1
|
Sam TN, Xiao J, Roehrich H, Low WC, Gregerson DS. Engrafted Neural Progenitor Cells Express a Tissue-Restricted Reporter Gene Associated with Differentiated Retinal Photoreceptor Cells. Cell Transplant 2017; 15:147-60. [PMID: 16719048 DOI: 10.3727/000000006783982098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cells (NPCs) have shown ability to repair injured CNS, and might provide precursors to retinal neurons. NPCs were isolated from the brains of 14 day murine embryos of transgenic mice that express β-galactosidase (β-gal) on the arrestin promoter, which specifically directs expression to retinal photoreceptor cells. NPCs were transferred to adult, syngeneic mice via inoculation into the anterior chamber of the eye, the peritoneal cavity, or the brain. At 14 weeks postgrafting, tissues were collected and examined to determine if differentiated NPC progeny were present in retina based on histochemical detection of β-gal. Four of six anterior chamber-inoculated recipients showed Bluo-gal-stained cells in retina, indicating the presence of transferred NPCs or their progeny. Because the progenitor cells do not express β-gal, positive staining indicates differentiation leading to activation of the arrestin promoter. Two recipients inoculated by the intraperitoneal route also exhibited Bluo-gal staining in retina. The NPCs did not express β-gal if inoculated into brain, but survived and dispersed. Most recipients, regardless of inoculation route, were PCR positive for β-gal DNA in extraocular tissues, but no Bluo-gal staining was found outside of the retina. Injury to the retina promoted, but was not required, for progenitor cell engraftment. β-Gal-positive cells were concentrated in the outer layers of the retina. In summary, a reporter gene specifically expressed in differentiated retinal photoreceptor cells due to the activity of the arrestin promoter was expressed in recipient mouse retina following transfer of NPCs prepared from the β-gal transgenic mice. The presence of β-gal DNA, but not Bluo-gal staining, in spleen and other tissues revealed that the cells also migrated elsewhere and took up residence in other organs, but did not undergo differentiation that led to β-gal expression.
Collapse
Affiliation(s)
- Thien N Sam
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
2
|
Retinal Cell Degeneration in Animal Models. Int J Mol Sci 2016; 17:ijms17010110. [PMID: 26784179 PMCID: PMC4730351 DOI: 10.3390/ijms17010110] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Collapse
|
3
|
Takamatsu M, Aoki H, Hirose Y, Kobayashi K, Tomita H, Kuno T, Koumura H, Hara A. Teratoma showing the features of retinal structure: A case of sacrococcygeal teratoma. Oncol Lett 2012; 3:1023-1026. [PMID: 22783384 DOI: 10.3892/ol.2012.636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/29/2012] [Indexed: 01/17/2023] Open
Abstract
Teratoma is a tumor that forms triploblastic tissues and the common sites of occurrence are sacrococcygeal lesions and the ovaries. The majority of cases are curable with surgical resection and the prognosis depends on the extent and histological scoring of the tumor. In the present study, we report a case of sacrococcygeal teratoma of a newborn showing features of a retina-like structure. A 29-year-old woman gave birth prematurely to an infant girl with sacrococcygeal teratoma. Surgical resection was performed 10 days after delivery. The tumor contained immature components as well as a retina-like structure. Several investigations, including immunohistochemical analysis, confirmed the similarities between the normal mouse retina and the retina-like structure of the tumor. The vascular arrangement and polarity surrounding the retina-like structure are unique and this is thought to be significant in the induction of structural differentiation. Our findings may provide insights into the matter of teratogenic activity in stem cell therapies for clinical applications.
Collapse
Affiliation(s)
- Manabu Takamatsu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Hara A, Taguchi A, Aoki H, Hatano Y, Niwa M, Yamada Y, Kunisada T. Folate antagonist, methotrexate induces neuronal differentiation of human embryonic stem cells transplanted into nude mouse retina. Neurosci Lett 2010; 477:138-43. [PMID: 20434522 DOI: 10.1016/j.neulet.2010.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 04/13/2010] [Accepted: 04/22/2010] [Indexed: 11/26/2022]
Abstract
Transplanted embryonic stem (ES) cells can be integrated into the retinas of adult mice as well-differentiated neuroretinal cells. However, the transplanted ES cells also have a tumorigenic activity as they have the ability for multipotent differentiation to various types of tissues. In the present study, human ES (hES) cells were transplanted into adult nude mouse retinas by intravitreal injections 20 h after intravitreal N-methyl-D-aspartate (NMDA) administration. After the transplantation of hES cells, the folate antagonist, methotrexate (MTX) was administrated in order to control the differentiation of the transplanted hES cells. Neuronal differentiation and teratogenic potential of hES cells were examined immunohistochemically 5 weeks after transplantation. The proliferative activity of transplanted cells was determined by both the mitotic index and the Ki-67 proliferative index. Disappearance of Oct-4-positive hES cells showing undifferentiated morphology was observed after intraperitoneal MTX treatment daily, for 15 days. Decreased mitotic and Ki-67 proliferative indices, and increased neuronal differentiation were detected in the surviving hES cells after the MTX treatment. These results suggest two important effects of intraperitoneal MTX treatment for hES cells transplanted into nude mouse retina: (1) MTX treatment following transplantation induces neuronal differentiation, and (2) MTX decreases proliferative activity and tumorigenic potential.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Retinal degenerative diseases are the leading cause of incurable blindness worldwide. Furthermore, existing pharmacological and surgical interventions are only partially effective in halting disease progression, thus adjunctive neuroprotective strategies are desperately needed to preserve vision. Stem cells appear to possess inherent neuroprotective abilities, at least in part by providing neurotrophic support to injured neurons. Advances in stem cell biology offer the hope of new therapies for a broad range of neurodegenerative conditions, including those of the retina. Experimental cell-mediated therapies also hint at the tantalizing possibility of achieving retinal neuronal replacement and regeneration, once cells are lost to the disease process. This article summarizes the latest advances in cell therapies for neuroprotection and regeneration in neurodegenerative pathologies of both the inner and outer retina.
Collapse
Affiliation(s)
- Natalie D Bull
- Cambridge Centre for Brain Repair, Cambridge, CB2 0PY, UK
| | | |
Collapse
|
6
|
Abstract
While a number of retinal transplantation studies using various types of donor cells have been performed thus far, our study focused on iris tissue as a donor cell source. This is because donor cells from iris pigment epithelium have the following characteristics: (1) they are embryonically related to the neural retina; (2) autologous iris tissue can be obtained via a surgical approach; and (3) they can be cultured to increase the number of donor cells and establish photoreceptor-like cells from iris-derived cells by means of the appropriate gene transfer. Although the potential of iris-derived cells has been indicated, there remain many issues to be investigated.
Collapse
Affiliation(s)
- Tadamichi Akagi
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
7
|
Abstract
Over the past few years a great deal of interest has been generated in using stem cells/progenitors to treat degenerative diseases that afflict different tissues, including retina. This interest is due to the defining properties of stem cells/progenitors, the ability of these cells to self-renew and generate all the basic cell types of the particular tissue to which they belong. In addition, the recent reports of plasticity of the adult tissue-specific stem cells/progenitors and directed differentiation of the embryonic cells (ES) has fueled the hope for cell and gene therapy using stem cells from heterologous sources. Will this approach work for treating retinal degeneration? Here, we review the current state of knowledge about obtaining retinal cells from heterologous sources, including ES cells.
Collapse
Affiliation(s)
- Ani M Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, 68198, USA
| | | | | |
Collapse
|
8
|
Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch Clin Exp Ophthalmol 2007; 246:255-65. [PMID: 18004585 DOI: 10.1007/s00417-007-0710-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/13/2007] [Accepted: 10/04/2007] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. METHODS ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. RESULTS Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. DISCUSSION These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Gaillard F, Sauvé Y. Cell-based therapy for retina degeneration: the promise of a cure. Vision Res 2007; 47:2815-24. [PMID: 17719072 DOI: 10.1016/j.visres.2007.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 01/23/2023]
Abstract
Cell-based therapies in the retina have been associated with the recovery of visual function in animal models of retinal degeneration. This review covers the current status of such therapies with regard to the source of the donor cells, their integration, and their impact on the degenerating host retina. Emphasis is also put on the importance of a careful interpretation of what is meant by "recovery of visual function". Two main approaches are considered here: (1) the use of human embryonic stem cell derived retinal pigment epithelial (RPE) cells to rescue photoreceptors in an animal model of RPE defect; and (2) the use of photoreceptor precursors to repair the degenerating neural retina. The current conclusions are that major hurdles have to be dealt with, such as finding an appropriate and ethically compliant donor cell source that would yield protracted survival and integration of the replacement retinal cells, and that there is no evidence yet that cell-based therapies can allow the long-term preservation or recovery of conscious vision.
Collapse
Affiliation(s)
- Frédéric Gaillard
- Institut de Physiologie et Biologie Cellulaires, UMR 6187 CNRS, Université de Poitiers, Poitiers, France
| | | |
Collapse
|
10
|
Tao S, Young C, Redenti S, Zhang Y, Klassen H, Desai T, Young MJ. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. LAB ON A CHIP 2007; 7:695-701. [PMID: 17538710 DOI: 10.1039/b618583e] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stem and progenitor cells can be combined with polymer substrates to generate tissue equivalents in culture. The replacement of retinal tissue lost to disease or trauma using retinal progenitor cells (RPCs) delivered on polymer scaffolds and transplanted into the sub-retinal space of the damaged retina is a promising therapeutic strategy. Micromachining-based, ultra-thin PMMA poly(methyl methacrylate) scaffolds may provide a suitable cytoarchitectural environment for tissue engineering and transplantation to the diseased eye. Here, adhesion of RPCs to polymer, as well as migration and differentiation in the host retina were compared for PMMA scaffolds (6 microm thickness) with either smooth or porous (11 microm diameter) surface topography. RPCs were cultured under identical conditions on smooth or porous laminin-coated polymer scaffolds and transplanted into the subretinal space of C57BL/6 mice. RPCs could be cultured on both scaffolds with similar results, although transplantation with non-porous scaffolds showed limited RPC retention. Porous scaffolds demonstrated enhanced RPC adherence during transplantation and allowed for greater process outgrowth and cell migration into the host retinal layers. Integrated cells expressed the mature neuronal marker neurofilament-200 (nf-200), the glial marker glial fibrillary acidic protein (GFAP) and the retinal-specific marker recoverin. No host foreign body response was seen. In conclusion, ultra-thin film PMMA scaffolds micromachined to contain through pores retain adherent RPCs to a considerably greater extent than unmachined versions during the transplantation process and can serve as a biocompatible substrate for cell delivery in vivo.
Collapse
Affiliation(s)
- Sarah Tao
- Department of Physiology, University of California, San Francisco, 1700 4th Street, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y. Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 2007; 48:446-54. [PMID: 17197566 PMCID: PMC2823590 DOI: 10.1167/iovs.06-0190] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the potential of newborn retinal stem cells (RSCs) isolated from the radial glia population to integrate the retina, this study was conducted to investigate the fate of in vitro expanded RSCs transplanted into retinas devoid of photoreceptors (adult rd1 and old VPP mice and rhodopsin-mutated transgenic mice) or partially degenerated retina (adult VPP mice) retinas. METHODS Populations of RSCs and progenitor cells were isolated either from DBA2J newborn mice and labeled with the red lipophilic fluorescent dye (PKH26) or from GFP (green fluorescent protein) transgenic mice. After expansion in EGF+FGF2 (epidermal growth factor+fibroblast growth factor), cells were transplanted intravitreally or subretinally into the eyes of adult wild-type, transgenic mice undergoing slow (VPP strain) or rapid (rd1 strain) retinal degeneration. RESULTS Only limited migration and differentiation of the cells were observed in normal mice injected subretinally or in VPP and rd1 mice injected intravitreally. After subretinal injection in old VPP mice, transplanted cells massively migrated into the ganglion cell layer and, at 1 and 4 weeks after injection, harbored neuronal and glial markers expressed locally, such as beta-tubulin-III, NeuN, Brn3b, or glial fibrillary acidic protein (GFAP), with a marked preference for the glial phenotype. In adult VPP retinas, the grafted cells behaved similarly. Few grafted cells stayed in the degenerating outer nuclear layer (ONL). These cells were, in rare cases, positive for rhodopsin or recoverin, markers specific for photoreceptors and some bipolar cells. CONCLUSIONS These results show that the grafted cells preferentially integrate into the GCL and IPL and express ganglion cell or glial markers, thus exhibiting migratory and differentiation preferences when injected subretinally. It also appears that the retina, whether partially degenerated or already degenerated, does not provide signals to induce massive differentiation of RSCs into photoreceptors. This observation suggests that a predifferentiation of RSCs into photoreceptors before transplantation may be necessary to obtain graft integration in the ONL.
Collapse
Affiliation(s)
- Kriss Canola
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Brigitte Angénieux
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Meriem Tekaya
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander Quiambao
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Francis L. Munier
- Unit of Clinical Oculogenetics, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Hall CM, Kicic A, Lai CM, Rakoczy PE. Using stem cells to repair the degenerate retina. Stem cells in the context of retinal degenerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:381-8. [PMID: 17249600 DOI: 10.1007/0-387-32442-9_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Christine M Hall
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Australia
| | | | | | | |
Collapse
|
13
|
Ban J, Bonifazi P, Pinato G, Broccard FD, Studer L, Torre V, Ruaro ME. Embryonic stem cell-derived neurons form functional networks in vitro. Stem Cells 2006; 25:738-49. [PMID: 17110621 DOI: 10.1634/stemcells.2006-0246] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Embryonic stem (ES) cells provide a flexible and unlimited source for a variety of neuronal types. Because mature neurons establish neuronal networks very easily, we tested whether ES-derived neurons are capable of generating functional networks and whether these networks, generated in vitro, are capable of processing information. Single-cell electrophysiology with pharmacological antagonists demonstrated the presence of both excitatory and inhibitory synaptic connections. Extracellular recording with planar multielectrode arrays showed that spontaneous bursts of electrical activity are present in ES-derived networks with properties remarkably similar to those of hippocampal neurons. When stimulated with extracellular electrodes, ES-derived neurons fired action potentials, and the evoked electrical activity spread throughout the culture. A statistical analysis indicated that ES-derived networks discriminated between stimuli of different intensity at a single trial level, a key feature for an efficient information processing. Thus, ES-derived neurons provide a novel in vitro strategy to create functional networks with defined computational properties.
Collapse
Affiliation(s)
- Jelena Ban
- International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Hara A, Niwa M, Aoki H, Kumada M, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H. A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain Res 2006; 1109:192-200. [PMID: 16863645 DOI: 10.1016/j.brainres.2006.06.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/29/2022]
Abstract
Retinal photoreceptor cell degeneration was induced by cobalt chloride, a chemical hypoxia-mimicking agent in rodents. Time course and dose-response of photoreceptor cell degeneration in mouse retina after intravitreal injection of cobalt chloride were examined by conventional histological analysis by hematoxylin and eosin staining and in situ terminal dUTP-biotin nick end labeling of DNA fragments (TUNEL) method with the use of paraffin-embedded sections. The dose-response of photoreceptor cell degeneration in rat retina was also examined. Photoreceptor cells progressively degenerated with time and under dose-response relationship. The suitable dose of cobalt chloride for the selective photoreceptor cell degeneration in mice is 10-12 nmol intravitreal injection at the volume of 2 microl. The retinal morphology of the mice 2 weeks after the 10-12 nmol intravitreal injection was similar to that of retinal degeneration in the mutant rd mouse. Retinal damage of total retinal layers was induced by an excessive dose of cobalt chloride. The progression of retinal damage after cobalt chloride injection, measured morphologically, was completed at 1 week. However, nuclear DNA fragmentation, mainly detected at outer nuclear layer by TUNEL, peaked at 48 h after 12 nmol cobalt chloride injection. Thus, the selective photoreceptor cell degeneration induced by cobalt chloride follows DNA fragmentation at outer nuclear layer. The photoreceptor cell degeneration is established optionally by cobalt chloride without use of the retinal degeneration mutant animals. Thus, we have described the development of a new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hara A, Niwa M, Kumada M, Aoki H, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H. Intraocular injection of folate antagonist methotrexate induces neuronal differentiation of embryonic stem cells transplanted in the adult mouse retina. Brain Res 2006; 1085:33-42. [PMID: 16584710 DOI: 10.1016/j.brainres.2006.02.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Transplanted embryonic stem (ES) cells can be integrated into the retinas of adult mice as well-differentiated neuronal cells. However, the integrated ES cells also have a tumorigenic effect just because they have the ability for multipotential differentiation to various types of tissues. Thus, control of neoplastic potentials of ES cells is very important for the treatment of degenerative or injured diseases. Mouse ES cells carrying the sequence for the green fluorescent protein (GFP) gene were transplanted into adult mouse retinas by intravitreal injections 20 h after intravitreal N-methyl-d-aspartate (NMDA) administration. One week after the ES cell injection, folate antagonist methotrexate (MTX) was injected intravitreally. Eyes were retrieved 4 weeks after ES cell transplantation for histologic analyses. Conventional histological analysis was performed by hematoxylin and eosin staining with the use of paraffin-embedded sections. Neuronal differentiation and teratogenic potential of ES cells were demonstrated by immunohistochemistry. The proliferative activity of transplanted cells was detected by mitotic index, proliferating cell nuclear antigen index and AgNOR count. The incorporation of transplanted ES cells in MTX-treated and non-treated retinas at 4 weeks after transplantation was observed in 8/16 eyes (50%) and 8/16 eyes (50%), respectively. Transplanted ES cells in MTX-treated retina showed increased neuronal differentiation and decreased expression of teratogenic markers, compared with ES cells in non-treated retina. The proliferative activity of transplanted ES cells in MTX-treated retina was lower than that in non-treated retina. These results suggest that intravitreal MTX treatment following transplantation can induce neuronal differentiation in the transplanted ES cells and decrease their proliferative activity.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 2006; 23:1579-88. [PMID: 16293582 DOI: 10.1634/stemcells.2005-0111] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinal progenitor cells (RPCs) are multipotent central nervous system precursors that give rise to all of the cell types of the retina during development. Several groups have reported that mammalian RPCs can be isolated and expanded in culture and can differentiate into retinal neurons upon grafting to the mature, diseased eye. However, cell delivery and survival remain formidable obstacles to application of RPCs in a clinical setting. Because biodegradable polymer/progenitor constructs have been shown to be capable of tissue generation in other compartments, we evaluated the survival, migration, and differentiation of RPCs delivered on PLLA/PLGA polymer substrates to the mouse subretinal space and compared these results to conventional injections of RPCs. Polymer composite grafts resulted in a near 10-fold increase in the number of surviving cells after 4 weeks, with a 16-fold increase in cell delivery. Grafted RPCs migrated into the host retina and expressed the mature markers neurofilament-200, glial fibrillary acidic protein, protein kinase C-alpha, recoverin, and rhodopsin. We conclude that biodegradable polymer/progenitor cell composite grafts provide an effective means of increasing progenitor cell survival and overall yield when transplanting to sites within the central nervous system such as the retina.
Collapse
Affiliation(s)
- Minoru Tomita
- The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
17
|
Goureau O, Sahel JA. Cellules souches rétiniennes : mécanisme de différenciation et potentiel thérapeutique. ACTA ACUST UNITED AC 2006; 54:64-71. [PMID: 16545632 DOI: 10.1016/j.patbio.2005.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Retinal dystrophies are rarely curable diseases and several avenues of research are being pursued, such replacement therapies and pharmacological treatment. Among them, the transplantation of functional retinal cells has been envisaged in order to restore vision in patients who have these diseases by repopulating the damaged retina and/or by rescuing retinal neurons from further degeneration. Over the past few years, identification and characterization of stem cells has opened new avenues in cell-replacement therapy. Since retinal stem cells are already present during embryonic development, they persist in the adult mammalian eye only in the ciliary marginal zone, even a stem cell potential has been described for the Müller glia in the retina. This result opened possibilities of regeneration by mobilizing endogenous stem cells to respond to injury. Regarding the transplantation studies, in all experiments using different types of stem cells (retinal progenitors, neural stem cells, bone marrow-derived stem cells and ES cells), despite their incorporation within the host's retina, the transplanted cells failed to express retina-specific markers and to establish synaptic connections. Therefore, the true potential of the different stem cells in retina repair can only be realized with more information about mechanisms that regulate their proliferation and differentiation; and by development of techniques that allow their prospective identification and enrichment.
Collapse
Affiliation(s)
- O Goureau
- Laboratoire de physiopathologie cellulaire et moléculaire de la rétine, Inserm U592, bâtiment Kourilsky, hôpital Saint-Antoine, 184, rue du Faubourg Saint-Antoine, 75571 Paris cedex 12, France.
| | | |
Collapse
|
18
|
Mawatari Y, Fukushima M, Inoue T, Setoguchi T, Taga T, Tanihara H. Preferential differentiation of neural progenitor cells into the glial lineage through gp130 signaling in N-methyl-d-aspartate-treated retinas. Brain Res 2005; 1055:7-14. [PMID: 16098488 DOI: 10.1016/j.brainres.2005.06.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/31/2005] [Accepted: 06/05/2005] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the differentiation of neural progenitor cells (NPCs) following retinal transplantation in N-methyl-D-aspartate (NMDA)-treated eyes. NMDA was injected into the vitreous cavity of adult rat eyes. NPCs were prepared from telencephalic neuroepithelium of enhanced green fluorescence protein (EGFP) transgenic mice on embryonic day 14.5. A cell suspension was injected into the vitreous cavity in experimental eyes. Immunohistochemistry was conducted at 1, 2 or 4 weeks after transplantation of NPCs in an effort to determine the survival and differentiation of transplanted NPCs. Similar experiments were conducted using glycoprotein (gp)130-null (-/-) mice. Examination of retinal sections revealed that transplanted NPCs could survive for at least 4 weeks in NMDA-treated retinas. Immunohistochemical studies for specific cell-type markers revealed that, among the transplanted NPCs at 2 weeks after transplantation, the mean percentage (+/-standard deviation) of glial fibrillary acidic protein (GFAP)-positive (glial) cells was 63.5 +/- 7.4%, demonstrating the differentiation of transplanted NPCs with a preference for the glial lineage. Furthermore, the mean percentage of betaIII-tubulin-positive (mature neuronal) cells was 18.8 +/- 4.5%. Following transplantation of NPCs isolated from gp130-/- mice into NMDA-treated retinas, the mean percentage of GFAP-positive cells (17.6 +/- 7.0%), was significantly lower than that in NPCs isolated from wild-type mice (59.1 +/- 6.0%, P = 0.04, Mann-Whitney U test). Preferential differentiation of NPCs into the glial lineage is induced through gp130 signaling in NMDA-treated eyes.
Collapse
Affiliation(s)
- Yuki Mawatari
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Minamino K, Adachi Y, Yamada H, Higuchi A, Suzuki Y, Iwasaki M, Nakano K, Koike Y, Mukaide H, Kiriyama N, Shigematsu A, Matsumura M, Ikehara S. Long-term survival of bone marrow-derived retinal nerve cells in the retina. Neuroreport 2005; 16:1255-1259. [PMID: 16056120 DOI: 10.1097/01.wnr.0000176517.96475.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we have demonstrated that bone marrow stem cells can differentiate into retinal nerve cells. In the present study, we show a new and efficient strategy for transplanting bone marrow stem cells into the retina. When bone marrow stem cells were injected into the vitreous cavity of untreated eyes, only very few cells were found in the retina 2 weeks after injection. In contrast, when laser photocoagulation was performed just before the injection of bone marrow stem cells, a large number of the injected cells survived 2 weeks after injection and the cells expressed neural cell-specific or retinal nerve cell-specific antigens. Moreover, we still detected bone marrow stem cell-derived retinal nerve cells in the retina 1 year after injection in the retina.
Collapse
Affiliation(s)
- Keizo Minamino
- First Department of Pathology, Kansai Medical University, Moriguchi city, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|