1
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
2
|
Risher WC, Kim N, Koh S, Choi JE, Mitev P, Spence EF, Pilaz LJ, Wang D, Feng G, Silver DL, Soderling SH, Yin HH, Eroglu C. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol 2018; 217:3747-3765. [PMID: 30054448 PMCID: PMC6168259 DOI: 10.1083/jcb.201802057] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Astrocytes promote synapse formation during development via secreted factors including thrombospondin family proteins, which act through the neuronal calcium channel subunit α2δ-1. Risher et al. demonstrate that this process requires signaling via the Rho GTPase Rac1 to facilitate the maturation of dendritic spine synapses in the cortex. Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP–α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP–α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology.
Collapse
Affiliation(s)
- W Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV .,Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC
| | - Sehwon Koh
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Ji-Eun Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Petar Mitev
- Department of Pharmacology, Duke University Medical Center, Durham, NC
| | - Erin F Spence
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Dongqing Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC.,Duke Institute for Brain Sciences, Durham, NC
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC.,Duke Institute for Brain Sciences, Durham, NC.,Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC.,Duke Institute for Brain Sciences, Durham, NC.,Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC .,Duke Institute for Brain Sciences, Durham, NC.,Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
3
|
Lei W, Myers KR, Rui Y, Hladyshau S, Tsygankov D, Zheng JQ. Phosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity. J Cell Biol 2017; 216:2551-2564. [PMID: 28659327 PMCID: PMC5551708 DOI: 10.1083/jcb.201612042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Dendritic spines are small postsynaptic compartments of excitatory synapses in the vertebrate brain that are modified during learning, aging, and neurological disorders. The formation and modification of dendritic spines depend on rapid assembly and dynamic remodeling of the actin cytoskeleton in this highly compartmentalized space, but the precise mechanisms remain to be fully elucidated. In this study, we report that spatiotemporal enrichment of actin monomers (G-actin) in dendritic spines regulates spine development and plasticity. We first show that dendritic spines contain a locally enriched pool of G-actin that can be regulated by synaptic activity. We further find that this G-actin pool functions in spine development and its modification during synaptic plasticity. Mechanistically, the relatively immobile G-actin pool in spines depends on the phosphoinositide PI(3,4,5)P3 and involves the actin monomer-binding protein profilin. Together, our results have revealed a novel mechanism by which dynamic enrichment of G-actin in spines regulates the actin remodeling underlying synapse development and plasticity.
Collapse
Affiliation(s)
- Wenliang Lei
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Yanfang Rui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Siarhei Hladyshau
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
4
|
Li H, Aksenova M, Bertrand SJ, Mactutus CF, Booze R. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons. J Vis Exp 2016:e53697. [PMID: 26889716 DOI: 10.3791/53697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.
Collapse
Affiliation(s)
- Hailong Li
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Marina Aksenova
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Sarah J Bertrand
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Charles F Mactutus
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina
| | - Rosemarie Booze
- Laboratory Program in Behavioral, Neuroscience, Department of Psychology, University of South Carolina;
| |
Collapse
|
5
|
Messina A, Morelli S, Forgacs G, Barbieri G, Drioli E, De Bartolo L. Self-assembly of tissue spheroids on polymeric membranes. J Tissue Eng Regen Med 2015; 11:2090-2103. [PMID: 26549598 DOI: 10.1002/term.2105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022]
Abstract
In this study, multicellular tissue spheroids were fabricated on polymeric membranes in order to accelerate the fusion process and tissue formation. To this purpose, tissue spheroids composed of three different cell types, myoblasts, fibroblasts and neural cells, were formed and cultured on agarose and membranes of polycaprolactone (PCL) and chitosan (CHT). Membranes prepared by a phase-inversion technique display different physicochemical, mechanical and transport properties, which can affect the fusion process. The membranes accelerated the fusion process of a pair of spheroids with respect to the inert substrate. In this process, a critical role is played by the membrane properties, especially by their mechanical characteristics and oxygen and carbon dioxide mass transfer. The rate of fusion was quantified and found to be similar for fibroblast, myoblast and neural tissue spheroids on membranes, which completed the fusion within 3 days. These spheroids underwent faster fusion and maturation on PCL membrane than on agarose, the rate of fusion being proportional to the value of oxygen and carbon dioxide permeances and elastic characteristics. Consequently, tissue spheroids on the membranes expressed high biological activity in terms of oxygen uptake, making them more suitable as building blocks in the fabrication of tissues and organs. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Antonietta Messina
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, University of Calabria, Rende, Italy.,Department of Environmental and Chemical Engineering, University of Calabria, Rende, Italy
| | - Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, University of Calabria, Rende, Italy
| | - Gabor Forgacs
- Department of Physics, University of Missouri, Columbia, MO, USA.,Department of Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Giuseppe Barbieri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, University of Calabria, Rende, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, University of Calabria, Rende, Italy.,Department of Environmental and Chemical Engineering, University of Calabria, Rende, Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, University of Calabria, Rende, Italy
| |
Collapse
|
6
|
Bertrand SJ, Hu C, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat and cocaine mediated synaptopathy in cortical and midbrain neurons is prevented by the isoflavone Equol. Front Microbiol 2015; 6:894. [PMID: 26441850 PMCID: PMC4561964 DOI: 10.3389/fmicb.2015.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
Illicit drugs, such as cocaine, are known to increase the likelihood and severity of HIV-1 associated neurocognitive disorders (HAND). In the current studies synaptic integrity was assessed following exposure to low concentrations of the HIV-1 viral protein Tat 1-86B, with or without cocaine, by quantifying filamentous actin (F-actin) rich structures (i.e., puncta and dendritic spines) on neuronal dendrites in vitro. In addition, the synapse-protective effects of either R-Equol (RE) or S-Equol (SE; derivatives of the soy isoflavone, daidzein) were determined. Individually, neither low concentrations of HIV-1 Tat (10 nM) nor low concentrations of cocaine (1.6 μM) had any significant effect on F-actin puncta number; however, the same low concentrations of HIV-1 Tat + cocaine in combination significantly reduced dendritic synapses. This synaptic reduction was prevented by pre-treatment with either RE or SE, in an estrogen receptor beta dependent manner. In sum, targeted therapeutic intervention with SE may prevent HIV-1 + drug abuse synaptopathy, and thereby potentially influence the development of HAND.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Calvin Hu
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Marina V Aksenova
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Charles F Mactutus
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Rosemarie M Booze
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| |
Collapse
|
7
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
8
|
Bertrand SJ, Mactutus CF, Aksenova MV, Espensen-Sturges TD, Booze RM. Synaptodendritic recovery following HIV Tat exposure: neurorestoration by phytoestrogens. J Neurochem 2013; 128:140-51. [PMID: 23875777 DOI: 10.1111/jnc.12375] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/22/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022]
Abstract
HIV-1 infects the brain and, despite antiretroviral therapy, many infected individuals suffer from HIV-1-associated neurocognitive disorders (HAND). HAND is associated with dendritic simplification and synaptic loss. Prevention of synaptodendritic damage may ameliorate or forestall neurocognitive decline in latent HIV-1 infections. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain and may cause synaptodendritic damage. This study examined the integrity of the dendritic network after exposure to HIV-1 Tat by labeling filamentous actin (F-actin)-rich structures (puncta) in primary neuronal cultures. After 24 h of treatment, HIV-1 Tat was associated with the dendritic arbor and produced a significant reduction of F-actin-labeled dendritic puncta as well as loss of dendrites. Pre-treatment with either of two plant-derived phytoestrogen compounds (daidzein and liquiritigenin), significantly reduced synaptodendritic damage following HIV-1 Tat treatment. In addition, 6 days after HIV-1 Tat treatment, treatment with either daidzein, or liquiritigenin enhanced recovery, via the estrogen receptor, from HIV-1 Tat-induced synaptodendritic damage. These results suggest that either liquiritigenin or daidzein may not only attenuate acute synaptodendritic injury in HIV-1 but may also promote recovery from synaptodendritic damage. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain. Treatment with either daidzein or liquiritigenin restored the loss of synaptic connectivity produced by HIV-1 Tat. This neurorestoration was mediated by estrogen receptors (ER). These results suggest that plant-derived phytoestrogens may promote recovery from HIV-1-induced synaptodendritic damage.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | |
Collapse
|
9
|
Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 2013; 248:228-35. [PMID: 23811015 DOI: 10.1016/j.expneurol.2013.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/24/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023]
Abstract
HIV-1 enters the central nervous system early in infection; although HIV-1 does not directly infect neurons, HIV-1 may cause a variety of neurological disorders. Neuronal loss has been found in HIV-1, but synaptodendritic injury is more closely associated with the neurocognitive disorders of HIV-1. The HIV-1 transactivator of transcription (Tat) protein causes direct and indirect damage to neurons. The cysteine rich domain (residues 22-37) of Tat is important for producing neuronal death; however, little is known about the effects of the Tat protein functional domains on the dendritic network. The ability of HIV-1 Tat 1-101 Clades B and C, Tat 1-86 and Tat 1-72 proteins, as well as novel peptides (truncated 47-57, 1-72δ31-61, and 1-86 with a mutation at Cys22) to produce early synaptodendritic injury (24h), relative to later cell death (48h), was examined using cell culture. Treatment of primary hippocampal neurons with Tat proteins 1-72, 1-86 and 1-101B produced a significant early reduction in F-actin labeled puncta, implicating that these peptides play a role in synaptodendritic injury. Variants with a mutation, deletion, or lack of a cysteine rich region (1-86[Cys22], 1-101C, 1-72δ31-61, or 47-57) did not cause a significant reduction in F-actin rich puncta. Tat 1-72, 1-86, and 1-101B proteins did not significantly differ from one another, indicating that the second exon (73-86 or 73-101) does not play a significant role in the reduction of F-actin puncta. Conversely, peptides with a mutation, deletion, or lack of the cysteine rich domain (22-37) failed to produce a loss of F-actin puncta, indicating that the cysteine rich domain plays a key role in synaptodendritic injury. Collectively, these results suggest that for Tat proteins, 1) synaptodendritic injury occurs early, relative to cell death, and 2) the cysteine rich domain of the first exon is key for synaptic loss. Preventing such early synaptic loss may attenuate HIV-1 associated neurocognitive disorders.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Barnwell College Building, 1512 Pendleton Street, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
10
|
Ohkawa N, Saitoh Y, Tokunaga E, Nihonmatsu I, Ozawa F, Murayama A, Shibata F, Kitamura T, Inokuchi K. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity. PLoS One 2012; 7:e45270. [PMID: 23024813 PMCID: PMC3443223 DOI: 10.1371/journal.pone.0045270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
In the adult hippocampus dentate gyrus (DG), newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP) was induced at 12, 16, or 21 days postinfection (dpi), at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.
Collapse
Affiliation(s)
- Noriaki Ohkawa
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Yoshito Saitoh
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Eri Tokunaga
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumiko Ozawa
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Akiko Murayama
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
- JST, CREST, Kawaguchi, Japan
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, Machida, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Abstract
Aging-related cognitive declines are well documented in humans and animal models. Yet the synaptic and molecular mechanisms responsible for cognitive aging are not well understood. Here we demonstrated age-dependent deficits in long-term synaptic plasticity and loss of dendritic spines in the hippocampus of aged Fisher 344 rats, which were closely associated with reduced histone acetylation, upregulation of histone deacetylase (HDAC) 2, and decreased expression of a histone acetyltransferase. Further analysis showed that one of the key genes affected by such changes was the brain-derived neurotrophic factor (Bdnf) gene. Age-dependent reductions in H3 and H4 acetylation were detected within multiple promoter regions of the Bdnf gene, leading to a significant decrease in BDNF expression and impairment of downstream signaling in the aged hippocampus. These synaptic and signaling deficits could be rescued by enhancing BDNF and trkB expression via HDAC inhibition or by directly activating trkB receptors with 7,8-dihydroxyflavone, a newly identified, selective agonist for trkB. Together, our findings suggest that age-dependent declines in chromatin histone acetylation and the resulting changes in BDNF expression and signaling are key mechanisms underlying the deterioration of synaptic function and structure in the aging brain. Furthermore, epigenetic or pharmacological enhancement of BDNF-trkB signaling could be a promising strategy for reversing cognitive aging.
Collapse
|
12
|
Rubio MD, Johnson R, Miller CA, Huganir RL, Rumbaugh G. Regulation of synapse structure and function by distinct myosin II motors. J Neurosci 2011; 31:1448-60. [PMID: 21273429 PMCID: PMC3074980 DOI: 10.1523/jneurosci.3294-10.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/19/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022] Open
Abstract
Ongoing synaptic function and rapid, bidirectional plasticity are both controlled by regulatory mechanisms within dendritic spines. Spine actin dynamics maintain synapse structure and function, and cytoskeletal rearrangements in these structures trigger structural and functional plasticity. Therefore, proteins that interact with actin filaments are attractive candidates to regulate synaptic actin dynamics and, thus, synapse structure and function. Here, we have cloned the rat isoform of class II myosin heavy chain MyH7B in brain. Unexpectedly, this isoform resembles muscle-type myosin II rather than the ubiquitously expressed nonmuscle myosin II isoforms, suggesting that a rich functional diversity of myosin II motors may exist in neurons. Indeed, reducing the expression of MyH7B in mature neurons caused profound alterations to dendritic spine structure and excitatory synaptic strength. Structurally, dendritic spines had large, irregularly shaped heads that contained many filopodia-like protrusions. Neurons with reduced MyH7B expression also had impaired miniature EPSC amplitudes accompanied by a decrease in synaptic AMPA receptors, which was linked to alterations of the actin cytoskeleton. MyH7B-mediated control over spine morphology and synaptic strength was distinct from that of a nonmuscle myosin, myosin IIb. Interestingly, when myosin IIb expression and MyH7B expression were simultaneously knocked-down in neurons, a third, more pronounced phenotype emerged. Together, our data provide evidence that distinct myosin II isoforms work together to regulate synapse structure and function in cultured hippocampal neurons. Thus, myosin II motor activity is emerging as a broad regulatory mechanism for control over complex actin networks within dendritic spines.
Collapse
Affiliation(s)
- Maria D. Rubio
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Richard Johnson
- Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Courtney A. Miller
- Departments of Neuroscience and
- Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Richard L. Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Gavin Rumbaugh
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Departments of Neuroscience and
| |
Collapse
|
13
|
Rehberg K, Bergado-Acosta JR, Koch JC, Stork O. Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol Learn Mem 2010; 94:117-26. [PMID: 20416387 DOI: 10.1016/j.nlm.2010.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 03/19/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
The dynamic re-arrangement of actin filaments is an essential process in the plasticity of synaptic connections during memory formation. In this study, we determined in mice effects of actin filament arrest in the basolateral complex of the amygdala (BLA) at different time points after memory acquisition and re-activation, using the fungal cytotoxin phalloidin. Our data show a selective disruption of auditory cued but not contextual fear memory, when phalloidin was injected 6h after conditioning. In contrast, no effect was observed when phalloidin was applied after 24h, ruling out an interference with the retrieval or expression of conditioned fear. A comparable result was obtained after memory re-activation, hence suggesting similar actin-dependent mechanisms to be active during consolidation and reconsolidation of auditory fear memory. Biochemical analysis showed that phalloidin-mediated filament arrest leads to a transient increase of highly cross-linked actin filaments in the BLA, evident 2h after injection. Together, these observations indicate that dynamic re-arrangements of actin filaments in the BLA during a late phase of fear memory consolidation and reconsolidation are critical for fear memory storage.
Collapse
Affiliation(s)
- Kati Rehberg
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
14
|
McCroskery S, Bailey A, Lin L, Daniels MP. Transmembrane agrin regulates dendritic filopodia and synapse formation in mature hippocampal neuron cultures. Neuroscience 2009; 163:168-79. [PMID: 19524020 PMCID: PMC2728160 DOI: 10.1016/j.neuroscience.2009.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 05/31/2009] [Accepted: 06/06/2009] [Indexed: 12/21/2022]
Abstract
The transmembrane isoform of agrin (Tm-agrin) is the predominant form expressed in the brain but its putative roles in brain development are not well understood. Recent reports have implicated Tm-agrin in the formation and stabilization of filopodia on neurites of immature central and peripheral neurons in culture. In maturing central neurons, dendritic filopodia are believed to facilitate synapse formation. In the present study we have investigated the role of Tm-agrin in regulation of dendritic filopodia and synaptogenesis in maturing cultures of rat hippocampal neurons. We did this by infecting the neurons with an RNAi lentivirus to deplete endogenous agrin during the developmental period when filopodia density on the dendritic arbor was high, and synapse formation was rapid. We found that dendritic filopodia density was markedly reduced, as was synapse density along dendrites. Moreover, synapse formation was more sharply reduced on dendrites of infected neurons contacted by uninfected axons than on uninfected dendrites contacted by infected axons. The results are consistent with a physiological role for Tm-agrin in the maturation of hippocampal neurons involving positive regulation of dendritic filopodia and consequent promotion of synaptogenesis, but also suggest a role for axonal agrin in synaptogenesis.
Collapse
Affiliation(s)
- S McCroskery
- Laboratory of Cell Biology, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
15
|
Chen Q, Zhu X, Zhang Y, Wetsel WC, Lee TH, Zhang X. Integrin-linked kinase is involved in cocaine sensitization by regulating PSD-95 and synapsin I expression and GluR1 Ser845 phosphorylation. J Mol Neurosci 2009; 40:284-94. [PMID: 19629758 DOI: 10.1007/s12031-009-9218-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 07/13/2009] [Indexed: 01/09/2023]
Abstract
Our recent studies have demonstrated that integrin-linked kinase (ILK) is involved in the induction and maintenance of cocaine behavioral sensitization and chronic cocaine-induced neural plasticity in the nucleus accumbens (NAc) core. In the present study, we used ILK silencing to investigate how ILK may influence cocaine-induced neural plasticity. Adeno-associated virus carrying a small interfering RNA-ILK cassette under the control of an inducible Tet-On system was injected into the NAc core of Sprague-Dawley rats. Induced silencing was established during repeated cocaine injections (sensitization induction period) or between withdrawal days 9 and 22 (sensitization maintenance period). Under both paradigms, established cocaine sensitization under non-silenced conditions was associated with enhanced PSD-95 and synapsin I protein expression as well as enhanced Ser(845) phosphorylation of the GluR1 subunit on withdrawal day. Silencing ILK expression under both paradigms prevented or reversed these changes. Importantly, ILK appears to form a complex with PSD-95 and synapsin I because it co-immunoprecipitated with each of these proteins. Together, these data suggest that ILK exerts pleiotropic actions by regulating pre- and postsynaptic neural plasticities within the NAc core in response to repeated cocaine exposure.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 3870, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yamauchi T, Kachi T. An electron microscopic study on nerve endings on adrenomedullary adrenaline cells in golden hamsters: position, size and changes due to pinealectomy. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2008; 71:115-22. [PMID: 18974603 DOI: 10.1679/aohc.71.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effects of sham-pinealectomy and pinealectomy on preganglionic nerve endings on adrenomedullary adrenaline cells were investigated electron microscopically. Adult male golden hamsters from the normal, sham-pinealectomy and pinealectomy groups maintained under 24 h light-dark cycle and constant temperature were used at 28 days after surgery. From conventional electron microscopic specimens, montage photographs made of the adrenaline cell region at a magnification of x 11,000 were used for qualitative and quantitative electron microscopic analyses in 14 animals in each experimental group. The preganglionic nerve endings were localized mainly in the following three sites: the basal lamina part, the follicular lumen-junctional intercellular part, and the adrenaline cell-invaginated part. In the latter two parts, nerve endings and fibers had no envelope frequently, and in the former two parts, nerve endings sometimes showed the invagination complex. The frequency of nerve endings was highest in the follicular lumen-intercellular part, next highest in the basal lamina part and lowest in the A cell-invaginated part. The frequency of nerve endings in the basal lamina part was lower in the pinealectomy group than in the sham-pinealectomy group (P < 0.021), and those in the other two parts showed opposite changes, more evidently in the A cell-invaginated part. Nerve ending profiles in the adrenaline cell-invaginated part--which displayed a more rounded shape--increased in size in the pinealectomy group (longer diameter: P < 0.04; shorter diameter: P < 0.05). In conclusion, preganglionic nerve endings in the adrenal medulla of the golden hamster show differential morphological changes following PX depending on the intracellular part of A cells.
Collapse
Affiliation(s)
- Takao Yamauchi
- Department of Anatomical Science, University of Hirosaki Graduate School of Medicine, Hirosaki, Japan.
| | | |
Collapse
|
17
|
Chen Q, Xiong X, Lee TH, Liu Y, Wetsel WC, Zhang X. Neural plasticity and addiction: integrin-linked kinase and cocaine behavioral sensitization. J Neurochem 2008; 107:679-89. [PMID: 18702665 DOI: 10.1111/j.1471-4159.2008.05619.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Behavioral sensitization of psychostimulants was accompanied by alterations in a variety of biochemical molecules in different brain regions. However, which change is actually related to drug-produced sensitization lacks of accurate clarification. In this study, we investigated the role of integrin-linked kinase (ILK) in both the induction and expression of cocaine sensitization. Conditional inhibition of ILK expression was established in the nucleus accumbens (NAc) core by microinjecting recombinant adeno-associated virus-carrying, tetracycline-on-regulated small interfering RNA which reversed the chronic cocaine-induced psychomotor sensitization, as well as the changes in protein kinase B Ser473 phosphorylation, dendritic density, and dendritic spine numbers locally. Importantly, the reversed psychomotor sensitization did not recover after cessation of the silencing for 8 days. We also demonstrated that inhibition of ILK expression pre- and during-chronic cocaine treatments blocked the induction of cocaine psychomotor sensitization and abolished the stimulant effect of cocaine on ILK expression. In contrast, inhibition of ILK expression in the NAc core has no significant effect on cocaine-induced stereotypical behaviors. This concludes that ILK is involved in cocaine sensitization with the earlier induction and later expression functioning as a kinase to regulate protein kinase B Ser473 phosphorylation and a scaffolding protein to regulate the reorganization of the NAc spine morphology.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kreis P, Thévenot E, Rousseau V, Boda B, Muller D, Barnier JV. The p21-activated kinase 3 implicated in mental retardation regulates spine morphogenesis through a Cdc42-dependent pathway. J Biol Chem 2007; 282:21497-506. [PMID: 17537723 DOI: 10.1074/jbc.m703298200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p21-activated kinase 3 (PAK3) is one of the recently identified genes for which mutations lead to nonsyndromic mental retardation. PAK3 is implicated in dendritic spine morphogenesis and is a key regulator of synaptic functions. However, the underlying roles of PAK3 in these processes remain poorly understood. We report here that the three mutations R419X, A365E, and R67C, responsible for mental retardation have different effects on the biological functions of PAK3. The R419X and A365E mutations completely abrogate the kinase activity. The R67C mutation drastically decreases the binding of PAK3 to the small GTPase Cdc42 and impairs its subsequent activation by this GTPase. We also report that PAK3 binds significantly more Cdc42 than Rac1 and is selectively activated by endogenous Cdc42, suggesting that PAK3 is a specific effector of Cdc42. Interestingly, the expression of the three mutated proteins in hippocampal neurons affects spinogenesis differentially. Both kinase-dead mutants slightly decrease the number of spines but profoundly alter spine morphology, whereas expression of the R67C mutant drastically decreases spine density. These results demonstrate that the Cdc42/PAK3 is a key module in dendritic spine formation and synaptic plasticity.
Collapse
Affiliation(s)
- Patricia Kreis
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR9040, 1 avenue de la terrasse, Gif sur Yvette, F-91198, France
| | | | | | | | | | | |
Collapse
|