1
|
Zhuravlev M, Kiselev A, Orlova A, Egorov E, Drapkina O, Simonyan M, Drozhdeva E, Penzel T, Runnova A. Changes in the Spatial Structure of Synchronization Connections in EEG During Nocturnal Sleep Apnea. Clocks Sleep 2024; 7:1. [PMID: 39846529 PMCID: PMC11755653 DOI: 10.3390/clockssleep7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels. Based on wavelet bicoherence (WB), the magnitude of connectivity between all pairs of EEG channels in six bands was estimated: Df1 0.25;1, Df2 1;4, Df3 4;8, Df4 8;12, Df5 12;20, Df6 20;30 Hz. In all six bands considered, we noted a significant decrease in symmetrical interhemispheric connections in OSA patients. Also, in the main group for slow oscillatory activity Df1 and Df2, we observe a decrease in connection values in the EEG channels associated with the central interhemispheric sulcus. In addition, patients with AHI>15 show an increase in intrahemispheric connectivity, in particular, forming a left hemisphere high-degree synchronization node (connections PzT3, PzF3, PzFp1) in the Df2 band. When considering high-frequency EEG oscillations, connectivity in OSA patients again shows a significant increase within the cerebral hemispheres. The revealed differences in functional connectivity in patients with different levels of AHI are quite stable, remaining when averaging the full nocturnal EEG recording, including both the entire sleep duration and night awakenings. The increase in the number of hypoxia episodes correlates with the violation of the symmetry of interhemispheric functional connections. Maximum absolute values of correlation between the apnea-hypopnea index, AHI, and the WB synchronization strength are observed for the Df2 band in symmetrical EEG channels C3C4 (-0.81) and P3P4 (-0.77). The conducted studies demonstrate the possibility of developing diagnostic systems for obstructive sleep apnea syndrome without using signals from the cardiovascular system and respiratory activity.
Collapse
Affiliation(s)
- Maxim Zhuravlev
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Anton Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
| | - Anna Orlova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
| | - Evgeniy Egorov
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Oxana Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
| | - Margarita Simonyan
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Evgenia Drozhdeva
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Thomas Penzel
- Interdisciplinary Sleep Medicine Center, Charite-Universitatsmedizin Berlin, 0117 Berlin, Germany;
| | - Anastasiya Runnova
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| |
Collapse
|
2
|
Shansky RM. Behavioral neuroscience's inevitable SABV growing pains. Trends Neurosci 2024; 47:669-676. [PMID: 39034262 DOI: 10.1016/j.tins.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
The field of rodent behavioral neuroscience is undergoing two major sea changes: an ever-growing technological revolution, and worldwide calls to consider sex as a biological variable (SABV) in experimental design. Both have enormous potential to improve the precision and rigor with which the brain can be studied, but the convergence of these shifts in scientific practice has exposed critical limitations in classic and widely used behavioral paradigms. While our tools have advanced, our behavioral metrics - mostly developed in males and often allowing for only binary outcomes - have not. This opinion article explores how this disconnect has presented challenges for the accurate depiction and interpretation of sex differences in brain function, arguing for the expansion of current behavioral constructs to better account for behavioral diversity.
Collapse
|
3
|
Rajeswari J, Jagannath M. Brain connectivity analysis based classification of obstructive sleep apnea using electroencephalogram signals. Sci Rep 2024; 14:5561. [PMID: 38448538 PMCID: PMC10917737 DOI: 10.1038/s41598-024-56384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a disorder which blocks the upper airway during sleep. The severity of OSA will lead heart attack, stroke and end of life. This proposed study explored the classification of OSA and healthy subjects using brain connectivity analysis from electroencephalogram (EEG) signals. Institute of System and Robotics-University of Coimbra (ISRUC) database were used for acquiring 50 EEG signals using 4 channels and noise removal has been accomplished by 50 Hz notch filter. The Institute of System and Robotics-University of Coimbra (ISRUC) database contained 50 EEG signals, with four channels, and a 50 Hz notch filter was applied to remove noise. Wavelet packet decomposition method was performing the segregation of EEG signals into five bands; Gamma (γ), beta (β), alpha (α), theta (θ) and delta (δ). A total of 4 electrode positions were used for the brain connectivity analysis for each EEG band. Pearson correlation method was effectively used for measuring the correlation between healthy and OSA subjects. The nodes and edges were highlighted the connection between brain and subjects. The highest correlation was achieved in delta band of OSA subjects which starts from 0.7331 to 0.9172 respectively. For healthy subjects, the positive correlation achieved was 0.6995. The delta band has been correlated well with brain when compared other bands. It has been noted that the positive correlation well associated with brain in OSA subjects, which classifies OSA from healthy subjects.
Collapse
Affiliation(s)
- J Rajeswari
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai, Tamil Nadu, India
| | - M Jagannath
- School of Electronics Engineering, Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Xia J, Liu D, Zhou W, Yi S, Wang X, Li B, Jawad M, Xu H, Gui L, Li M. Comparative transcriptome analysis of brain and gonad reveals reproduction-related miRNAs in the giant prawn, Macrobrachium rosenbergii. Front Genet 2022; 13:990677. [PMID: 36092927 PMCID: PMC9459145 DOI: 10.3389/fgene.2022.990677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Macrobrachium rosenbergii (M. rosenbergii), as a species of common prawn, is a delicacy that is consumed all over the world. By interacting with the target gene 3′-untranslated region (3'-UTR), microRNAs (miRNAs) regulate its expression and ultimately participate in the regulation of reproductive development. However, research focusing on miRNA regulation during gonadal development in M. rosenbergii received very little attention. To explore the association between miRNA and reproduction, we performed RNA sequencing (RNA-seq) on brain and gonad organs in male and female M. rosenbergii. A total of 494 miRNAs were obtained in RNA-seq, including 31 and 59 differentially expressed (DE) miRNAs in the brain and gonads, respectively. Furthermore, 9 DE miRNAs were randomly selected from the brain and gonads, and qRT-PCR was conducted to validate the results of RNA-seq. Interestingly, dpu-miR-133 was found to be substantially expressed in the male brain and testis but poorly expressed in the female brain, ovary, and other organs. Analysis of dpu-miR-133 by Targetscan and MiRanda predicted to target 5-HT1. Furthermore, the dual-luciferase reporter assay manifested that dpu-miR-133 can combine with 5-HT1. Overall, our research work provides basic data for further study on the miRNA-mediated regulation of brain, gonad, and reproductive development of study M. rosenbergii.
Collapse
Affiliation(s)
- Jiao Xia
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Dong Liu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wenzong Zhou
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Wenzong Zhou, ; Mingyou Li,
| | - Shaokui Yi
- College of Life Sciences, Huzhou University, Zhejiang, China
| | - Xinhai Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, China
| | - Beilei Li
- Huzhou Fengshengwan Aquatic Seed Industry Co. Ltd., Zhejiang, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Haijing Xu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Wenzong Zhou, ; Mingyou Li,
| |
Collapse
|
5
|
Xue Y, Xu Q, Wang J, Lin H, Wang C, Lou X, Wu C, Mao Z, Fu X. Prevalence and Associated Factors for Elevated Depressive Symptoms in 386,924 Primary Students during the COVID-19 Pandemic Normalization in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063406. [PMID: 35329093 PMCID: PMC8952816 DOI: 10.3390/ijerph19063406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
We aimed to assess the prevalence of elevated depressive symptoms and its associated factors during the coronavirus disease 2019 (COVID-19) pandemic among primary students in China. We included 386,924 students aged 6–12 years from three cities in Henan province, China, over the period 21–27 May 2021. The overall prevalence of depressive symptoms was 5.8%. Participants with high depressive symptoms were more likely to be senior urban primary students, and exhibited an insignificant increase in hand washing frequency, non-mask wearing behavior, higher error rates of cognition tests, and greater levels of worry and fear. The associated factors for high depressive symptoms were found to include age, sex, grade, location, worry level, fear level, cognitive status, and change in lifestyle after gaining knowledge about COVID-19. Our results suggest that governments need to focus on factors affecting the mental health of school-age children while combating COVID-19, as it would facilitate better decision making on the international and national level.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat Sen University, Guangzhou 510080, China;
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Xiaomin Lou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Cuiping Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Xiaoli Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
- Correspondence: ; Tel.: +86-371-6778-1207
| |
Collapse
|
6
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
7
|
Shirazi TN, Self H, Rosenfield KA, Dawood K, Welling LLM, Cárdenas R, Bailey JM, Balasubramanian R, Delaney A, Breedlove SM, Puts DA. Low Perinatal Androgens Predict Recalled Childhood Gender Nonconformity in Men. Psychol Sci 2022; 33:343-353. [PMID: 35191784 PMCID: PMC8985219 DOI: 10.1177/09567976211036075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The contributions of gonadal hormones to the development of human behavioral sex differences are subjects of intense scientific and social interest. Isolated gonadotropin-releasing-hormone deficiency (IGD) is a rare endocrine disorder that can reveal a possible role of early gonadal hormones. IGD is characterized by low or absent gonadal hormone production after the first trimester of gestation, but external genitalia and hence gender of rearing are concordant with chromosomal and gonadal sex. We investigated recalled childhood gender nonconformity in men (n = 65) and women (n = 32) with IGD and typically developing men (n = 463) and women (n = 1,207). Men with IGD showed elevated childhood gender nonconformity, particularly if they also reported undescended testes at birth, a marker of low perinatal androgens. Women with IGD did not differ from typically developing women. These results indicate that early androgen exposure after the first trimester contributes to male-typical gender-role behaviors in childhood.
Collapse
Affiliation(s)
| | - Heather Self
- Department of Anthropology, The
Pennsylvania State University
| | | | - Khytam Dawood
- Department of Psychology, The
Pennsylvania State University
| | | | | | | | | | - Angela Delaney
- Reproductive Physiology and
Pathophysiology Group, National Institutes of Health, Bethesda,
Maryland
| | | | - David A. Puts
- Department of Anthropology, The
Pennsylvania State University,David A. Puts, The Pennsylvania
State University, Department of Anthropology
| |
Collapse
|
8
|
Li F, Cui Y, Li Y, Guo L, Ke X, Liu J, Luo X, Zheng Y, Leckman JF. Prevalence of mental disorders in school children and adolescents in China: diagnostic data from detailed clinical assessments of 17,524 individuals. J Child Psychol Psychiatry 2022; 63:34-46. [PMID: 34019305 DOI: 10.1111/jcpp.13445] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, no national-scale psychiatric epidemiological survey for children and adolescents has been conducted in China. In order to inform government officials and policymakers and to develop a comprehensive plan for service providers, there was a clear need to conduct an up-to-date systematic nationwide psychiatric epidemiological survey. METHODS We conducted a two-stage large-scale psychiatric point prevalence survey. Multistage cluster stratified random sampling was used as the sampling strategy. Five provinces were selected by comprehensively considering geographical partition, economic development, and rural/urban factors. In Stage 1, the Child Behavior Checklist was used as the screening tool. In Stage 2, Mini-International Neuropsychiatric Interview for Children and Adolescents and a diagnostic process based on the Diagnostic and Statistical Manual were used to make the diagnoses. Sampling weights and poststratification weights were employed to match the population distributions. Exploratory analyses were also performed using socio-demographic factors. Prevalence in socio-demographic factor subgroups and overall were estimated. Rao-Scott adjusted chi-square tests were utilized to determine if between-group differences were present. Factor interactions were checked by logistic regression analyses. RESULTS A total of 73,992 participants aged 6-16 years of age were selected in Stage 1. In Stage 2, 17,524 individuals were screened and diagnosed. The weighted prevalence of any disorder was 17.5% (95% CI: 17.2-18.0). Statistically significant differences in prevalence of any psychiatric disorder were observed between sexes [χ2 (1, N = 71,929) = 223.0, p < .001], age groups [χ2 (1, N = 71,929) = 18.6, p < .001] and developed vs. developing areas [χ2 (1, N = 71,929) = 2,129.6, p < .001], while no difference was found between rural and urban areas [χ2 (1, N = 71,929) = 1.4, p = .239]. Male, younger individuals, children, and adolescents from developed areas had higher prevalence of any psychiatric disorder. The prevalence of any psychiatric disorder was found to decrease with the age in the male group, while the female group increased with the age. Individuals diagnosed with attention-deficit hyperactivity disorder, oppositional defiant disorder, a tic disorder, conduct disorder, and major depression disorder had the highest rates of comorbidity. CONCLUSIONS The prevalence of any psychiatric disorder we found is the highest ever reported in China. These results urgently need to be addressed by public mental health service providers and policymakers in order to provide access to the necessary treatments and to reduce the long-term negative impact of these conditions on families and the society as a whole.
Collapse
Affiliation(s)
- Fenghua Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yonghua Cui
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | | | - Jing Liu
- Sixth hospital, Peking University, Beijing, China
| | - Xuerong Luo
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zheng
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Shen X, Yan H, Jiang J, Li W, Xiong Y, Liu Q, Liu Y. Profile of gene expression changes during estrodiol-17β-induced feminization in the Takifugu rubripes brain. BMC Genomics 2021; 22:851. [PMID: 34819041 PMCID: PMC8614003 DOI: 10.1186/s12864-021-08158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background As the critical tissue of the central nervous system, the brain has been found to be involved in gonad development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-specific molecular changes that occur during estrodiol-17β (E2) -induced feminization is crucial to our understanding of the molecular control of sex differentiation by the brains of fish. Results In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY (E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated, while st, sl, tshβ, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction, arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs that were identified between E-XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine metabolism, arachidonic acid metabolism and linoleic acid metabolism. Conclusion A number of genes and pathways were identified in the brain of E2-treated T. rubripes larvae by RNA-seq. It provided the opportunity for further study on the possible involvement of networks in the brain-pituitary-gonadal axis in sex differentiation in T. rubripes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08158-0.
Collapse
Affiliation(s)
- Xufang Shen
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China.,Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China.
| | - Jieming Jiang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Weiyuan Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Yuyu Xiong
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.,College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, Liaoning, China
| |
Collapse
|
10
|
Lee MH, Lee SK, Thomas RJ, Yoon JE, Yun CH, Shin C. Deep Learning-Based Assessment of Brain Connectivity Related to Obstructive Sleep Apnea and Daytime Sleepiness. Nat Sci Sleep 2021; 13:1561-1572. [PMID: 34557049 PMCID: PMC8455296 DOI: 10.2147/nss.s327110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Obstructive sleep apnea (OSA) is associated with altered pairwise connections between brain regions, which might explain cognitive impairment and daytime sleepiness. By adopting a deep learning method, we investigated brain connectivity related to the severity of OSA and daytime sleepiness. PATIENTS AND METHODS A cross-sectional design applied a deep learning model on structural brain networks obtained from 553 subjects (age, 59.2 ± 7.4 years; men, 35.6%). The model performance was evaluated with the Pearson's correlation coefficient (R) and probability of absolute error less than standard deviation (PAE RESULTS We achieved a meaningful R (up to 0.74) and PAE CONCLUSION A deep learning method can assess the association of brain network characteristics with OSA severity and daytime sleepiness and specify the relevant brain connectivity.
Collapse
Affiliation(s)
- Min-Hee Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Robert J Thomas
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jee-Eun Yoon
- Department of Neurology, Uijeongbu Eulji Medical Center, Uijeongbu, Republic of Korea
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
- Department of Pulmonary Sleep and Critical Care Medicine Disorder Center, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
11
|
Sun P, Wang J, Zhang M, Duan X, Wei Y, Xu F, Ma Y, Zhang YH. Sex-Related Differential Whole-Brain Input Atlas of Locus Coeruleus Noradrenaline Neurons. Front Neural Circuits 2020; 14:53. [PMID: 33071759 PMCID: PMC7541090 DOI: 10.3389/fncir.2020.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
As the most important organ in our bodies, the brain plays a critical role in deciding sex-related differential features; however, the underlying neural circuitry basis remains unclear. Here, we used a cell-type-specific rabies virus-mediated monosynaptic tracing system to generate a sex differences-related whole-brain input atlas of locus coeruleus noradrenaline (LC-NE) neurons. We developed custom pipelines for brain-wide comparisons of input sources in both sexes with the registration of the whole-brain data set to the Allen Mouse Brain Reference Atlas. Among 257 distinct anatomical regions, we demonstrated the differential proportions of inputs to LC-NE neurons in male and female mice at different levels. Locus coeruleus noradrenaline neurons of two sexes showed general similarity in the input patterns, but with differentiated input proportions quantitatively from major brain regions and diverse sub-regions. For instance, inputs to male LC-NE neurons were found mainly in the cerebrum, interbrain, and cerebellum, whereas inputs to female LC-NE neurons were found in the midbrain and hindbrain. We further found that specific subsets of nuclei nested within sub-regions contributed to overall sex-related differences in the input circuitry. Furthermore, among the totaled 123 anatomical regions with proportion of inputs >0.1%, we also identified 11 sub-regions with significant statistical differences of total inputs between male and female mice, and seven of them also showed such differences in ipsilateral hemispheres. Our study not only provides a structural basis to facilitate our understanding of sex differences at a circuitry level but also provides clues for future sexually differentiated functional studies related to LC-NE neurons.
Collapse
Affiliation(s)
- Pei Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Duan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Wei
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Xu
- Centre for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Ma
- HUST-WHBC United Hematology Optical Imaging Center, Wuhan Blood Center (WHBC), Wuhan, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Shen X, Yan H, Zhang L, Yuan Z, Liu W, Wu Y, Liu Q, Luo X, Liu Y. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in Takifugu rubripes brain during gonadal sex differentiation. Genes Genomics 2020; 42:425-439. [DOI: 10.1007/s13258-019-00914-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 12/29/2022]
|
13
|
Zou Y, Wu Z, Fan Z, Liang D, Wang L, Song Z, You F. Analyses of mRNA-seq and miRNA-seq of the brain reveal the sex differences of gene expression and regulation before and during gonadal differentiation in 17β-estradiol or 17α-methyltestosterone-induced olive flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 87:78-90. [PMID: 31788912 DOI: 10.1002/mrd.23303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important flatfish species cultured in East Asia. Female flounders generally grow more rapidly than males, therefore control of the sex ratio seems to be a proposed way to increase production. However, the sex determination gene and sex determination mechanism have yet been elucidated. The brain is an important organ that is involved in gonadal development. To explore the sex differences of gene expression in the brain before and during the flounder gonadal differentiation, we used messenger RNA (mRNA)-seq technology to investigate transcriptomes of male and female brains. Between female and male brains, 103 genes were differentially expressed before ovarian differentiation, 16 genes were differentially expressed before testicular differentiation, and 64 genes were differentially expressed during gonadal differentiation. According to annotation and Kyoto Encyclopedia of Genes and Genomes information, the differentially expressed genes (DEGs) were involved in circadian rhythm, circadian rhythm-fly, circadian entrainment, dopaminergic synapse, calcium signaling, glutamatergic synapse, taste transduction, herpes simplex infection, long-term depression, retrograde endocannabinoid signaling, and the synaptic vesicle cycle pathways. MicroRNA (miRNA)-seq was performed during the gonadal differentiation and the target genes of miRNAs were predicted. Integrated analysis of mRNA-seq and miRNA-seq showed that 29 of the 64 DEGs were regulated by the differentially expressed miRNAs during the gonadal differentiation. Our study provides a basis for further studies of brain sex differentiation and the molecular mechanism of sex determination in olive flounder.
Collapse
Affiliation(s)
- Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Shenghang Aquatic Science and Technology Co., Ltd., Weihai, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Ray JL, Fletcher P, Burmeister R, Holian A. The role of sex in particle-induced inflammation and injury. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1589. [PMID: 31566915 DOI: 10.1002/wnan.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials within various applications such as medicine, electronics, and cosmetics has been steadily increasing; therefore, the rate of occupational and environmental exposures has also increased. Inhalation is an important route of exposure to nanomaterials and has been shown to cause various respiratory diseases in animal models. Human lung disease frequently presents with a sex/gender-bias in prevalence or severity, but investigation of potential sex-differences in the adverse health outcomes associated with nanoparticle inhalation is greatly lacking. Only ~20% of basic research in the general sciences use both male and female animals and a substantial percentage of these do not address differences between sexes within their analyses. This has prevented researchers from fully understanding the impact of sex-based variables on health and disease, particularly the pathologies resulting from the inhalation of particles. The mechanisms responsible for sex-differences in respiratory disease remain unclear, but could be related to a number of variables including sex-differences in hormone signaling, lung physiology, or respiratory immune function. By incorporating sex-based analysis into respiratory nanotoxicology and utilizing human data from other relevant particles (e.g., asbestos, silica, particulate matter), we can improve our understanding of sex as a biological variable in nanoparticle exposures. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Jessica L Ray
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Rachel Burmeister
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
15
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
16
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
17
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
18
|
Pinares-Garcia P, Stratikopoulos M, Zagato A, Loke H, Lee J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018; 8:E154. [PMID: 30104506 PMCID: PMC6120011 DOI: 10.3390/brainsci8080154] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Marielle Stratikopoulos
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Alice Zagato
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Hannah Loke
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - Joohyung Lee
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
19
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Wang P, Tuvblad C, Younan D, Franklin M, Lurmann F, Wu J, Baker LA, Chen JC. Socioeconomic disparities and sexual dimorphism in neurotoxic effects of ambient fine particles on youth IQ: A longitudinal analysis. PLoS One 2017; 12:e0188731. [PMID: 29206872 PMCID: PMC5716576 DOI: 10.1371/journal.pone.0188731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
Mounting evidence indicates that early-life exposure to particulate air pollutants pose threats to children's cognitive development, but studies about the neurotoxic effects associated with exposures during adolescence remain unclear. We examined whether exposure to ambient fine particles (PM2.5) at residential locations affects intelligence quotient (IQ) during pre-/early- adolescence (ages 9-11) and emerging adulthood (ages 18-20) in a demographically-diverse population (N = 1,360) residing in Southern California. Increased ambient PM2.5 levels were associated with decreased IQ scores. This association was more evident for Performance IQ (PIQ), but less for Verbal IQ, assessed by the Wechsler Abbreviated Scale of Intelligence. For each inter-quartile (7.73 μg/m3) increase in one-year PM2.5 preceding each assessment, the average PIQ score decreased by 3.08 points (95% confidence interval = [-6.04, -0.12]) accounting for within-family/within-individual correlations, demographic characteristics, family socioeconomic status (SES), parents' cognitive abilities, neighborhood characteristics, and other spatial confounders. The adverse effect was 150% greater in low SES families and 89% stronger in males, compared to their counterparts. Better understanding of the social disparities and sexual dimorphism in the adverse PM2.5-IQ effects may help elucidate the underlying mechanisms and shed light on prevention strategies.
Collapse
Affiliation(s)
- Pan Wang
- Center for Health Policy Research, University of California Los Angeles, Los Angeles, United States of America
| | - Catherine Tuvblad
- Department of Psychology, University of Southern California, Los Angeles, United States of America
- School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Diana Younan
- Department of Preventive Medicine, University of Southern California, Los Angeles, United States of America
| | - Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles, United States of America
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California, United States of America
| | - Jun Wu
- Program in Public Health, University of California Irvine, Irvine, United States of America
| | - Laura A. Baker
- Department of Psychology, University of Southern California, Los Angeles, United States of America
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, United States of America
| |
Collapse
|
21
|
Müller D, Grevet EH, Panzenhagen AC, Cupertino RB, da Silva BS, Kappel DB, Mota NR, Blaya-Rocha P, Teche SP, Vitola ES, Rohde LA, Contini V, Rovaris DL, Schuch JB, Bau CHD. Evidence of sexual dimorphism of HTR1B gene on major adult ADHD comorbidities. J Psychiatr Res 2017; 95:269-275. [PMID: 28923721 DOI: 10.1016/j.jpsychires.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/07/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a very common psychiatric disorder across the life cycle and frequently presents comorbidities. Since ADHD is highly heritable, several studies have focused in the underlying genetic factors involved in its etiology. One of the major challenges in this search is the phenotypic heterogeneity, which could be partly attributable to the sexual dimorphism frequently seen in psychiatric disorders. Taking into account the well-known sexual dimorphic effect observed in serotonergic system characteristics, we differentially tested the influence of HTR1B SNPs (rs11568817, rs130058, rs6296 and rs13212041) on ADHD susceptibility and on its major comorbidities according to sex. The sample comprised 564 adults with ADHD diagnosed according to DSM-IV criteria and 635 controls. There was no association of any HTR1B SNPs tested in relation to ADHD susceptibility. As for the comorbidities evaluated, after correction for multiple tests, significant associations were observed for both rs11568817 and rs130058 with substance use disorders (Pcorr = 0.009 and Pcorr = 0.018, respectively) and for rs11568817 with nicotine dependence (Pcorr = 0.025) in men with ADHD. In women with ADHD, the same rs11568817 was associated with generalized anxiety disorder (Pcorr = 0.031). The observed effects of rs11568817 G allele presence conferring risk to either substance use disorders or generalized anxiety disorder according to sex, suggest an overall scenario where a higher transcriptional activity of HTR1B, resulting from the presence of this allele, is related to externalizing behaviors in men and internalizing behaviors in women. These results are consistent with and expand previous evidence of sexual dimorphism of the serotoninergic system.
Collapse
Affiliation(s)
- Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana C Panzenhagen
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Renata B Cupertino
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Nina R Mota
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paula Blaya-Rocha
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo S Vitola
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Verônica Contini
- PPGBIOTEC - Postgraduate Program in Biotechnology, Centro Universitário Univates, Lajeado, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Löwgren K, Bååth R, Rasmussen A, Boele HJ, Koekkoek SKE, De Zeeuw CI, Hesslow G. Performance in eyeblink conditioning is age and sex dependent. PLoS One 2017; 12:e0177849. [PMID: 28542383 PMCID: PMC5436819 DOI: 10.1371/journal.pone.0177849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023] Open
Abstract
A growing body of evidence suggests that the cerebellum is involved in both cognition and language. Abnormal cerebellar development may contribute to neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD), autism, fetal alcohol syndrome, dyslexia, and specific language impairment. Performance in eyeblink conditioning, which depends on the cerebellum, can potentially be used to clarify the neural mechanisms underlying the cerebellar dysfunction in disorders like these. However, we must first understand how the performance develops in children who do not have a disorder. In this study we assessed the performance in eyeblink conditioning in 42 typically developing children between 6 and 11 years old as well as in 26 adults. Older children produced more conditioned eyeblink responses than younger children and adults produced more than children. In addition, females produced more conditioned eyeblink responses than males among both children and adults. These results highlight the importance of considering the influence of age and sex on the performance when studying eyeblink conditioning as a measure of cerebellar development.
Collapse
Affiliation(s)
- Karolina Löwgren
- Department of Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| | - Rasmus Bååth
- Department of Philosophy, Cognitive Science, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Rosenfeld CS, Denslow ND, Orlando EF, Gutierrez-Villagomez JM, Trudeau VL. Neuroendocrine disruption of organizational and activational hormone programming in poikilothermic vertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:276-304. [PMID: 28895797 PMCID: PMC6174081 DOI: 10.1080/10937404.2017.1370083] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Edward F. Orlando
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Rep 2016; 6:36916. [PMID: 27845378 PMCID: PMC5109279 DOI: 10.1038/srep36916] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.
Collapse
|
25
|
Sanchis-Segura C, Becker JB. Why we should consider sex (and study sex differences) in addiction research. Addict Biol 2016; 21:995-1006. [PMID: 27029841 DOI: 10.1111/adb.12382] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022]
Abstract
Among mammals, every cell has a biological sex, and the sex of an individual pervades its body and brain. In this review, we describe the processes through which mammals become phenotypically male or female by organizational and activational influences of genes and hormones throughout development. We emphasized that the molecular and cellular changes triggered by sex chromosomes and steroid hormones may generate sex differences in overt physiological functions and behavior, but they may alternatively promote end-point convergences between males and females. Clinical and pre-clinical evidences suggest that sex and gender differences modulate drug consumption as well as of the transition towards drug-promoted pathological states such as dependence and addiction. Additionally, sex differences in drug pharmacokinetics and pharmacodynamics will also influence dependence and addiction as well as side effects of drugs. These effects will further interact with socially gendered factors to result in sex differences in the access to, engagement in and efficacy of any therapeutic attempt. Finally, we maintain that 'sex sameness' is as important as 'sex differences' when building a complete understanding of biology for both males and females and provide a framework with which to classify and guide investigation into the mechanisms mediating sex differences and sex sameness.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departament de Psicologia básica, clínica i psicobiologia. Área de Psicobiología; Universitat Jaume I; Castellón de la Plana Spain
| | - Jill B. Becker
- Department of Psychology and Molecular and Behavioral Neuroscience Institute; University of Michigan; Ann Arbor MI USA
| |
Collapse
|
26
|
Qiao Q, Le Manach S, Sotton B, Huet H, Duvernois-Berthet E, Paris A, Duval C, Ponger L, Marie A, Blond A, Mathéron L, Vinh J, Bolbach G, Djediat C, Bernard C, Edery M, Marie B. Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach. Sci Rep 2016; 6:32459. [PMID: 27561897 PMCID: PMC5000296 DOI: 10.1038/srep32459] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023] Open
Abstract
Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response. The sex-dimorphism of the liver is particularly obvious in oviparous animals, as the female liver is the main organ for the synthesis of oocyte constituents. In this work, we are interested in identifying molecular sexual dimorphism in the liver of adult medaka fish and their sex-variation in response to hepatotoxic exposures. By developing an integrative approach combining histology and different high-throughput omic investigations (metabolomics, proteomics and transcriptomics), we were able to globally depict the strong sexual dimorphism that concerns various cellular and molecular processes of hepatocytes comprising protein synthesis, amino acid, lipid and polysaccharide metabolism, along with steroidogenesis and detoxification. The results of this work imply noticeable repercussions on the biology of oviparous organisms environmentally exposed to chemical or toxin issues.
Collapse
Affiliation(s)
- Qin Qiao
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Séverine Le Manach
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Benoit Sotton
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Hélène Huet
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France.,Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, BioPôle Alfort, Maisons-Alfort, France
| | - Evelyne Duvernois-Berthet
- UMR 7221 CNRS/MNHN, Évolution des Régulations Endocriniennes, Sorbonne Universités, Muséum Nationale d'Histoire Naturelle, Paris, France
| | - Alain Paris
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Charlotte Duval
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Loïc Ponger
- UMR 7196 MNHN/CNRS, INSERM U1154, Sorbonne Universités, Museum National d'Histoire Naturelle, Paris, France
| | - Arul Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Alain Blond
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Joelle Vinh
- USR 3149 ESPCI/CNRS SMPB, Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI Paris, PSL Research University, Paris, France
| | - Gérard Bolbach
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Chakib Djediat
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Cécile Bernard
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Marc Edery
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
27
|
Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis. Int J Mol Sci 2016; 17:ijms17091402. [PMID: 27571066 PMCID: PMC5037682 DOI: 10.3390/ijms17091402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/05/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female’s highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.
Collapse
|
28
|
Romano E, Cosentino L, Laviola G, De Filippis B. Genes and sex hormones interaction in neurodevelopmental disorders. Neurosci Biobehav Rev 2016; 67:9-24. [DOI: 10.1016/j.neubiorev.2016.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
29
|
Kumari A, Singh P, Baghel MS, Thakur M. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Physiol Behav 2016; 158:34-42. [DOI: 10.1016/j.physbeh.2016.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/04/2023]
|
30
|
Ellis L, Skorska MN, Bogaert AF. Handedness, sexual orientation, and somatic markers for prenatal androgens: Are southpaws really that gay? Laterality 2016; 22:157-180. [DOI: 10.1080/1357650x.2016.1151024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 2015; 6:24. [PMID: 26557979 PMCID: PMC4640233 DOI: 10.1186/s13293-015-0043-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background While many sex differences in structure and function of the mammalian brain have been described, the molecular correlates of these differences are not broadly known. Also unknown is how sex differences at the protein level are perturbed by mutations that lead to intellectual disability (ID). Down syndrome (DS) is the most common genetic cause of ID and is due to trisomy of human chromosome 21 (Hsa21) and the resulting increased expression of Hsa21-encoded genes. The Dp(10)1Yey mouse model (Dp10) of DS is trisomic for orthologs of 39 Hsa21 protein-coding genes that map to mouse chromosome 10 (Mmu10), including four genes with known sex differences in functional properties. How these genes contribute to the DS cognitive phenotype is not known. Methods Using reverse phase protein arrays, levels of ~100 proteins/protein modifications were measured in the hippocampus, cerebellum, and cortex of female and male controls and their trisomic Dp10 littermates. Proteins were chosen for their known roles in learning/memory and synaptic plasticity and include components of the MAPK, MTOR, and apoptosis pathways, immediate early genes, and subunits of ionotropic glutamate receptors. Protein levels were compared between genotypes, sexes, and brain regions using a three-level mixed effects model and the Benjamini-Hochberg correction for multiple testing. Results In control mice, levels of approximately one half of the proteins differ significantly between females and males in at least one brain region; in the hippocampus alone, levels of 40 % of the proteins are significantly higher in females. Trisomy of the Mmu10 segment differentially affects female and male profiles, perturbing protein levels most in the cerebellum of female Dp10 and most in the hippocampus of male Dp10. Cortex is minimally affected by sex and genotype. Diverse pathways and processes are implicated in both sex and genotype differences. Conclusions The extensive sex differences in control mice in levels of proteins involved in learning/memory illustrate the molecular complexity underlying sex differences in normal neurological processes. The sex-specific abnormalities in the Dp10 suggest the possibility of sex-specific phenotypic features in DS and reinforce the need to use female as well as male mice, in particular in preclinical evaluations of drug responses. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0043-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Block
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | - Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | | | - Suhong Tong
- Colorado School of Public Health, Aurora, USA
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA ; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045 USA
| |
Collapse
|
32
|
Lu J, Zheng M, Zheng J, Liu J, Liu Y, Peng L, Wang P, Zhang X, Wang Q, Luan P, Mahbooband S, Sun X. Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in Yellow Catfish (Pelteobagrus fulvidraco) Brain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:613-623. [PMID: 26242754 PMCID: PMC4540775 DOI: 10.1007/s10126-015-9650-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is a pivotal freshwater aquaculture species in China. It shows sexual size dimorphism favoring male in growth. Whole transcriptome approach is required to get the overview of genetic toolkit for understanding the sex determination mechanism aiming at devising its monosex production. Beside gonads, the brain is also considered as a major organ for vertebrate reproduction. Transcriptomic analyses on the brain and of different developmental stages will provide the dynamic view necessary for better understanding its sex determination. In this regard, we have performed a de novo assembly of yellow catfish brain transcriptome by high throughput Illumina sequencing. A total number of 154,507 contigs were obtained with the lengths ranging from 201 to 27,822 bp and N50 of 2,101 bp, as well as 20,699 unigenes were identified. Of these unigenes, 13 and 54 unigenes were detected to be XY-specifically expressed genes (SEGs) for one and 2-year-old yellow catfish, while the corresponding numbers of XX-SEGs for those two stages were 19 and 13, respectively. Our work identifies a set of annotated genes that are candidate factors affecting sexual dimorphism as well as simple sequence repeat (SSR) and single nucleotide variation (SNV) in yellow catfish. To validate the expression patterns of the sex-related genes, we performed quantitative real-time PCR (qRT-PCR) indicating the reliability and accuracy of our analysis. The results in our study may enhance our understanding of yellow catfish sex determination and potentially help to improve the production of all-male yellow catfish for aquaculture.
Collapse
Affiliation(s)
- Jianguo Lu
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
- />School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- />National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, China
| | - Min Zheng
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
- />Department of Civil Engineering, Auburn University, Auburn, AL 36849 USA
| | - Jiajia Zheng
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Jian Liu
- />School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongzhuang Liu
- />School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lina Peng
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
- />Harbin Normal University, Harbin, China
| | - Pingping Wang
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Xiaofeng Zhang
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Qiushi Wang
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Peixian Luan
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Shahid Mahbooband
- />Department of Zoology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Xiaowen Sun
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| |
Collapse
|
33
|
Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol 2015; 65:139-50. [PMID: 26028290 DOI: 10.1016/j.biocel.2015.05.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/28/2022]
Abstract
The prevalence, age of onset, pathophysiology, and symptomatology of many neurological and neuropsychiatric conditions differ significantly between males and females. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and autism spectrum disorders (ASD). Until recently, these sex differences have been explained solely by the neuroprotective actions of sex hormones in females. Emerging evidence however indicates that the sex chromosome genes (i.e. X- and Y-linked genes) also contribute to brain sex differences. In particular, the Y-chromosome gene, SRY (Sex-determining Region on the Y chromosome) is an interesting candidate as it is expressed in dopamine-abundant brain regions, where it regulates dopamine biosynthesis and dopamine-mediated functions such as voluntary movement in males. Furthermore, SRY expression is dysregulated in a toxin-induced model of PD, suggesting a role for SRY in the pathogenesis of dopamine cells. Taken together, these studies highlight the importance of understanding the interplay between sex-specific hormones and sex-specific genes in healthy and diseased brain. In particular, better understanding of regulation and function of SRY in the male brain could provide entirely novel and important insights into genetic factors involved in the susceptibility of men to neurological disorders, as well as development of novel sex-specific therapies.
Collapse
Affiliation(s)
- Hannah Loke
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vincent Harley
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| | - Joohyung Lee
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Stocks M, Dean R, Rogell B, Friberg U. Sex-specific trans-regulatory variation on the Drosophila melanogaster X chromosome. PLoS Genet 2015; 11:e1005015. [PMID: 25679222 PMCID: PMC4334168 DOI: 10.1371/journal.pgen.1005015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change.
Collapse
Affiliation(s)
- Michael Stocks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Rebecca Dean
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail: (RD); (UF)
| | - Björn Rogell
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Urban Friberg
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- IFM Biology, AVIAN Behaviour and Genomics group, Linköping University, Linköping, Sweden
- * E-mail: (RD); (UF)
| |
Collapse
|
35
|
Gatt JM, Burton KLO, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res 2015; 60:1-13. [PMID: 25287955 DOI: 10.1016/j.jpsychires.2014.09.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Major efforts have been directed at family-based association and case-control studies to identify the involvement of candidate genes in the major disorders of mental health. What remains unknown is whether candidate genes are associated with multiple disorders via pleiotropic mechanisms, and/or if other genes are specific to susceptibility for individual disorders. Here we undertook a review of genes that have been identified in prior meta-analyses examining specific genes and specific mental disorders that have core disruptions to emotional and cognitive function and contribute most to burden of illness- major depressive disorder (MDD), anxiety disorders (AD, including panic disorder and obsessive compulsive disorder), schizophrenia (SZ) and bipolar disorder (BD) and attention deficit hyperactivity disorder (ADHD). A literature review was conducted up to end-March 2013 which included a total of 1519 meta-analyses across 157 studies reporting multiple genes implicated in one or more of the five disorders studied. A total of 134 genes (206 variants) were identified as significantly associated risk variants for MDD, AD, ADHD, SZ or BD. Null genetic effects were also reported for 195 genes (426 variants). 13 genetic variants were shared in common between two or more disorders (APOE e4, ACE Ins/Del, BDNF Val66Met, COMT Val158Met, DAOA G72/G30 rs3918342, DAT1 40-bp, DRD4 48-bp, SLC6A4 5-HTTLPR, HTR1A C1019G, MTHR C677T, MTHR A1298C, SLC6A4 VNTR and TPH1 218A/C) demonstrating evidence for pleiotrophy. Another 12 meta-analyses of GWAS studies of the same disorders were identified, with no overlap in genetic variants reported. This review highlights the progress that is being made in identifying shared and unique genetic mechanisms that contribute to the risk of developing several major psychiatric disorders, and identifies further steps for progress.
Collapse
Affiliation(s)
- Justine M Gatt
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Karen L O Burton
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Leanne M Williams
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, 94305-5717, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
36
|
Alarcón G, Cservenka A, Fair DA, Nagel BJ. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone. Brain Res 2014; 1593:40-54. [PMID: 25312831 PMCID: PMC4252582 DOI: 10.1016/j.brainres.2014.09.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/21/2014] [Accepted: 09/24/2014] [Indexed: 02/08/2023]
Abstract
Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence.
Collapse
Affiliation(s)
- Gabriela Alarcón
- Department of Behavioral Neuroscience, Portland, OR, United States
| | - Anita Cservenka
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Damien A Fair
- Department of Behavioral Neuroscience, Portland, OR, United States; Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Bonnie J Nagel
- Department of Behavioral Neuroscience, Portland, OR, United States; Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
37
|
Davies W. Sex differences in attention Deficit Hyperactivity Disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol 2014; 35:331-46. [PMID: 24680800 DOI: 10.1016/j.yfrne.2014.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a developmental condition characterised by severe inattention, pathological impulsivity and hyperactivity; it is relatively common affecting up to 6% of children, and is associated with a risk of long-term adverse educational and social consequences. Males are considerably more likely to be diagnosed with ADHD than females; the course of the disorder and its associated co-morbidities also appear to be sensitive to sex. Here, I discuss fundamental biological (genetic and endocrine) mechanisms that have been shown to, or could theoretically, contribute towards these sexually dimorphic phenomena. Greater understanding of how and why the sexes differ with respect to ADHD vulnerability should allow us to identify and characterise novel protective and risk factors for the disorder, and should ultimately facilitate improved diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
| |
Collapse
|
38
|
Blood injury and injection phobia: the neglected one. Behav Neurol 2014; 2014:471340. [PMID: 25049451 PMCID: PMC4094700 DOI: 10.1155/2014/471340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/31/2023] Open
Abstract
Blood injury and injection (BII) phobia is a unique phobia associated with a diphasic cardiovascular response. The aim of this survey was to report the prevalence of BII phobia, its heritability, and clinical characteristics among the males and females in the Indian subcontinent. An interview and a survey were conducted using a developed BII phobia 21-item questionnaire among 3261 participant males (n = 1648) and females (n = 1613). Cronbach' alpha (α) of 0.972 of internal consistency was reported. The prevalence of BII phobia and associated fainting in females was slightly more than double in the males with a significant gender related effect. Similar avoidance behaviours involving hospital visits were reported for both males and females. The relative frequency of BII phobia among first and third degree relatives was found to be higher than among second degree relatives. Depression was found highly comorbid with BII phobia while a low rate of obsessive compulsion disorder (OCD) and social anxiety disorder (SAD) was reported. Morbidity associated with BII phobia may increase dramatically when other medical problems coincide with it.
Collapse
|
39
|
Abstract
Studies of sex effects on neurodevelopment have traditionally focused on animal models investigating hormonal influences on brain anatomy. However, more recent evidence suggests that sex chromosomes may also have direct upstream effects that act independently of hormones. Sex chromosome aneuploidies provide ideal models to examine this framework in humans, including Turner syndrome (TS), where females are missing one X-chromosome (45X), and Klinefelter syndrome (KS), where males have an additional X-chromosome (47XXY). As these disorders essentially represent copy number variants of the sex chromosomes, investigation of brain structure across these disorders allows us to determine whether sex chromosome gene dosage effects exist. We used voxel-based morphometry to investigate this hypothesis in a large sample of children in early puberty, to compare regional gray matter volumes among individuals with one (45X), two (typically developing 46XX females and 46XY males), and three (47XXY) sex chromosomes. Between-group contrasts of TS and KS groups relative to respective sex-matched controls demonstrated highly convergent patterns of volumetric differences with the presence of an additional sex chromosome being associated with relatively decreased parieto-occipital gray matter volume and relatively increased temporo-insular gray matter volumes. Furthermore, z-score map comparisons between TS and KS cohorts also suggested that this effect occurs in a linear dose-dependent fashion. We infer that sex chromosome gene expression directly influences brain structure in children during early stages of puberty, extending our understanding of genotype-phenotype mechanisms underlying sex differences in the brain.
Collapse
|
40
|
Gabory A, Vigé A, Ferry L, Attig L, Jais JP, Jouneau L, Junien C. Male and Female Placentas Have Divergent Transcriptomic and Epigenomic Responses to Maternal Diets: Not Just Hormones. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-02591-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
41
|
Takeda T, Fujii M, Hattori Y, Yamamoto M, Shimazoe T, Ishii Y, Himeno M, Yamada H. Maternal exposure to dioxin imprints sexual immaturity of the pups through fixing the status of the reduced expression of hypothalamic gonadotropin-releasing hormone. Mol Pharmacol 2014; 85:74-82. [PMID: 24132183 DOI: 10.1124/mol.113.088575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 μg/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during the late fetal and early postnatal period, leading to the imprinting of defects in sexual behaviors at adulthood. However, it remains unclear how the attenuation of pituitary LH is linked to sexual immaturity. To address this issue, we performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity on the pituitary and hypothalamus of male pups, born of TCDD-treated dams, at the age of postnatal day (PND) 70. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus because of published evidence that it has a role in sexual behaviors. An attenuation by TCDD of GnRH expression emerged at PND4, and no subsequent return to the control level was seen. A change in neither DNA methylation nor histone acetylation accounted for the reduced expression of GnRH. Intracerebroventricular infusion of GnRH to the TCDD-exposed pups after reaching maturity restored the impairment of sexual behaviors. Supplying equine chorionic gonadotropin, an LH-mimicking hormone, to the TCDD-exposed fetuses at GD15 resulted in a recovery from the reduced expression of GnRH, as well as from the defects in sexual behavior. These results strongly suggest that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing the LH-assisted steroidogenesis at the perinatal stage, and this mechanism imprints defects in sexual behaviors at adulthood.
Collapse
Affiliation(s)
- Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., M.F., Y.H., T.S., Y.I., H.Y.); and Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan (M.Y., M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dadam FM, Caeiro XE, Cisternas CD, Macchione AF, Cambiasso MJ, Vivas L. Effect of sex chromosome complement on sodium appetite and Fos-immunoreactivity induced by sodium depletion. Am J Physiol Regul Integr Comp Physiol 2013; 306:R175-84. [PMID: 24259464 DOI: 10.1152/ajpregu.00447.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies indicate a sex chromosome complement (SCC) effect on the angiotensin II-sexually dimorphic hypertensive and bradycardic baroreflex responses. We sought to evaluate whether SCC may differentially modulate sexually dimorphic-induced sodium appetite and specific brain activity due to physiological stimulation of the rennin angiotensin system. For this purpose, we used the "four core genotype" mouse model, in which the effect of gonadal sex and SCC is dissociated, allowing comparisons of sexually dimorphic traits between XX and XY females as well as in XX and XY males. Gonadectomized mice were sodium depleted by furosemide (50 mg/kg) and low-sodium diet treatment; control groups were administered with vehicle and maintained on normal sodium diet. Twenty-one hours later, the mice were divided into two groups: one group was submitted to the water-2% NaCl choice intake test, while the other group was perfused and their brains subjected to the Fos-immunoreactivity (FOS-ir) procedure. Sodium depletion, regardless of SCC (XX or XY), induced a significantly lower sodium and water intake in females than in males, confirming the existence in mice of sexual dimorphism in sodium appetite and the organizational involvement of gonadal steroids. Moreover, our results demonstrate a SCC effect on induced brain FOS-ir, showing increased brain activity in XX-SCC mice at the paraventricular nucleus, nucleus of the solitary tract, and lateral parabrachial nucleus, as well as an XX-SCC augmented effect on sodium depletion-induced brain activity at two circumventricular organs, the subfornical organ and area postrema, nuclei closely involved in fluid and blood pressure homeostasis.
Collapse
Affiliation(s)
- Florencia M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Gardener EKT, Carr AR, MacGregor A, Felmingham KL. Sex differences and emotion regulation: an event-related potential study. PLoS One 2013; 8:e73475. [PMID: 24204562 PMCID: PMC3813629 DOI: 10.1371/journal.pone.0073475] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/22/2013] [Indexed: 02/05/2023] Open
Abstract
Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.
Collapse
Affiliation(s)
| | - Andrea R. Carr
- School of Psychology, University of Tasmania, Hobart, Tasmania, Australia
| | - Amy MacGregor
- School of Psychology, University of Tasmania, Hobart, Tasmania, Australia
| | - Kim L. Felmingham
- School of Psychology, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
44
|
Kopsida E, Lynn PM, Humby T, Wilkinson LS, Davies W. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice. PLoS One 2013; 8:e73699. [PMID: 24009762 PMCID: PMC3751882 DOI: 10.1371/journal.pone.0073699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/22/2013] [Indexed: 11/18/2022] Open
Abstract
Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine ‘four core genotype’ (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry (‘sex chromosome complement’ effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.
Collapse
Affiliation(s)
- Eleni Kopsida
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- School of Psychology, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Phoebe M. Lynn
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- School of Psychology, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Trevor Humby
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- School of Psychology, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- School of Psychology, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - William Davies
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- School of Psychology, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
van den Bos R, Davies W, Dellu-Hagedorn F, Goudriaan AE, Granon S, Homberg J, Rivalan M, Swendsen J, Adriani W. Cross-species approaches to pathological gambling: a review targeting sex differences, adolescent vulnerability and ecological validity of research tools. Neurosci Biobehav Rev 2013; 37:2454-71. [PMID: 23867802 DOI: 10.1016/j.neubiorev.2013.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Decision-making plays a pivotal role in daily life as impairments in processes underlying decision-making often lead to an inability to make profitable long-term decisions. As a case in point, pathological gamblers continue gambling despite the fact that this disrupts their personal, professional or financial life. The prevalence of pathological gambling will likely increase in the coming years due to expanding possibilities of on-line gambling through the Internet and increasing liberal attitudes towards gambling. It therefore represents a growing concern for society. Both human and animal studies rapidly advance our knowledge on brain-behaviour processes relevant for understanding normal and pathological gambling behaviour. Here, we review in humans and animals three features of pathological gambling which hitherto have received relatively little attention: (1) sex differences in (the development of) pathological gambling, (2) adolescence as a (putative) sensitive period for (developing) pathological gambling and (3) avenues for improving ecological validity of research tools. Based on these issues we also discuss how research in humans and animals may be brought in line to maximize translational research opportunities.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands; Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Donner NC, Lowry CA. Sex differences in anxiety and emotional behavior. Pflugers Arch 2013; 465:601-26. [PMID: 23588380 DOI: 10.1007/s00424-013-1271-7] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/14/2022]
Abstract
Research has elucidated causal links between stress exposure and the development of anxiety disorders, but due to the limited use of female or sex-comparative animal models, little is known about the mechanisms underlying sex differences in those disorders. This is despite an overwhelming wealth of evidence from the clinical literature that the prevalence of anxiety disorders is about twice as high in women compared to men, in addition to gender differences in severity and treatment efficacy. We here review human gender differences in generalized anxiety disorder, panic disorder, posttraumatic stress disorder and anxiety-relevant biological functions, discuss the limitations of classic conflict anxiety tests to measure naturally occurring sex differences in anxiety-like behaviors, describe sex-dependent manifestation of anxiety states after gestational, neonatal, or adolescent stressors, and present animal models of chronic anxiety states induced by acute or chronic stressors during adulthood. Potential mechanisms underlying sex differences in stress-related anxiety states include emerging evidence supporting the existence of two anatomically and functionally distinct serotonergic circuits that are related to the modulation of conflict anxiety and panic-like anxiety, respectively. We discuss how these serotonergic circuits may be controlled by reproductive steroid hormone-dependent modulation of crfr1 and crfr2 expression in the midbrain dorsal raphe nucleus and by estrous stage-dependent alterations of γ-aminobutyric acid (GABAergic) neurotransmission in the periaqueductal gray, ultimately leading to sex differences in emotional behavior.
Collapse
Affiliation(s)
- Nina C Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, 114 Clare Small, Boulder, CO 80309-0354, USA.
| | | |
Collapse
|
47
|
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013; 4:5. [PMID: 23514128 PMCID: PMC3618244 DOI: 10.1186/2042-6410-4-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Collapse
Affiliation(s)
- Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, F-78352, France.
| | | | | | | | | |
Collapse
|
48
|
Using mouse models to investigate sex-linked genetic effects on brain, behaviour and vulnerability to neuropsychiatric disorders. Brain Res Bull 2013; 92:12-20. [DOI: 10.1016/j.brainresbull.2011.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022]
|
49
|
Zhang X, Ung CY, Lam SH, Ma J, Chen YZ, Zhang L, Gong Z, Li B. Toxicogenomic analysis suggests chemical-induced sexual dimorphism in the expression of metabolic genes in zebrafish liver. PLoS One 2012; 7:e51971. [PMID: 23272195 PMCID: PMC3525581 DOI: 10.1371/journal.pone.0051971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/08/2012] [Indexed: 12/30/2022] Open
Abstract
Differential gene expression in two sexes is widespread throughout the animal kingdom, giving rise to sex-dimorphic gene activities and sex-dependent adaptability to environmental cues, diets, growth and development as well as susceptibility to diseases. Here, we present a study using a toxicogenomic approach to investigate metabolic genes that show sex-dimorphic expression in the zebrafish liver triggered by several chemicals. Our analysis revealed that, besides the known genes for xenobiotic metabolism, many functionally diverse metabolic genes, such as ELOVL fatty acid elongase, DNA-directed RNA polymerase, and hydroxysteroid dehydrogenase, were also sex-dimorphic in their response to chemical treatments. Moreover, sex-dimorphic responses were also observed at the pathway level. Pathways belonging to xenobiotic metabolism, lipid metabolism, and nucleotide metabolism were enriched with sex-dimorphically expressed genes. We also observed temporal differences of the sex-dimorphic responses, suggesting that both genes and pathways are differently correlated during different periods of chemical perturbation. The ubiquity of sex-dimorphic activities at different biological hierarchies indicate the importance and the need of considering the sex factor in many areas of biological researches, especially in toxicology and pathology.
Collapse
Affiliation(s)
- Xun Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Centre for Computational Science and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (XZ); (ZG)
| | - Choong Yong Ung
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Mathematics, National University of Singapore, Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing Ma
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Centre for Computational Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Zong Chen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Centre for Computational Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Louxin Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Mathematics, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (XZ); (ZG)
| | - Baowen Li
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Centre for Computational Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Rice WR, Friberg U, Gavrilets S. Homosexuality as a Consequence of Epigenetically Canalized Sexual Development. QUARTERLY REVIEW OF BIOLOGY 2012; 87:343-68. [DOI: 10.1086/668167] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|