1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Berger JA, Simpao AF, Dubow SR, McClung HA, Liu GW, Waldman AT, Drum ET. A retrospective observational cohort study of the anesthetic management and outcomes of pediatric patients with Alexander disease undergoing lumbar puncture or magnetic resonance imaging. Paediatr Anaesth 2024; 34:810-817. [PMID: 38818870 PMCID: PMC11223980 DOI: 10.1111/pan.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Alexander disease is a rare, progressive leukodystrophy, which predisposes patients to complications under general anesthesia due to clinical manifestations including developmental delay, seizures, dysphagia, vomiting, and sleep apnea. However, study of anesthetic outcomes is limited. AIMS Our aim was to describe patient characteristics, anesthetic techniques, and anesthesia-related complications for Alexander disease patients undergoing magnetic resonance imaging and/or lumbar puncture at a quaternary-care children's hospital. METHODS We performed a retrospective review of anesthetic outcomes in patients with Alexander disease enrolled in a prospective observational study. Included patients had diagnosed Alexander disease and underwent magnetic resonance imaging and/or lumbar puncture at our institution. We excluded anesthetics for other procedures or at outside institutions. Collected data included patient characteristics, anesthetic techniques, medications, and complications under anesthesia and in the subsequent 24 h. We performed descriptive statistics as appropriate. RESULTS Forty patients undergoing 64 procedures met inclusion criteria. Fifty-six procedures (87.5%) required general anesthesia or monitored anesthesia care (MAC) and eight (12.5%) did not. The general anesthesia/MAC group tended to be younger than nonanesthetized patients (median age 6 years [IQR 3.8; 9] vs. 14.5 years [IQR 12.8; 17.5]). In both groups, dysphagia (78.6% vs. 87.5%, respectively), seizures (62.5% vs. 25%), and recurrent vomiting (17.9% vs. 25%) were frequently reported preprocedure symptoms. Inhalational induction was common (N = 48; 85.7%), and two (3.6%) underwent rapid sequence induction. Serious complications were rare, with no aspiration or seizures. Hypotension resolving with ephedrine occurred in eight cases (14.3%). One patient each (1.8%) experienced postprocedure emergence agitation or vomiting. Fifty-three (94.6%) were ambulatory procedures. No inpatients required escalation in acuity of care. CONCLUSIONS In this single-center study, patients with Alexander disease did not experience frequent or irreversible complications while undergoing general anesthesia/MAC. Co-morbid symptoms were not increased postanesthesia. Some patients may not require anesthesia to complete short procedures.
Collapse
Affiliation(s)
- Jessica A. Berger
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia
| | - Allan F. Simpao
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia
| | - Scott R. Dubow
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia
| | - Heather A. McClung
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia
| | | | - Amy T. Waldman
- Division of Neurology, Children’s Hospital of Philadelphia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine
| | - Elizabeth T. Drum
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia
| |
Collapse
|
3
|
Jeong S. Function and regulation of nitric oxide signaling in Drosophila. Mol Cells 2024; 47:100006. [PMID: 38218653 PMCID: PMC10880079 DOI: 10.1016/j.mocell.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024] Open
Abstract
Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.
Collapse
Affiliation(s)
- Sangyun Jeong
- Department of Molecular Biology, Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
4
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
5
|
Yuan Y, Wu Q, Huo L, Wang H, Liu X. Case report: Alexander's disease with "head drop" as the main symptom and literature review. Front Neurol 2022; 13:1002527. [PMID: 36601294 PMCID: PMC9807021 DOI: 10.3389/fneur.2022.1002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Alexander's disease (AxD) is a rare autosomal dominant hereditary disorder that is caused by the mutations in the GFAP gene, which encodes the glial fibrillary acidic protein (GFAP). This neurogenerative disease has many clinical manifestations, and the onset of disease spans a wide range of ages, from newborns to children, adults, and even the elderly. An overaccumulation of the expression of GFAP has a close causal relationship with the pathogenesis of Alexander's disease. Usually, the disease has severe morbidity and high mortality, and can be divided into three distinct subgroups that are based on the age of clinical presentation: infantile (0-2 years), juvenile (2-13 years), and adult (>13 years). Children often present with epilepsy, macrocephaly, and psychomotor retardation, while adolescents and adults mainly present with muscle weakness, spasticity, and bulbar symptoms. Atonic seizures are a type of epilepsy that often appears in the Lennox-Gastaut syndrome and myoclonic-astatic epilepsy in early childhood; however, the prognosis is often poor. Atonic episodes are characterized by a sudden or frequent reduction in muscle tone that can be local (such as head, neck, or limb) or generalized. Here, we report a 4-year-old girl whose main symptoms were intermittent head drop movements, which could break the frontal frame and even bleed in severe conditions. A video-encephalography (VEEG) showed that the nodding movements were atonic seizures. A head magnetic resonance imaging (MRI) revealed abnormal signals in the bilateral paraventricular and bilateral subfrontal cortex. The gene detection analyses indicated that the GFAP gene exon 1 c.262 C>T was caused by a heterozygous mutation, as both her parents were of the wild-type. The girl had no other abnormal manifestations except atonic seizures. She could communicate normally and go to kindergarten. After an oral administration of sodium valproate, there were no atonic attacks. Although epilepsy is a common symptom of Alexander's disease, atonic seizures have not been reported to date. Therefore, we report a case of Alexander's disease with atonic seizures as the main symptom and provide a review of the literature.
Collapse
|
6
|
Kang YR, Lee SH, Lin NH, Lee SJ, Yang AW, Chandrasekaran G, Kang KW, Jin MS, Kim MK, Perng MD, Choi SY, Nam TS. A novel in-frame GFAP p.E138_L148del mutation in Type II Alexander disease with atypical phenotypes. Eur J Hum Genet 2022; 30:687-694. [PMID: 35246666 DOI: 10.1038/s41431-022-01073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alexander disease (AxD) is a neurodegenerative astrogliopathy caused by mutation in the glial fibrillary acidic protein (GFAP) gene. A 42-year-old Korean man presented with temporary gait disturbance and psychiatric regression after a minor head trauma in the absence of bulbar symptoms and signs. Magnetic resonance images of the brain and spinal cord showed significant atrophy of the medulla oblongata and the entire spinal cord as well as contrast-enhanced T2 hypointensity in the basal ganglia. DNA sequencing revealed a novel 33-bp in-frame deletion mutation (p.Glu138_Leu148del) within the 1B rod domain of GFAP, which was predicted to be deleterious by PROVEAN analysis. To test whether the deletion mutant is disease-causing, we performed in vitro GFAP assembly and sedimentation assays, and GFAP aggregation assays in human adrenal carcinoma SW13 (Vim-) cells and rat primary astrocytes. All the assays revealed that GFAP p.Glu138_Leu148del is aggregation prone. Based on these findings, we diagnosed the patient with Type II AxD. This is a report that demonstrates the pathogenicity of InDel mutation of GFAP through functional studies. This patient's atypical presentation as well as the discrepancy between clinical symptoms and radiologic findings may extend the scope of AxD.
Collapse
Affiliation(s)
- You-Ri Kang
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - So-Hyun Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Seung-Jin Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Ai-Wen Yang
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
7
|
Song X, Jiang J, Tian W, Zhan F, Zhu Z, Li B, Tang H, Cao L. A report of two cases of bulbospinal form Alexander disease and preliminary exploration of the disease. Mol Med Rep 2021; 24:572. [PMID: 34109421 PMCID: PMC8201446 DOI: 10.3892/mmr.2021.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 11/05/2022] Open
Abstract
Alexander disease (AxD) is a cerebral white matter disease affecting a wide range of ages, from infants to adults. In the present study, two cases of bulbospinal form AxD were reported, and a preliminary exploration of AxD was conducted thorough clinical, functional magnetic resonance imaging (fMRI) and functional analyses. In total, two de novo mutations in the glial fibrillary acidic protein (GFAP) gene (c.214G>A and c.1235C>T) were identified in unrelated patients (one in each patient). Both patients showed increased regional neural activity and functional connectivity in the cerebellum and posterior parietal cortex according to fMRI analysis. Notably, grey matter atrophy was discovered in the patient with c.214G>A variant. Functional experiments revealed aberrant accumulation of mutant GFAP and decreased solubility of c.1235C>T variant. Under pathological conditions, autophagic flux was activated for GFAP aggregate degradation. Moreover, transcriptional data of AxD and healthy human brain samples were obtained from the Gene Expression Omnibus database. Gene set enrichment analysis revealed an upregulation of immune‑related responses and downregulation of ion transport, synaptic transmission and neurotransmitter homeostasis. Enrichment analysis of cell‑specific differentially expressed genes also indicated a marked inflammatory environment in AxD. Overall, the clinical features of the two patients with bulbospinal form AxD were thoroughly described. To the best of our knowledge, the brain atrophy pattern and spontaneous brain functional network activity of patients with AxD were explored for the first time. Cytological experiments provided evidence of the pathogenicity of the identified variants. Furthermore, bioinformatics analysis found that inflammatory immune‑related reactions may play a critical role in AxD, which may be conducive to the understanding of this disease.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingwen Jiang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wotu Tian
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Feixia Zhan
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zeyu Zhu
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Binyin Li
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Huidong Tang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Li Cao
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
8
|
Heshmatzad K, Haghi Panah M, Tavasoli AR, Ashrafi MR, Mahdieh N, Rabbani B. GFAP variants leading to infantile Alexander disease: Phenotype and genotype analysis of 135 cases and report of a de novo variant. Clin Neurol Neurosurg 2021; 207:106754. [PMID: 34146839 DOI: 10.1016/j.clineuro.2021.106754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Alexander disease (AxD) is a rare autosomal dominant disorder due to GFAP mutations; infantile AxD is the most common severe form which usually results in death. In this study, phenotype and genotype analysis of all reported cases with IAxD are reported as well as a de novo variant. METHODS We conduct a comprehensive review on all reported Infantile AxD due to GFAP mutation. Clinical data and genetics of the reported patients were analyzed. Clinical evaluations, pedigree drawing, MRI and sequencing of GFAP were performed. RESULTS 135 patients clinically diagnosed with IAxD had GFAP mutations. A total of fifty three variants of GFAP were determined; 19 of them were located at 1A domain. The four common prevalent variants (c 0.715C>T, c 0.236G˃A, c 0.716G˃A, and c 0.235C˃T) were responsible for 64/135 (47.4%) of the patients. Seizure was the dominant clinical symptom (62.3%) followed by macrocephaly (41%), developmental delay (23.9%) and spasticity (23.9%). A de novo variant c 0.715C˃T was found in the presented Iranian case. DISCUSSION The majority of GFAP variant are located in a specific domain of the protein. Seizure as the most common symptom of IAxD could be considered. This study highlighted the role of genetic testing for diagnosing AxD.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Haghi Panah
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Iranian Comprehensive Hemophilia Care Center, Tehran, Iran.
| |
Collapse
|
9
|
Resende LL, de Paiva ARB, Kok F, da Costa Leite C, Lucato LT. Adult Leukodystrophies: A Step-by-Step Diagnostic Approach. Radiographics 2020; 39:153-168. [PMID: 30620693 DOI: 10.1148/rg.2019180081] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukodystrophies usually affect children, but in the last several decades, many instances of adult leukodystrophies have been reported in the medical literature. Because the clinical manifestation of these diseases can be nonspecific, MRI can help with establishing a diagnosis. A step-by-step approach to assist in the diagnosis of adult leukodystrophies is proposed in this article. The first step is to identify symmetric white matter involvement, which is more commonly observed in these patients. The next step is to fit the symmetric white matter involvement into one of the proposed patterns. However, a patient may present with more than one pattern of white matter involvement. Thus, the third step is to evaluate for five distinct characteristics-including enhancement, lesions with signal intensity similar to that of cerebrospinal fluid, susceptibility-weighted MRI signal intensity abnormalities, abnormal peaks at MR spectroscopy, and spinal cord involvement-to further narrow the differential diagnosis. ©RSNA, 2019.
Collapse
Affiliation(s)
- Lucas Lopes Resende
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Anderson Rodrigues Brandão de Paiva
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Fernando Kok
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Claudia da Costa Leite
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Leandro Tavares Lucato
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| |
Collapse
|
10
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Neuroimaging of Pediatric Metabolic Disorders with Emphasis on Diffusion-Weighted Imaging and MR Spectroscopy: A Pictorial Essay. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0251-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model. BMC Neurol 2017; 17:175. [PMID: 28882119 PMCID: PMC5590178 DOI: 10.1186/s12883-017-0938-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022] Open
Abstract
Background Alexander disease (AxD) is an astrogliopathy that predominantly affects the white matter of the central nervous system (CNS), and is caused by a mutation in the gene encoding the glial fibrillary acidic protein (GFAP), an intermediate filament primarily expressed in astrocytes and ependymal cells. The main pathologic feature of AxD is the presence of Rosenthal fibers (RFs), homogeneous eosinophilic inclusions found in astrocytes. Because of difficulties in procuring patient’ CNS tissues and the presence of RFs in other pathologic conditions, there is a need to develop an in vivo assay that can determine whether a mutation in the GFAP results in aggregation and is thus disease-causing. Methods We found a GFAP mutation (c.382G > A, p.Asp128Asn) in a 68-year-old man with slowly progressive gait disturbance with tendency to fall. The patient was tentatively diagnosed with AxD based on clinical and radiological findings. To develop a vertebrate model to assess the aggregation tendency of GFAP, we expressed several previously reported mutant GFAPs and p.Asp128Asn GFAP in zebrafish embryos. Results The most common GFAP mutations in AxD, p.Arg79Cys, p.Arg79His, p.Arg239Cys and p.Arg239His, and p.Asp128Asn induced a significantly higher number of GFAP aggregates in zebrafish embryos than wild-type GFAP. Conclusions The p.Asp128Asn GFAP mutation is likely to be a disease-causing mutation. Although it needs to be tested more extensively in larger case series, the zebrafish assay system presented here would help clinicians determine whether GFAP mutations identified in putative AxD patients are disease-causing.
Collapse
|
13
|
Crompton LA, Cordero‐Llana O, Caldwell MA. Astrocytes in a dish: Using pluripotent stem cells to model neurodegenerative and neurodevelopmental disorders. Brain Pathol 2017; 27:530-544. [PMID: 28585380 PMCID: PMC8028895 DOI: 10.1111/bpa.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is now possible to study regionalised human astrocytes in a dish and to model their contribution to neurodevelopmental and neurodegenerative disorders. The evidence challenging the traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition we compare current protocols for the generation of regionalised astrocytes and how these can be further refined by our growing knowledge of neurodevelopment. We conclude by proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures that is critical for reproducible and robust disease modelling.
Collapse
Affiliation(s)
- Lucy A. Crompton
- School of Biochemistry, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Oscar Cordero‐Llana
- Bristol Medical School, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Maeve A. Caldwell
- Trinity College Institute for NeuroscienceTrinity College Dublin 2Ireland
| |
Collapse
|
14
|
Pavone P, Praticò AD, Rizzo R, Corsello G, Ruggieri M, Parano E, Falsaperla R. A clinical review on megalencephaly: A large brain as a possible sign of cerebral impairment. Medicine (Baltimore) 2017; 96:e6814. [PMID: 28658095 PMCID: PMC5500017 DOI: 10.1097/md.0000000000006814] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Megalencephaly and macrocephaly present with a head circumference measurement 2 standard deviations above the age-related mean. However, even if pathologic events resulting in both megalencephaly and macrocephaly may coexist, a distinction between these two entities is appropriate, as they represent clinical expression of different disorders with a different approach in clinical work-up, overall prognosis, and treatment. Megalencephaly defines an increased growth of cerebral structures related to dysfunctional anomalies during the various steps of brain development in the neuronal proliferation and/or migration phases or as a consequence of postnatal abnormal events. The disorders associated with megalencephaly are classically defined into 3 groups: idiopathic or benign, metabolic, and anatomic. In this article, we seek to underline the clinical aspect of megalencephaly, emphasizing the main disorders that manifest with this anomaly in an attempt to properly categorize these disorders within the megalencephaly group.
Collapse
Affiliation(s)
- Piero Pavone
- University-Hospital “Policlinico-Vittorio Emanuele”
| | - Andrea Domenico Praticò
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry
| | - Enrico Parano
- National Research Council, Section of Catania, Catania, Italy
| | | |
Collapse
|
15
|
Sone J, Mori K, Inagaki T, Katsumata R, Takagi S, Yokoi S, Araki K, Kato T, Nakamura T, Koike H, Takashima H, Hashiguchi A, Kohno Y, Kurashige T, Kuriyama M, Takiyama Y, Tsuchiya M, Kitagawa N, Kawamoto M, Yoshimura H, Suto Y, Nakayasu H, Uehara N, Sugiyama H, Takahashi M, Kokubun N, Konno T, Katsuno M, Tanaka F, Iwasaki Y, Yoshida M, Sobue G. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 2016; 139:3170-3186. [PMID: 27797808 PMCID: PMC5382941 DOI: 10.1093/brain/aww249] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/30/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous system, and also in the visceral organs. NIID has been considered to be a heterogeneous disease because of the highly variable clinical manifestations, and ante-mortem diagnosis has been difficult. However, since we reported the usefulness of skin biopsy for the diagnosis of NIID, the number of NIID diagnoses has increased, in particular adult-onset NIID. In this study, we studied 57 cases of adult-onset NIID and described their clinical and pathological features. We analysed both NIID cases diagnosed by post-mortem dissection and by ante-mortem skin biopsy based on the presence of characteristic eosinophilic, hyaline and ubiquitin-positive intanuclear inclusion: 38 sporadic cases and 19 familial cases, from six families. In the sporadic NIID cases with onset age from 51 to 76, dementia was the most prominent initial symptom (94.7%) as designated 'dementia dominant group', followed by miosis, ataxia and unconsciousness. Muscle weakness and sensory disturbance were also observed. It was observed that, in familial NIID cases with onset age less than 40 years, muscle weakness was seen most frequently (100%), as designated 'limb weakness group', followed by sensory disturbance, miosis, bladder dysfunction, and dementia. In familial cases with more than 40 years of onset age, dementia was most prominent (100%). Elevated cerebrospinal fluid protein and abnormal nerve conduction were frequently observed in both sporadic and familial NIID cases. Head magnetic resonance imaging showed high intensity signal in corticomedullary junction in diffusion-weighted image in both sporadic and familial NIID cases, a strong clue to the diagnosis. All of the dementia dominant cases presented with this type of leukoencephalopathy on head magnetic resonance imaging. Both sporadic and familial NIID cases presented with a decline in Mini-Mental State Examination and Frontal Assessment Battery scores. Based on these clinicopathological features, we proposed a diagnosis flow chart of adult-onset NIID. Our study suggested that the prevalence rate of adult-onset NIID may be higher than previously thought, and that NIID may be underdiagnosed. We should take NIID into account for differential diagnosis of leukoencephalopathy and neuropathy.
Collapse
Affiliation(s)
- Jun Sone
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,2 Department of Therapeutics for Intractable Neurological Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Mori
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,3 Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, Japan
| | - Tomonori Inagaki
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryu Katsumata
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinnosuke Takagi
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Yokoi
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kunihiko Araki
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyasu Kato
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohiko Nakamura
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruki Koike
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Takashima
- 4 Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- 4 Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Kohno
- 5 Department of Neurology, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan
| | - Takashi Kurashige
- 6 Department of Neurology, National Hospital Organization Kure Medical Centre, Kure, Hiroshima, Japan
| | - Masaru Kuriyama
- 7 Department of Neurology, Ota Memorial Hospital, Fukuyama, Hiroshima, Japan
| | - Yoshihisa Takiyama
- 8 Department of Neurology, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Mai Tsuchiya
- 8 Department of Neurology, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Naoyuki Kitagawa
- 9 Department of Neurology, Kosei Chuo General Hospital, Tokyo, Japan
| | - Michi Kawamoto
- 10 Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hajime Yoshimura
- 10 Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yutaka Suto
- 11 Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Hiroyuki Nakayasu
- 11 Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Naoko Uehara
- 12 Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Hiroshi Sugiyama
- 12 Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Makoto Takahashi
- 13 Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| | - Norito Kokubun
- 14 Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Takuya Konno
- 15 Department of Neurology, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | - Masahisa Katsuno
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumiaki Tanaka
- 16 Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yasushi Iwasaki
- 17 Department of Neuropathology, Institute for Medical Sciences of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mari Yoshida
- 17 Department of Neuropathology, Institute for Medical Sciences of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Gen Sobue
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan .,18 Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
16
|
Guichet PO, Guelfi S, Ripoll C, Teigell M, Sabourin JC, Bauchet L, Rigau V, Rothhut B, Hugnot JP. Asymmetric Distribution of GFAP in Glioma Multipotent Cells. PLoS One 2016; 11:e0151274. [PMID: 26953813 PMCID: PMC4783030 DOI: 10.1371/journal.pone.0151274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.
Collapse
Affiliation(s)
- Pierre-Olivier Guichet
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Sophie Guelfi
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Chantal Ripoll
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Marisa Teigell
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Jean-Charles Sabourin
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Luc Bauchet
- CHU Montpellier, Hopital Gui de Chaulliac, 80, avenue Augustin Fliche, 34295 Montpellier, France
| | - Valérie Rigau
- CHU Montpellier, Hopital Gui de Chaulliac, 80, avenue Augustin Fliche, 34295 Montpellier, France
| | - Bernard Rothhut
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Jean-Philippe Hugnot
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
- Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- * E-mail: ;
| |
Collapse
|
17
|
Elsayed M, Magistretti PJ. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 2015; 9:468. [PMID: 26733803 PMCID: PMC4679853 DOI: 10.3389/fncel.2015.00468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.
Collapse
Affiliation(s)
- Maha Elsayed
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre J Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Department of Psychiatry, Center for Psychiatric Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
18
|
Van Poucke M, Martlé V, Van Brantegem L, Ducatelle R, Van Ham L, Bhatti S, Peelman LJ. A canine orthologue of the human GFAP c.716G>A (p.Arg239His) variant causes Alexander disease in a Labrador retriever. Eur J Hum Genet 2015; 24:852-6. [PMID: 26486469 DOI: 10.1038/ejhg.2015.223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/04/2015] [Accepted: 09/12/2015] [Indexed: 01/12/2023] Open
Abstract
Alexander disease (AxD) is a fatal neurodegenerative disorder of astrocyte dysfunction in man, for which already a number of causal variants are described, mostly de novo dominant missense variants in the glial fibrillary acidic protein (GFAP). A similar disorder was already phenotypically described in animals but without the identification of causal variants. We diagnosed a Labrador retriever with a juvenile form of AxD based on clinical (tetraparesis with spastic front limbs mimicking 'swimming puppy syndrome') and pathological (the detection of GFAP containing Rosenthal fibers in astrocytes) features. In order to identify a causal variant, the coding sequences of the four detected GFAP transcript variants (orthologues from human transcript variants α, γ, δ/ɛ and κ) were sequenced. From the five detected variants, a heterozygous c.719G>A nucleotide substitution resulting in a p.Arg240His substitution was considered to be causal, because it is orthologous to the heterozygous de novo dominant c.716G>A (p.Arg239His) hotspot variant in man, proven to cause a severe phenotype. In addition, the variant was not found in 50 unrelated healthy Labrador retrievers. Because the condition in dogs is morphologically similar to man, it could be a promising animal model for further elucidating the genotype/phenotype correlation in order to treat or prevent this disease.
Collapse
Affiliation(s)
- Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentine Martlé
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Van Ham
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc J Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Type II (adult onset) Alexander disease in a paraplegic male with a rare D128N mutation in the GFAP gene. Clin Neuropathol 2015; 34:298-302. [PMID: 25997626 PMCID: PMC4766795 DOI: 10.5414/np300863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Abstract not available.
Collapse
|
20
|
Leite CC, Lucato LT, Santos GT, Kok F, Brandão AR, Castillo M. Imaging of adult leukodystrophies. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:625-32. [DOI: 10.1590/0004-282x20140095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022]
Abstract
Leukodystrophies are genetically determined white matter disorders. Even though leukodystrophies essentially affect children in early infancy and childhood, these disorders may affect adults. In adults, leukodystrophies may present a distinct clinical and imaging presentation other than those found in childhood. Clinical awareness of late-onset leukodystrophies should be increased as new therapies emerge. MRI is a useful tool to evaluate white matter disorders and some characteristics findings can help the diagnosis of leukodystrophies. This review article briefly describes the imaging characteristics of the most common adult leukodystrophies.
Collapse
Affiliation(s)
- Claudia Costa Leite
- Universidade de São Paulo, Brazil; University of North Carolina, United States
| | | | | | | | | | | |
Collapse
|
21
|
Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. Eur J Hum Genet 2014; 23:72-8. [PMID: 24755947 DOI: 10.1038/ejhg.2014.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 02/23/2014] [Accepted: 03/05/2014] [Indexed: 11/09/2022] Open
Abstract
Alexander disease (AxD) is an astrogliopathy that primarily affects the white matter of the central nervous system (CNS). AxD is caused by mutations in a gene encoding GFAP (glial fibrillary acidic protein). The GFAP mutations in AxD have been reported to act in a gain-of-function manner partly because the identified mutations generate practically full-length GFAP. We found a novel nonsense mutation (c.1000 G>T, p.(Glu312Ter); also termed p.(E312*)) within a rod domain of GFAP in a 67-year-old Korean man with a history of memory impairment and leukoencephalopathy. This mutation, GFAP p.(E312*), removes part of the 2B rod domain and the whole tail domain from the GFAP. We characterized GFAP p.(E312*) using western blotting, in vitro assembly and sedimentation assay, and transient transfection of human adrenal cortex carcinoma SW13 (Vim(+)) cells with plasmids encoding GFAP p.(E312*). The GFAP p.(E312*) protein, either alone or in combination with wild-type GFAP, elicited self-aggregation. In addition, the assembled GFAP p.(E312*) aggregated into paracrystal-like structures, and GFAP p.(E312*) elicited more GFAP aggregation than wild-type GFAP in the human adrenal cortex carcinoma SW13 (Vim(+)) cells. Our findings are the first report, to the best of our knowledge, on this novel nonsense mutation of GFAP that is associated with AxD and paracrystal formation.
Collapse
|
22
|
Abstract
The central nervous system is comprised of numerous cell types that work in concert to facilitate proper function and homeostasis. Disruption of these carefully orchestrated networks results in neuronal dysfunction, manifesting itself in a variety of neurologic disorders. Although neuronal dysregulation is causative of symptoms that manifest in the clinic, the etiology of these disorders is often more complex than simply a loss of neurons or intrinsic dysregulation of their function. In the adult brain, astrocytes comprise the most abundant cell type and play key roles in central nervous system physiology; therefore, it stands to reason that dysregulation of normal astrocyte function contributes to the etiology and progression of varied neurologic disorders. We review here some neurologic disorders associated with an astrocyte factor and discuss how the related astrocyte dysfunction contributes to the etiology or progression of these disorders or both.
Collapse
|
23
|
Lundgaard I, Osório MJ, Kress BT, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. Neuroscience 2013; 276:161-73. [PMID: 24231735 DOI: 10.1016/j.neuroscience.2013.10.050] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. We discuss how astrocytes in the white matter are specialized to promote myelination and myelin maintenance by clearance of extracellular ions and neurotransmitters and by secretion of pro-myelinating factors. Additionally, astrocyte-oligodendrocyte coupling via gap junctions is crucial for both myelin formation and maintenance, due to K(+) buffering and possibly metabolic support for oligodendrocytes via the panglial syncytium. Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.
Collapse
Affiliation(s)
- I Lundgaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - M J Osório
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - B T Kress
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - S Sanggaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - M Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
24
|
da Silva Pereira CC, Gattás GS, Lucato LT. Alexander disease: a novel mutation in the glial fibrillary acidic protein gene with initial uncommon clinical and magnetic resonance imaging findings. J Comput Assist Tomogr 2013; 37:698-700. [PMID: 24045243 DOI: 10.1097/rct.0b013e31829f5a04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder related to mutations in the glial fibrillary acidic protein gene. We report the case of a child with disease onset at the age of 3 months and a novel mutation in the glial fibrillary acidic protein gene. Peculiar aspects were initially atypical clinical and magnetic resonance imaging (MRI) findings, which became typical during follow-up. The child was born after an uneventful pregnancy, presented initially only as a failure to thrive. The first MRI examination demonstrated obstructive hydrocephalus and cerebral white matter abnormalities (which were more prominent posteriorly). During follow-up, her clinical picture became typical of AxD with macrocephaly and neurodevelopmental delay. Sequential MRI examinations showed frontal white matter involvement, together with exuberant forniceal lesions and areas of contrast enhancement.
Collapse
Affiliation(s)
- Conceição Campanário da Silva Pereira
- From the *Department of Child Neurology, and †Department of Radiology, Hospital Infantil Sabará, Sao Paulo, Brazil; and ‡Department of Radiology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
25
|
Levin MH, Bennett JL, Verkman AS. Optic neuritis in neuromyelitis optica. Prog Retin Eye Res 2013; 36:159-71. [PMID: 23545439 PMCID: PMC3770284 DOI: 10.1016/j.preteyeres.2013.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision.
Collapse
Affiliation(s)
- Marc H Levin
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
26
|
Torisu H, Yoshikawa Y, Yamaguchi-Takada Y, Yano T, Sanefuji M, Ishizaki Y, Sawaishi Y, Hara T. Alexander disease with mild dorsal brainstem atrophy and infantile spasms. Brain Dev 2013; 35:441-4. [PMID: 22818990 DOI: 10.1016/j.braindev.2012.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/05/2012] [Accepted: 06/26/2012] [Indexed: 01/27/2023]
Abstract
We present the case of a Japanese male infant with Alexander disease who developed infantile spasms at 8 months of age. The patient had a cluster of partial seizures at 4 months of age. He presented with mild general hypotonia and developmental delay. Macrocephaly was not observed. Brain magnetic resonance imaging (MRI) findings fulfilled all MRI-based criteria for the diagnosis of Alexander disease and revealed mild atrophy of the dorsal pons and medulla oblongata with abnormal intensities. DNA analysis disclosed a novel heterozygous missense mutation (c.1154 C>T, p.S385F) in the glial fibrillary acidic protein gene. At 8 months of age, tonic spasms occurred, and electroencephalography (EEG) revealed hypsarrhythmia. Lamotrigine effectively controlled the infantile spasms and improved the abnormal EEG findings. Although most patients with infantile Alexander disease have epilepsy, infantile spasms are rare. This comorbid condition may be associated with the distribution of the brain lesions and the age at onset of Alexander disease.
Collapse
Affiliation(s)
- Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. J Hum Genet 2013; 58:183-8. [DOI: 10.1038/jhg.2012.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
|
29
|
Ceftriaxone for Alexander's Disease: A Four-Year Follow-Up. JIMD Rep 2012; 9:67-71. [PMID: 23430549 DOI: 10.1007/8904_2012_180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 02/06/2023] Open
Abstract
In 2010, we reported the successful clinical outcome related to a 20-month course of intravenous, cyclical ceftriaxone, in a patient with adult-onset Alexander's disease. We now provide evidence that the progression of the patient's signs/symptoms was halted and reversed with a 4-year-long extension of the trial.The patient's clinical signs/symptoms were evaluated before the start and every 6 months for 6 years. For the early 2 years, without therapy, and for the following 4 years, after intravenous ceftriaxone 2 g daily, for 3 weeks monthly during the initial 4 months, then for 15 days monthly.Gait ataxia and dysarthria were assessed clinically on a 0 to 4 scale. Palatal myoclonus and nystagmus/oscillopsia were monitored by videotape and a self-evaluation scale. The degree of disability, measured by a modified Rankin scale, and the brain MRI were periodically evaluated.Before ceftriaxone therapy, in a 2-year period, gait ataxia and dysarthria worsened from mild to marked, palatal myoclonus spread from the soft palate to lower facial muscles, and the patient complained of oscillopsia. After 4 years of ceftriaxone therapy, gait ataxia and dysarthria improved, from marked to mild at clinical rating scales. The palatal myoclonus was undetectable; the patient did not complained of oscillopsia and declared a progressively better quality of life. Ceftriaxone was safe.This case report provides Class IV evidence that intravenous cycles of ceftriaxone may halt and/or reverse the progression of neurodegeneration in patients with adult-onset Alexander's disease and may significantly improve their quality of life.
Collapse
|
30
|
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012; 69:2879-94. [PMID: 22441408 PMCID: PMC11114939 DOI: 10.1007/s00018-012-0958-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.
Collapse
Affiliation(s)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven P. Wichert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
31
|
Zerebrale Bildgebung bei angeborenen Stoffwechselfehlern. Monatsschr Kinderheilkd 2012. [DOI: 10.1007/s00112-012-2686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Cotrina ML, Nedergaard M. Brain connexins in demyelinating diseases: therapeutic potential of glial targets. Brain Res 2012; 1487:61-8. [PMID: 22789906 DOI: 10.1016/j.brainres.2012.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Several demyelinating syndromes have been linked to mutations in glial gap junction proteins, the connexins. Although mutations in connexins of the myelinating cells, Schwann cells and oligodendrocytes, were initially described, recent data have shown that astrocytes also play a major role in the demyelination process. Alterations in astrocytic proteins directly affect the oligodendrocytes' ability to maintain myelin structure, and associated astrocytic proteins that regulate water and ionic fluxes, including aquaporins, can also regulate myelin integrity. Here, we will review the main evidence from human disorders and transgenic mouse models that implicate glial gap junction proteins in demyelinating diseases and the therapeutic potential of some of these targets. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Maria Luisa Cotrina
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640, USA.
| | | |
Collapse
|
33
|
Herrera F, Maher P, Schubert D. c-Jun N-terminal kinase controls a negative loop in the regulation of glial fibrillary acidic protein expression by retinoic acid. Neuroscience 2012; 208:143-9. [PMID: 22387108 DOI: 10.1016/j.neuroscience.2012.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 11/26/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is a protein widely used as a molecular marker for astroglial differentiation and mature astrocytes. We and others have shown previously that retinoic acid and specific cytokines induce the expression of GFAP in neural precursor cells by activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K) phosphorylation pathway. Here, we extend our previous work and show that retinoic acid also activates specifically the c-Jun N-terminal kinase (JNK) phosphorylation pathway, which in turn inhibits GFAP expression. Our results suggest the existence of a negative self-regulatory loop in the phosphorylation pathways that regulates GFAP expression. This loop is constitutively repressed by the PI3K pathway. Our results could be relevant for disorders involving sustained GFAP overexpression in precursor cells, such as glioblastoma and Alexander disease.
Collapse
Affiliation(s)
- F Herrera
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Gazzerro E, Baldassari S, Giacomini C, Musante V, Fruscione F, La Padula V, Biancheri R, Scarfì S, Prada V, Sotgia F, Duncan ID, Zara F, Werner HB, Lisanti MP, Nobbio L, Corradi A, Minetti C. Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC), is a neuronal protein. PLoS One 2012; 7:e32180. [PMID: 22461884 PMCID: PMC3312879 DOI: 10.1371/journal.pone.0032180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022] Open
Abstract
"Hypomyelination and Congenital Cataract", HCC (MIM #610532), is an autosomal recessive disorder characterized by congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS). Using heterozygous mice expressing the b-galactosidase (LacZ) gene under control of the Hyccin gene regulatory elements, we show that the gene is primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons, olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in early postnatal development (postnatal days 2 and 10) and then declined in adult mice. In a model of active myelinogenesis, organotypic cultures of rat Schwann cells (SC)/Dorsal Root Ganglion (DRG) sensory neurons, Hyccin was detected along the neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and 15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved in neuron-to-glia signalling to initiate or maintain myelination.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Muscular and Neurodegenerative Disease Unit, G. Gaslini Institute, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inherited white matter disorders of childhood: a magnetic resonance imaging-based pattern recognition approach. Top Magn Reson Imaging 2011; 22:215-22. [PMID: 24562091 DOI: 10.1097/rmr.0b013e318295b416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inherited white matter disorders of childhood (WMDC) refer to a broad group of progressive inherited disorders that exclusively or predominantly affect myelin formation and/or maintenance. They are often in the form of neurological deficits, developmental delay, or frank encephalopathy and are difficult to diagnose clinically. The imaging diagnostic approach for the WMDC is difficult and demands knowledge of neuroimaging features, age of onset of the disease, genetic pattern, and recognition of the most important clinical findings. Unfortunately, the variability and evolving patterns of imaging findings, combined with the continual discovery of new metabolic diseases, make establishing a diagnosis difficult for radiologists who lack experience in the imaging of suspected metabolic diseases. The goal of this article was to present a structured neuroimaging approach to inherited WMDC based on the most discriminating magnetic resonance imaging features as the starting point to create a list of the most probable diagnoses.
Collapse
|
36
|
Abstract
Alexander disease is a neurological condition associated with prominent white matter deterioration. Its rarity and relatively rapid disease course have provided limited understanding into the cognitive effects of the illness. We report the serial neuropsychological findings of a 21-year-old with normal development and no medical history until age 9, when he experienced refractory sinusitis, stabbing headaches with vertigo, disorientation, and decline in academic and social settings. An MRI scan of the brain found acute demyelinating encephalomyelitis, with a preponderance of white matter degeneration in the bilateral frontal lobes. Interval MRIs showed continued degeneration. Confirmation of Alexander disease was made at age 20 through genetic testing. Four evaluations completed from ages 15 to 21 showed impairment across all cognitive domains. Cognitive deficits were most prominent in new learning and recent memory, executive functions, and fine motor dexterity, and less apparent in information processing and visual scanning speed. These results present evidence for a particular cognitive pattern in individuals with juvenile-onset Alexander disease. Despite extensive white matter degeneration in the frontal lobes, certain tasks associated with frontal lobe integrity were relatively preserved. Further research into the neuropsychological presentation of the subtypes of Alexander disease can enhance diagnostic clarity and treatment planning.
Collapse
Affiliation(s)
- June Restrepo
- Neuropsychological Consultants Inc, Kenosha, WI, USA.
| | | | | |
Collapse
|
37
|
Shiihara T, Yoneda T, Mizuta I, Yoshida T, Nakagawa M, Shimizu N. Serial MRI changes in a patient with infantile Alexander disease and prolonged survival. Brain Dev 2011; 33:604-7. [PMID: 21041050 DOI: 10.1016/j.braindev.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Alexander disease is a major entity of leukodystrophy; magnetic resonance imaging (MRI) studies of the brain typically show extensive changes in the cerebral white matter with frontal predominance. Heterozygous missense mutations of GFAP are thought to be sufficient for the molecular diagnosis, which has widened the Alexander disease entity beyond the classical one. We report the patient, a 16-year-old Japanese boy, with infantile-onset Alexander disease, showing striking MRI findings; extreme white matter loss of cerebrum through cerebellum, severe atrophy of basal ganglia, cerebellum, brain stem, and cervical spinal cord. Molecular analysis showed a heterozygous mutation R239L (c.730G>T) in GFAP. A relative long disease course, over 15years, with the help of mechanical ventilation revealed the striking MRI progression.
Collapse
Affiliation(s)
- Takashi Shiihara
- Department of Neurology, Gunma Children's Medical Center, Gunma, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Kipp M, Clarner T, Gingele S, Pott F, Amor S, van der Valk P, Beyer C. Brain lipid binding protein (FABP7) as modulator of astrocyte function. Physiol Res 2011; 60:S49-60. [PMID: 21777034 DOI: 10.33549/physiolres.932168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Over a century ago, hyperplasia and hypertrophy of astrocytes was noted as a histopathological hallmark of multiple sclerosis and was hypothesized to play an important role in the development and course of this disease. However until today, the factual contribution of astrocytes to multiple sclerosis is elusive. Astrocytes may play an active role during degeneration and demyelination by controlling local inflammation in the CNS, provoking damage of oligodendrocytes and axons, and glial scarring but might also be beneficial by creating a permissive environment for remyelination and oligodendrocyte precursor migration, proliferation, and differentiation. Recent findings from our lab suggest that brain lipid binding protein (FABP7) is implicated in the course of multiple sclerosis and the regulation of astrocyte function. The relevance of our findings and data from other groups are highlighted and discussed in this paper in the context of myelin repair.
Collapse
Affiliation(s)
- M Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bonilla AQS, Oliveira LJ, Ozawa M, Newsom EM, Lucy MC, Hansen PJ. Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo. Mol Cell Endocrinol 2011; 332:170-9. [PMID: 20965229 DOI: 10.1016/j.mce.2010.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/12/2010] [Indexed: 11/15/2022]
Abstract
Insulin-like growth factor 1 (IGF1) is an important endocrine signal for regulation of early embryonic development. It increases the proportion of preimplantation embryos becoming blastocysts, alters blastocyst gene expression, improves resistance of embryos to various stresses and can enhance survival of embryos after transfer to recipients. The present study had two objectives. The first was to determine whether the thermoprotective actions of IGF1 on the preimplantation bovine embryo was developmentally regulated, with the two-cell embryo being refractory to IGF1. The second was to determine the molecular basis for the improved competence of embryos treated with IGF1 to establish pregnancy after transfer to heat-stressed recipients. Treatment of embryos with 100 ng/ml IGF1 reduced the effects of heat shock on embryos ≥16 cells at day 5 after insemination but did not provide thermoprotection to two-cell embryos. Failure of IGF1 to alter embryo survival after heat shock was not associated with reduced expression of genes involved in IGF1 signaling (IGF1R, RAF1, PI3K, and MAPK) or immunoreactive IGF1R protein. Treatment with IGF1 had little effect on the transcriptome at the blastocyst stage of development, with a total of 102 differentially expressed genes identified. Among the differentially expressed genes were several involved in apoptosis, protection against free radicals and development. Changes in gene expression were consistent with IGF1 acting to induce an anti-apoptotic state and inhibit neurulation. In conclusion, thermoprotective actions of IGF1 are developmentally regulated. Failure of IGF1 to protect the two-cell embryo from heat shock could reflect the fact that these embryos are maximally sensitive to damage caused by heat shock or reflect the quiescence of the embryonic genome at this stage of development. Changes in gene expression at the blastocyst stage induced by IGF1 could contribute to the increased survival of IGF1-treated embryos when transferred during periods of heat stress.
Collapse
Affiliation(s)
- A Q S Bonilla
- Department of Animal Sciences and DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611-0910, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kessell AE, Finnie JW, Manavis J, Cheetham GD, Blumbergs PC. A Rosenthal Fiber Encephalomyelopathy Resembling Alexander’s Disease in 3 Sheep. Vet Pathol 2011; 49:248-54. [DOI: 10.1177/0300985810395783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report an encephalomyelopathy in three 18-month-old Merino sheep with features of adult-onset Alexander’s disease (AD), a human primary astrocytic disorder. The signature histologic finding was the presence of numerous hypereosinophilic, intra-astrocytic inclusions (Rosenthal fibers), mainly in perivascular, subpial, and subependymal sites, especially in the caudal brain stem and spinal cord. Although AD usually results from mutations in the glial fibrillary acidic protein ( GFAP) gene, no such mutation was detected in these sheep. However, the annual clinical presentation of this disorder in a few sheep in the affected flock is suggestive of a familial pattern of occurrence.
Collapse
Affiliation(s)
- A. E. Kessell
- Gribbles Veterinary Pathology, VETLAB, Adelaide, Australia
| | - J. W. Finnie
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, SA Pathology, Adelaide, Australia
| | - J. Manavis
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, SA Pathology, Adelaide, Australia
| | - G. D. Cheetham
- Genetics and Molecular Pathology, Institute of Medical and Veterinary Science, SA Pathology, Adelaide, Australia
| | - P. C. Blumbergs
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, SA Pathology, Adelaide, Australia
| |
Collapse
|
41
|
Sawaishi Y. Periventricular calcification added to the phenotypic repertoire of Alexander disease. Dev Med Child Neurol 2010; 52:1081-2. [PMID: 21175465 DOI: 10.1111/j.1469-8749.2010.03818.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yukio Sawaishi
- Department of Pediatrics, Akita Prefectural Center on Development and Disability, Akita, Japan
| |
Collapse
|
42
|
Ito T, Uchida K, Nakamura M, Nakashima K, Suzuki K, Nakayama H. Fibrinoid leukodystrophy (Alexander's disease-like disorder) in a young adult French bulldog. J Vet Med Sci 2010; 72:1387-90. [PMID: 20526046 DOI: 10.1292/jvms.10-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The paper describes clinical and pathological features of Alexander's disease (AD)-like disorder in a 1 year and 8 months old French bulldog. Clinically, the dog exhibited megaesophagus, emaciation and weakness without any specific neurological symptoms. The dog died of aspiration pneumonia. On the gross observation of formalin-fixed brain, discolored foci were observed in the white matter of the cerebellum and brain stem. Histologically, numerous Rothenthal fibers and hypertrophic astrocytes were distributed especially in the perivascular, subependymal and subpial area of both the cerebrum and cerebellum. The Rosenthal fibers were intensely immunopositive for GFAP and ubiquitin. Demyelination of the white matter was occasionally found in the brain stem. The present case is likely to be categorized in the adult form of AD, though previous AD-like cases in dogs were in the juvenile form.
Collapse
Affiliation(s)
- Tsuyoshi Ito
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|