1
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
2
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Electroacupuncture Ameliorates Cerebral I/R-Induced Inflammation through DOR-BDNF/TrkB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3495836. [PMID: 32256638 PMCID: PMC7102411 DOI: 10.1155/2020/3495836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 12/01/2022]
Abstract
The beneficial effects of electroacupuncture (EA) at Shuigou (GV26) and Neiguan (PC6) on poststroke rehabilitation are critically related to the activation of the delta-opioid receptor (DOR). The underlying anti-inflammatory mechanisms in DOR activation and EA-mediated neuroprotection in cerebral ischemia/reperfusion (I/R) injury were investigated in the current study. Cell proliferation and apoptosis were detected by morphological changes, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) release, and TUNEL staining. The mRNA levels were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR), and the protein expression was measured by western blot or enzyme-linked immunosorbent assay (ELISA) in vitro. Infarct volume was examined by cresyl violet (CV) staining, neurologic recovery was assessed by neurological deficit scores, and pro- and anti-inflammatory cytokines were determined by immunofluorescence in vivo. DOR activation greatly ameliorated morphological injury, reduced LDH leakage and apoptosis, and increased cell viability. It reversed the oxygen-glucose deprivation/reoxygenation- (OGD/R-) induced downregulation of DOR mRNA and protein, as well as BDNF protein. DOR activation also reduced proinflammatory cytokine gene expression, including TNF-α, IL-1β, and IL-6, and at the same time, increased anti-inflammatory cytokines IL-4 and IL-10 in OGD/R challenged PC12 cells. EA significantly reduced middle cerebral artery occlusion/reperfusion- (MCAO/R-) induced infarct volume and attenuated neurologic deficit scores. It markedly increased the expression of IL-10 and decreased IL-1β, while sham EA did not have any protective effect in MCAO/R-injured rats. DOR activation plays an important role in neuroprotection against OGD/R injury by inhibiting inflammation via the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) pathway. The neuroprotective efficacy of EA at Shuigou (GV26) and Neiguan (PC6) on cerebral I/R injury may be also related to the inhibition of inflammatory response through the DOR-BDNF/TrkB pathway.
Collapse
|
4
|
PKCγ and PKCε are Differentially Activated and Modulate Neurotoxic Signaling Pathways During Oxygen Glucose Deprivation in Rat Cortical Slices. Neurochem Res 2019; 44:2577-2589. [PMID: 31541352 DOI: 10.1007/s11064-019-02876-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
Cerebral ischemia is known to trigger a series of intracellular events such as changes in metabolism, membrane function and intracellular transduction, which eventually leads to cell death. Many of these processes are mediated by intracellular signaling cascades that involve protein kinase activation. Among all the kinases activated, the serine/threonine kinase family, protein kinase C (PKC), particularly, has been implicated in mediating cellular response to cerebral ischemic and reperfusion injury. In this study, using oxygen-glucose deprivation (OGD) in acute cortical slices as an in vitro model of cerebral ischemia, I show that PKC family of isozymes, specifically PKCγ and PKCε are differentially activated during OGD. Detecting the expression and activation levels of these isozymes in response to different durations of OGD insult revealed an early activation of PKCε and delayed activation of PKCγ, signifying their roles in response to different durations and stages of ischemic stress. Specific inhibition of PKCγ and PKCε significantly attenuated OGD induced cytotoxicity, rise in intracellular calcium, membrane depolarization and reactive oxygen species formation, thereby enhancing neuronal viability. This study clearly suggests that PKC family of isozymes; specifically PKCγ and PKCε are involved in OGD induced intracellular responses which lead to neuronal death. Thus isozyme specific modulation of PKC activity may serve as a promising therapeutic route for the treatment of acute cerebral ischemic injury.
Collapse
|
5
|
Modulation of exercise-induced spinal loop properties in response to oxygen availability. Eur J Appl Physiol 2014; 115:471-82. [PMID: 25361617 DOI: 10.1007/s00421-014-3032-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
This study investigated the effects of acute hypoxia on spinal reflexes and soleus muscle function after a sustained contraction of the plantar flexors at 40% of maximal voluntary isometric contraction (MVC). Fifteen males (age 25.3 ± 0.9 year) performed the fatigue task at two different inspired O₂ fractions (FiO₂ = 0.21/0.11) in a randomized and single-blind fashion. Before, at task failure and after 6, 12 and 18 min of passive recovery, the Hoffman-reflex (H max) and M-wave (M max) were recorded at rest and voluntary activation (VA), surface electromyogram (RMSmax), M-wave (M sup) and V-wave (V sup) were recorded during MVC. Normalized H-reflex (H max/M max) was significantly depressed pre-exercise in hypoxia compared with normoxia (0.31 ± 0.08 and 0.36 ± 0.08, respectively, P < 0.05). Hypoxia did not affect time to task failure (mean time of 453.9 ± 32.0 s) and MVC decrease at task failure (-18% in normoxia vs. -16% in hypoxia). At task failure, VA (-8%), RMSmax/M sup (-11%), H max/M max (-27%) and V sup/M sup (-37%) decreased (P < 0.05), but with no FiO2 effect. H max/M max restored significantly throughout recovery in hypoxia but not in normoxia, while V sup/M sup restored significantly during recovery in normoxia but not in hypoxia (P < 0.05). Collectively, these findings indicate that central adaptations resulting from sustained submaximal fatiguing contraction were not different in hypoxia and normoxia at task failure. However, the FiO₂-induced differences in spinal loop properties pre-exercise and throughout recovery suggest possible specific mediation by the hypoxic-sensitive group III and IV muscle afferents, supraspinal regulation mechanisms being mainly involved in hypoxia while spinal ones may be predominant in normoxia.
Collapse
|
6
|
An YT, Zhu P, Zhong Y, Sheng YC, Zhao Z, Min Y, Xia YY. A neuroprotective mechanism of YGY-E in cerebral ischemic injury in rats. CNS Neurosci Ther 2012; 18:14-20. [PMID: 22280158 DOI: 10.1111/j.1755-5949.2011.00277.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate the anticerebral ischemic properties of YGY-E (apigenin-7-O-β-D-glucopyranosy l-4'-O-α-L-rhamnopy-ranosid, a flavonoid glycoside extracted from plant phoenix-tail fern), focusing on its effects on neuronal apoptosis. METHODS In vitro YGY-E treatment was examined in primary cultured rat hippocampal neurons subjected to hypoxia-reoxygenation (H-R) injury. In addition, in vivo effects of YGY-E on neuronal apoptosis were measured by Hoechst staining and in situ DNA end labeling (TUNEL). Finally, B cell lymphoma/lewkmia-2 (Bcl-2) level in ischemic rat brain tissue was evaluated with immunohistochemistry and western blot analyses. RESULTS In vitro YGY-E (50-100 μg/mL) treatment increased the survival rate compared to that of the vehicle-treated group (P < 0.05 and P < 0.01, respectively). In in vivo experiments, YGY-E (2.5-10 mg/kg) decreased the percentage of apoptotic neurons (P < 0.01), increased Bcl-2 (P < 0.01) in ischemic rat brain tissue. These effects were dose dependent. CONCLUSIONS Our findings indicate that YGY-E's neuroprotective effects may be because of its inhibition of neuronal apoptosis by increasing Bcl-2 expression.
Collapse
Affiliation(s)
- Yong-Tong An
- State Key Laboratory of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhao H, Kinch DC, Simasko SM. Pharmacological investigations of the cellular transduction pathways used by cholecystokinin to activate nodose neurons. Auton Neurosci 2011; 164:20-6. [PMID: 21664195 PMCID: PMC3167007 DOI: 10.1016/j.autneu.2011.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
Cholecystokinin (CCK) directly activates vagal afferent neurons resulting in coordinated gastrointestinal functions and satiation. In vitro, the effects of CCK on dissociated vagal afferent neurons are mediated via activation of the vanilloid family of transient receptor potential (TRPV) cation channels leading to membrane depolarization and an increase in cytosolic calcium. However, the cellular transduction pathway(s) involved in this process between CCK receptors and channel opening have not been identified. To address this question, we monitored CCK-induced cytosolic calcium responses in dissociated nodose neurons from rat in the presence or absence of reagents that interact with various intracellular signaling pathways. We found that the phospholipase C (PLC) inhibitor U-73122 significantly attenuated CCK-induced responses, whereas the inactive analog U-73433 had no effect. Responses to CCK were also cross-desensitized by a brief pretreatment with m-3M3FBS, a PLC stimulator. Together these observations strongly support the participation of PLC in the effects of CCK on vagal afferent neurons. In contrast, pharmacological antagonism of phospholipase A(2), protein kinase A, and phosphatidylinositol 3-kinase revealed that they are not critical in the CCK-induced calcium response in nodose neurons. Further investigations of the cellular pathways downstream of PLC showed that neither protein kinase C (PKC) nor generation of diacylglycerol (DAG) or release of calcium from intracellular stores participates in the response to CCK. These results suggest that alteration of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) content by PLC activity mediates CCK-induced calcium response and that this pathway may underlie the vagally-mediated actions of CCK to induce satiation and alter gastrointestinal functions.
Collapse
Affiliation(s)
- Huan Zhao
- Program in Neuroscience, Dept of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
8
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
9
|
Cao H, Ding Z, Zhong H, Gong S, Chen L, Li M. WITHDRAWN: Sodium channel development and modulation of hypoxia and delta-opioid receptor on sodium channel expression in developing cortical neurons of rat brain. Mol Cell Biochem 2008. [PMID: 18239860 DOI: 10.1007/s11010-007-9607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/13/2007] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Cao
- Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, Guangdong, 510515, China,
| | | | | | | | | | | |
Collapse
|
10
|
Szubski C, Burtscher M, Löscher WN. Neuromuscular Fatigue during Sustained Contractions Performed in Short-Term Hypoxia. Med Sci Sports Exerc 2007; 39:948-54. [PMID: 17545884 DOI: 10.1249/mss.0b013e3180479918] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Hypoxia is known to change neuronal activity in vitro and to impair performance in vivo. The present study was designed to study neuromuscular fatigue in acute hypoxia, and we hypothesized that hypoxia results in additional fatigue during sustained contractions, presumably because of increased central fatigue. METHODS Twelve healthy subjects participated in a normoxic (NX) and hypoxic (HX) experiment performed on separate days. Hypoxia was induced by breathing an HX air mixture containing 12% oxygen. Before, during, and after a 90-s sustained voluntary maximal contraction (MVC) of the first dorsal interosseus muscle, we measured force, voluntary activation (VA), and parameters of motor cortical excitability (motor-evoked potentials (MEP) and silent periods (SP)). Measures of peripheral nerve and muscle function, compound motor action potential (M-wave), and muscle twitch forces were also taken. RESULTS During the MVC, force declined similarly during both HX and NX. VA decreased throughout the contraction in HX, but, surprisingly, this decrease in VA in HX did not exceed that observed in NX. Also, motor cortical excitability changed to a similar degree in HX and NX; that is, MEP amplitude and SP duration increased. M-wave amplitude decreased significantly during the sustained MVC in NX and HX. The only difference observed between NX and HX was the quicker recovery of the muscle twitch in HX, which was even potentiated after 5 min of recovery. CONCLUSION The present results show that peripheral and central neuromuscular adaptations during a sustained fatiguing contraction are similar in NX and HX. The quicker recovery and potentiation of twitch forces in HX suggest alterations in myosin phosphorylation, which may enhance contractile force.
Collapse
Affiliation(s)
- Christoph Szubski
- 1Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
11
|
Hong SS, Qian H, Zhao P, Bazzy-Asaad A, Xia Y. Anisomycin protects cortical neurons from prolonged hypoxia with differential regulation of p38 and ERK. Brain Res 2007; 1149:76-86. [PMID: 17391655 PMCID: PMC1937507 DOI: 10.1016/j.brainres.2007.02.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/12/2007] [Accepted: 02/15/2007] [Indexed: 11/18/2022]
Abstract
MAP kinase is associated with delta-opioid receptor (DOR) signaling and plays a role in cell survival/death. Since anisomycin may alter MAP kinase activity and affect neuronal survival, we investigated whether anisomycin alters neuronal response to hypoxic stress and DOR inhibition. The experiments were performed in cultured cortical neurons. MAP kinase activities were determined by immunoblotting and neuronal viability was assessed by LDH leakage and live/dead morphological study. DOR inhibition with naltrindole (10 microM) led to significant injury in normoxic neurons after 24 h of treatment and exacerbated hypoxia-induced injury. Along with the injury, either by hypoxia or naltrindole, phosphorylated p38 increased in a major way, while phosphorylated ERK and JNK had no significant change or slightly decreased. Anisomycin (50 ng/ml) prevented the increase in phosphorylated p38 immunoreactivity induced by naltrindole and reduced the neuronal injury. The results suggest that (1) MAP kinases are differentially involved in neuronal response to hypoxia and DOR inhibition in cortical neurons with phosphorylated p38 immunoreactivity being upregulated and (2) anisomycin attenuates the increase in phosphorylated p38 immunoreactivity and reduces neuronal injury induced by hypoxia and DOR inhibition.
Collapse
Affiliation(s)
- Soon-Sun Hong
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Hong Qian
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Peng Zhao
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Alia Bazzy-Asaad
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Ying Xia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
12
|
Abstract
All mammals and birds must develop effective strategies to cope with reduced oxygen availability. These animals achieve tolerance to acute and chronic hypoxia by (a) reductions in metabolism, (b) the prevention of cellular injury, and (c) the maintenance of functional integrity. Failure to meet any one of these tasks is detrimental. Birds and mammals accomplish this triple task through a highly coordinated, systems-level reconfiguration involving the partial shutdown of some but not all organs. This reconfiguration is achieved through a similarly complex reconfiguration at the cellular and molecular levels. Reconfiguration at these various levels depends on numerous factors that include the environment, the degree of hypoxic stress, and developmental, behavioral, and ecological conditions. Although common molecular strategies exist, the cellular and molecular changes in any given cell are very diverse. Some cells remain metabolically active, whereas others shut down or rely on anaerobic metabolism. This cellular shutdown is temporarily regulated, and during hypoxic exposure, active cellular networks must continue to control vital functions. The challenge for future research is to explore the cellular mechanisms and conditions that transform an organ or a cellular network into a hypometabolic state, without loss of functional integrity. Much can be learned in this respect from nature: Diving, burrowing, and hibernating animals living in diverse environments are masters of adaptation and can teach us how to deal with hypoxia, an issue of great clinical significance.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
13
|
Jia J, Wang X, Li H, Han S, Zu P, Li J. Activations of nPKCε and ERK1/2 Were Involved in Oxygen-Glucose Deprivation-induced Neuroprotection via NMDA Receptors in Hippocampal Slices of Mice. J Neurosurg Anesthesiol 2007; 19:18-24. [PMID: 17198096 DOI: 10.1097/01.ana.0000211020.88431.e2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulated reports have suggested that activation of protein kinase C (PKC) isoforms may involve the activation of extracellular signal-regulated kinases (ERKs) in the neuronal response to ischemic/hypoxic stimuli. We have previously demonstrated that the membrane translocation of novel PKC (nPKC) epsilon increased in the early phase of cerebral ischemic/hypoxic preconditioning of mice. In this study, we used Western blot analysis and propidium iodide stain to determine whether the activations of nPKCepsilon and ERKs were involved in oxygen-glucose deprivation (OGD)-induced neuroprotection via N-methyl-D-aspartate (NMDA) receptors. The hippocampal slices of mice were exposed to OGD for 10 (OGD10) or 45 minutes (OGD45) to mimic mild (causing ischemic/hypoxic preconditioning) and severe (causing severe OGD) ischemia/hypoxia, respectively. We found that OGD10-induced nPKCepslilon membrane translocation was mediated by NMDA receptors, and both OGD10 and NMDA (1 microM, 30 min) pretreatment could protect Cornu Ammonis region 1 neurons against the subsequent severe OGD45. In addition, nPKCepsilon translocation inhibitor, epsilonV1-2 (1 microM, 30 min), and ERKs upstream mitogen-activated protein/extracellular signal regulated kinase kinase inhibitor, PD-98059 (20 microM, 30 min), could significantly inhibit OGD10 and NMDA-induced neuroprotection. These results suggest that OGD10-induced neuroprotection against severe OGD45 in the Cornu Ammonis region 1 region of the hippocampal slices was mediated by the activations of NMDA receptors, nPKCepsilon, and the downstream ERKs.
Collapse
Affiliation(s)
- Jun Jia
- Department of Physiology, Institute for Biomedical Science of Pain, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
14
|
Li R, Guo M, Zhang G, Xu X, Li Q. Neuroprotection of nicotiflorin in permanent focal cerebral ischemia and in neuronal cultures. Biol Pharm Bull 2006; 29:1868-72. [PMID: 16946500 DOI: 10.1248/bpb.29.1868] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotiflorin is a single component extracted from traditional Chinese medicine Flos Carthami. In this study, we investigated its neuroprotection in permanent focal cerebral ischemia model in rats, and in an in vitro model of ischemia. At doses of 2.5, 5 and 10 mg/kg, nicotiflorin administered immediately after the onset of ischemia markedly reduced brain infarct volume and neurological deficits. For primarily cultured neurons suffered 2 h hypoxia followed by 24 h reoxygenation, nicotiflorin significantly attenuated cell death and reduced LDH release. Morphological observation also directly confirmed its protective effect on neuron. These results provided strong pharmacological basis for its potential therapeutic role in cerebral ischemic illness.
Collapse
Affiliation(s)
- Runping Li
- Department of Diving Medicine, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
15
|
Mazzeo AT, Kunene NK, Choi S, Gilman C, Bullock RM. Quantitation of ischemic events after severe traumatic brain injury in humans: a simple scoring system. J Neurosurg Anesthesiol 2006; 18:170-8. [PMID: 16799343 DOI: 10.1097/01.ana.0000210999.18033.f6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cerebral ischemia is recognized as one of the most important mechanisms responsible for secondary brain damage following severe traumatic brain injury (TBI), contributing to an increased mortality and a worse neurologic outcome. METHOD A simple 5-item scoring system, taking into account the occurrence of specific potentially brain-damaging events (hypoxemia, hypotension, low cerebral blood flow, herniation, and low cerebral perfusion pressure) has been tested in a large population of severe TBI patients. Aims of this retrospective study were to validate the ability of the proposed ischemic score to predict neurologic outcome and to correlate the ischemic score with the results of microdialysis-based neurochemical monitoring and brain tissue oxygen monitoring. FINDINGS In a population of 172 severe TBI patients, a significant correlation was found between ischemic score and neurologic outcome, both at 3 months (r = -0.32; P < 0.01) and at 6 months (r = -0.31; P < 0.01). Significant correlations were also found with the most important neurochemical analytes. CONCLUSIONS The ischemic score proposed here, may be determined during the acute intensive care unit period, and correlates closely with outcome, which can only be determined 3 to 6 months, after injury. It also shows a correlation with neurochemical analytes.
Collapse
Affiliation(s)
- Anna Teresa Mazzeo
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, 23219, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
17
|
Li J, Niu C, Han S, Zu P, Li H, Xu Q, Fang L. Identification of protein kinase C isoforms involved in cerebral hypoxic preconditioning of mice. Brain Res 2005; 1060:62-72. [PMID: 16214117 DOI: 10.1016/j.brainres.2005.08.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 11/19/2022]
Abstract
Recently, accumulated studies have suggested that protein kinases C (PKC) play a central role in the development of ischemic-hypoxic preconditioning (I/HPC) in the brain. However, which types of PKC isoforms might be responsible for neuroprotection is still not clear, especially when the systematic investigation of PKC isoform-specific changes in brain regions was rare in animals with ischemic-hypoxic preconditioning. By using Western blot, we have demonstrated that the levels of cPKC betaII and gamma membrane translocation were increased in the early phase of cerebral hypoxic preconditioning. In this study, we combined the Western blot and immunostaining methods to investigate the effects of repetitive hypoxic exposure (H1-H4, n = 6 for each group) on membrane translocation and protein expression of several types of PKC isoforms, both in the cortex and hippocampus of mice. We found that the increased membrane translocation of nPKCepsilon (P < 0.05, versus normoxic H0) but not its protein expression levels in both the cortex and hippocampus during development of cerebral HPC in mice. However, there were no significant changes in both membrane translocation and protein expression levels of nPKCdelta, theta, eta, mu, and aPKC iota/lambda, zeta in these brain areas after hypoxic preconditioning. Similarly, an extensive subcellular redistribution of cPKCbetaII, gamma, and nPKCepsilon was observed by immunostaining in the cortex after three series of hypoxic exposures (H3). These results indicate that activation of cPKCbetaII, gamma, and nPKCepsilon might be involved in the development of cerebral hypoxic preconditioning of mice.
Collapse
Affiliation(s)
- Junfa Li
- Institute for Biomedical Science of Pain, Beijing Key Laboratory for Neural Regeneration and Repairing, Department of Neurobiology, Capital University of Medical Sciences, Beijing 100054, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee JH, Chi SC, Kim SH, Shin YH, Choi J. Protective Effect of DWP-04 Against Hepatotoxicity Induced by D-galactosamine. ACTA ACUST UNITED AC 2005. [DOI: 10.5352/jls.2005.15.3.461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Acosta ML, Kalloniatis M. Short- and long-term enzymatic regulation secondary to metabolic insult in the rat retina. J Neurochem 2005; 92:1350-62. [PMID: 15748154 DOI: 10.1111/j.1471-4159.2004.02976.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in oxygen and/or glucose availability may result in altered levels of ATP production and amino acid levels, and alteration in lactic acid production. However, under certain metabolic insults, the retina demonstrates considerable resilience and maintains ATP production, and/or retinal function. We wanted to investigate whether this resilience would be reflected in alterations in the activity of key enzymes of retinal metabolism, or enzymes associated with amino acid production that may supply their carbon skeleton for energy production. Enzymatic assays were conducted to determine the activity of key retinal metabolic enzymes total ATPase and Na(+)/K(+)-ATPase, aspartate aminotransferase and lactate dehydrogenase. In vitro anoxia led to an increase in retinal lactate dehydrogenase activity and to a decrease in retinal aspartate aminotransferase activity, without significant changes in Na(+)/K(+)-ATPase activity. In vivo inhibition of glutamine synthetase resulted in a short-term significant decrease in retinal aspartate aminotransferase activity. An increase in retinal aspartate aminotransferase and lactate dehydrogenase activities was accompanied by altered levels of amino acids in neurons and glia after partial inhibition of glial metabolism, implying that short- and long-term up- and down-regulation of key metabolic enzymes occurs to supply carbon skeletons for retinal metabolism. ATPase activity does not appear to fluctuate under the metabolic stresses employed in our experimental procedures.
Collapse
Affiliation(s)
- Monica L Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|