1
|
Asakura S, Kamogashira T, Funayama H, Kataoka T, Shoji S, Koizumi M, Ishimoto S, Yamasoba T. Evaluation of the Decrease in DPOAE Levels After VEMP Testing in Clinical Patients Referred to the Vertigo Outpatient Clinic. J Clin Med 2025; 14:2766. [PMID: 40283595 PMCID: PMC12027711 DOI: 10.3390/jcm14082766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The objective of this study is to determine whether the strong acoustic stimuli used in vestibular evoked myogenic potential (VEMP) testing contribute to distortion product otoacoustic emission (DPOAE) level reduction due to noise-induced hearing loss. Methods: The DPOAE levels were measured routinely to evaluate vestibular balance disorders with sensorineural hearing loss and to monitor changes in cochlear function before and after VEMP. The changes in DPOAE levels after VEMP testing in 174 patients (80 males and 94 females; median age, 53 years [interquartile range, 39-67 years; range, 15-85 years]) who were examined in the vertigo outpatient clinic between June 2021 and December 2024 were retrospectively analyzed. Results: The DPOAE levels decreased significantly after VEMP testing at 1.4 kHz, 2 kHz, 2.8 kHz, sum all 1/2 octave, and average 1/2 octave (1-6 kHz). The decrease in DPOAE levels at 6 kHz exhibited a significant negative linear correlation with age (the coefficient of determination: 0.0189, p = 0.01), but not sex or side. Conclusions: The strong sound stimulation used in VEMP testing can decrease DPOAE levels. The frequencies at which DPOAE levels decreased significantly were overtones of the stimulus frequency, suggesting a possible effect of acoustic stimulation. VEMP testing can be an invasive test method and should be performed with detailed consideration of the risks and benefits. The age factor can influence the decrease in DPOAE levels in VEMP testing.
Collapse
Affiliation(s)
- Shinnosuke Asakura
- Department of Clinical Examination, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Teru Kamogashira
- Department of Otolaryngology, JR Tokyo General Hospital, Tokyo 151-8528, Japan
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Hideaki Funayama
- Department of Clinical Examination, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Toshitaka Kataoka
- Department of Otolaryngology, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Shizuka Shoji
- Department of Otolaryngology, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Megumi Koizumi
- Department of Otolaryngology, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Shinichi Ishimoto
- Department of Otolaryngology, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Tokyo Teishin Hospital, Tokyo 102-8798, Japan
| |
Collapse
|
2
|
Brunelle DL, Park CR, Fawcett TJ, Walton JP. Signal-in-noise detection across the lifespan in a mouse model of presbycusis. Hear Res 2025; 455:109153. [PMID: 39637601 DOI: 10.1016/j.heares.2024.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The auditory system is constantly tasked with detecting acoustic cues in complex auditory environments. Difficulty hearing speech in noise, largely a result of energetic masking, is a major communication complaint of the elderly, which impacts a third of the global population over 65. The neural mechanisms responsible for processing sound in background noise and subsequently achieving release from energetic masking remain obscure. Furthermore, the senescence of signal-in-noise detection is poorly understood, a phenomenon which could have a myriad of clinical implications. We tested over 300 CBA/CaJ mice aged 1-27 months on tone-in-noise detection ability utilizing prepulse inhibition of the acoustic startle response with a machine learning startle classifier. We found that mice developed profound tone-in-noise detection deficits throughout their lifespan as evidenced by Rd', a detection metric derived from signal detection theory. The most severe decline in Rd' corresponded to a 2.54-fold decrease in tone-in-noise detection across the lifespan. Our findings suggest that CBA/CaJ mice are an appropriate model to study the role of age-related hearing loss in the context of signal-in-noise masking.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Timothy J Fawcett
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Dept. of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
3
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Fukuda M, Okanishi H, Ino D, Ono K, Ota T, Wakai E, Sato T, Ohta Y, Kikkawa Y, Inohara H, Kanai Y, Hibino H. Protein profile of mouse endolymph suggests a role in controlling cochlear homeostasis. iScience 2024; 27:111214. [PMID: 39563888 PMCID: PMC11574807 DOI: 10.1016/j.isci.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
The cochlea contains two extracellular fluids, perilymph and endolymph. Endolymph exhibits high potential of approximately +80 to +110 mV (depending on species), which sensitizes sensory hair cells. Other properties of this unique fluid remain elusive, owing to its minuscule volume in rodent cochlea. We therefore developed a technique to collect high-purity endolymph from mouse cochleae. Comprehensive proteomic analysis of sampled endolymph using liquid chromatography with mass spectrometry identified 301 proteins, dominated by molecules engaged in immunity and proteostasis. Approximately 30% of these proteins were undetectable in our perilymph. A combination of mass spectrometry and different approaches revealed that, compared to perilymph, endolymph was enriched with α2-macroglobulin, osteopontin, apolipoprotein D, apolipoprotein E, and apolipoprotein J/clusterin. In other cells or tissues, α2-macroglobulin, apolipoprotein E, and apolipoprotein J contribute to the clearance of degraded proteins from extracellular fluid. Altogether, with the proteins described here, endolymph may play a protective role in stabilizing cochlear homeostasis.
Collapse
Affiliation(s)
- Masatoshi Fukuda
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Ino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Ono
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeru Ota
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eri Wakai
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Gao Y, Wu F, He W, Cai Z, Pang J, Zheng Y. Reactive Oxygen Species-Related Disruptions to Cochlear Hair Cell and Stria Vascularis Consequently Leading to Radiation-Induced Sensorineural Hearing Loss. Antioxid Redox Signal 2024; 40:470-491. [PMID: 37476961 DOI: 10.1089/ars.2022.0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Shanwei, China
| |
Collapse
|
7
|
Lue PY, Oliver MH, Neeff M, Thorne PR, Suzuki-Kerr H. Sheep as a large animal model for hearing research: comparison to common laboratory animals and humans. Lab Anim Res 2023; 39:31. [PMID: 38012676 PMCID: PMC10680324 DOI: 10.1186/s42826-023-00182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Sensorineural hearing loss (SNHL), caused by pathology in the cochlea, is the most common type of hearing loss in humans. It is generally irreversible with very few effective pharmacological treatments available to prevent the degenerative changes or minimise the impact. Part of this has been attributed to difficulty of translating "proof-of-concept" for novel treatments established in small animal models to human therapies. There is an increasing interest in the use of sheep as a large animal model. In this article, we review the small and large animal models used in pre-clinical hearing research such as mice, rats, chinchilla, guinea pig, rabbit, cat, monkey, dog, pig, and sheep to humans, and compare the physiology, inner ear anatomy, and some of their use as model systems for SNHL, including cochlear implantation surgeries. Sheep have similar cochlear anatomy, auditory threshold, neonatal auditory system development, adult and infant body size, and number of birth as humans. Based on these comparisons, we suggest that sheep are well-suited as a potential translational animal model that bridges the gap between rodent model research to the clinical use in humans. This is especially in areas looking at changes across the life-course or in specific areas of experimental investigation such as cochlear implantation and other surgical procedures, biomedical device development and age-related sensorineural hearing loss research. Combined use of small animals for research that require higher throughput and genetic modification and large animals for medical translation could greatly accelerate the overall translation of basic research in the field of auditory neuroscience from bench to clinic.
Collapse
Affiliation(s)
- Po-Yi Lue
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Mark H Oliver
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Ngapouri Research Farm Laboratory, University of Auckland, Waiotapu, New Zealand
| | - Michel Neeff
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Requena T, Keder A, zur Lage P, Albert JT, Jarman AP. A Drosophila model for Meniere's disease: Dystrobrevin is required for support cell function in hearing and proprioception. Front Cell Dev Biol 2022; 10:1015651. [PMID: 36438562 PMCID: PMC9688402 DOI: 10.3389/fcell.2022.1015651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 08/04/2023] Open
Abstract
Meniere's disease (MD) is an inner ear disorder characterised by recurrent vertigo attacks associated with sensorineural hearing loss and tinnitus. Evidence from epidemiology and Whole Exome Sequencing (WES) suggests a genetic susceptibility involving multiple genes, including α-Dystrobrevin (DTNA). Here we investigate a Drosophila model. We show that mutation, or knockdown, of the DTNA orthologue in Drosophila, Dystrobrevin (Dyb), results in defective proprioception and impaired function of Johnston's Organ (JO), the fly's equivalent of the inner ear. Dyb and another component of the dystrophin-glycoprotein complex (DGC), Dystrophin (Dys), are expressed in support cells within JO. Their specific locations suggest that they form part of support cell contacts, thereby helping to maintain the integrity of the hemolymph-neuron diffusion barrier, which is equivalent to a blood-brain barrier. These results have important implications for the human condition, and notably, we note that DTNA is expressed in equivalent cells of the mammalian inner ear.
Collapse
Affiliation(s)
- T. Requena
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - A. Keder
- Ear Institute, University College London, London, United Kingdom
| | - P. zur Lage
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - J. T. Albert
- Ear Institute, University College London, London, United Kingdom
| | - A. P. Jarman
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Du EY, Boussaty EC, La Monte OA, Dixon PR, Zhou TY, Friedman RA. Large-scale phenotyping and characterization of age-related hearing loss in outbred CFW mice. Hear Res 2022; 424:108605. [PMID: 36088865 DOI: 10.1016/j.heares.2022.108605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Age-related hearing loss (ARHL), or presbycusis, is one of the most prevalent conditions affecting the global population. A substantial fraction of patients with ARHL have no identifiable mutation despite over a hundred having been discovered, suggesting unidentified monogenic or polygenic causes. In this study, we investigated the hearing function of the aging outbred CFW mice through auditory brainstem response (ABR) thresholds. Through the characterization of 1,132 ABRs, we observed significant variation in both absolute thresholds and the effect of aging. We identify eight distinct patterns of hearing loss and were able to categorize nearly all data within these eight categories. Proportions within each category varied immensely between aging timepoints. We observe a small but consistent hearing deficit in female CFW mice. The resulting phenotypic data are a necessity for ARHL association mapping at a higher resolution than has previously been achieved and provides a new resource for studying ARHL.
Collapse
Affiliation(s)
- Eric Y Du
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Ely C Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Olivia A La Monte
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA; University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Peter R Dixon
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Y Zhou
- University of California, San Diego, La Jolla, CA, USA
| | - Rick A Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Noise overstimulation of young adult UMHET4 mice accelerates age-related hearing loss. Hear Res 2022; 424:108601. [PMID: 36126618 DOI: 10.1016/j.heares.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Abstract
Many factors contribute to hearing loss commonly found in older adults. There can be natural aging of cellular elements, hearing loss previously induced by environmental factors such as noise or ototoxic drugs as well as genetic and epigenetic influences. Even when noise overstimulation does not immediately cause permanent hearing loss it has recently been shown to increase later age-related hearing loss (ARHL). The present study further investigated this condition in the UMHET4 mouse model by comparing a small arms fire (SAF)-like impulse noise exposure that has the greatest immediate effect in more apical cochlear regions to a broadband noise (BBN) exposure that has the greatest immediate effect in more basal cochlear regions. Both noise exposures were given at levels that only induced temporary auditory brainstem response (ABR) threshold shifts (TS). Mice were noise exposed at 5 months of age followed by ABR assessment at 6, 12, 18, 21, and 24 months of age. Mice that received the SAF-like impulse noise had accelerated age-related TS at 4 kHz that appeared at 12 months of age (significantly increased compared to no-noise controls). This increased TS at 4 kHz continued at 18 and 21 months but was no longer significantly greater at 24 months of age. The SAF-like impulse noise also induced a significantly greater mean TS at 48 kHz, first appearing at 18 months of age and continuing to be significantly greater than controls at 21 and 24 months. The BBN induced a different pace and pattern of enhanced age-related ABR TS. The mean TS for the BBN group first became significantly greater than controls at 18 months of age and only at 48 kHz. It remained significantly greater than controls at 21 months but was no longer significantly greater at 24 months of age. Results, therefore, show different influences on ARHL for the two different noise exposure conditions. Noise-induced enhancement appears to provide more an acceleration than overall total increase in ARHL.
Collapse
|
11
|
Xu X, Liu Y, Luan J, Liu R, Wang Y, Liu Y, Xu A, Zhou B, Han F, Shang W. Effect of downregulated citrate synthase on oxidative phosphorylation signaling pathway in HEI-OC1 cells. Proteome Sci 2022; 20:14. [PMID: 36071491 PMCID: PMC9450364 DOI: 10.1186/s12953-022-00196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Citrate Synthase (Cs) gene mutation (locus ahL4) has been found to play an important role in progressive hearing loss of A/J mice. HEI-OC1 cells have been widely used as an in vitro system to study cellular and molecular mechanisms related to hearing lose. We previously reported the increased apoptosis and the accumulation of reactive oxygen species in shRNACs-1429 cells, a Cs low-expressed cell model from HEI-OCI. The details of the mechanism of ROS production and apoptosis mediated by the abnormal expression of Cs needed to research furtherly. Methods iTRAQ proteomics was utilized to detect the differentially expressed proteins (DEPs) caused by low expression of Cs. The GO and KEGG pathways analysis were performed for annotation of the differentially expressed proteins. Protein–protein interaction network was constructed by STRING online database. Immunoblotting was utilized to confirm the protein levels of the the differentially expressed proteins. Results The differentially expressed proteins were significantly enriched in various signaling pathways mainly related to mitochondrial dysfunction diseases including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, et al. Most noteworthy, the oxidative phosphorylation pathway was most significantly suppressed in the shRNACs-1429 cells,, in which a total of 10 differentially expressed proteins were enriched and were all downregulated by the abnormal expression of Cs. The downregulations of Ndufb5, Ndufv1 and Uqcrb were confirmed by immunoblotting. Meanwhile, the ATP levels of shRNACs-1429 cells were also reduced. Conclusions These results suggest that low level expression of Cs induces the inhibition of oxidative phosphorylation pathway, which is responsible for the high level production of reactive oxygen species and low level of ATP, leading to the apoptosis of cochlear cells. This study may provide new theories for understanding and therapy of progressive hearing loss. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00196-0.
Collapse
Affiliation(s)
- Xiaowen Xu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, People's Republic of China
| | - Yue Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, People's Republic of China
| | - Jun Luan
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China
| | - Rongrong Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China
| | - Yan Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China
| | - Yingying Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China
| | - Ang Xu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, People's Republic of China
| | - Bingxin Zhou
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China. .,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.
| | - Wenjing Shang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China. .,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Molecular and cytological profiling of biological aging of mouse cochlear inner and outer hair cells. Cell Rep 2022; 39:110665. [PMID: 35417713 PMCID: PMC9069708 DOI: 10.1016/j.celrep.2022.110665] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Age-related hearing loss (ARHL) negatively impacts quality of life in the elderly population. The prevalent cause of ARHL is loss of mechanosensitive cochlear hair cells (HCs). The molecular and cellular mechanisms of HC degeneration remain poorly understood. Using RNA-seq transcriptomic analyses of inner and outer HCs isolated from young and aged mice, we show that HC aging is associated with changes in key molecular processes, including transcription, DNA damage, autophagy, and oxidative stress, as well as genes related to HC specialization. At the cellular level, HC aging is characterized by loss of stereocilia, shrinkage of HC soma, and reduction in outer HC mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes HC loss and contributes to ARHL. Our study reveals molecular and cytological profiles of aging HCs and identifies genes such as Sod1, Sirt6, Jund, and Cbx3 as biomarkers and potential therapeutic targets for ameliorating ARHL. Using RNA-seq, advanced imaging, and electrophysiology, Liu et al. reveal molecular and cytological profiles of aging cochlear hair cells. Their study also suggests that a functional decline in mechanotransduction and cochlear amplification precedes hair cell loss and contributes to age-related hearing loss.
Collapse
|
13
|
Nolan LS, Chen J, Gonçalves AC, Bullen A, Towers ER, Steel KP, Dawson SJ, Gale JE. Targeted deletion of the RNA-binding protein Caprin1 leads to progressive hearing loss and impairs recovery from noise exposure in mice. Sci Rep 2022; 12:2444. [PMID: 35165318 PMCID: PMC8844073 DOI: 10.1038/s41598-022-05657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cell cycle associated protein 1 (Caprin1) is an RNA-binding protein that can regulate the cellular post-transcriptional response to stress. It is a component of both stress granules and neuronal RNA granules and is implicated in neurodegenerative disease, synaptic plasticity and long-term memory formation. Our previous work suggested that Caprin1 also plays a role in the response of the cochlea to stress. Here, targeted inner ear-deletion of Caprin1 in mice leads to an early onset, progressive hearing loss. Auditory brainstem responses from Caprin1-deficient mice show reduced thresholds, with a significant reduction in wave-I amplitudes compared to wildtype. Whilst hair cell structure and numbers were normal, the inner hair cell-spiral ganglion neuron (IHC-SGN) synapse revealed abnormally large post-synaptic GluA2 receptor puncta, a defect consistent with the observed wave-I reduction. Unlike wildtype mice, mild-noise-induced hearing threshold shifts in Caprin1-deficient mice did not recover. Oxidative stress triggered TIA-1/HuR-positive stress granule formation in ex-vivo cochlear explants from Caprin1-deficient mice, showing that stress granules could still be induced. Taken together, these findings suggest that Caprin1 plays a key role in maintenance of auditory function, where it regulates the normal status of the IHC-SGN synapse.
Collapse
Affiliation(s)
- Lisa S Nolan
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | | - Anwen Bullen
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Emily R Towers
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
14
|
Salam SA, Mostafa F, Alnamshan MM, Elshewemi SS, Sorour JM. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression. Biomed Pharmacother 2021; 143:112149. [PMID: 34507120 DOI: 10.1016/j.biopha.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.
Collapse
Affiliation(s)
- Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Fatma Mostafa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mashael M Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Salma S Elshewemi
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Jehan M Sorour
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
15
|
Guthrie OW, Bhatt IS. Nondeterministic nature of sensorineural outcomes following noise trauma. Biol Open 2021; 10:272549. [PMID: 34668520 PMCID: PMC8543023 DOI: 10.1242/bio.058696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Over 1.1 billion individuals are at risk for noise induced hearing loss yet there is no accepted therapy. A long history of research has demonstrated that excessive noise exposure will kill outer hair cells (OHCs). Such observations have fueled the notion that dead OHCs underlie hearing loss. Therefore, previous and current therapeutic approaches are based on preventing the loss of OHCs. However, the relationship between OHC loss and hearing loss is at best a modest correlation. This suggests that in addition to the death of OHCs, other mechanisms may regulate the type and degree of hearing loss. In the current study, we tested the hypothesis that permanent noise-induced-hearing loss is consequent to additional mechanisms beyond the noise dose and the death of OHCs. Hooded male rats were randomly divided into noise and control groups. Morphological and physiological assessments were conducted on both groups. The combined results suggest that beyond OHC loss, the surviving cochlear elements shape sensorineural outcomes, which can be nondeterministic. These findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead OHCs. Summary: The current findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead cells.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ 86011, USA.,Cell & Molecular Pathology Laboratory, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ishan S Bhatt
- Audiogenomics Research Laboratory, Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Istradefylline Mitigates Age-Related Hearing Loss in C57BL/6J Mice. Int J Mol Sci 2021; 22:ijms22158000. [PMID: 34360766 PMCID: PMC8348536 DOI: 10.3390/ijms22158000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory disorder among older people, and yet, the treatment options are limited to medical devices such as hearing aids and cochlear implants. The high prevalence of ARHL mandates the development of treatment strategies that can prevent or rescue age-related cochlear degeneration. In this study, we investigated a novel pharmacological strategy based on inhibition of the adenosine A2A receptor (A2AR) in middle aged C57BL/6 mice prone to early onset ARHL. C57BL/6J mice were treated with weekly istradefylline (A2AR antagonist; 1 mg/kg) injections from 6 to 12 months of age. Auditory function was assessed using auditory brainstem responses (ABR) to tone pips (4–32 kHz). ABR thresholds and suprathreshold responses (wave I amplitudes and latencies) were evaluated at 6, 9, and 12 months of age. Functional outcomes were correlated with quantitative histological assessments of sensory hair cells. Cognitive function was assessed using the Morris water maze and the novel object recognition test, and the zero maze test was used to assess anxiety-like behaviour. Weekly injections of istradefylline attenuated ABR threshold shifts by approximately 20 dB at mid to high frequencies (16–32 kHz) but did not improve ABR suprathreshold responses. Istradefylline treatment improved hair cell survival in a turn-dependent manner, whilst the cognitive function was unaffected by istradefylline treatment. This study presents the first evidence for the rescue potential of istradefylline in ARHL and highlights the role of A2AR in development of age-related cochlear degeneration.
Collapse
|
17
|
Tani T, Koike-Tani M, Tran MT, Shribak M, Levic S. Postnatal structural development of mammalian Basilar Membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning. Sci Rep 2021; 11:7581. [PMID: 33828185 PMCID: PMC8027603 DOI: 10.1038/s41598-021-87150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
The basilar membrane (BM) of the mammalian cochlea constitutes a spiraling acellular ribbon that is intimately attached to the organ of Corti. Its graded stiffness, increasing from apex to the base of the cochlea provides the mechanical basis for sound frequency analysis. Despite its central role in auditory signal transduction, virtually nothing is known about the BM's structural development. Using polarized light microscopy, the present study characterized the architectural transformations of freshly dissected BM at time points during postnatal development and maturation. The results indicate that the BM structural elements increase progressively in size, becoming radially aligned and more tightly packed with maturation and reach the adult structural signature by postnatal day 20 (P20). The findings provide insight into structural details and developmental changes of the mammalian BM, suggesting that BM is a dynamic structure that changes throughout the life of an animal.
Collapse
Affiliation(s)
- Tomomi Tani
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, MA, USA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| | - Maki Koike-Tani
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, MA, USA
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Mai Thi Tran
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, MA, USA
- College of Engineering and Computer Science, VinUniversity, Gia Lam District, Hanoi, Vietnam
| | - Michael Shribak
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, MA, USA
| | - Snezana Levic
- Marine Biological Laboratory, Eugene Bell Center, Woods Hole, MA, USA.
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK.
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK.
| |
Collapse
|
18
|
Altschuler RA, Kabara L, Martin C, Kanicki A, Stewart CE, Kohrman DC, Dolan DF. Rapamycin Added to Diet in Late Mid-Life Delays Age-Related Hearing Loss in UMHET4 Mice. Front Cell Neurosci 2021; 15:658972. [PMID: 33897373 PMCID: PMC8058174 DOI: 10.3389/fncel.2021.658972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 01/30/2023] Open
Abstract
Our previous study demonstrated rapamycin added to diet at 4 months of age had significantly less age-related outer hair cell loss in the basal half of the cochlea at 22 months of age compared to mice without rapamycin. The present study tested adding rapamycin to diet later in life, at 14 months of age, and added a longitudinal assessment of auditory brain stem response (ABR). The present study used UMHET4 mice, a 4 way cross in which all grandparental strains lack the Cdh23753A allele that predisposes to early onset, progressive hearing loss. UMHET4 mice typically have normal hearing until 16-17 months, then exhibit threshold shifts at low frequencies/apical cochlea and later in more basal high frequency regions. ABR thresholds at 4, 12, 24, and 48 kHz were assessed at 12, 18, and 24 months of age and compared to baseline ABR thresholds acquired at 5 months of age to determine threshold shifts (TS). There was no TS at 12 months of age at any frequency tested. At 18 months of age mice with rapamycin added to diet at 14 months had a significantly lower mean TS at 4 and 12 kHz compared to mice on control diet with no significant difference at 24 and 48 kHz. At 24 months of age, the mean 4 kHz TS in rapamycin diet group was no longer significantly lower than the control diet group, while the 12 kHz mean remained significantly lower. Mean TS at 24 and 48 kHz in the rapamycin diet group became significantly lower than in the control diet group at 24 months. Hair cell counts at 24 months showed large loss in the apical half of most rapamycin and control diet mice cochleae with no significant difference between groups. There was only mild outer hair cell loss in the basal half of rapamycin and control diet mice cochleae with no significant difference between groups. The results show that a later life addition of rapamycin can decrease age-related hearing loss in the mouse model, however, it also suggests that this decrease is a delay/deceleration rather than a complete prevention.
Collapse
Affiliation(s)
- Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,VA Ann Arbor Health Care System, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Lisa Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Catherine Martin
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Ariane Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Courtney E Stewart
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,VA Ann Arbor Health Care System, Ann Arbor, MI, United States
| | - David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Age-related and noise-induced hearing loss alters grasshopper mouse (Onychomys) vocalizations. Hear Res 2021; 404:108210. [PMID: 33713993 DOI: 10.1016/j.heares.2021.108210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022]
Abstract
Age-related and noise-induced hearing loss disorders are among the most common pathologies affecting Americans across their lifespans. Loss of auditory feedback due to hearing disorders is correlated with changes in voice and speech-motor control in humans. Although rodents are increasingly used to model human age- and noise-induced hearing loss, few studies have assessed vocal changes after acoustic trauma. Northern grasshopper mice (Onychomys leucogaster) represent a candidate model because their hearing sensitivity is matched to the frequencies of long-distance vocalizations that are produced using vocal fold vibrations similar to human speech. In this study, we quantified changes in auditory brainstem responses (ABRs) and vocalizations related to aging and noise-induced acoustic trauma. Mice showed a progressive decrease in hearing sensitivity across 4-32 kHz, with males losing hearing more rapidly than females. In addition, noise-exposed mice had a 61.55 dB SPL decrease in ABR sensitivity following a noise exposure, with some individuals exhibiting a 21.25 dB recovery 300-330 days after noise exposure. We also found that older grasshopper mice produced calls with lower fundamental frequency. Sex differences were measured in duration of calls with females producing longer calls with age. Our findings indicate that grasshopper mice experience age- and noise- induced hearing loss and concomitant changes in vocal output, making them a promising model for hearing and communication disorders.
Collapse
|
20
|
Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021; 168:118-133. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
According to the World Health Organization, hearing loss affects over 466 million people worldwide and is the most common human sensory impairment. It is estimated that genetic factors contribute to the causation of approximately 50% of congenital hearing loss. Yet, curative approaches to reversing or preventing genetic hearing impairment are still limited. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) systems enable programmable and targeted gene editing in highly versatile manners and offer new gene therapy strategies for genetic hearing loss. Here, we summarize the most common deafness-associated genes, illustrate recent strategies undertaken by using CRISPR-Cas9 systems for targeted gene editing and further compare the CRISPR strategies to non-CRISPR gene therapies. We also examine the merits of different vehicles and delivery forms of genome editing agents. Lastly, we describe the development of animal models that could facilitate the eventual clinical applications of the CRISPR technology to the treatment of genetic hearing diseases.
Collapse
|
21
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
22
|
Jeng JY, Johnson SL, Carlton AJ, DeTomasi L, Goodyear R, DeFaveri F, Furness DN, Wells S, Brown SDM, Holley MC, Richardson GP, Mustapha M, Bowl MR, Marcotti W. Age-related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells. J Physiol 2020; 598:3891-3910. [PMID: 32608086 PMCID: PMC7612122 DOI: 10.1113/jp279795] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 09/01/2023] Open
Abstract
KEY POINTS Age-related hearing loss (ARHL) is a very heterogeneous disease, resulting from cellular senescence, genetic predisposition and environmental factors (e.g. noise exposure). Currently, we know very little about age-related changes occurring in the auditory sensory cells, including those associated with the outer hair cells (OHCs). Using different mouse strains, we show that OHCs undergo several morphological and biophysical changes in the ageing cochlea. Ageing OHCs also exhibited the progressive loss of afferent and efferent synapses. We also provide evidence that the size of the mechanoelectrical transducer current is reduced in ageing OHCs, highlighting its possible contribution in cochlear ageing. ABSTRACT Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9-12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and non-linear capacitance, a readout of prestin-dependent electromotility. Despite these changes, OHCs have a normal Vm and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, good-hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of age-related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Adam J Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lara DeTomasi
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Richard Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Francesca DeFaveri
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | | | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
23
|
Kim MJ, Han C, White K, Park HJ, Ding D, Boyd K, Rothenberger C, Bose U, Carmichael P, Linser PJ, Tanokura M, Salvi R, Someya S. Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Exp Gerontol 2020; 141:111078. [PMID: 32866605 DOI: 10.1016/j.exger.2020.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Peter Carmichael
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Curhan SG, Halpin C, Wang M, Eavey RD, Curhan GC. Prospective Study of Dietary Patterns and Hearing Threshold Elevation. Am J Epidemiol 2020; 189:204-214. [PMID: 31608356 PMCID: PMC7217280 DOI: 10.1093/aje/kwz223] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
We conducted a prospective study of dietary patterns and longitudinal change in audiometric hearing thresholds among 3,135 women (mean age = 59 years) in the Nurses' Health Study II (2012-2018). Diet adherence scores for the Dietary Approaches to Stop Hypertension (DASH) and Alternate Mediterranean (AMED) diets and the Alternate Healthy Eating Index 2010 (AHEI-2010) were calculated using validated food-frequency questionnaires. Baseline and 3-year follow-up hearing sensitivities were assessed by pure-tone audiometry at 19 US sites. We used multivariable-adjusted logistic regression models to examine independent associations between diet adherence scores and risk of ≥5 dB elevation in the pure-tone average (PTA) of low-frequency (LPTA0.5,1,2 kHz), mid-frequency (MPTA3,4 kHz), and high-frequency (HPTA6,8 kHz) hearing thresholds. Higher adherence scores were associated with lower risk of hearing loss. Compared with the lowest quintile of DASH score, the multivariable-adjusted odds ratios for mid-frequency and high-frequency threshold elevation in the highest quintile were 0.71 (95% confidence interval (CI): 0.55, 0.92; P for trend = 0.003) and 0.75 (95% CI: 0.59, 0.96; P for trend = 0.02); for AMED and AHEI scores, for mid-frequency threshold elevation, they were 0.77 (95% CI: 0.60, 0.99; P for trend = 0.02) and 0.72 (95% CI: 0.57, 0.92; P for trend = 0.002). Nonsignificant inverse associations were observed for high-frequency threshold elevation. There were no significant associations between adherence scores and low-frequency threshold elevation. Our findings indicate that eating a healthy diet might reduce the risk of acquired hearing loss.
Collapse
Affiliation(s)
- Sharon G Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Roland D Eavey
- Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences and the Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
25
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
26
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
27
|
Clifford RE, Hertzano R, Ohlemiller KK. Untangling the genomics of noise-induced hearing loss and tinnitus: Contributions of Mus musculus and Homo sapiens. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4007. [PMID: 31795683 PMCID: PMC7273513 DOI: 10.1121/1.5132552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 05/23/2023]
Abstract
Acoustic trauma is a feature of the industrial age, in general, and mechanized warfare, in particular. Noise-induced hearing loss (NIHL) and tinnitus have been the number 1 and number 2 disabilities at U.S. Veterans hospitals since 2006. In a reversal of original protocols to identify candidate genes associated with monogenic deafness disorders, unbiased genome-wide association studies now direct animal experiments in order to explore genetic variants common in Homo sapiens. However, even these approaches must utilize animal studies for validation of function and understanding of mechanisms. Animal research currently focuses on genetic expression profiles since the majority of variants occur in non-coding regions, implying regulatory divergences. Moving forward, it will be important in both human and animal research to define the phenotypes of hearing loss and tinnitus, as well as exposure parameters, in order to extricate genes related to acoustic trauma versus those related to aging. It has become clear that common disorders like acoustic trauma are influenced by large numbers of genes, each with small effects, which cumulatively lead to susceptibility to a disorder. A polygenic risk score, which aggregates these small effect sizes of multiple genes, may offer a more accurate description of risk for NIHL and/or tinnitus.
Collapse
Affiliation(s)
- Royce E Clifford
- Division of Otolaryngology-Head and Neck Surgery, University of California School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, James T. Frenkil Building, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| | - Kevin K Ohlemiller
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| |
Collapse
|
28
|
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly. This progressive hearing impairment leads to social isolation and is also associated with comorbidities, such as frailty, falls, and late-onset depression. Moreover, there is a growing evidence linking it with cognitive decline and increased risk of dementia. Given the large social and welfare burden that results from ARHL, and because ARHL is potentially a modifiable risk factor for dementia, there is an urgent need for therapeutic interventions to ameliorate age-related auditory decline. However, a prerequisite for design of therapies is knowledge of the underlying molecular mechanisms. Currently, our understanding of ARHL is very limited. Here, we review recent findings from research into ARHL from both human and animal studies and discuss future prospects for advances in our understanding of genetic susceptibility, pathology, and potential therapeutic approaches in ARHL.
Collapse
Affiliation(s)
- Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford OX11 0RD, United Kingdom
| | - Sally J Dawson
- UCL Ear Institute, University College London, London WC1X 8EE, United Kingdom
| |
Collapse
|
29
|
Kobrina A, Dent ML. The effects of age and sex on the detection of pure tones by adult CBA/CaJ mice (Mus musculus). J Neurosci Res 2019; 98:1731-1744. [PMID: 31304616 DOI: 10.1002/jnr.24496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/23/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
Abstract
Age-related hearing loss (ARHL) is a neurodegenerative disorder characterized by a gradual decrease in hearing sensitivity. Previous electrophysiological and behavioral studies have demonstrated that the CBA/CaJ mouse strain is an appropriate model for the late-onset hearing loss found in humans. However, few studies have characterized hearing in these mice behaviorally using longitudinal methodologies. The goal of this research was to utilize a longitudinal design and operant conditioning procedures with positive reinforcement to construct audiograms and temporal integration functions in aging CBA/CaJ mice. In the first experiment, thresholds were collected for 8, 16, 24, 42, and 64 kHz pure tones in 30 male and 35 female CBA/CaJ mice. Similar to humans, mice had higher thresholds for high frequency tones than for low frequency pure tones across the lifespan. Female mice had better hearing acuity than males after 645 days of age. In the second experiment, temporal integration functions were constructed for 18 male and 18 female mice for 16 and 64 kHz tones varying in duration. Mice showed an increase in thresholds for tones shorter than 200 ms, reaching peak performance at shorter durations than other rodent species. Overall, CBA/CaJ mice experience ARHL for pure tones of different frequencies and durations, making them a good model for studies on hearing loss. These findings highlight the importance of using a wide range of stimuli and a longitudinal design when comparing presbycusis across different species.
Collapse
Affiliation(s)
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, New York
| |
Collapse
|
30
|
Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019; 135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Hearing loss caused by exposure to recreational and occupational noise remains a worldwide disabling condition and dysregulation of redox homeostasis is the hallmark of cochlear damage induced by noise exposure. In this review we discuss the dual function of ROS to both promote cell damage (oxidative stress) and cell adaptive responses (ROS signaling) in the cochlea undergoing a stressful condition such as noise exposure. We focus on animal models of noise-induced hearing loss (NIHL) and on the function of exogenous antioxidants to maintaining a physiological role of ROS signaling by distinguishing the effect of exogenous "direct" antioxidants (i.e. CoQ10, NAC), that react with ROS to decrease oxidative stress, from the exogenous "indirect" antioxidants (i.e. nutraceutics and phenolic compounds) that can activate cellular redox enzymes through the Keap1-Nrf2-ARE pathway. The anti-inflammatory properties of Nrf2 signaling are discussed in relation to the ROS/inflammation interplay in noise exposure. Unveiling the mechanisms of ROS regulating redox-associated signaling pathways is essential in providing relevant targets for innovative and effective therapeutic strategies against NIHL.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
31
|
Ca v3.2 T-Type Calcium Channels Are Physiologically Mandatory for the Auditory System. Neuroscience 2019; 409:81-100. [PMID: 31029730 DOI: 10.1016/j.neuroscience.2019.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Cav3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. Thus, we performed a complete gender specific click and tone burst based auditory brainstem response (ABR) analysis of Cav3.2+/- and Cav3.2-/- mice, including i.a. temporal progression in hearing loss, amplitude growth function and wave latency analysis as well as a cochlear qPCR based evaluation of other VGCCs transcripts. Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Cav3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Cav3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future.
Collapse
|
32
|
Heeringa AN, Köppl C. The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy. Hear Res 2019; 376:111-124. [PMID: 30862414 DOI: 10.1016/j.heares.2019.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Strial dysfunction is commonly observed as a key consequence of aging in the cochlea. A large body of animal research, especially in the quiet-aged Mongolian gerbil, shows specific histopathological changes in the cochlear stria vascularis and the putatively corresponding effects on endocochlear potential and auditory nerve responses. However, recent work suggests that synaptopathy, or the loss of inner hair cell-auditory nerve fiber synapses, also presents as a consequence of aging. It is now believed that the loss of synapses is the earliest age-related degenerative event. The present review aims to integrate classic and novel research on age-related pathologies of the inner ear. First, we summarize current knowledge on age-related strial dysfunction and synaptopathy. We describe how these cochlear pathologies fit into the categories for presbyacusis, as first defined by Schuknecht in the '70s. Further, we discuss how strial dysfunction and synaptopathy affect sound coding by the auditory nerve and how they can be experimentally induced to study their specific contributions to age-related hearing deficits. As such, we aim to give an overview of the current literature on age-related cochlear pathologies and hope to inspire further research on the role of cochlear aging in age-related hearing deficits.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
33
|
Liu H, Li G, Lu J, Gao YG, Song L, Li GL, Wu H. Cellular Differences in the Cochlea of CBA and B6 Mice May Underlie Their Difference in Susceptibility to Hearing Loss. Front Cell Neurosci 2019; 13:60. [PMID: 30873008 PMCID: PMC6400987 DOI: 10.3389/fncel.2019.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Hearing is an extremely delicate sense that is particularly vulnerable to insults from environment, including drugs and noise. Unsurprisingly, mice of different genetic backgrounds show different susceptibility to hearing loss. In particular, CBA/CaJ (CBA) mice maintain relatively stable hearing over age while C57BL/6J (B6) mice show a steady decline of hearing, making them a popular model for early onset hearing loss. To reveal possible underlying mechanisms, we examined cellular differences in the cochlea of these two mouse strains. Although the ABR threshold and Wave I latency are comparable between them, B6 mice have a smaller Wave I amplitude. This difference is probably due to fewer spiral ganglion neurons found in B6 mice, as the number of ribbon synapses per inner hair cell (IHC) is comparable between the two mouse strains. Next, we compared the outer hair cell (OHC) function and we found OHCs from B6 mice are larger in size but the prestin density is similar among them, consistent with the finding that they share similar hearing thresholds. Lastly, we examined the IHC function and we found IHCs from B6 mice have a larger Ca2+ current, release more synaptic vesicles and recycle synaptic vesicles more quickly. Taken together, our results suggest that excessive exocytosis from IHCs in B6 mice may raise the probability of glutamate toxicity in ribbon synapses, which could accumulate over time and eventually lead to early onset hearing loss.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun-Ge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
34
|
Chenqing L, Daxiong D, Yuhua Z, Hongyang W, Xiaoting C, Zhenhua Z, Juyang C, Suoqiang Z, Ning Y. Auditory characteristics of noise-exposed memberscrossing age-related groups. J Otol 2018; 13:75-79. [PMID: 30559769 PMCID: PMC6291637 DOI: 10.1016/j.joto.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022] Open
Abstract
Objective To report audiological characteristics in a group of noise-exposed crew members on board ships. Methods and materials Clinical and audiological measurements including pure-tone thresholds, acoustic immittance results and tinnitus questionnaires were collected from both the ship crew members (study subjects) and their land based colleagues (controls). Results 1) Noise exposed crew members showed not only high frequency, but also low frequency hearing loss; 2) Hearing impairment increased with age, with 65.5% of crew members younger than 50 years showing normal hearing while only 14.9% of those older than 50 years had normal hearing; 3) hearing loss gradually increased with the extension of on board career time; and 4) Most study subjects reported high pitch tinnitus, significantly more than the control group although not significantly different among different age groups. Conclusion Noise induced hearing impairment from working on board ships shows specific frequency and age characteristics. Understanding these characteristics is important for advancing relevant studies and for effective prevention of noise-induced hearing loss in ship crew members.
Collapse
Affiliation(s)
- Liu Chenqing
- Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, PLA General Hospital, Beijing, 100853, China
| | - Ding Daxiong
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Zhu Yuhua
- Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, PLA General Hospital, Beijing, 100853, China
| | - Wang Hongyang
- Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, PLA General Hospital, Beijing, 100853, China
| | - Cheng Xiaoting
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Fujian Medical University, Fujian, 350005, China
| | - Zhao Zhenhua
- Department of Otorhinolaryngology, Linyi People's Hospital, Shandong, 255000, China
| | - Cao Juyang
- Department of Otorhinolaryngology Head and Neck Surgery of Chinese PlA General Hospital, Fuxing Road 28, Haidian District, China
| | - Zhai Suoqiang
- Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, PLA General Hospital, Beijing, 100853, China
| | - Yu Ning
- Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
35
|
Schosserer M, Banks G, Dogan S, Dungel P, Fernandes A, Marolt Presen D, Matheu A, Osuchowski M, Potter P, Sanfeliu C, Tuna BG, Varela-Nieto I, Bellantuono I. Modelling physical resilience in ageing mice. Mech Ageing Dev 2018; 177:91-102. [PMID: 30290161 PMCID: PMC6445352 DOI: 10.1016/j.mad.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Geroprotectors, a class of drugs targeting multiple deficits occurring with age, necessitate the development of new animal models to test their efficacy. The COST Action MouseAGE is a European network whose aim is to reach consensus on the translational path required for geroprotectors, interventions targeting the biology of ageing. In our previous work we identified frailty and loss of resilience as a potential target for geroprotectors. Frailty is the result of an accumulation of deficits, which occurs with age and reduces the ability to respond to adverse events (physical resilience). Modelling frailty and physical resilience in mice is challenging for many reasons. There is no consensus on the precise definition of frailty and resilience in patients or on how best to measure it. This makes it difficult to evaluate available mouse models. In addition, the characterization of those models is poor. Here we review potential models of physical resilience, focusing on those where there is some evidence that the administration of acute stressors requires integrative responses involving multiple tissues and where aged mice showed a delayed recovery or a worse outcome then young mice in response to the stressor. These models include sepsis, trauma, drug- and radiation exposure, kidney and brain ischemia, exposure to noise, heat and cold shock.
Collapse
Affiliation(s)
- Markus Schosserer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Vienna, Austria
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, iMed.ULisboa, Research Institute for Medicines, Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Ander Matheu
- Oncology Department, Biodonostia Research Institute, San Sebastián, Spain
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona (IIBB) CSIC, IDIBAPS, CIBERESP, Barcelona, Spain
| | - Bilge Guvenc Tuna
- Department of Medical Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Ilaria Bellantuono
- MRC/Arthritis Research-UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
36
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Juiz JM. An Oral Combination of Vitamins A, C, E, and Mg ++ Improves Auditory Thresholds in Age-Related Hearing Loss. Front Neurosci 2018; 12:527. [PMID: 30108480 PMCID: PMC6079267 DOI: 10.3389/fnins.2018.00527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 12/02/2022] Open
Abstract
The increasing rate of age-related hearing loss (ARHL), with its subsequent reduction in quality of life and increase in health care costs, requires new therapeutic strategies to reduce and delay its impact. The goal of this study was to determine if ARHL could be reduced in a rat model by administering a combination of antioxidant vitamins A, C, and E acting as free radical scavengers along with Mg++, a known powerful cochlear vasodilator (ACEMg). Toward this goal, young adult, 3 month-old Wistar rats were divided into two groups: one was fed with a diet composed of regular chow (“normal diet,” ND); the other received a diet based on chow enriched in ACEMg (“enhanced diet,” ED). The ED feeding began 10 days before the noise stimulation. Auditory brainstem recordings (ABR) were performed at 0.5, 1, 2, 4, 8, 16, and 32 kHz at 3, 6–8, and 12–14 months of age. No differences were observed at 3 months of age, in both ND and ED animals. At 6–8 and 12–14 months of age there were significant increases in auditory thresholds and a reduction in the wave amplitudes at all frequencies tested, compatible with progressive development of ARHL. However, at 6–8 months threshold shifts in ED rats were significantly lower in low and medium frequencies, and wave amplitudes were significantly larger at all frequencies when compared to ND rats. In the oldest animals, differences in the threshold shift persisted, as well as in the amplitude of the wave II, suggesting a protective effect of ACEMg on auditory function during aging. These findings indicate that oral ACEMg may provide an effective adjuvant therapeutic intervention for the treatment of ARHL, delaying the progression of hearing impairment associated with age.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
37
|
Wiwatpanit T, Remis NN, Ahmad A, Zhou Y, Clancy JC, Cheatham MA, García-Añoveros J. Codeficiency of Lysosomal Mucolipins 3 and 1 in Cochlear Hair Cells Diminishes Outer Hair Cell Longevity and Accelerates Age-Related Hearing Loss. J Neurosci 2018; 38:3177-3189. [PMID: 29453205 PMCID: PMC5884457 DOI: 10.1523/jneurosci.3368-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 01/11/2023] Open
Abstract
Acquired hearing loss is the predominant neurodegenerative condition associated with aging in humans. Although mutations on several genes are known to cause congenital deafness in newborns, few genes have been implicated in age-related hearing loss (ARHL), perhaps because its cause is likely polygenic. Here, we generated mice lacking lysosomal calcium channel mucolipins 3 and 1 and discovered that both male and female mice suffered a polygenic form of hearing loss. Whereas mucolipin 1 is ubiquitously expressed in all cells, mucolipin 3 is expressed in a small subset of cochlear cells, hair cells (HCs) and marginal cells of the stria vascularis, and very few other cell types. Mice lacking both mucolipins 3 and 1, but not either one alone, experienced hearing loss as early as at 1 month of age. The severity of hearing impairment progressed from high to low frequencies and increased with age. Early onset of ARHL in these mice was accompanied by outer HC (OHC) loss. Adult mice conditionally lacking mucolipins in HCs exhibited comparable auditory phenotypes, thereby revealing that the reason for OHC loss is mucolipin codeficiency in the HCs and not in the stria vascularis. Furthermore, we observed that OHCs lacking mucolipins contained abnormally enlarged lysosomes aggregated at the apical region of the cell, whereas other organelles appeared normal. We also demonstrated that these aberrant lysosomes in OHCs lost their membrane integrity through lysosomal membrane permeabilization, a known cause of cellular toxicity that explains why and how OHCs die, leading to premature ARHL.SIGNIFICANCE STATEMENT Presbycusis, or age-related hearing loss (ARHL), is a common characteristic of aging in mammals. Although many genes have been identified to cause deafness from birth in both humans and mice, only a few are known to associate with progressive ARHL, the most prevalent form of deafness. We have found that mice lacking two lysosomal channels, mucolipins 3 and 1, suffer accelerated ARHL due to auditory outer hair cell degeneration, the most common cause of hearing loss and neurodegenerative condition in humans. Lysosomes lacking mucolipins undergo organelle membrane permeabilization and promote cytotoxicity with age, revealing a novel mechanism of outer hair cell degeneration and ARHL. These results underscore the importance of lysosomes in hair cell survival and the maintenance of hearing.
Collapse
Affiliation(s)
- Teerawat Wiwatpanit
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Natalie N Remis
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Aisha Ahmad
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
| | - Yingjie Zhou
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
| | - John C Clancy
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Mary Ann Cheatham
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Chicago, Illinois 60611, and
| | - Jaime García-Añoveros
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611,
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Chicago, Illinois 60611, and
- Departments of Neurology and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
38
|
Milon B, Mitra S, Song Y, Margulies Z, Casserly R, Drake V, Mong JA, Depireux DA, Hertzano R. The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ 2018; 9:12. [PMID: 29530094 PMCID: PMC5848513 DOI: 10.1186/s13293-018-0171-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) is the most prevalent form of acquired hearing loss and affects about 40 million US adults. Among the suggested therapeutics tested in rodents, suberoylanilide hydroxamic acid (SAHA) has been shown to be otoprotective from NIHL; however, these results were limited to male mice. METHODS Here we tested the effect of SAHA on the hearing of 10-week-old B6CBAF1/J mice of both sexes, which were exposed to 2 h of octave-band noise (101 dB SPL centered at 11.3 kHz). Hearing was assessed by measuring auditory brainstem responses (ABR) at 8, 16, 24, and 32 kHz, 1 week before, as well as at 24 h and 15-21 days following exposure (baseline, compound threshold shift (CTS) and permanent threshold shift (PTS), respectively), followed by histologic analyses. RESULTS We found significant differences in the CTS and PTS of the control (vehicle injected) mice to noise, where females had a significantly smaller CTS at 16 and 24 kHz (p < 0.0001) and PTS at 16, 24, and 32 kHz (16 and 24 kHz p < 0.001, 32 kHz p < 0.01). This sexual dimorphic effect could not be explained by a differential loss of sensory cells or synapses but was reflected in the amplitude and amplitude progression of wave I of the ABR, which correlates with outer hair cell (OHC) function. Finally, the frequency of the protective effect of SAHA differed significantly between males (PTS, 24 kHz, p = 0.002) and females (PTS, 16 kHz, p = 0.003), and the magnitude of the protection was smaller in females than in males. Importantly, the magnitude of the protection by SAHA was smaller than the effect of sex as a biological factor in the vehicle-injected mice. CONCLUSIONS These results indicate that female mice are significantly protected from NIHL in comparison to males and that therapeutics for NIHL may have a different effect in males and females. The data highlight the importance of analyzing NIHL experiments from males and females, separately. Finally, these data also raise the possibility of effectors in the estrogen signaling pathway as novel therapeutics for NIHL.
Collapse
Affiliation(s)
- Béatrice Milon
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Sunayana Mitra
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Yang Song
- 0000 0001 2175 4264grid.411024.2Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zachary Margulies
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Ryan Casserly
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Virginia Drake
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA
| | - Jessica A. Mong
- 0000 0001 2175 4264grid.411024.2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Didier A. Depireux
- 0000 0001 2175 4264grid.411024.2Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD 21201 USA ,0000 0001 0941 7177grid.164295.dInstitute for Systems Research, University of Maryland, College Park, MD 20742 USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, 16 South Eutaw Street, Suite 500, Baltimore, MD, 21201, USA. .,Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
39
|
Jayakody DMP, Friedland PL, Martins RN, Sohrabi HR. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review. Front Neurosci 2018; 12:125. [PMID: 29556173 PMCID: PMC5844959 DOI: 10.3389/fnins.2018.00125] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer's disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa.
Collapse
Affiliation(s)
- Dona M P Jayakody
- Clinical Research, Ear Science Institute Australia, Subiaco, WA, Australia.,School of Surgery, University of Western Australia, Perth, WA, Australia
| | - Peter L Friedland
- Clinical Research, Ear Science Institute Australia, Subiaco, WA, Australia.,School of Surgery, University of Western Australia, Perth, WA, Australia.,School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ralph N Martins
- Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hamid R Sohrabi
- Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
40
|
Hauser SN, Burton JA, Mercer ET, Ramachandran R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear Res 2018; 357:33-45. [PMID: 29175767 PMCID: PMC5743633 DOI: 10.1016/j.heares.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
This report explores the consequences of acoustic overexposures on hearing in noisy environments for two macaque monkeys trained to perform a reaction time detection task using a Go/No-Go lever release paradigm. Behavioral and non-invasive physiological assessments were obtained before and after narrowband noise exposure. Physiological measurements showed elevated auditory brainstem response (ABR) thresholds and absent distortion product otoacoustic emissions (DPOAEs) post-exposure relative to pre-exposure. Audiograms revealed frequency specific increases in tone detection thresholds, with the greatest increases at the exposure band frequency and higher. Masked detection was affected in a similar frequency specific manner: threshold shift rates (change of masked threshold per dB increase in noise level) were lower than pre-exposure values at frequencies higher than the exposure band. Detection thresholds in sinusoidally amplitude modulated (SAM) noise post-exposure showed no difference from those in unmodulated noise, whereas pre-exposure masked detection thresholds were lower in the presence of SAM noise compared to unmodulated noise. These frequency-dependent results were correlated with cochlear histopathological changes in monkeys that underwent similar noise exposure. These results reveal that behavioral and physiological effects of noise exposure in macaques are similar to those seen in humans and provide preliminary information on the relationship between noise exposure, cochlear pathology and perceptual changes in hearing within individual subjects.
Collapse
Affiliation(s)
- Samantha N Hauser
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jane A Burton
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Evan T Mercer
- Vanderbilt University Interdisciplinary Program in Neuroscience for Undergraduates, Vanderbilt University, Nashville, TN 37212, USA.
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Tan WJT, Song L, Graham M, Schettino A, Navaratnam D, Yarbrough WG, Santos-Sacchi J, Ivanova AV. Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear. Antioxid Redox Signal 2017; 27:489-509. [PMID: 28135838 PMCID: PMC5564041 DOI: 10.1089/ars.2016.6851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. RESULTS Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. INNOVATION Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. CONCLUSION Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.
Collapse
Affiliation(s)
- Winston J T Tan
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut
| | - Lei Song
- 2 Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China .,3 Ear Institute, Shanghai Jiao Tong University School of Medicine , Shanghai, China .,4 Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases , Shanghai, China
| | - Morven Graham
- 5 CCMI EM Core Facility, Yale University School of Medicine , New Haven, Connecticut
| | | | - Dhasakumar Navaratnam
- 7 Department of Neurology, Yale University School of Medicine , New Haven, Connecticut.,8 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut
| | - Wendell G Yarbrough
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut.,9 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
| | - Joseph Santos-Sacchi
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut.,8 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut.,10 Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Alla V Ivanova
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
42
|
Jin SG, Kim MJ, Park SY, Park SN. Stress hormonal changes in the brain and plasma after acute noise exposure in mice. Auris Nasus Larynx 2017; 44:272-276. [DOI: 10.1016/j.anl.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
43
|
Santa Maria PL, Gottlieb P, Santa Maria C, Kim S, Puria S, Yang YP. Functional Outcomes of Heparin-Binding Epidermal Growth Factor-Like Growth Factor for Regeneration of Chronic Tympanic Membrane Perforations in Mice. Tissue Eng Part A 2017; 23:436-444. [PMID: 28142401 PMCID: PMC5444491 DOI: 10.1089/ten.tea.2016.0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/02/2023] Open
Abstract
We aim to demonstrate that regeneration of chronic tympanic perforations with heparin-binding epidermal growth factor-like growth factor (HB-EGF) delivered by an injectable hydrogel restored hearing to levels similar to that of nonperforated tympanic membranes. Chronic tympanic membrane perforation is currently managed as an outpatient surgery with tympanoplasty. Due to the costs of this procedure in the developed world and a lack of accessibility and resources in developing countries, there is a great need for a new treatment that does not require surgery. In this study, we show in a mouse model through measurement of auditory brainstem response and distortion product otoacoustic emissions that tympanic perforations lead to hearing loss and this can be predominantly recovered with HB-EGF treatment (5 μg/mL). Our animal model suggests a return to function between 2 and 6 months after treatment. Auditory brainstem response thresholds had returned to the control levels at 2 months, but the distortion product otoacoustic emissions returned between 2 and 6 months. We also show how the vibration characteristics of the regenerated tympanic membrane, as measured by laser Doppler vibrometry, can be similar to that of an unperforated tympanic membrane. Using the best available methods for preclinical evaluation in animal models, it is likely that HB-EGF-like growth factor treatment leads to regeneration of chronic tympanic membrane perforations and restoration of the tympanic membrane to normal function, suggesting a potential route for nonsurgical treatment.
Collapse
Affiliation(s)
- Peter Luke Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia
- Ear Science Institute Australia, Subiaco, Australia
| | - Peter Gottlieb
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Chloe Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia
- Ear Science Institute Australia, Subiaco, Australia
| | - Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Sunil Puria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, California
- Department of Materials Science and Engineering, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
44
|
Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci Rep 2017; 7:44450. [PMID: 28287619 PMCID: PMC5347380 DOI: 10.1038/srep44450] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 11/11/2022] Open
Abstract
A single nucleotide variant (SNV) of the cadherin 23 gene (Cdh23c.753A), common to many inbred mouse strains, accelerates age-related hearing loss (AHL) and can worsen auditory phenotypes of other mutations. We used homologous recombination in C57BL/6 NJ (B6N) and 129S1/SvImJ (129S1) embryonic stem cells to engineer mouse strains with reciprocal single base pair substitutions (B6-Cdh23c.753A>G and 129S1-Cdh23c.753G>A). We compared ABR thresholds and cochlear pathologies of these SNV mice with those of congenic (B6.129S1-Cdh23Ahl+ and 129S1.B6-Cdh23ahl) and parental (B6N and 129S1) strain mice. Results verified the protective effect of the Cdh23c.753G allele, which prevented high frequency hearing loss in B6 mice to at least 18 months of age, and the AHL-inducing effect of the Cdh23c.753A allele, which worsened hearing loss in 129S1 mice. ABR thresholds differed between 129S-Cdh23c.753A SNV and 129S1.B6-Cdh23ahl congenic mice, and a linkage backcross involving these strains localized a Chr 10 QTL contributing to the difference. These results illustrate the large effects that strain background and congenic regions have on the hearing loss associated with Cdh23c.753alleles. Importantly, the B6-Cdh23c.753Gstrain can be used to eliminate the confounding influence of the Cdh23c.753Avariant in hearing studies of B6 mice and mutant mice on the B6 background.
Collapse
|
45
|
O'Leary TP, Shin S, Fertan E, Dingle RN, Almuklass A, Gunn RK, Yu Z, Wang J, Brown RE. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2017; 16:554-563. [DOI: 10.1111/gbb.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- T. P. O'Leary
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - S. Shin
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - E. Fertan
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - R. N. Dingle
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - A. Almuklass
- Department of Basic Medical Sciences; King Saud Bin Abdulaziz University for Health Science; Riyadh Saudi Arabia
| | - R. K. Gunn
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - Z. Yu
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - J. Wang
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - R. E. Brown
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
46
|
Loss of Myh14 Increases Susceptibility to Noise-Induced Hearing Loss in CBA/CaJ Mice. Neural Plast 2016; 2016:6720420. [PMID: 28101381 PMCID: PMC5215640 DOI: 10.1155/2016/6720420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/08/2016] [Accepted: 11/07/2016] [Indexed: 01/24/2023] Open
Abstract
MYH14 is a member of the myosin family, which has been implicated in many motile processes such as ion-channel gating, organelle translocation, and the cytoskeleton rearrangement. Mutations in MYH14 lead to a DFNA4-type hearing impairment. Further evidence also shows that MYH14 is a candidate noise-induced hearing loss (NIHL) susceptible gene. However, the specific roles of MYH14 in auditory function and NIHL are not fully understood. In the present study, we used CRISPR/Cas9 technology to establish a Myh14 knockout mice line in CBA/CaJ background (now referred to as Myh14−/− mice) and clarify the role of MYH14 in the cochlea and NIHL. We found that Myh14−/− mice did not exhibit significant hearing loss until five months of age. In addition, Myh14−/− mice were more vulnerable to high intensity noise compared to control mice. More significant outer hair cell loss was observed in Myh14−/− mice than in wild type controls after acoustic trauma. Our findings suggest that Myh14 may play a beneficial role in the protection of the cochlea after acoustic overstimulation in CBA/CaJ mice.
Collapse
|
47
|
Bartos A, Grondin Y, Bortoni ME, Ghelfi E, Sepulveda R, Carroll J, Rogers RA. Pre-conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells. JOURNAL OF BIOPHOTONICS 2016; 9:1125-1135. [PMID: 26790619 DOI: 10.1002/jbio.201500209] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Hearing loss is a serious occupational health problem worldwide. Noise, aminoglycoside antibiotics and chemotherapeutic drugs induce hearing loss through changes in metabolic functions resulting in sensory cell death in the cochlea. Metabolic sequelae from noise exposure increase production of nitric oxide (NO) and Reactive Oxygen Species (ROS) contributing to higher levels of oxidative stress beyond the physiologic threshold levels of intracellular repair. Photobiomodulation (PBM) therapy is a light treatment involving endogenous chromophores commonly used to reduce inflammation and promote tissue repair. Near infrared light (NIR) from Light Emitting Diodes (LED) at 810 nm wavelength were used as a biochemical modulator of cytokine response in cultured HEI-OC1 auditory cells placed under oxidative stress. Results reported here show that NIR PBM at 810 nm, 30 mW/cm2 , 100 seconds, 1.0 J, 3 J/cm2 altered mitochondrial metabolism and oxidative stress response for up to 24 hours post treatment. We report a decrease of inflammatory cytokines and stress levels resulting from NIR applied to HEI-OC1 auditory cells before treatment with gentamicin or lipopolysaccharide. These results show that cells pretreated with NIR exhibit reduction of proinflammatory markers that correlate with inhibition of mitochondrial superoxide, ROS and NO in response to continuous oxidative stress challenges. Non-invasive biomolecular down regulation of proinflammatory intracellular metabolic pathways and suppression of oxidative stress via NIR may have the potential to develop novel therapeutic approaches to address noise exposure and ototoxic compounds associated with hearing loss.
Collapse
Affiliation(s)
- Adam Bartos
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Yohann Grondin
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Magda E Bortoni
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Elisa Ghelfi
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Rosalinda Sepulveda
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - James Carroll
- THOR Photomedicine Ltd, Chesham, HP5 1LF, United Kingdom
| | - Rick A Rogers
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
48
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
49
|
Tavanai E, Mohammadkhani G. Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol 2016; 274:1821-1834. [PMID: 27858145 DOI: 10.1007/s00405-016-4378-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most prevalent chronic degenerative conditions. It is characterized by a decline in auditory function. ARHL is caused by the interaction of multiple factors, including cochlear aging, environment, genetic predisposition, and health comorbidities. The primary pathology of ARHL includes the hair cells loss, stria vascularis atrophy, and loss of spiral ganglion neurons as well as the changes in central auditory pathways. The research to date suggests that oxidative stress and mitochondrial DNA deletion (mtDNA) play a major role in pathophysiology of ARHL. Therefore, similar to other otological conditions, several studies have also showed that antioxidants can slow ARHL, but some also indicate that antioxidant therapy is not a magic elixir that will prevent or treat hearing loss associated with aging completely, but why? All available clinical trials, including animal and human studies, in English language that examined the protective effects of antioxidants against ARHL were reviewed. Materials were obtained by searching ELSEVIER, PubMed, Scopus, Web of knowledge, Google Scholar databases, Clinical trials, and Cochrane database of systematic reviews. Although ARHL has been shown to be slowed by supplementation with antioxidants, particularly in laboratory animals, a few studies have investigated the effect of interventions against ARHL in humans. High-quality clinical trials are needed to investigate if ARHL can be delayed or prevented in humans. However, it seems that targeting several cell-death pathways is better than targeting the only oxidative stress pathway.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran.
| |
Collapse
|
50
|
Han F, Wang O, Cai Q. Anti-apoptotic treatment in mouse models of age-related hearing loss. J Otol 2016; 11:7-12. [PMID: 29937804 PMCID: PMC6002598 DOI: 10.1016/j.joto.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/05/2023] Open
Abstract
Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.
Collapse
Affiliation(s)
- Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Corresponding author. Key Laboratory for Genetic Hearing Disorders in Shandong, and Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Quanxiang Cai
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| |
Collapse
|