independent protection from HIV infection. When taken consistently, PrEP has been shown to reduce the risk of HIV infection by up to 92% in people who are at high risk. However, PrEP is much less effective if it is not taken consistently. To improve adherence to the drug regimen, several new drug delivery systems, that include novel gel formulations and long-acting delivery systems, are being evaluated. In this manuscript, we used BLT humanized mice, an in vivo model of vaginal HIV transmission, to evaluate two novel delivery systems for HIV prevention. In the first approach, we combined the highly efficient encapsulation of antiretroviral drugs into nanoparticles with a thermosensitive gel that remains liquid at room temperature and solidifies at body temperature. Our results showed that this delivery system provided significant protection from HIV vaginal infection. In a second approach, we evaluated a long-acting nanoparticle formulation for coitus-independent protection from HIV acquisition. Our results showed that a single injection of the long-acting antiviral drug also resulted in reduced HIV infection. However, protection was not complete and transmission was concealed by a significant delay in the onset of plasma viremia that could result in superinfection by two different viruses administered up to four weeks apart.
Collapse
Affiliation(s)
- Martina Kovarova
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (MK); (JVG)
| | - Olivia D. Council
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Abhijit A. Date
- Department of Pharmacy Practice, Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska, United States of America
| | - Julie M. Long
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Tomonori Nochii
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Michael Belshan
- Department of Pharmacy Practice, Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska, United States of America
| | - Annemarie Shibata
- Department of Pharmacy Practice, Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska, United States of America
| | - Heather Vincent
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Caroline E. Baker
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - William O. Thayer
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | | | | | - Christopher J. Destache
- Department of Pharmacy Practice, Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska, United States of America
| | - J. Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (MK); (JVG)
| |
Collapse
|
20
|
Sepúlveda-Crespo D, Sánchez-Rodríguez J, Serramía MJ, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine (Lond) 2015; 10:899-914. [PMID: 25867856 DOI: 10.2217/nnm.14.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To research the synergistic activity by triple combinations of carbosilane dendrimers with tenofovir and maraviroc as topical microbicide. METHODS Cytotoxicity, anti-HIV-1 activity, vaginal irritation and histological analysis of triple combinations were determined. Analysis of combined effects and the median effective concentration were performed using CalcuSyn software. RESULTS Combinations showed a greater broad-spectrum anti-HIV-1 activity than the single-drug, and preserved this activity in acid environment or seminal fluid. The strongest combinations were G2-STE16/G2-S24P/tenofovir, G2-STE16/G2-S16/maraviroc and G2-STE16/tenofovir/maraviroc at 2:2:1, 10:10:1 10:5:1 ratios, respectively. They demonstrated strong synergistic activity profile due to the weighted average combination indices varied between 0.06 and 0.38. No irritation was detected in female BALB/c mice. CONCLUSION The three-drug combination increases their antiviral potency and act synergistically as potential microbicide.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Spanish HIV-HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Zalenskaya IA, Joseph T, Bavarva J, Yousefieh N, Jackson SS, Fashemi T, Yamamoto HS, Settlage R, Fichorova RN, Doncel GF. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates. PLoS One 2015; 10:e0128557. [PMID: 26052926 PMCID: PMC4459878 DOI: 10.1371/journal.pone.0128557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy. METHODS To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7) treated with well-characterized pro-inflammatory (PIC) and non-inflammatory (NIC) compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA). RESULTS Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes. CONCLUSIONS In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior to entering clinical trials. Additional characterization of these genes can provide further insight into the cervicovaginal immunoinflammatory and mucosal-altering processes that facilitate or limit HIV transmission with implications for the design of prevention strategies.
Collapse
Affiliation(s)
- Irina A Zalenskaya
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Theresa Joseph
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Jasmin Bavarva
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nazita Yousefieh
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Suzanne S Jackson
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Titilayo Fashemi
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hidemi S Yamamoto
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Settlage
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo F Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|
22
|
Zhou T, Hu M, Pearlman A, Patton D, Rohan L. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque. AIDS Res Hum Retroviruses 2014; 30:1106-16. [PMID: 24803409 PMCID: PMC4212939 DOI: 10.1089/aid.2013.0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.
Collapse
Affiliation(s)
- Tian Zhou
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
23
|
Grammen C, Plum J, Van Den Brande J, Darville N, Augustyns K, Augustijns P, Brouwers J. The Use of Supersaturation for the Vaginal Application of Microbicides: A Case Study with Dapivirine. J Pharm Sci 2014; 103:3696-3703. [DOI: 10.1002/jps.24176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 11/11/2022]
|
24
|
Fernández Romero JA, Gil PI, Ré V, Robbiani M, Paglini G. [Microbicides for preventing sexually transmitted infections: Current status and strategies for preclinical evaluation of new candidates]. Rev Argent Microbiol 2014; 46:256-68. [PMID: 25444135 DOI: 10.1016/s0325-7541(14)70080-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/26/2014] [Indexed: 01/02/2023] Open
Abstract
Microbicides are a new tool, still under investigation, which could help prevent infection by the human immunodeficiency virus (HIV) and other sexually transmitted infections (STIs). Increasing evidence shows that the complexity of sexual transmission of viral pathogens requires the identification of compounds able to block the early events during the cycle of viral infection. In this manuscript we provide a comprehensive review of the different microbicide strategies that have been studied or are currently being considered for STI prevention, particularly emphasizing those having the potential to block HIV infection. The manuscript also reviews the complex process that is required to conduct future clinical studies in humans and concludes with a brief discussion of the strategies that could be part of the immediate future in microbicide research.
Collapse
Affiliation(s)
- José A Fernández Romero
- Center for Biomedical Research, Population Council, Nueva York, Nueva York, EE. UU; Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro I Gil
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Ré
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, Nueva York, Nueva York, EE. UU
| | - Gabriela Paglini
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
25
|
Nunes R, Sarmento B, das Neves J. Formulation and delivery of anti-HIV rectal microbicides: advances and challenges. J Control Release 2014; 194:278-94. [PMID: 25229988 DOI: 10.1016/j.jconrel.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/24/2022]
Abstract
Men and women engaged in unprotected receptive anal intercourse (RAI) are at higher risk of acquiring HIV from infected partners. The implementation of preventive strategies is urgent and rectal microbicides may be a useful tool in reducing the sexual transmission of HIV. However, pre-clinical and first clinical trials have been able to identify limitations of candidate products, mostly related with safety issues, which can in turn enhance viral infection. Indeed, the development of suitable formulations for the rectal delivery of promising antiretroviral drugs is not an easy task, and has been mostly based on products specifically intended for vaginal delivery, but these have been shown to provide sub-optimal outcomes when administered rectally. Research and development in the rectal microbicide field are now charting their own path and important information is now available. In particular, specific formulation requirements of rectal microbicide products that need to be met have just recently been acknowledged despite additional work being still required. Desirable rectal microbicide product features regarding characteristics such as pH, osmolality, excipients, dosage forms, volume to be administered and the need for applicator use have been studied and defined in recent years, and specific guidance is now possible. This review provides a synopsis of the field of rectal microbicides, namely past and ongoing clinical studies, and details on formulation and drug delivery issues regarding the specific development of rectal microbicide products. Also, future work, as required for the advancement of the field, is discussed.
Collapse
Affiliation(s)
- Rute Nunes
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - José das Neves
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal.
| |
Collapse
|
26
|
Quantitative determination of microbicidal spermicide ‘nonoxynol-9’ in rabbit plasma and vaginal fluid using LC–ESI–MS/MS: Application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 965:127-32. [DOI: 10.1016/j.jchromb.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/11/2014] [Accepted: 06/14/2014] [Indexed: 11/20/2022]
|
27
|
Akil A, Agashe H, Dezzutti CS, Moncla BJ, Hillier SL, Devlin B, Shi Y, Uranker K, Rohan LC. Formulation and characterization of polymeric films containing combinations of antiretrovirals (ARVs) for HIV prevention. Pharm Res 2014; 32:458-68. [PMID: 25079391 DOI: 10.1007/s11095-014-1474-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/25/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE To develop polymeric films containing dual combinations of anti-HIV drug candidate tenofovir, maraviroc and dapivirine for vaginal application as topical microbicides. METHODS A solvent casting method was used to manufacture the films. Solid phase solubility was used to identify potential polymers for use in the film formulation. Physical and chemical properties (such as water content, puncture strength and in vitro release) and product stability were determined. The bioactivity of the film products against HIV was assessed using the TZM-bl assay and a cervical explant model. RESULTS Polymers identified from the solid phase solubility study maintained tenofovir and maraviroc in an amorphous state and prevented drug crystallization. Three combination film products were developed using cellulose polymers and polyvinyl alcohol. The residual water content in all films was <10% (w/w). All films delivered the active agents with release of >50% of film drug content within 30 min. Stability testing confirmed that the combination film products were stable for 12 months at ambient temperature and 6 months under stressed conditions. Antiviral activity was confirmed in TZM-bl and cervical explant models. CONCLUSIONS Polymeric films can be used as a stable dosage form for the delivery of antiretroviral combinations as microbicides.
Collapse
Affiliation(s)
- Ayman Akil
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Akil A, Devlin B, Cost M, Rohan LC. Increased Dapivirine tissue accumulation through vaginal film codelivery of dapivirine and Tenofovir. Mol Pharm 2014; 11:1533-41. [PMID: 24693866 PMCID: PMC4018102 DOI: 10.1021/mp4007024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The HIV-1 replication inhibitor dapivirine (DPV) is one of the most promising drug candidates being used in topical microbicide products for prevention of HIV-1 sexual transmission. To be able to block HIV-1 replication, DPV must have access to the viral reverse transcriptase enzyme. The window for DPV to access the enzyme happens during the HIV-1 cellular infection cycle. Thus, in order for DPV to exert its anti-HIV activity, it must be present in the mucosal tissue or cells where HIV-1 infection occurs. A dosage form containing DPV must be able to deliver the drug to the tissue site of action. Polymeric films are solid dosage forms that dissolve and release their payload upon contact with fluids. Films have been used as vaginal delivery systems of topical microbicide drug candidates including DPV. For use in topical microbicide products containing DPV, polymeric films must prove their ability to deliver DPV to the target tissue site of action. Ex vivo exposure studies of human ectocervical tissue to DPV film revealed that DPV was released from the film and did diffuse into the tissue in a concentration dependent manner indicating a process of passive diffusion. Analysis of drug distribution in the tissue revealed that DPV accumulated mostly at the basal layer of the epithelium infiltrating the upper part of the stroma. Furthermore, as a combination microbicide product, codelivery of DPV and TFV from a polymeric film resulted in a significant increase in DPV tissue concentration [14.21 (single entity film) and 31.03 μg/g (combination film)], whereas no impact on TFV tissue concentration was found. In vitro release experiments showed that this observation was due to a more rapid DPV release from the combination film as compared to the single entity film. In conclusion, the findings of this study confirm the ability of polymeric films to deliver DPV and TFV to human ectocervical tissue and show that codelivery of the two agents has a significant impact on DPV tissue accumulation. These findings support the use of polymeric films for topical microbicide products containing DPV and/or TFV.
Collapse
Affiliation(s)
- Ayman Akil
- Magee-Womens Research Institute , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | |
Collapse
|
29
|
Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice. Pharm Res 2014; 31:1834-45. [PMID: 24449442 DOI: 10.1007/s11095-013-1287-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE To assess the potential of polymeric nanoparticles (NPs) to affect the genital distribution and local and systemic pharmacokinetics (PK) of the anti-HIV microbicide drug candidate dapivirine after vaginal delivery. METHODS Dapivirine-loaded, poly(ethylene oxide)-coated poly(epsilon-caprolactone) (PEO-PCL) NPs were prepared by a nanoprecipitation method. Genital distribution of NPs and their ability to modify the PK of dapivirine up to 24 h was assessed after vaginal instillation in a female mouse model. Also, the safety of NPs upon daily administration for 14 days was assessed by histological analysis and chemokine/cytokine content in vaginal lavages. RESULTS PEO-PCL NPs (180-200 nm) were rapidly eliminated after administration but able to distribute throughout the vagina and lower uterus, and capable of tackling mucus and penetrate the epithelial lining. Nanocarriers modified the PK of dapivirine, with higher drug levels being recovered from vaginal lavages and vaginal/lower uterine tissues as compared to a drug suspension. Systemic drug exposure was reduced when NPs were used. Also, NPs were shown safe upon administration for 14 days. CONCLUSIONS Dapivirine-loaded PEO-PCL NPs were able to provide likely favorable genital drug levels, thus attesting the potential value of using this vaginal drug delivery nanosystem in the context of HIV prophylaxis.
Collapse
|
30
|
Development and in vitro evaluation of a vaginal microbicide gel formulation for UAMC01398, a novel diaryltriazine NNRTI against HIV-1. Antiviral Res 2014; 101:113-21. [DOI: 10.1016/j.antiviral.2013.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/15/2013] [Accepted: 11/10/2013] [Indexed: 11/20/2022]
|
31
|
Morrow KM, Fava JL, Rosen RK, Vargas S, Shaw JG, Kojic EM, Kiser PF, Friend DR, Katz, and The Project LINK Study Te DF. Designing preclinical perceptibility measures to evaluate topical vaginal gel formulations: relating user sensory perceptions and experiences to formulation properties. AIDS Res Hum Retroviruses 2014; 30:78-91. [PMID: 24180360 DOI: 10.1089/aid.2013.0099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract The effectiveness of any biomedical prevention technology relies on both biological efficacy and behavioral adherence. Microbicide trials have been hampered by low adherence, limiting the ability to draw meaningful conclusions about product effectiveness. Central to this problem may be an inadequate conceptualization of how product properties themselves impact user experience and adherence. Our goal is to expand the current microbicide development framework to include product "perceptibility," the objective measurement of user sensory perceptions (i.e., sensations) and experiences of formulation performance during use. For vaginal gels, a set of biophysical properties, including rheological properties and measures of spreading and retention, may critically impact user experiences. Project LINK sought to characterize the user experience in this regard, and to validate measures of user sensory perceptions and experiences (USPEs) using four prototype topical vaginal gel formulations designed for pericoital use. Perceptibility scales captured a range of USPEs during the product application process (five scales), ambulation after product insertion (six scales), and during sexual activity (eight scales). Comparative statistical analyses provided empirical support for hypothesized relationships between gel properties, spreading performance, and the user experience. Project LINK provides preliminary evidence for the utility of evaluating USPEs, introducing a paradigm shift in the field of microbicide formulation design. We propose that these user sensory perceptions and experiences initiate cognitive processes in users resulting in product choice and willingness-to-use. By understanding the impact of USPEs on that process, formulation development can optimize both drug delivery and adherence.
Collapse
Affiliation(s)
- Kathleen M. Morrow
- Centers for Behavioral & Preventive Medicine, The Miriam Hospital, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Joseph L. Fava
- Centers for Behavioral & Preventive Medicine, The Miriam Hospital, Providence, Rhode Island
| | - Rochelle K. Rosen
- Centers for Behavioral & Preventive Medicine, The Miriam Hospital, Providence, Rhode Island
- Department of Behavioral and Social Sciences, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sara Vargas
- Centers for Behavioral & Preventive Medicine, The Miriam Hospital, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julia G. Shaw
- Centers for Behavioral & Preventive Medicine, The Miriam Hospital, Providence, Rhode Island
| | - E. Milu Kojic
- Immunology Center, The Miriam Hospital, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Patrick F. Kiser
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | | | | | | |
Collapse
|
32
|
Zhou T, Hu M, Cost M, Poloyac S, Rohan L. Short communication: expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research. AIDS Res Hum Retroviruses 2013; 29:1496-503. [PMID: 23607746 DOI: 10.1089/aid.2013.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Topical vaginal microbicides have been considered a promising option for preventing the male-to-female sexual transmission of HIV; however, clinical trials to date have not clearly demonstrated robust and reproducible effectiveness results. While multiple approaches may help enhance product effectiveness observed in clinical trials, increasing the drug exposure in lower genital tract tissues is a compelling option, given the difficulty in achieving sufficient drug exposure and positive correlation between tissue exposure and microbicide efficacy. Since many microbicide drug candidates are substrates of transporters and/or metabolizing enzymes, there is emerging interest in improving microbicide exposure and efficacy through local modulation of transporters and enzymes in the female lower genital tract. However, no systematic information on transporter/enzyme expression is available for ectocervical and vaginal tissues of premenopausal women, the genital sites most relevant to microbicide drug delivery. The current study utilized reverse transcriptase polymerase chain reaction (RT-PCR) to examine the mRNA expression profile of 22 transporters and 19 metabolizing enzymes in premenopausal normal human ectocervix and vagina. Efflux and uptake transporters important for antiretroviral drugs, such as P-gp, BCRP, OCT2, and ENT1, were found to be moderately or highly expressed in the lower genital tract as compared to liver. Among the metabolizing enzymes examined, most CYP isoforms were not detected while a number of UGTs such as UGT1A1 were highly expressed. Moderate to high expression of select transporters and enzymes was also observed in mouse cervix and vagina. The implications of this information on microbicide research is also discussed, including microbicide pharmacokinetics, the utilization of the mouse model in microbicide screening, as well as the in vivo functional studies of cervicovaginal transporters and enzymes.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Marilyn Cost
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Rastogi R, Teller RS, Mesquita PMM, Herold BC, Kiser PF. Osmotic pump tablets for delivery of antiretrovirals to the vaginal mucosa. Antiviral Res 2013; 100:255-8. [PMID: 23973812 DOI: 10.1016/j.antiviral.2013.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Vaginal pre-exposure prophylaxis has focused heavily on gel formulations. Low adherence linked with frequent dosing and short therapeutic duration has emerged as the major reason for inconsistent efficacy outcomes with gels in clinical trials. Osmotic pumps can achieve versatile drug release profiles however, have not been explored for vaginal delivery. In this report, we describe an osmotic pump tablet (OPT) that can deliver antiretrovirals for several days. We also describe configuring the OPT for pH sensitive delivery where the drug delivery system consistently delivers an antiretroviral at vaginal pH and then gives a burst release triggered by a coitally associated pH increase. We have investigated the vaginal OPT for multiple day delivery of a potent antiretroviral, IQP-0528 in a sheep model. To effectively register spatial drug distribution we also engineered a tool to precisely collect multiple vaginal fluid samples. In a 10-day duration post single application, high micromolar mucosal levels were obtained with peak concentration more than 6 logs higher than the EC50 of IQP-0528. Overall, our results show successful implementation of the osmotic pump technology for vaginal antiretroviral delivery.
Collapse
Affiliation(s)
- Rachna Rastogi
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | | | | | | | | |
Collapse
|
34
|
To EE, Hendrix CW, Bumpus NN. Dissimilarities in the metabolism of antiretroviral drugs used in HIV pre-exposure prophylaxis in colon and vagina tissues. Biochem Pharmacol 2013; 86:979-90. [PMID: 23965226 DOI: 10.1016/j.bcp.2013.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 12/12/2022]
Abstract
Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP.
Collapse
Affiliation(s)
- Elaine E To
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725N Wolfe St, WBSB 302, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
35
|
A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34:6202-28. [PMID: 23726227 DOI: 10.1016/j.biomaterials.2013.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Successful treatment and control of HIV/AIDS is one of the biggest challenges of 21st century. More than 33 million individuals are infected with HIV worldwide and more than 2 million new cases of HIV infection have been reported. The situation demands development of effective prevention strategies to control the pandemic of AIDS. Due to lack of availability of an effective HIV vaccine, antiretroviral drugs and nucleic acid therapeutics like siRNA have been explored for HIV prophylaxis. Clinical trials shave shown that antiretroviral drugs, tenofovir and emtricitabine can offer some degree of HIV prevention. However, complete prevention of HIV infection has not been achieved yet. Nanotechnology has brought a paradigm shift in the diagnosis, treatment and prevention of many diseases. The current review discusses potential of various nanocarriers such as dendrimers, polymeric nanoparticles, liposomes, lipid nanocarriers, drug nanocrystals, inorganic nanocarriers and nanofibers in improving efficacy of various modalities available for HIV prophylaxis.
Collapse
|
36
|
Date AA, Shibata A, Goede M, Sanford B, La Bruzzo K, Belshan M, Destache CJ. Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis. Antiviral Res 2012; 96:430-6. [PMID: 23041201 PMCID: PMC3513487 DOI: 10.1016/j.antiviral.2012.09.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/28/2022]
Abstract
The objective of this investigation was to develop a thermosensitive vaginal gel containing raltegravir+efavirenz loaded PLGA nanoparticles (RAL+EFV-NPs) for pre-exposure prophylaxis of HIV. RAL+EFV-NPs were fabricated using a modified emulsion-solvent evaporation method and characterized for size and zeta potential. The average size and surface charge of RAL+EFV-NP were 81.8±6.4 nm and -23.18±7.18 mV respectively. The average encapsulation efficiency of raltegravir and efavirenz was 55.5% and 98.2% respectively. Thermosensitive vaginal gel containing RAL+EFV-NPs was successfully prepared using a combination of Pluronic F127 (20% w/v) and Pluronic F68 (1% w/v). Incorporation RAL+EFV-NPs in the gel did not result in nanoparticle aggregation and RAL+EFV-NPs containing gel showed thermogelation at 32.5°C. The RAL+EFV-NPs were evaluated for inhibition of HIV-1(NL4-3) using TZM-bl indicator cells. The EC(90) of RAL+EFV-NPs was lower than raltegravir+efavirenz (RAL+EFV) solution but did not reach significance. Compared to control HeLa cells without any treatment, RAL+EFV-NPs or blank gel were not cytotoxic for 14 days in vitro. The intracellular levels of efavirenz in RAL+EFV-NPs treated HeLa cells were above the EC(90) for 14 days whereas raltegravir intracellular concentrations were eliminated within 6 days. Transwell experiments of NPs-in-gel demonstrated rapid transfer of fluorescent nanoparticles from the gel and uptake in HeLa cells within 30 min. These data demonstrate the potential of antiretroviral NP-embedded vagina gels for long-term vaginal pre-exposure prophylaxis of heterosexual HIV-1 transmission.
Collapse
Affiliation(s)
- Abhijit A. Date
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | | | - Michael Goede
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Bridget Sanford
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Krista La Bruzzo
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - Michel Belshan
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | | |
Collapse
|
37
|
Grammen C, Augustijns P, Brouwers J. In vitro profiling of the vaginal permeation potential of anti-HIV microbicides and the influence of formulation excipients. Antiviral Res 2012; 96:226-33. [PMID: 23000496 DOI: 10.1016/j.antiviral.2012.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 12/22/2022]
Abstract
In the search for an effective anti-HIV microbicidal gel, limited drug penetration into the vaginal submucosa is a possible reason for failed protection against HIV transmission. To address this issue in early development, we here describe a simple in vitro strategy to predict the tissue permeation potential of vaginally applied drugs, based on solubility, permeability and flux assessment. We demonstrated this approach for four model microbicides (tenofovir, darunavir, saquinavir mesylate and dapivirine) and additionally examined the influence of formulation excipients on the permeation potential. When formulated in an aqueous-based HEC gel, high flux values across an HEC-1A cell layer were reached by tenofovir, as a result of its high aqueous solubility. In contrast, saquinavir and dapivirine fluxes remained low due to poor permeability and solubility, respectively. These low fluxes suggest limited in vivo tissue penetration, possibly leading to lack of efficacy. Dapivirine fluxes, however, could be enhanced up to 30-fold, by including formulation excipients such as polyethylene glycol 1000 (20%) or cyclodextrins (5%) in the HEC gels. Alternative formulations, i.e. emulsions or silicone elastomer gels, were less effective in flux enhancement compared to cyclodextrin-HEC gels. In conclusion, implementing the proposed solubility and permeability profiling in early microbicide development may contribute to the successful selection of promising microbicide candidates and appropriate formulations.
Collapse
Affiliation(s)
- Carolien Grammen
- Laboratory for Pharmacotechnology and Biopharmacy, KU Leuven, Belgium
| | | | | |
Collapse
|