1
|
Bawiec CR, Hollender PJ, Ornellas SB, Schachtner JN, Dahill‐Fuchel JF, Konecky SD, Allen JJB. A Wearable, Steerable, Transcranial Low-Intensity Focused Ultrasound System. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:239-261. [PMID: 39449176 PMCID: PMC11719763 DOI: 10.1002/jum.16600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/20/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Transcranial low-intensity focused ultrasound (LIFU) offers unique opportunities for precisely neuromodulating small and/or deep targets within the human brain, which may be useful for treating psychiatric and neurological disorders. This article presents a novel ultrasound system that delivers focused ultrasound through the forehead to anterior brain targets and evaluates its safety and usability in a volunteer study. METHODS The ultrasound system and workflow are described, including neuronavigation, LIFU planning, and ultrasound delivery components. Its capabilities are analyzed through simulations and experiments in water to establish its safe steering range. A cohort of 20 healthy volunteers received a LIFU protocol aimed at the anterior medial prefrontal cortex (amPFC), using imaging and questionnaires to screen for adverse effects. Additional development after the study also analyzes the effect of the skull and sinus cavities on delivered ultrasound energy. RESULTS Simulations and hydrophone readings agreed with <5% error, and the safe steering range was found to encompass a 1.8 cm × 2.5 cm × 2 cm volume centered at a depth 5 cm from the surface of the skin. There were no adverse effects evident on qualitative assessments, nor any signs of damage in susceptibility-weighted imaging scans. All participants tolerated the treatment well. The interface effectively enabled the users to complete the workflow with all participants. In particular, the amPFC of every participant was within the steering limits of the system. A post hoc analysis showed that "virtual fitting" could aid in steering the beams around subjects' sinuses. CONCLUSIONS The presented system safely delivered LIFU through the forehead while targeting the amPFC in all volunteers, and was well-tolerated. With the capabilities validated here and positive results of the study, this technology appears well-suited to explore LIFU's efficacy in clinical neuromodulation contexts.
Collapse
|
2
|
Hananeia N, Ebner C, Galanis C, Cuntz H, Opitz A, Vlachos A, Jedlicka P. Multi-scale modelling of location- and frequency-dependent synaptic plasticity induced by transcranial magnetic stimulation in the dendrites of pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601851. [PMID: 39005474 PMCID: PMC11244966 DOI: 10.1101/2024.07.03.601851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.
Collapse
Affiliation(s)
- Nicholas Hananeia
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Christian Ebner
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Charité · NeuroCure (NCRC), Charité Universitätsmedizin Berlin
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Cuntz
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
3
|
Wang CC, Hu TM, Lin YJ, Chen CL, Hsu YC, Kao CL. Use of noninvasive brain stimulation and neurorehabilitation devices to enhance poststroke recovery: review of the current evidence and pitfalls. J Int Med Res 2024; 52:3000605241238066. [PMID: 38603599 PMCID: PMC11010770 DOI: 10.1177/03000605241238066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 04/13/2024] Open
Abstract
Neurorehabilitation devices and technologies are crucial for enhancing stroke recovery. These include noninvasive brain stimulation devices that provide repetitive transcranial magnetic stimulation or transcranial direct current stimulation, which can remodulate an injured brain. Technologies such as robotics, virtual reality, and telerehabilitation are suitable add-ons or complements to physical therapy. However, the appropriate application of these devices and technologies, which target specific deficits and stages, for stroke therapy must be clarified. Accordingly, a literature review was conducted to evaluate the theoretical and practical evidence on the use of neurorehabilitation devices and technologies for stroke therapy. This narrative review provides a practical guide for the use of neurorehabilitation devices and describes the implications of use and potential integration of these devices into healthcare.
Collapse
Affiliation(s)
- Chien-Chih Wang
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Intelligent Long Term Medical Care Research Center, Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tsung-Ming Hu
- Department of Future Studies and LOHAS Industry, Fo Guang University, Yilan, Taiwan, ROC
- Department of Psychiatry, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan, ROC
| | - Yung-Jie Lin
- Department of Family Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan, ROC
| | - Chien-Lung Chen
- Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan, ROC
- National Yang Ming Chao Tung University, Institute of Hospital and Health Care Administration, Taipei Taiwan, ROC
| | - Yu-Chuan Hsu
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
4
|
Chen S, He X, Wei X, Huang J, Zhang J. After-effects of repetitive transcranial magnetic stimulation with parameter dependence on long-term potentiation-like plasticity and object recognition memory in rats. Front Neurosci 2023; 17:1144480. [PMID: 37795181 PMCID: PMC10546014 DOI: 10.3389/fnins.2023.1144480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/07/2023] [Indexed: 10/06/2023] Open
Abstract
Objective To investigate the after-effects of 25-Hz repetitive transcranial magnetic stimulation (rTMS) at 60, 100, and 120% resting motor threshold (rMT) on long-term potentiation (LTP) in the rat hippocampus, to clarify the intensity dependence of rTMS, and to determine whether it simultaneously affects learning and memory ability. Methods Five rats were randomly selected from 70 male Wistar rats, and evoked rMT potentials were recorded in response to magnetic stimulation. The remaining 65 rats were randomly assigned to five groups (n = 13), including sham rTMS, 1 Hz 100% rMT, and 25 Hz rTMS groups with 3 subgroups of 60% rMT, 100% rMT, and 120% rMT. Five rats in each group were anesthetized and induced by a priming TMS-test design for population spike (PS) response of the perforant path-dentate gyrus in the hippocampus; the remaining eight rats in each group were evaluated for object recognition memory in the novel object recognition (NOR) task after the different rTMS protocols. Results Forty-five percent (approximately 1.03 T) of the magnetic stimulator output was confirmed as rMT in the biceps femoris muscle. The PS ratio was ranked as follows: 25 Hz 100% rMT (267.78 ± 25.71%) > sham rTMS (182 ± 9.4%) >1 Hz 100% rMT (102.69 ± 6.64%) > 25 Hz 120% rMT (98 ± 11.3%) > 25 Hz 60% rMT (36 ± 8.5%). Significant differences were observed between the groups, except for the difference between the 25 Hz 120% rMT and the 1 Hz 100% rMT groups (p = 0.446). LTP was successfully induced over the 60-min recording period only in the sham rTMS and 25 Hz 100% rMT groups. Moreover, these two groups spent more time exploring a novel object than a familiar object during the NOR task (p < 0.001), suggesting long-term recognition memory retention. In the between-group analysis of the discrimination index, the following ranking was observed: 25 Hz 100% rMT (0.812 ± 0.158) > sham rTMS (0.653 ± 0.111) > 25 Hz 120% rMT (0.583 ± 0.216) >1 Hz 100% rMT (0.581 ± 0.145) > 25 Hz 60% rMT (0.532 ± 0.220). Conclusion The after-effect of 25-Hz rTMS was dependent on stimulus intensity and provided an inverted (V-shaped) bidirectional modulation on hippocampal plasticity that involved two forms of metaplasticity. Furthermore, the effects on the recognition memory ability were positively correlated with those on LTP induction in the hippocampus in vivo.
Collapse
Affiliation(s)
- Shanjia Chen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
- Laboratory Neuropathology, Institute Medicine College, Xiamen University, Xiamen, China
| | - Xiaokuo He
- Fifth Hospital of Xiamen, Xiamen, China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - XinChen Wei
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Jiyi Huang
- The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fifth Hospital of Xiamen, Xiamen, China
| | - Jie Zhang
- Laboratory Neuropathology, Institute Medicine College, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Yingli B, Zunke G, Wei C, Shiyan W. Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment. Front Neurol 2022; 13:951209. [PMID: 36425802 PMCID: PMC9679635 DOI: 10.3389/fneur.2022.951209] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the therapeutic effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) on post-stroke cognitive impairment (PSCI). METHODS Thirty-six PSCI patients were randomly divided into treatment and control groups of equal size. Both groups were pre-treated with conventional cognitive rehabilitation training. Subsequently, the treatment group was exposed to 1 Hz low-frequency repetitive transcranial magnetic stimulations for 8 weeks, with 5 days per week. Meanwhile, the control group was treated with placebo stimulations. Patients were evaluated via the LOTCA scale assessments and changes in P300 latencies and amplitudes before and after 8 weeks of treatment. RESULTS Before treatment, there were no significant differences between the two groups in LOTCA scores, P300 latencies, and amplitudes (P > 0.05). After treatment, LOTCA scores for both groups improved (P < 0.05), and those of the treatment group were higher than those of the control (P < 0.05). For both groups, P300 latencies were not only shortened but also had greater amplitudes (P < 0.05), and those for the treatment group were significantly shorter and larger than those of the control (P < 0.05). CONCLUSION As a therapy, rTMS improved cognitive function in PSCI patients, possibly via regulation of neural electrical activity of the cerebral cortex.
Collapse
Affiliation(s)
- Bi Yingli
- Xuzhou Rehabilitation Hospital, Xuzhou, China
- Department of Rehabilitation Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Gong Zunke
- Xuzhou Rehabilitation Hospital, Xuzhou, China
- Department of Rehabilitation Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Chen Wei
- Xuzhou Rehabilitation Hospital, Xuzhou, China
- Department of Rehabilitation Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Wang Shiyan
- Department of Rehabilitation Medicine, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
6
|
Caballero-Villarraso J, Medina FJ, Escribano BM, Agüera E, Santamaría A, Pascual-Leone A, Túnez I. Mechanisms Involved in Neuroprotective Effects of Transcranial Magnetic Stimulation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:557-573. [PMID: 34370648 DOI: 10.2174/1871527320666210809121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet, despite its recognised clinical applications and considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidence that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.
Collapse
Affiliation(s)
- Javier Caballero-Villarraso
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Francisco J Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Veterinaria, Universidad de Córdoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Neurología, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A. Mexico City, Mexico
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Instituto Guttman de Neurorrehabilitación, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
7
|
Xu Y, Peremans K, Courtyn J, Audenaert K, Dobbeleir A, D'Asseler Y, Achten E, Saunders J, Baeken C. The Impact of Accelerated HF-rTMS on Canine Brain Metabolism: An [18F]-FDG PET Study in Healthy Beagles. Front Vet Sci 2022; 9:800158. [PMID: 35280129 PMCID: PMC8907524 DOI: 10.3389/fvets.2022.800158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been proven to be a useful tool for the treatment of several severe neuropsychiatric disorders. Accelerated (a)rTMS protocols may have the potential to result in faster clinical improvements, but the effects of such accelerated paradigms on brain function remain to be elucidated. Objectives This sham-controlled arTMS study aimed to evaluate the immediate and delayed effects of accelerated high frequency rTMS (aHF-rTMS) on glucose metabolism in healthy beagle dogs when applied over the left frontal cortex. Methods Twenty-four dogs were randomly divided into four unequal groups: five active (n = 8)/ sham (n = 4) stimulation sessions (five sessions in 1 day), 20 active (n = 8)/ sham (n = 4) stimulation sessions (five sessions/ day for 4 days), respectively. [18F] FDG PET scans were obtained at baseline, 24 h poststimulation, after 1 and 3 months post the last stimulation session. We explicitly focused on four predefined regions of interest (left/right prefrontal cortex and left/right hippocampus). Results One day of active aHF-rTMS- and not sham- significantly increased glucose metabolism 24 h post-active stimulation in the left frontal cortex only. Four days of active aHF-rTMS only resulted in a nearly significant metabolic decrease in the left hippocampus after 1 month. Conclusions Like in human psychiatric disorders, active aHF-rTMS in healthy beagles modifies glucose metabolism, although differently immediately or after 1 month post stimulation. aHF-rTMS may be also a valid option to treat mentally disordered dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Ghent Experimental Psychiatry (GHEP) Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Yangfeng Xu
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan Courtyn
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Kurt Audenaert
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yves D'Asseler
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Medical Molecular Imaging and Therapy, Ghent University Hospital, Ghent, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Laboratory, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije University Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Zhang TR, Guilherme E, Kesici A, Ash AM, Vila-Rodriguez F, Snyder JS. Electroconvulsive Shock, but Not Transcranial Magnetic Stimulation, Transiently Elevates Cell Proliferation in the Adult Mouse Hippocampus. Cells 2021; 10:2090. [PMID: 34440859 PMCID: PMC8391684 DOI: 10.3390/cells10082090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hippocampal plasticity is hypothesized to play a role in the etiopathogenesis of depression and the antidepressant effect of medications. One form of plasticity that is unique to the hippocampus and is involved in depression-related behaviors in animal models is adult neurogenesis. While chronic electroconvulsive shock (ECS) strongly promotes neurogenesis, less is known about its acute effects and little is known about the neurogenic effects of other forms of stimulation therapy, such as repetitive transcranial magnetic stimulation (rTMS). Here, we investigated the time course of acute ECS and rTMS effects on markers of cell proliferation and neurogenesis in the adult hippocampus. Mice were subjected to a single session of ECS, 10 Hz rTMS (10-rTMS), or intermittent theta burst stimulation (iTBS). Mice in both TMS groups were injected with BrdU 2 days before stimulation to label immature cells. One, 3, or 7 days later, hippocampi were collected and immunostained for BrdU + cells, actively proliferating PCNA + cells, and immature DCX + neurons. Following ECS, mice displayed a transient increase in cell proliferation at 3 days post-stimulation. At 7 days post-stimulation there was an elevation in the number of proliferating neuronal precursor cells (PCNA + DCX +), specifically in the ventral hippocampus. iTBS and rTMS did not alter the number of BrdU + cells, proliferating cells, or immature neurons at any of the post-stimulation time points. Our results suggest that neurostimulation treatments exert different effects on hippocampal neurogenesis, where ECS may have greater neurogenic potential than iTBS and 10-rTMS.
Collapse
Affiliation(s)
- Tian Rui Zhang
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Evelyn Guilherme
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlo 13565-905, SP, Brazil;
| | - Aydan Kesici
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alyssa M. Ash
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jason S. Snyder
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.R.Z.); (A.K.); (A.M.A.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Hordacre B, Goldsworthy MR, Graetz L, Ridding MC. Motor network connectivity predicts neuroplastic response following theta burst stimulation in healthy adults. Brain Struct Funct 2021; 226:1893-1907. [PMID: 34043076 DOI: 10.1007/s00429-021-02299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/10/2021] [Indexed: 01/17/2023]
Abstract
A patterned repetitive transcranial magnetic stimulation protocol, known as continuous theta burst stimulation (cTBS), can suppress corticospinal excitability via mechanisms that appear similar to long-term depression synaptic plasticity. Despite much potential, this technique is currently limited by substantial response variability. The purpose of this study was to investigate whether baseline resting state functional connectivity is a determinant of response to cTBS. Eighteen healthy young adults participated in up to three experimental sessions. Single-pulse transcranial magnetic stimulation was used to quantify change in corticospinal excitability following cTBS. Three minutes of resting electroencephalographic activity was recorded, and functional connectivity was estimated using the debiased weighted phase lag index across different frequency bands. Partial least squares regression identified models of connectivity between a seed region (C3) and the whole scalp that maximally accounted for variance in cTBS responses. There was no group-level effect of a single cTBS train or spaced cTBS trains on corticospinal excitability (p = 0.092). A low beta frequency band model of connectivity accounted for the largest proportion of variance in spaced cTBS response (R2 = 0.50). Based on the low beta frequency model, a-priori regions of interest were identified and predicted 39% of variance in response to spaced cTBS at a subsequent session. Importantly, weaker connectivity between the seed electrode (C3) and a cluster approximating a frontocentral region was associated with greater spaced cTBS response (p = 0.02). It appears M1-frontocentral networks may have an important role in determining the effects of cTBS on corticospinal excitability.
Collapse
Affiliation(s)
- Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South, 5001, Australia.
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, The University of Adelaide, Adelaide, 5005, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, Adelaide Medical School, The University of Adelaide, Adelaide, 5005, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Michael C Ridding
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South, 5001, Australia
| |
Collapse
|
10
|
Deng ZD, Luber B, Balderston NL, Velez Afanador M, Noh MM, Thomas J, Altekruse WC, Exley SL, Awasthi S, Lisanby SH. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annu Rev Pharmacol Toxicol 2020; 60:591-614. [PMID: 31914895 DOI: 10.1146/annurev-pharmtox-010919-023253] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Device-based neuromodulation of brain circuits is emerging as a promising new approach in the study and treatment of psychiatric disorders. This work presents recent advances in the development of tools for identifying neurocircuits as therapeutic targets and in tools for modulating neurocircuits. We review clinical evidence for the therapeutic efficacy of circuit modulation with a range of brain stimulation approaches, including subthreshold, subconvulsive, convulsive, and neurosurgical techniques. We further discuss strategies for enhancing the precision and efficacy of neuromodulatory techniques. Finally, we survey cutting-edge research in therapeutic circuit modulation using novel paradigms and next-generation devices.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Melbaliz Velez Afanador
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Michelle M Noh
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jeena Thomas
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - William C Altekruse
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shannon L Exley
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shriya Awasthi
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
11
|
Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, Nejad R, Pankow H, Choi E, Aaron H, Espil FM, Pannu J, Xiao X, Duvio D, Solvason HB, Hawkins J, Guerra A, Jo B, Raj KS, Phillips AL, Barmak F, Bishop JH, Coetzee JP, DeBattista C, Keller J, Schatzberg AF, Sudheimer KD, Williams NR. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am J Psychiatry 2020; 177:716-726. [PMID: 32252538 DOI: 10.1176/appi.ajp.2019.19070720] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE New antidepressant treatments are needed that are effective, rapid acting, safe, and tolerable. Intermittent theta-burst stimulation (iTBS) is a noninvasive brain stimulation treatment that has been approved by the U.S. Food and Drug Administration for treatment-resistant depression. Recent methodological advances suggest that the current iTBS protocol might be improved through 1) treating patients with multiple sessions per day at optimally spaced intervals, 2) applying a higher overall pulse dose of stimulation, and 3) precision targeting of the left dorsolateral prefrontal cortex (DLPFC) to subgenual anterior cingulate cortex (sgACC) circuit. The authors examined the feasibility, tolerability, and preliminary efficacy of Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT), an accelerated, high-dose resting-state functional connectivity MRI (fcMRI)-guided iTBS protocol for treatment-resistant depression. METHODS Twenty-two participants with treatment-resistant depression received open-label SAINT. fcMRI was used to individually target the region of the left DLPFC most anticorrelated with sgACC in each participant. Fifty iTBS sessions (1,800 pulses per session, 50-minute intersession interval) were delivered as 10 daily sessions over 5 consecutive days at 90% resting motor threshold (adjusted for cortical depth). Neuropsychological testing was conducted before and after SAINT. RESULTS One participant withdrew, leaving a sample size of 21. Nineteen of 21 participants (90.5%) met remission criteria (defined as a score <11 on the Montgomery-Åsberg Depression Rating Scale). In the intent-to-treat analysis, 19 of 22 participants (86.4%) met remission criteria. Neuropsychological testing demonstrated no negative cognitive side effects. CONCLUSIONS SAINT, an accelerated, high-dose, iTBS protocol with fcMRI-guided targeting, was well tolerated and safe. Double-blinded sham-controlled trials are needed to confirm the remission rate observed in this initial study.
Collapse
Affiliation(s)
- Eleanor J Cole
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Katy H Stimpson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Brandon S Bentzley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Merve Gulser
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Kirsten Cherian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Claudia Tischler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Romina Nejad
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Heather Pankow
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Elizabeth Choi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Haley Aaron
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Flint M Espil
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Jaspreet Pannu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Xiaoqian Xiao
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Dalton Duvio
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Hugh B Solvason
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Jessica Hawkins
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Austin Guerra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Kristin S Raj
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Angela L Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Fahim Barmak
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - James H Bishop
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - John P Coetzee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Charles DeBattista
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Jennifer Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Keith D Sudheimer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors), and Department of Psychology (Stimpson, Cherian, Choi, Aaron, Guerra, Phillips), Palo Alto University, Palo Alto, Calif
| |
Collapse
|
12
|
Li J, Chen L, Li G, Chen X, Hu S, Zheng L, Luria V, Lv J, Sun Y, Xu Y, Yu Y. Sub-Acute Treatment of Curcumin Derivative J147 Ameliorates Depression-Like Behavior Through 5-HT 1A-Mediated cAMP Signaling. Front Neurosci 2020; 14:701. [PMID: 32733195 PMCID: PMC7360862 DOI: 10.3389/fnins.2020.00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Major depressive disorder (MDD) is a severe mental disorder related to the deficiency of monoamine neurotransmitters, particularly to abnormalities of 5-HT (5-hydroxytryptamine, serotonin) and its receptors. Our previous study suggested that acute treatment with a novel curcumin derivative J147 exhibited antidepressant-like effects by increasing brain derived neurotrophic factor (BDNF) level in the hippocampus of mice. The present study expanded upon our previous findings and investigated the antidepressant-like effects of sub-acute treatment of J147 for 3 days in male ICR mice and its possible relevancy to 5-HT1A and 5-HT1B receptors and downstream cAMP-BDNF signaling. Methods J147 at doses of 1, 3, and 9 mg/kg (via gavage) was administered for 3 days, and the anti-immobility time in the forced swimming and tail suspension tests (FST and TST) was recorded. The radioligand binding assay was used to determine the affinity of J147 to 5-HT1A and 5-HT1B receptor. Moreover, 5-HT1A or 5-HT1B agonist or its antagonist was used to determine which 5-HT receptor subtype is involved in the antidepressant-like effects of J147. The downstream signaling molecules such as cAMP, PKA, pCREB, and BDNF were also measured to determine the mechanism of action. Results The results demonstrated that sub-acute treatment of J147 remarkably decreased the immobility time in both the FST and TST in a dose-dependent manner. J147 displayed high affinity in vitro to 5-HT1A receptor prepared from mice cortical tissue and was less potent at 5-HT1B receptor. These effects of J147 were blocked by pretreatment with a 5-HT1A antagonist NAD-299 and enhanced by a 5-HT1A agonist 8-OH-DPAT. However, 5-HT1B receptor antagonist NAS-181 did not appreciably alter the effects of J147 on depression-like behaviors. Moreover, pretreatment with NAD-299 blocked J147-induced increases in cAMP, PKA, pCREB, and BDNF expression in the hippocampus, while 8-OH-DPAT enhanced the effects of J147 on these proteins’ expression. Conclusion The results suggest that J147 induces rapid antidepressant-like effects during a 3-day treatment period without inducing drug tolerance. These effects might be mediated by 5-HT1A-dependent cAMP/PKA/pCREB/BDNF signaling.
Collapse
Affiliation(s)
- Jianxin Li
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaowen Li
- Ningbo College of Health Sciences, Ningbo, China.,Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Xiaojuan Chen
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Sisi Hu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Liang Zheng
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Victor Luria
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Jinpeng Lv
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yingcong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
13
|
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci 2019; 97:451-475. [PMID: 31231154 PMCID: PMC6588534 DOI: 10.1007/s41745-017-0046-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
14
|
Caglayan AB, Beker MC, Caglayan B, Yalcin E, Caglayan A, Yulug B, Hanoglu L, Kutlu S, Doeppner TR, Hermann DM, Kilic E. Acute and Post-acute Neuromodulation Induces Stroke Recovery by Promoting Survival Signaling, Neurogenesis, and Pyramidal Tract Plasticity. Front Cell Neurosci 2019; 13:144. [PMID: 31031599 PMCID: PMC6474396 DOI: 10.3389/fncel.2019.00144] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained interest as a non-invasive treatment for stroke based on the data promoting its effects on functional recovery. However, the exact action mechanisms by which the rTMS exert beneficial effects in cellular and molecular aspect are largely unknown. To elucidate the effects of high- and low-frequency rTMS in the acute-ischemic brain, we examined how rTMS influences injury development, cerebral blood flow (CBF), DNA fragmentation, neuronal survival, pro- and anti-apoptotic protein activations after 30 and 90 min of focal cerebral ischemia. In addition, inflammation, angiogenesis, growth factors and axonal outgrowth related gene expressions, were analyzed. Furthermore, we have investigated the effects of rTMS on post-acute ischemic brain, particularly on spontaneous locomotor activity, perilesional tissue remodeling, axonal sprouting of corticobulbar tracts, glial scar formation and cell proliferation, in which rTMS was applied starting 3 days after the stroke onset for 28 days. In the high-frequency rTMS received animals reduced DNA fragmentation, infarct volume and improved CBF were observed, which were associated with increased Bcl-xL activity and reduced Bax, caspase-1, and caspase-3 activations. Moreover, increased angiogenesis, growth factors; and reduced inflammation and axonal sprouting related gene expressions were observed. These results correlated with reduced microglial activation, neuronal degeneration, glial scar formation and improved functional recovery, tissue remodeling, contralesional pyramidal tract plasticity and neurogenesis in the subacute rTMS treated animals. Overall, we propose that high-frequency rTMS in stroke patients can be used to promote functional recovery by inducing the endogenous repair and recovery mechanisms of the brain.
Collapse
Affiliation(s)
- Ahmet B Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mustafa C Beker
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul, Turkey.,Department of Medical Biology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Esra Yalcin
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Selim Kutlu
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Thorsten R Doeppner
- Regenerative and Restorative Medical Research Center, Istanbul, Turkey.,Department of Neurology, Faculty of Medicine, University of Goettingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| |
Collapse
|
15
|
Baek A, Park EJ, Kim SY, Nam BG, Kim JH, Jun SW, Kim SH, Cho SR. High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca 2+-Calmodulin-Dependent Protein Kinase II-cAMP-Response Element-Binding Protein Pathway. Front Neurol 2018; 9:285. [PMID: 29867712 PMCID: PMC5949612 DOI: 10.3389/fneur.2018.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can be used in various neurological disorders. However, neurobiological mechanism of rTMS is not well known. Therefore, in this study, we examined the global gene expression patterns depending on different frequencies of repetitive magnetic stimulation (rMS) in both undifferentiated and differentiated Neuro-2a cells to generate a comprehensive view of the biological mechanisms. The Neuro-2a cells were randomly divided into three groups—the sham (no active stimulation) group, the low-frequency (0.5 Hz stimulation) group, and high-frequency (10 Hz stimulation) group—and were stimulated 10 min for 3 days. The low- and high-frequency groups of rMS on Neuro-2a cells were characterized by transcriptome array. Differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded a Kyoto Encyclopedia of Genes and Genomes pathway. Amphetamine addiction pathway, circadian entrainment pathway, long-term potentiation (LTP) pathway, neurotrophin signaling pathway, prolactin signaling pathway, and cholinergic synapse pathway were significantly enriched in high-frequency group compared with low-frequency group. Among these pathways, LTP pathway is relevant to rMS, thus the genes that were involved in LTP pathway were validated by quantitative real-time polymerase chain reaction and western blotting. The expression of glutamate ionotropic receptor N-methyl d-aspartate 1, calmodulin-dependent protein kinase II (CaMKII) δ, and CaMKIIα was increased, and the expression of CaMKIIγ was decreased in high-frequency group. These genes can activate the calcium (Ca2+)–CaMKII–cAMP-response element-binding protein (CREB) pathway. Furthermore, high-frequency rMS induced phosphorylation of CREB, brain-derived neurotrophic factor (BDNF) transcription via activation of Ca2+–CaMKII–CREB pathway. In conclusion, high-frequency rMS enhances the expression of BDNF by activating Ca2+–CaMKII–CREB pathway in the Neuro-2a cells. These findings may help clarify further therapeutic mechanisms of rTMS.
Collapse
Affiliation(s)
- Ahreum Baek
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jee Park
- Department of Rehabilitation Medicine, The Graduate School Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Soo Yeon Kim
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Bae-Geun Nam
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sang Woo Jun
- Department of Biomedical Clinical Engineering, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea.,Yonsei Stem Cell Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Verdugo-Diaz L, Estrada-Rojo F, Garcia-Espinoza A, Hernandez-Lopez E, Hernandez-Chavez A, Guzman-Uribe C, Martinez-Vargas M, Perez-Arredondo A, Calvario T, Elias-Viñas D, Navarro L. Effect of Intermediate-Frequency Repetitive Transcranial Magnetic Stimulation on Recovery following Traumatic Brain Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4540291. [PMID: 29318150 PMCID: PMC5727566 DOI: 10.1155/2017/4540291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) represents a significant public health concern and has been associated with high rates of morbidity and mortality. Although several research groups have proposed the use of repetitive transcranial magnetic stimulation (rTMS) to enhance neuroprotection and recovery in patients with TBI, few studies have obtained sufficient evidence regarding its effects in this population. Therefore, we aimed to analyze the effect of intermediate-frequency rTMS (2 Hz) on behavioral and histological recovery following TBI in rats. Male Wistar rats were divided into six groups: three groups without TBI (no manipulation, movement restriction plus sham rTMS, and movement restriction plus rTMS) and three groups subjected to TBI (TBI only, TBI plus movement restriction and sham rTMS, and TBI plus movement restriction and rTMS). The movement restriction groups were included so that rTMS could be applied without anesthesia. Our results indicate that the restriction of movement and sham rTMS per se promotes recovery, as measured using a neurobehavioral scale, although rTMS was associated with faster and superior recovery. We also observed that TBI caused alterations in the CA1 and CA3 subregions of the hippocampus, which are partly restored by movement restriction and rTMS. Our findings indicated that movement restriction prevents damage caused by TBI and that intermediate-frequency rTMS promotes behavioral and histologic recovery after TBI.
Collapse
Affiliation(s)
- Leticia Verdugo-Diaz
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Francisco Estrada-Rojo
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Aron Garcia-Espinoza
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Eduardo Hernandez-Lopez
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Alejandro Hernandez-Chavez
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Carlos Guzman-Uribe
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Marina Martinez-Vargas
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Adan Perez-Arredondo
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| | - Tomas Calvario
- Department of Electrical Engineering, Bioelectronics Section, CINVESTAV, IPN, Av. Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - David Elias-Viñas
- Department of Electrical Engineering, Bioelectronics Section, CINVESTAV, IPN, Av. Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Luz Navarro
- Department of Physiology, School of Medicine, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-250, 04510 Ciudad de México, Mexico
| |
Collapse
|
17
|
Málly J, Geisz N, Dinya E. Follow up study: The influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson’s disease. Brain Res Bull 2017; 135:98-104. [DOI: 10.1016/j.brainresbull.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023]
|
18
|
Kobayashi B, Cook IA, Hunter AM, Minzenberg MJ, Krantz DE, Leuchter AF. Can neurophysiologic measures serve as biomarkers for the efficacy of repetitive transcranial magnetic stimulation treatment of major depressive disorder? Int Rev Psychiatry 2017; 29:98-114. [PMID: 28362541 DOI: 10.1080/09540261.2017.1297697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). There are clinical data that support the efficacy of many different approaches to rTMS treatment, and it remains unclear what combination of stimulation parameters is optimal to relieve depressive symptoms. Because of the costs and complexity of studies that would be necessary to explore and compare the large number of combinations of rTMS treatment parameters, it would be useful to establish reliable surrogate biomarkers of treatment efficacy that could be used to compare different approaches to treatment. This study reviews the evidence that neurophysiologic measures of cortical excitability could be used as biomarkers for screening different rTMS treatment paradigms. It examines evidence that: (1) changes in excitability are related to the mechanism of action of rTMS; (2) rTMS has consistent effects on measures of excitability that could constitute reliable biomarkers; and (3) changes in excitability are related to the outcomes of rTMS treatment of MDD. An increasing body of evidence indicates that these neurophysiologic measures have the potential to serve as reliable biomarkers for screening different approaches to rTMS treatment of MDD.
Collapse
Affiliation(s)
- Brian Kobayashi
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Ian A Cook
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA.,d Department of Bioengineering , University of California Los Angeles , Los Angeles , CA , USA
| | - Aimee M Hunter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Michael J Minzenberg
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - David E Krantz
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Andrew F Leuchter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
19
|
Mancic B, Stevanovic I, Ilic TV, Djuric A, Stojanovic I, Milanovic S, Ninkovic M. Transcranial theta-burst stimulation alters GLT-1 and vGluT1 expression in rat cerebellar cortex. Neurochem Int 2016; 100:120-127. [DOI: 10.1016/j.neuint.2016.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
|
20
|
Matheson NA, Shemmell JBH, De Ridder D, Reynolds JNJ. Understanding the Effects of Repetitive Transcranial Magnetic Stimulation on Neuronal Circuits. Front Neural Circuits 2016; 10:67. [PMID: 27601980 PMCID: PMC4993761 DOI: 10.3389/fncir.2016.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/09/2016] [Indexed: 01/26/2023] Open
Affiliation(s)
- Natalie A Matheson
- Department of Anatomy, Brain Research NZ, University of Otago Dunedin, New Zealand
| | - Jon B H Shemmell
- School of Physical Education, Sport and Exercise Sciences, Brain Research NZ, University of Otago Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, Brain Research NZ, University of Otago Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy, Brain Research NZ, University of Otago Dunedin, New Zealand
| |
Collapse
|
21
|
Shang Y, Wang X, Shang X, Zhang H, Liu Z, Yin T, Zhang T. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol Learn Mem 2016; 134 Pt B:369-78. [PMID: 27555233 DOI: 10.1016/j.nlm.2016.08.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique, by which cognitive deficits can be alleviated. Furthermore, rTMS may facilitate learning and memory. However, its underlying mechanism is still little known. The aim of this study was to investigate if the facilitation of spatial cognition and synaptic plasticity, induced by rTMS, is regulated by enhancing pre- and postsynaptic proteins in normal rats. Morris water maze (MWM) test was performed to examine the spatial cognition. The synaptic plasticity, including long-term potentiation (LTP) and depotentiation (DEP), presynaptic plasticity paired-pulse facilitation (PPF), from the hippocampal Schaffer collaterals to CA1 region was subsequently measured using in vivo electrophysiological techniques. The expressions of brain-derived neurotrophic factor (BDNF), presynaptic protein synaptophysin (SYP) and postsynaptic protein NR2B were measured by Western blot. Our data show that the spatial learning/memory and reversal learning/memory in rTMS rats were remarkably enhanced compared to that in the Sham group. Furthermore, LTP and DEP as well as PPF were effectively facilitated by 5Hz-rTMS. Additionally, the expressions of BDNF, SYP and NR2B were significantly increased via magnetic stimulation. The results suggest that rTMS considerably increases the expressions of BDNF, postsynaptic protein NR2B and presynaptic protein SYP, and thereby significantly enhances the synaptic plasticity and spatial cognition in normal animals.
Collapse
Affiliation(s)
- Yingchun Shang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xueliang Shang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Hui Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Tao Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
22
|
Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure. Brain Res 2016; 1646:207-218. [PMID: 27256401 DOI: 10.1016/j.brainres.2016.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sevoflurane might be harmful to the developing brain. Therefore, it is essential to reverse sevoflurane-induced brain injury. OBJECTIVE This study aimed to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) can regulate L-type Ca(2+) channel activity, which is inhibited by early sevoflurane exposure. METHODS Rats were randomly divided into three groups: control, sevoflurane, and rTMS groups. A Whole-cell patch clamp technique was applied to record L-type Ca(2+) channel currents. The I-V curve, steady-state activation and inactivation curves were studied in rats of each group at different ages (1 week, 2 weeks, 3 weeks, 4 weeks and 5 weeks old). RESULTS In the control group, L-type Ca(2+) channel current density significantly increased from week 2 to week 3. Compared with the control group, L-type Ca(2+) channel currents of rats in the sevoflurane group were significantly inhibited from week 1 to week 3. Activation curves of L-type Ca(2+) channel shifted significantly towards depolarization at week 1 and week 2. Moreover, steady-state inactivation curves shifted towards hyperpolarization from week 1 to week 3. Compared with the sevoflurane group, rTMS significantly increased L-type Ca(2+) channel currents at week 2 and week 3. Activation curves of L-type Ca(2+) channel significantly shifted towards hyperpolarization at week 2. Meanwhile, steady-state inactivation curves significantly shifted towards depolarization at week 2. CONCLUSIONS The period between week 2 and week 3 is critical for the development of L-type Ca(2+) channels. Early sevoflurane exposure inhibits L-type Ca(2+) channel activity and rTMS can regulate L-type Ca(2+) channel activity inhibited by sevoflurane.
Collapse
|
23
|
Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carrette S, Zinger S, Bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijhuis AG, Boon P. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci Biobehav Rev 2016; 65:113-41. [PMID: 27021215 DOI: 10.1016/j.neubiorev.2016.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.
Collapse
Affiliation(s)
- D C W Klooster
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A J A de Louw
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - A P Aldenkamp
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R M H Besseling
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - R M C Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Zinger
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J W M Bergmans
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - W H Mess
- Departments of Clinical Neurophysiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - K Vonck
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - E Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - L E M Breuer
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands.
| | - A Bernas
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A G Tijhuis
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - P Boon
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Yoon KJ, Lee YT, Chung PW, Lee YK, Kim DY, Chun MH. Effects of Repetitive Transcranial Magnetic Stimulation on Behavioral Recovery during Early Stage of Traumatic Brain Injury in Rats. J Korean Med Sci 2015; 30:1496-502. [PMID: 26425049 PMCID: PMC4575941 DOI: 10.3346/jkms.2015.30.10.1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/10/2015] [Indexed: 11/26/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising technique that modulates neural networks. However, there were few studies evaluating the effects of rTMS in traumatic brain injury (TBI). Herein, we assessed the effectiveness of rTMS on behavioral recovery and metabolic changes using brain magnetic resonance spectroscopy (MRS) in a rat model of TBI. We also evaluated the safety of rTMS by measuring brain swelling with brain magnetic resonance imaging (MRI). Twenty male Sprague-Dawley rats underwent lateral fluid percussion and were randomly assigned to the sham (n=10) or the rTMS (n=10) group. rTMS was applied on the fourth day after TBI and consisted of 10 daily sessions for 2 weeks with 10 Hz frequency (total pulses=3,000). Although the rTMS group showed an anti-apoptotic effect around the peri-lesional area, functional improvements were not significantly different between the two groups. Additionally, rTMS did not modulate brain metabolites in MRS, nor was there any change of brain lesion or edema after magnetic stimulation. These data suggest that rTMS did not have beneficial effects on motor recovery during early stages of TBI, although an anti-apoptosis was observed in the peri-lesional area.
Collapse
Affiliation(s)
- Kyung Jae Yoon
- Department of Physical Medicine & Rehabilitation, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Medical Research Institute, Regenerative & Neuroscience Laboratory, Kangbuk Samsung Hospital, Seoul, Korea
| | - Yong-Taek Lee
- Department of Physical Medicine & Rehabilitation, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Medical Research Institute, Regenerative & Neuroscience Laboratory, Kangbuk Samsung Hospital, Seoul, Korea
| | - Pil-Wook Chung
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Kyung Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Bates KA, Rodger J. Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope? Restor Neurol Neurosci 2015; 33:557-69. [DOI: 10.3233/rnn-130359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Zhang ZC, Luan F, Xie CY, Geng DD, Wang YY, Ma J. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain. Neural Regen Res 2015. [PMID: 26199608 PMCID: PMC4498353 DOI: 10.4103/1673-5374.158356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
Collapse
Affiliation(s)
- Zhan-Chi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feng Luan
- Department of Otorhinolaryngology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chun-Yan Xie
- Second Surgical Department, Qinghe Public Hospital of Hebei Province, Xingtai, Hebei Province, China
| | - Dan-Dan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yan-Yong Wang
- Department of Neurology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| |
Collapse
|
27
|
Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015; 9:303. [PMID: 26136672 PMCID: PMC4468834 DOI: 10.3389/fnhum.2015.00303] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.
Collapse
Affiliation(s)
| | - Andrey Yu Chernyavsky
- Moscow Institute of Physics and Technology, Russian Academy of Sciences , Moscow , Russia ; Faculty of Computational Mathematics and Cybernetics, Moscow State University , Moscow , Russia
| | - Dmitry O Sinitsyn
- Research Center of Neurology , Moscow , Russia ; Semenov Institute of Chemical Physics, Russian Academy of Sciences , Moscow , Russia
| | | |
Collapse
|
28
|
Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015. [PMID: 26136672 DOI: 10.3389/fnhum.2015.00303.e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.
Collapse
Affiliation(s)
| | - Andrey Yu Chernyavsky
- Moscow Institute of Physics and Technology, Russian Academy of Sciences , Moscow , Russia ; Faculty of Computational Mathematics and Cybernetics, Moscow State University , Moscow , Russia
| | - Dmitry O Sinitsyn
- Research Center of Neurology , Moscow , Russia ; Semenov Institute of Chemical Physics, Russian Academy of Sciences , Moscow , Russia
| | | |
Collapse
|
29
|
Wang F, Zhang Y, Wang L, Sun P, Luo X, Ishigaki Y, Sugai T, Yamamoto R, Kato N. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice. Neuropharmacology 2015; 97:210-9. [PMID: 26051398 DOI: 10.1016/j.neuropharm.2015.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
Transcranial magnetic stimulation (TMS) is fragmentarily reported to be beneficial to Alzheimer's patients. Its underlying mechanism was investigated. TMS was applied at 1, 10 or 15 Hz daily for 4 weeks to young Alzheimer's disease model mice (3xTg), in which intracellular soluble amyloid-β is notably accumulated. Hippocampal long-term potentiation (LTP) was tested after behavior. TMS ameliorated spatial learning deficits and enhanced LTP in the same frequency-dependent manner. Activity of the large conductance calcium-activated potassium (Big-K; BK) channels was suppressed in 3xTg mice and recovered by TMS frequency-dependently. These suppression and recovery were accompanied by increase and decrease in cortical excitability, respectively. TMS frequency-dependently enhanced the expression of the activity-dependently expressed scaffold protein Homer1a, which turned out to enhance BK channel activity. Isopimaric acid, an activator of the BK channel, magnified LTP. Amyloid-β lowering was detected after TMS in 3xTg mice. In 3xTg mice with Homer1a knocked out, amyloid-β lowering was not detected, though the TMS effects on BK channel and LTP remained. We concluded that TMS facilitates BK channels both Homer1a-dependently and -independently, thereby enhancing hippocampal LTP and decreasing cortical excitability. Reduced excitability contributed to amyloid-β lowering. A cascade of these correlated processes, triggered by TMS, was likely to improve learning in 3xTg mice.
Collapse
Affiliation(s)
- Furong Wang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Medical College, Qinghai University, Xinin 810016, China
| | - Li Wang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; China-Japan Friendship Hospital, Beijing 100029, China
| | - Peng Sun
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianwen Luo
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
30
|
Lin CY, Huang WJ, Li K, Swanson R, Cheung B, Lin VW, Lee YS. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells. J Neural Eng 2015; 12:026013. [PMID: 25769013 DOI: 10.1088/1741-2560/12/2/026013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. APPROACH To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). MAIN RESULTS We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. SIGNIFICANCE These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol 2014; 58:256-68. [DOI: 10.1016/j.exger.2014.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/27/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
|
32
|
Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A 2014; 111:13553-8. [PMID: 25187557 DOI: 10.1073/pnas.1405508111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used in clinical interventions and basic neuroscience. Additionally, it has become a powerful tool to drive plastic changes in neuronal networks. However, highly resolved recordings of the immediate TMS effects have remained scarce, because existing recording techniques are limited in spatial or temporal resolution or are interfered with by the strong TMS-induced electric field. To circumvent these constraints, we performed optical imaging with voltage-sensitive dye (VSD) in an animal experimental setting using anaesthetized cats. The dye signals reflect gradual changes in the cells' membrane potential across several square millimeters of cortical tissue, thus enabling direct visualization of TMS-induced neuronal population dynamics. After application of a single TMS pulse across visual cortex, brief focal activation was immediately followed by synchronous suppression of a large pool of neurons. With consecutive magnetic pulses (10 Hz), widespread activity within this "basin of suppression" increased stepwise to suprathreshold levels and spontaneous activity was enhanced. Visual stimulation after repetitive TMS revealed long-term potentiation of evoked activity. Furthermore, loss of the "deceleration-acceleration" notch during the rising phase of the response, as a signature of fast intracortical inhibition detectable with VSD imaging, indicated weakened inhibition as an important driving force of increasing cortical excitability. In summary, our data show that high-frequency TMS changes the balance between excitation and inhibition in favor of an excitatory cortical state. VSD imaging may thus be a promising technique to trace TMS-induced changes in excitability and resulting plastic processes across cortical maps with high spatial and temporal resolutions.
Collapse
|
33
|
Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, Deller T, Müller-Dahlhaus F, Jedlicka P, Vlachos A. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3323-37. [DOI: 10.1007/s00429-014-0859-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|
34
|
One left dorsolateral prefrontal cortical HF-rTMS session attenuates HPA-system sensitivity to critical feedback in healthy females. Neuropsychologia 2014; 57:112-21. [DOI: 10.1016/j.neuropsychologia.2014.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 01/22/2023]
|
35
|
Málly J, Stone TW. New advances in the rehabilitation of CNS diseases applying rTMS. Expert Rev Neurother 2014. [DOI: 10.1586/14737175.7.2.165\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Sykes M, Makowiecki K, Rodger J. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons. F1000Res 2013; 2:180. [PMID: 24627788 PMCID: PMC3938248 DOI: 10.12688/f1000research.2-180.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/22/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2 (-/-) and wildtype (C57BI/6j) mice (n=10 per genotype) undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.
Collapse
Affiliation(s)
- Matthew Sykes
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Kalina Makowiecki
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| |
Collapse
|
37
|
Low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ1–42-mediated memory deficits in rats. Exp Gerontol 2013; 48:786-94. [PMID: 23665072 DOI: 10.1016/j.exger.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 01/10/2023]
|
38
|
Tan T, Xie J, Tong Z, Liu T, Chen X, Tian X. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res 2013; 1520:23-35. [PMID: 23651978 DOI: 10.1016/j.brainres.2013.04.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is able to induce alteration in cortical activity and excitability that outlast the period of stimulation, which is long-term depre-ssion (LTD) or long-term potentiation (LTP)-like. Accumulating evidence shows that Na(+), Ca(2+) and K(+) channels are important for the regulation of neuronal excitability. To investigate the possible mechanisms of rTMS on regulation of intrinsic excitability in hippocampal neurons, the male or female Sprague-Dawley rats aged 2-3 d or 7-8 d were treated with 14 or 7-d's low frequency (1 Hz) rTMS (400 stimuli/d), respectively. After that, the effects of rTMS on ion channels such as Na(+)-channel, A-type K(+)-channel and Ca(2+)-channel in rat hippocampal CA1 pyramidal neurons were performed by standard whole-cell patch-clamp technique. The results showed that the peak amplitude and maximal rise slope of evoked single action potential (AP) were significantly increased after 14-d's rTMS treatment. Meanwhile, the AP threshold was significantly more depolarized in neurons after 14-d's rTMS treatment than neurons in control group that without rTMS treatment. The spontaneous excitatory post-synaptic currents (sEPSCs) frequency and amplitude of CA1 pyramidal neurons in groups with rTMS treatment (both 7 d and 14 d) were obviously increased compared with the age-matched control group. Furthermore, we found that electrophysiological properties of Na(+)-channel were markedly changed after rTMS treatment, including negative-shifted activation and inactivation curves, as well as fasten recovery rate. After rTMS application, the IA amplitude of K(+)-channel was reduced; the activation and inactivation curves of K(+)-channel were significantly shifted to right. Time constant of recovery from inactivation was also more rapid. Moreover, rTMS induced an obvious increment in the maximal current peak amplitude of Ca(2+)-channel. At the same time, there was a significant rightward shift in the activation curve and inactivation curves of Ca(2+)-channel. These data suggest that rTMS can enhance the AP and sEPSCs of hippocampal CA1 neurons. Altered electrophysiological properties of Na(+)-channel, A-type K(+) channels and Ca(2+) channels contribute to the underling mechanisms of rTMS-induced up-regulation of neural excitability.
Collapse
Affiliation(s)
- Tao Tan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China.
| | | | | | | | | | | |
Collapse
|
39
|
Mongabadi S, Firoozabadi SM, Javan M, Shojaei A, Mirnajafi-Zadeh J. Effect of different frequencies of repetitive transcranial magnetic stimulation on acquisition of chemical kindled seizures in rats. Neurol Sci 2013; 34:1897-903. [PMID: 23546991 DOI: 10.1007/s10072-013-1401-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/11/2013] [Indexed: 01/29/2023]
Abstract
In the current study we investigated the effect of repetitive transcranial magnetic stimulation (rTMS) at different frequencies on chemical kindling in rats. Chemical kindling was induced by injection of pentylenetetrazol (PTZ; 45 mg/kg) at the intervals of 48 h between the injections. In the first experiment, effect of 0.25, 1 and 5 Hz rTMS (four trains of 4 s at motor threshold intensity) on kindling acquisition was investigated. In the second experiment, the stability of rTMS effects was checked in animals of the first experiment during a follow-up period of 2 weeks. Animals received a single dose of PTZ at 7th and 14th day after the last PTZ injection (12th injection) and their seizure parameters were recorded. Obtained results showed that application of rTMS at the frequencies of 0.25 and 1 Hz had anticonvulsant effect and decreased the PTZ kindling acquisition. However, when applied at the frequency of 5 Hz, it had an increasing effect on PTZ kindling rate. During the follow-up study, the seizure severity increased in animals treated with 0.25 Hz rTMS (and somehow in animals treated with 1 Hz rTMS), but did not change in animals treated with 5 Hz rTMS compared to the 12th PTZ injection. Our results showed that rTMS application may have an anticonvulsant effect during chemical kindling acquisition at very low frequency (0.25 Hz) and can increase the seizure severity at high frequency (5 Hz). However, during follow-up, the anticonvulsant effects of rTMS may be converted to proconvulsive effects.
Collapse
Affiliation(s)
- Somayeh Mongabadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
40
|
Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF–TrkB signal pathway in cultured hippocampal neurons. Neurochem Int 2013. [DOI: 10.1016/j.neuint.2012.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Vahabzadeh-Hagh AM, Muller PA, Gersner R, Zangen A, Rotenberg A. Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation 2012; 15:296-305. [PMID: 22780329 PMCID: PMC5764706 DOI: 10.1111/j.1525-1403.2012.00482.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is a well-established clinical protocol with numerous potential therapeutic and diagnostic applications. Yet, much work remains in the elucidation of TMS mechanisms, optimization of protocols, and in development of novel therapeutic applications. As with many technologies, the key to these issues lies in the proper experimentation and translation of TMS methods to animal models, among which rat models have proven popular. A significant increase in the number of rat TMS publications has necessitated analysis of their relevance to human work. We therefore review the essential principles for the approximation of human TMS protocols in rats as well as specific methods that addressed these issues in published studies. MATERIALS AND METHODS We performed an English language literature search combined with our own experience and data. We address issues that we see as important in the translation of human TMS methods to rat models and provide a summary of key accomplishments in these areas. RESULTS An extensive literature review illustrated the growth of rodent TMS studies in recent years. Current advances in the translation of single, paired-pulse, and repetitive stimulation paradigms to rodent models are presented. The importance of TMS in the generation of data for preclinical trials is also highlighted. CONCLUSIONS Rat TMS has several limitations when considering parallels between animal and human stimulation. However, it has proven to be a useful tool in the field of translational brain stimulation and will likely continue to aid in the design and implementation of stimulation protocols for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Andrew M. Vahabzadeh-Hagh
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paul A. Muller
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Roman Gersner
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Abraham Zangen
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Rotenberg
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
42
|
Ueno S. Studies on magnetism and bioelectromagnetics for 45 years: From magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics 2011; 33:3-22. [DOI: 10.1002/bem.20714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/21/2011] [Indexed: 12/20/2022]
|
43
|
Yoon KJ, Lee YT, Han TR. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res 2011; 214:549-56. [PMID: 21904929 DOI: 10.1007/s00221-011-2853-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 08/26/2011] [Indexed: 01/08/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been studied increasingly in recent years to determine whether it has a therapeutic benefit on recovery after stroke. However, the underlying mechanisms of rTMS in stroke recovery remain unclear. Here, we evaluated the effect of rTMS on functional recovery and its underlying mechanism by assessing proteins associated with neural plasticity and anti-apoptosis in the peri-lesional area using a subacute cerebral ischemic rat model. Twenty cerebral ischemic rats were randomly assigned to the rTMS or the sham group at post-op day 4. A total of 3,500 impulses with 10 Hz frequency were applied to ipsilesional cortex over a 2-week period. Functional outcome was measured before (post-op day 4) and after rTMS (post-op day 18). The rTMS group showed more functional improvement on the beam balance test and had stronger Bcl-2 and weaker Bax expression on immunohistochemistry compared with the sham group. The expression of NMDA and MAP-2 showed no significant difference between the two groups. These results suggest that rTMS in subacute cerebral ischemia has a therapeutic effect on functional recovery and is associated with an anti-apoptotic mechanism in the peri-ischemic area rather than with neural plasticity.
Collapse
Affiliation(s)
- Kyung Jae Yoon
- Department of Rehabilitation Medicine, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, #108, Pyung-dong, Jongno-gu, Seoul 110-746, South Korea
| | | | | |
Collapse
|
44
|
Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng 2011; 8:045006. [PMID: 21775783 DOI: 10.1088/1741-2560/8/4/045006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced fabrication techniques have now made it possible to produce microelectrode arrays for recording the electrical activity of a large number of neurons in the intact brain for both clinical and basic science applications. However, the long-term recording performance desired for these applications is hindered by a number of factors that lead to device failure or a poor signal-to-noise ratio (SNR). The goal of this study was to identify factors that can affect recording quality using theoretical analysis of intracortical microelectrode recordings of single-unit activity. Extracellular microelectrode recordings were simulated with a detailed multi-compartment cable model of a pyramidal neuron coupled to a finite-element volume conductor head model containing an implanted recording microelectrode. Recording noise sources were also incorporated into the overall modeling infrastructure. The analyses of this study would be very difficult to perform experimentally; however, our model-based approach enabled a systematic investigation of the effects of a large number of variables on recording quality. Our results demonstrate that recording amplitude and noise are relatively independent of microelectrode size, but instead are primarily affected by the selected recording bandwidth, impedance of the electrode-tissue interface and the density and firing rates of neurons surrounding the recording electrode. This study provides the theoretical groundwork that allows for the design of the microelectrode and recording electronics such that the SNR is maximized. Such advances could help enable the long-term functionality required for chronic neural recording applications.
Collapse
Affiliation(s)
- Scott F Lempka
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 2011; 93:59-98. [DOI: 10.1016/j.pneurobio.2010.10.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 01/10/2023]
|
46
|
Cohen DA, Freitas C, Tormos JM, Oberman L, Eldaief M, Pascual-Leone A. Enhancing plasticity through repeated rTMS sessions: the benefits of a night of sleep. Clin Neurophysiol 2010; 121:2159-64. [PMID: 20541968 PMCID: PMC2993057 DOI: 10.1016/j.clinph.2010.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Previous work has demonstrated that corticospinal facilitation from 20Hz repetitive transcranial magnetic stimulation (rTMS) was greater during a second rTMS session 24h after the first. We sought to determine whether such metaplasticity is dependent on a particular phase of the normal sleep-wake/circadian cycle. METHODS Twenty healthy participants received two sessions of 20Hz rTMS over the hand motor cortex (M1) spaced 12h apart, either over-day or overnight. RESULTS Baseline corticospinal excitability did not differ by group or session. The time-of-day of Session 1 did not influence the relative increase in excitability following rTMS. However, the increase in excitability from the second rTMS session was 2-fold greater in the overnight group. CONCLUSIONS When a night with sleep follows rTMS to M1, the capacity to induce subsequent plasticity in M1 is enhanced, suggesting sleep-wake and/or circadian-dependent modulation of processes of metaplasticity. SIGNIFICANCE TMS treatment of neuropsychiatric disorders entails repeated sessions of rTMS. Our findings suggest that the timing of sessions relative to the sleep-wake/circadian cycle may be a critical factor in the cumulative effect of treatment. Future studies using this paradigm may provide mechanistic insights into human metaplasticity, leading to refined strategies to enhance non-invasive stimulation therapies.
Collapse
Affiliation(s)
- Daniel A Cohen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Cardoso EF, Fregni F, Maia FM, Melo LM, Sato JR, Cruz AC, Bianchi ET, Fernandes DB, Monteiro MLR, Barbosa ER, Amaro E. Abnormal visual activation in Parkinson's disease patients. Mov Disord 2010; 25:1590-6. [DOI: 10.1002/mds.23101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Target-specific rCBF changes induced by 0.3-T static magnetic field exposure on the brain. Brain Res 2010; 1317:211-7. [DOI: 10.1016/j.brainres.2009.10.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/20/2022]
|
49
|
Hoogendam JM, Ramakers GMJ, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 2009; 3:95-118. [PMID: 20633438 DOI: 10.1016/j.brs.2009.10.005] [Citation(s) in RCA: 489] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, transcranial magnetic stimulation (TMS) has rapidly become a valuable method to investigate noninvasively the human brain. In addition, repetitive TMS (rTMS) is able to induce changes in brain activity that last after stimulation. Therefore, rTMS has therapeutic potential in patients with neurologic and psychiatric disorders. It is, however, unclear by which mechanism rTMS induces these lasting effects on the brain. The effects of rTMS are often described as LTD- or LTP-like, because the duration of these alterations seems to implicate changes in synaptic plasticity. In this review we therefore discuss, based on rTMS experiments and knowledge about synaptic plasticity, whether the physiologic basis of rTMS-effects relates to changes in synaptic plasticity. We present seven lines of evidence that strongly suggest a link between the aftereffects induced by rTMS and the induction of synaptic plasticity. It is, nevertheless, important to realize that at present it is impossible to demonstrate a direct link between rTMS on the one hand and synaptic plasticity on the other. Therefore, we provide suggestions for future, innovating research, aiming to investigate both the local effects of rTMS on the synapse and the effects of rTMS on other, more global levels of brain organization. Only in that way can the aftereffects of rTMS on the brain be completely understood.
Collapse
Affiliation(s)
- Janna Marie Hoogendam
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
50
|
Tokay T, Holl N, Kirschstein T, Zschorlich V, Köhling R. High-frequency magnetic stimulation induces long-term potentiation in rat hippocampal slices. Neurosci Lett 2009; 461:150-4. [DOI: 10.1016/j.neulet.2009.06.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
|