1
|
Harsin AO, Makhdoomi S, Soleimani M, Firozian F, Nili-Ahmadabadi A, Ranjbar A. Crocin-loaded Niosomal Nanoparticles Reversing Cytotoxicity and Oxidative Stress in HEK293 Cell Line Exposed to Paraquat: An In vitro Study. Pharm Nanotechnol 2025; 13:313-319. [PMID: 38317468 DOI: 10.2174/0122117385256493231019045141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Paraquat (PQ) is an effective herbicide which is widely used around the world to remove weeds in agriculture. As a water-soluble carotenoid, crocin is a pharmacologically active constituent of C. sativus L. (saffron). OBJECTIVES In the present study, we investigated the effects of crocin-loaded niosomes (Cro-NIO) compared to free crocin on PQ-induced toxicity in the eukaryotic human embryonic kidney (HEK293) cell line. METHODS The Cro-NIO was synthesized and characterized. Cell viability was determined using the MTT assay in PQ-exposed HEK293 cell lines. The activities of biochemical markers were quantitatively determined to reveal the potential mechanism of PQ-induced oxidative stress in HEK293 cell line. RESULTS The particle size, zeta potential, polydispersity index (PDI), DL, and EE of Cro-NIO were 145.4 ± 19.5 nm, -22.3 ± 3.11 mV, 0.3 ± 0.03, 1.74 ± 0.01%, and 55.3 ± 7.1%, respectively. PQtreated HEK293 cell lines decreased cell viability. The results of oxidative status showed that PQ significantly could increase ROS accumulation, accompanied by a decreasing antioxidant defense system. However, treatment with Cro-NIO, compared to crocin, not only did dose-dependently improve the cell viability but also significantly attenuated the ROS accumulation and increased antioxidant markers. CONCLUSION According to these results, Cro-NIO, compared to crocin, was superior to ameliorating PQ-induced cytotoxicity and oxidative damage in HEK293 cells.
Collapse
Affiliation(s)
- Akram Oftadeh Harsin
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzin Firozian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Science, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Zhao A, Sun Q, Zhang J, Hu T, Zhou X, Wang C, Liu J, Wang B. Substance basis and pharmacological mechanism of heat-clearing herbs in the treatment of ischaemic encephalopathy: a systematic review and network pharmacology. Ann Med 2024; 56:2308077. [PMID: 38285889 PMCID: PMC10826791 DOI: 10.1080/07853890.2024.2308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Ischaemic encephalopathy is a common cerebrovascular disease caused by insufficient blood supply to the cerebral vessels. The ischaemic encephalopathy is closely associated with the development of many chronic diseases such as obesity, hypertension and diabetes. Neurotrophic therapy has become the main therapeutic strategy for ischaemic encephalopathy. However, neurotrophic drugs only slightly recover the neurological function of patients, and their long-term efficacy is uncertain. Previous reports revealed that the active ingredients of natural medicines play important roles in the treatment of cerebral ischemia. In this study, we reviewed clearing herbs with anti-ischaemic encephalopathy functions using the data from quantitative statistical and network pharmacological exploration methods. We also discussed the different bioactive components and pharmacological effects of these herbs. METHODS First, we collected Chinese herbal prescriptions against ischaemic encephalopathy in four databases. Then, we statistically analysed the frequency of application of heat-clearing herbs to obtain the commonly used heat-clearing herbs against ischaemic encephalopathy, and classified them according to their efficacy according to the statistical results, to summarize the mechanism of anti-ischaemic effects of different bioactive components; Second, the network database was used to obtain the above components of heat-clearing Chinese medicines and their corresponding targets of action, disease targets of ischaemic stroke; Venny 2.1.0 was used to obtain component-disease target intersections; Cytoscape was used to construct the 'Drug-Active Ingredient-Target Network Graph '; DAVID was used for GO and KEGG enrichment analysis. RESULTS Literature and database screening involved 149 prescriptions, with a total of 269 flavours of Chinese medicines and 20 flavours of single-flavour heat-clearing Chinese medicines; The top nine in terms of frequency of use were Radix Paeoniae Rubra、Rehmanniae Radix Praeparata、Figwort Root、Cortex Moutan、Scutellariae Radix、Coptidis Rhizoma、Gardeniae Fructus、Cassiae Semen、Lonicerae Japonicae Flos. The common components obtained from network pharmacology were beta-sitosterol, quercetin, and stigmasterol, which mainly act on key targets such as RELA, AKT1, JUN, PRKACA, PTGS2, RAF1 and CHUK; and their active ingredients are mainly involved in signalling pathways such as Calcium, PI3K-Ak, MAPK, cAMP, IL-17, HIF-1, TNF, T-cell receptor, NF-kappa B and JAK-STAT. CONCLUSIONS Heat-clearing herbs are useful and promising for the protection against and prevention of ischemic encephalopathy. The results of the network pharmacological studies are similar to the mechanisms of anti-ischemic encephalopathy of the active ingredients of the purgative herbs we have listed; Thin either directly protects cerebrovascular tissues by improving vascular permeability and reducing the area of infarcted tissues, or produces protective effects through molecular signaling pathways. It can be seen that the components of heat-clearing Chinese medicines can exert cerebroprotective effects through multiple pathways, which provides us with a reference for further development and study of heat-clearing Chinese medicines in the treatment of ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Andong Zhao
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, China
| | - Qianqian Sun
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiahao Zhang
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Tian Hu
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuewei Zhou
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chuan Wang
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, China
| | - Jiping Liu
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, China
| | - Bin Wang
- Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang, China
| |
Collapse
|
3
|
Pourmousavi L, Asadi RH, Zehsaz F, Jadidi RP. Potential therapeutic effects of crocin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7395-7420. [PMID: 38758225 DOI: 10.1007/s00210-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin's biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin's role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin's beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature's palette holds remarkable solutions for enhancing our health.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Farzad Zehsaz
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
4
|
Chu CS, Chen YT, Liang WZ. Investigation of the mechanisms behind ochratoxin A-induced cytotoxicity in human astrocytes and the protective effects of N-acetylcysteine. J Appl Toxicol 2024; 44:1454-1465. [PMID: 38812125 DOI: 10.1002/jat.4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Ochratoxin A (OTA) is a type of mycotoxin commonly found in raw and processed foods. It is essential to be aware of this toxin, as it can harm your health if consumed in high quantities. OTA can induce toxic effects in various cell models. However, a more comprehensive understanding of the harmful effects of OTA on human astrocytes is required. This study evaluated OTA's neurotoxic effects on the Gibco® Human Astrocyte (GHA) cell line, its underlying mechanisms, and the antioxidant N-acetylcysteine (NAC) ability to prevent them. OTA exposure within 5-30 μM has induced concentration-dependent cytotoxicity. In the OTA-treated cells, the levels of reactive oxygen species (ROS) were found to be significantly increased, while the glutathione (GSH) contents were found to decrease considerably. The western blotting of OTA-treated cells has revealed increased Bax, cleaved caspase-9/caspase-3 protein levels, and increased Bax/Bcl-2 ratio. In addition, exposure to OTA has resulted in the induction of antioxidant responses associated with the protein expressions of Nrf2, HO-1, and NQO1. On the other hand, the pretreatment with NAC has partially alleviated the significant toxic effects of OTA. In conclusion, our findings suggest that oxidative stress and apoptosis are involved in the OTA-induced cytotoxicity in GHA cells. NAC could act as a protective agent against OTA-induced oxidative damage.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying-Tso Chen
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
5
|
Banaeeyeh S, Afkhami-Goli A, Moosavi Z, Razavi BM, Hosseinzadeh H. Anti-inflammatory, antioxidant and anti-mitophagy effects of trans sodium crocetinate on experimental autoimmune encephalomyelitis in BALB/C57 mice. Metab Brain Dis 2024; 39:783-801. [PMID: 38739183 DOI: 10.1007/s11011-024-01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by the degeneration of myelin and inflammation in the central nervous system. Trans sodium crocetinate (TSC), a novel synthetic carotenoid compound, possesses antioxidant, anti-inflammatory and neuroprotective effects. This study aimed to evaluate the protective effects of TSC against the development of experimental autoimmune encephalomyelitis (EAE), a well-established model for MS. Female BALB/C57 mice were divided into different groups, including control, EAE, vehicle, TSC-treated (25, 50, and 100 mg/kg, administered via gavage) + EAE, methyl prednisone acetate + EAE, and TSC-treated (100 mg/kg, administered via gavage for 28 days) groups. EAE was induced using MOG35-55, complete Freund's adjuvant, and pertussis toxin. In the mice spinal cord tissues, the oxidative markers (GSH and MDA) were measured using spectrophotometry and histological evaluation was performed. Mitophagic pathway proteins (PINK1and PARKIN) and inflammatory factors (IL-1β and TNF-α) were evaluated by western blot. Following 21 days post-induction, EAE mice exhibited weight loss, and the paralysis scores increased on day 13 but recovered after TSC (100 mg/kg) administration on day 16. Furthermore, TSC (50 and 100 mg/kg) reversed the altered levels of MDA and GSH in the spinal cord tissue of EAE mice. TSC (100 mg/kg) also decreased microgliosis, demyelination, and the levels of inflammatory markers IL-1β and TNF-α. Notably, TSC (100 mg/kg) modulated the mitophagy pathway by reducing PINK1 and Parkin protein levels. These findings demonstrate that TSC protects spinal cord tissue against EAE-induced MS through anti-inflammatory, antioxidant, and anti-mitophagy mechanisms.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Afkhami-Goli
- Division of Pharmacology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
7
|
Steiner‐Lim GZ, Bensoussan A, Andrews‐Marney ER, Al‐Dabbas MA, Cave AE, Chiu CL, Christofides K, De Blasio FM, Dewsbury LS, Fagan NL, Fogarty JS, Hattom LC, Hohenberg MI, Jafar D, Karamacoska D, Lim CK, Liu J, Metri N, Oxenham DV, Ratajec H, Roy N, Shipton DG, Varjabedian D, Chang DH. A randomized, double-blind, placebo-controlled, parallel-group 12-week pilot phase II trial of SaiLuoTong (SLT) for cognitive function in older adults with mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12420. [PMID: 37830013 PMCID: PMC10565903 DOI: 10.1002/trc2.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION This study primarily aimed to evaluate the efficacy and safety of SaiLuoTong (SLT) on cognition in mild cognitive impairment (MCI). METHODS Community-dwelling people with MCI aged ≥60 years were randomly assigned to 180 mg/day SLT or placebo for 12 weeks. RESULTS Thirty-nine participants were randomized to each group (N = 78); 65 were included in the final analysis. After 12 weeks, the between-groups difference in Logical Memory delayed recall scores was 1.40 (95% confidence interval [CI]: 0.22 to 2.58; P = 0.010); Delis-Kaplan Executive Function System Trail Making Test Condition 4 switching and contrast scaled scores were 1.42 (95% CI: -0.15 to 2.99; P = 0.038) and 1.56 (95% CI: -0.09 to 3.20; P = 0.032), respectively; Rey Auditory Verbal Learning Test delayed recall was 1.37 (95% CI: -0.10 to 2.84; P = 0.034); and Functional Activities Questionnaire was 1.21 (95% CI: -0.21 to 2.63; P = 0.047; P < 0.001 after controlling for baseline scores). DISCUSSION SLT is well tolerated and may be useful in supporting aspects of memory retrieval and executive function in people with MCI. Highlights SaiLuoTong (SLT) improves delayed memory retrieval and executive function in people with mild cognitive impairment (MCI).SLT is well tolerated in people ≥ 60 years.The sample of community dwellers with MCI was well characterized and homogeneous.
Collapse
Affiliation(s)
- Genevieve Z. Steiner‐Lim
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
- Translational Health Research Institute (THRI)Western Sydney UniversityPenrithNew South WalesAustralia
| | - Alan Bensoussan
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | | | - Mahmoud A. Al‐Dabbas
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Adele E. Cave
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Christine L. Chiu
- Macquarie Medical SchoolMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Katerina Christofides
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Frances M. De Blasio
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Lauren S. Dewsbury
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Naomi L. Fagan
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Jack S. Fogarty
- Science of Learning in Education CentreNational Institute of EducationNanyang Technological UniversitySingapore
| | - Lena C. Hattom
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Mark I. Hohenberg
- School of MedicineWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Deyyan Jafar
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
- Macquarie Medical SchoolMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Diana Karamacoska
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
- Translational Health Research Institute (THRI)Western Sydney UniversityPenrithNew South WalesAustralia
| | - Chai K. Lim
- Macquarie Medical SchoolMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Jianxun Liu
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingPR China
| | - Najwa‐Joelle Metri
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - D. Vincent Oxenham
- Neuropsychology DepartmentRoyal North Shore HospitalSt. LeonardsNew South WalesAustralia
- School of Psychological Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Holly Ratajec
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Nikita Roy
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Danielle G. Shipton
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| | - David Varjabedian
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
- School of MedicineWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Dennis H. Chang
- NICM Health Research InstituteWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
8
|
Goyal A, Verma A, Agrawal A, Dubey N, Kumar A, Behl T. Therapeutic implications of crocin in Parkinson's disease: A review of preclinical research. Chem Biol Drug Des 2023; 101:1229-1240. [PMID: 36752710 DOI: 10.1111/cbdd.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Parkinson's disease is among the most common forms of neurodegenerative illness, with present treatment being primarily symptomatic and frequently coming with substantial adverse effects. Neuronal degeneration may arise due to a variety of pathological events, like inflammatory responses, neurotransmitter dysregulation, oxidative damage, mitochondrial malfunction, apoptosis, and genetic factors. The health issue and financial burden brought on by Parkinson's disease can worsen as the population ages. In the search for new and secure therapeutic agents for Parkinson's disease, several natural compounds have been shown to exert considerable neuroprotective benefits. Crocin, a naturally occurring carotenoid molecule, was found to have neuroprotective potential in the therapy of this disorder. Taking into account, the outcomes of various studies and the restorative actions of crocin, the present study emphasized the protective ability of crocin in this disease. Given the strong evidence supporting the neuroprotective ability of crocin, it is inferred that crocin inhibits inflammatory, apoptotic, and antioxidant processes through multiple mechanisms. Therefore, this compound is considered a safe and effective therapeutic choice for neurodegenerative illnesses like Parkinson's disease. However, more research on its efficacy as a treatment of Parkinson's disease is needed, specifically examining its mechanisms and the results obtained in clinical trials.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Abhay Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidohli, Uttarakhand, India
| |
Collapse
|
9
|
Karayakali M, Altinoz E, Elbe H, Koca O, Onal MO, Bicer Y, Demir M. Crocin treatment exerts anti-inflammatory and anti-oxidative effects in liver tissue damage of pinealectomized diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47670-47684. [PMID: 36746856 DOI: 10.1007/s11356-023-25766-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with an increasing global prevalence that leads to significant morbidity and mortality. The liver plays a vital role in glycemic regulation in physiological and pathological conditions such as DM. Free radical formation and inhibition of antioxidant defense systems play a role in the liver damage pathogenesis in diabetic patients The antioxidant, anti-diabetic, anti-inflammatory, and radical scavenging properties of crocin are known. This study was designed to determine the possible protective effects of crocin against liver tissue damage in pinealectomized diabetic rats. Sixty rats were divided into six groups: Control, Sham+streptozotocin (STZ), Pinealectomy (PINX), PINX+STZ, PINX+Crocin, and PINX+STZ+Crocin. PNX procedure was carried out on the first day of the experiment. Intraperitoneal (i.p.) injection of 50 mg/kg STZ was performed on the 30th day of the experiment to induce DM. Crocin (50 mg/kg; i.p.) was applied for 15 days after the pinealectomy procedure and induction of DM. Crocin decreased the markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin-1β (IL-1β), and malondialdehyde (MDA)) of liver damage and increased antioxidant enzyme levels and tissue total antioxidant status. Histological results showed that the administration of crocin exhibited a protective effect against liver damage caused by STZ. These results indicate that crocin evidence protection against liver injury caused by STZ.
Collapse
Affiliation(s)
- Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Oguzhan Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
10
|
Karamacoska D, Chan DKY, Leung I, Liu JX, Brodaty H, Fahey PP, Bensoussan A, Chang DH. Study protocol for a phase III randomised controlled trial of Sailuotong (SLT) for vascular dementia and Alzheimer's disease with cerebrovascular disease. PLoS One 2023; 18:e0265285. [PMID: 36920949 PMCID: PMC10016672 DOI: 10.1371/journal.pone.0265285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/22/2022] [Indexed: 03/16/2023] Open
Abstract
Vascular dementia (VaD) accounts for 15-20% of all dementia cases. It is a syndrome of acquired cognitive impairment with a complex pathophysiological basis. A novel herbal formulation (Sailuotong; SLT) consisting of Panax ginseng C.A Mey, Ginkgo biloba L and Crocus sativus L extracts was developed to treat VaD. Preclinical animal studies found significant improvements in memory and in pathogenic biochemical parameters. Appropriate safety of SLT was shown in acute and chronic toxicity studies, and early clinical trials of SLT demonstrated enhancements in cognition in VaD patients. A fully powered study with a long intervention period is needed to confirm the efficacy and safety of this novel intervention. A rigorous phase III clinical trial was developed with the aim of recruiting 238 patients diagnosed with mild to moderate probable VaD, or VaD mixed with Alzheimer's disease (where cerebrovascular disease is the clinical dominant contributor to dementia, abbreviated as CVD+AD). Using a permuted block strategy, participants will be randomly allocated to receive SLT (120 mg bd) or placebo capsules for an intervention period of 52 weeks and will be followed-up for an additional 13 weeks. The primary outcome measures are the Vascular Dementia Assessment Scale-cognitive subscale and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Secondary outcome measures include the Clinician's Interview Based Impression of Change-Plus, CLOX, EXIT-25, Neuropsychiatric Inventory-Clinician rating scale, and Dementia Quality of Life questionnaire. Safety is assessed through adverse event reports and liver, renal, and coagulation studies. Primary and secondary outcome measures will be compared between treatment and placebo groups, using intention to treat and per protocol analyses. We hypothesise that a 52-week treatment of SLT will be clinically effective and well tolerated in participants with VaD or AD+CVD. This project will provide vital efficacy and safety data for this novel treatment approach to VaD.
Collapse
Affiliation(s)
- Diana Karamacoska
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Daniel K. Y. Chan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Isabella Leung
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jian-xun Liu
- Research Center, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Paul P. Fahey
- School of Health Sciences, Western Sydney University, Penrith, NSW, Australia
| | - Alan Bensoussan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis H. Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- * E-mail:
| |
Collapse
|
11
|
Xu B, Wang C, Chen H, Zhang L, Gong L, Zhong L, Yang J. Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Front Physiol 2022; 13:1018971. [PMID: 36479346 PMCID: PMC9720843 DOI: 10.3389/fphys.2022.1018971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary angioplasty, cardiopulmonary resuscitation, and organ transplantation, which can lead to cell damage and death. Mitsugumin 53 (MG53), also known as Trim72, is a conservative member of the TRIM family and is highly expressed in mouse skeletal and cardiac muscle, with minimal amounts in humans. MG53 has been proven to be involved in repairing cell membrane damage. It has a protective effect on I/R injury in multiple oxygen-dependent organs, such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also plays a unique role in I/R, sepsis, and other aspects, which is expected to provide new ideas for related treatment. This article briefly reviews the pathophysiology of I/R injury and how MG53 mitigates multi-organ I/R injury.
Collapse
Affiliation(s)
- Bowen Xu
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
12
|
Li X, Geng-Ji JJ, Quan YY, Qi LM, Sun Q, Huang Q, Jiang HM, Sun ZJ, Liu HM, Xie X. Role of potential bioactive metabolites from traditional Chinese medicine for type 2 diabetes mellitus: An overview. Front Pharmacol 2022; 13:1023713. [PMID: 36479195 PMCID: PMC9719995 DOI: 10.3389/fphar.2022.1023713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR). The number of diabetic patients globally has been rising over the past decades. Although significant progress has been made in treating diabetes mellitus (DM), existing clinical drugs for diabetes can no longer fully meet patients when they face complex and huge clinical treatment needs. As a traditional and effective medical system, traditional Chinese medicine (TCM) has a unique understanding of diabetes treatment and has developed many classic and practical prescriptions targeting DM. With modern medicine and pharmacy advancements, researchers have discovered that various bioactive metabolites isolated from TCM show therapeutic on DM. Compared with existing clinical drugs, these bioactive metabolites demonstrate promising prospects for treating DM due to their excellent biocompatibility and fewer adverse reactions. Accordingly, these valuable metabolites have attracted the interest of researchers worldwide. Despite the abundance of research works and specialized-topic reviews published over the past years, there is a lack of updated and systematic reviews concerning this fast-growing field. Therefore, in this review, we summarized the bioactive metabolites derived from TCM with the potential treatment of T2DM by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. For the convenience of readers, the content is divided into four parts according to the structural characteristics of these valuable compounds (flavonoids, terpenoids, alkaloids, and others). Meanwhile, the detailed mechanism and future directions of these promising compounds curing DM are also summarized in the related sections. We hope this review inspires increasingly valuable and significant research focusing on potential bioactive metabolites from TCM to treat DM in the future.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Jia Geng-Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun-Yun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zi-Jian Sun
- Sichuan Ant Recommendation Biotechnology Co., Ltd., Chengdu, Sichuan, China
| | - Hong-Mei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
15
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
17
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
18
|
Saffron extract and crocin exert anti-inflammatory and anti-oxidative effects in a repetitive mild traumatic brain injury mouse model. Sci Rep 2022; 12:5004. [PMID: 35322143 PMCID: PMC8943204 DOI: 10.1038/s41598-022-09109-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022] Open
Abstract
Saffron Crocus sativus L. (C. sativus) is a flower from the iridaceous family. Crocin, saffron’s major constituent, and saffron have anti-oxidative and anti-inflammatory activities. In this work, the neuroprotective effects of saffron and crocin are being investigated in a repetitive mild traumatic brain injury (rmTBI) mouse model. A weight drop model setup was employed to induce mild brain injury in male albino BABL/c mice weighing 30–40 g. Saffron (50 mg/kg) and crocin (30 mg/kg) were administrated intraperitoneally 30 min before mTBI induction. Behavioral tests were conducted to assess behavioral deficits including the modified neurological severity score (NSS), Morris water maze (MWM), pole climb test, rotarod test, and adhesive test. The levels of TNF alpha (TNF-α), interferon-gamma (IFN-γ), myeloperoxidase activity (MPO), malonaldehyde (MDA), and reduced glutathione (GSH) were measured. Histological analysis of different brain parts was performed. Both saffron and crocin demonstrated marked improved neurological, cognitive, motor, and sensorimotor functions. Besides, both compounds significantly reduced the oxidative stress and inflammatory processes. No abnormal histological features were observed in any of the injured groups. Saffron extract and crocin provide a neuroprotective effect in a mouse model of rmTBI by decreasing oxidative stress, inflammatory responses, and behavioral deficits.
Collapse
|
19
|
Lian J, Zhong Y, Li H, Yang S, Wang J, Li X, Zhou X, Chen G. Effects of saffron supplementation on improving sleep quality: a meta-analysis of randomized controlled trials. Sleep Med 2022; 92:24-33. [DOI: 10.1016/j.sleep.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/23/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
20
|
Zhao X, Liu J, Yang L, Niu Y, Ren R, Su C, Wang Y, Chen J, Ma X. Beneficial effects of mijianchangpu decoction on ischemic stroke through components accessing to the brain based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114882. [PMID: 34848358 DOI: 10.1016/j.jep.2021.114882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To explore the effective components, potential targets and neuroprotective related mechanisms of Mijianchangpu decoction (MJCPD), a well-known TCM used by the Chinese Hui minorities to treat stroke, on the prevention and treatment of ischemic stroke (IS) by using experimental models combined with network pharmacology. MATERIALS AND METHODS The neuroprotective efficacy of MJCPD was estimated by applying the middle cerebral artery occlusion (MCAO) induced cerebral ischemia rats, and the neurological deficits score, TTC and HE staining as well as behavioral evaluation tests were employed to evaluate the beneficial effects. Meanwhile, the bioactive components of MJCPD responsible for the neuroprotective effects were identified by detecting the constituents in the brain of the MCAO rats with UHPLC-QTOF-MS/MS techniques, and these compounds were then underwent for network pharmacology analysis. Firstly, the targets of the bioactive compounds of MJCPD were predicted using Pharmmapper database, and simultaneously, the targets of IS disease were obtained from disease databases including DisGenet, OMIM, and GeneCards. Secondly, the protein-protein interaction (PPI) network between the targets and diseases were established to give the possible therapeutic targets for IS. Thirdly, the go function and KEGG pathway enrichment analysis were carried out and the compound-target-pathway network was constructed by Cytoscape software. Finally, the effective compounds, core targets and possible pathways were obtained by analyzing the connectivity of the network. More importantly, the core targets were verified by western blot experiments to validate the reliability of this study. RESULTS MJCPD exhibited significant neuroprotective effect on IS, and 16 bioactive components of MJCPD were identified in the brain of the MCAO rats. 59 and 1982 targets related with IS disease were explored from Pharmapper and disease databases, respectively, and 32 intersecting targets were obtained as hypothetical therapeutic targets. Based on the results of the compound-target-pathway and PPI network with the degree was greater than the median, 8 effective compounds (suberic acid, epishyobunone, crocetin monomethyl ester, sfaranal, (Z)-6-octadccenoic acid, nerolidol and gurjunene) and 5 hub targets (SRC, MAPK8, MAPK14, EGFR and MAPK1) as well as 12 pathways were predicted. Western blot results showed that EGFR, p38, ERK and SRC proteins were expressed significantly different after MJCPD treatment as compared with the model group. CONCLUSION The present study employed network pharmacology, pharmacodynamics and molecular biology techniques to predict and validate the core potential targets and signaling pathways as well as the bioactive components of MJCPD responsible for the treatment of IS. All of which are very helpful to clarify the neuroprotective mechanism of MJCPD, and obviously, the active compounds and targets in this study can also provide clues for the treatment of IS.
Collapse
Affiliation(s)
- Xiaojun Zhao
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jingjing Liu
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China; School of Pharmacy, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Lingling Yang
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yang Niu
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Ruru Ren
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Chao Su
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yingli Wang
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
21
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
22
|
Vafaei S, Wu X, Tu J, Nematollahi-mahani SN. The Effects of Crocin on Bone and Cartilage Diseases. Front Pharmacol 2022; 12:830331. [PMID: 35126154 PMCID: PMC8807478 DOI: 10.3389/fphar.2021.830331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Crocin, the main biologically active carotenoid of saffron, generally is derived from the dried trifid stigma of Crocus sativus L. Many studies have demonstrated that crocin has several therapeutic effects on biological systems through its anti-oxidant and anti-inflammatory properties. The wide range of crocin activities is believed to be because of its ability to anchor to many proteins, triggering some cellular pathways responsible for cell proliferation and differentiation. It also has therapeutic potentials in arthritis, osteoarthritis, rheumatoid arthritis, and articular pain probably due to its anti-inflammatory properties. Anti-apoptotic effects, as well as osteoclast inhibition effects of crocin, have suggested it as a natural substance to treat osteoporosis and degenerative disease of bone and cartilage. Different mechanisms underlying crocin effects on bone and cartilage repair have been investigated, but remain to be fully elucidated. The present review aims to undertake current knowledge on the effects of crocin on bone and cartilage degenerative diseases with an emphasis on its proliferative and differentiative properties in mesenchymal stem cells.
Collapse
Affiliation(s)
- Shayan Vafaei
- Department of Anatomical Science, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Xuming Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
- *Correspondence: Jiajie Tu, ; Seyed Noureddin Nematollahi-mahani,
| | - Seyed Noureddin Nematollahi-mahani
- Department of Anatomical Science, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Jiajie Tu, ; Seyed Noureddin Nematollahi-mahani,
| |
Collapse
|
23
|
Purification of Crocin-I from Gardenia Yellow by Macroporous Resin Columns In-Series and Its Antidepressant-Like Effect. J CHEM-NY 2022. [DOI: 10.1155/2022/7651553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the purification of crocin-I from Gardenia yellow by macroporous resin columns in-series was systematically investigated. The in-series macroporous adsorption resins consisting of XAD 4 and XAD 1600N resins were selected on the basis of the evaluation of performance and separation characteristics of 17 kinds of resins, including the adsorption capacities, desorption ratio, and separation degree. According to the analysis results, the optimum conditions were as follows: bed volume ratio of XAD 4 and XAD 1600N resins, sample volume, flow rate, and methanol concentration were 3 : 1, 5 BV, 15 BV/h, and 70%, respectively (BV was the bed volume of XAD 4 resin). After one run treatment, the separation degree of crocin-I at 254 nm and 440 nm decreased from 1.92 to 0.08 (
) and from 0.71 to 0.36 (
), respectively. The results showed that the in-series macroporous resins revealed a high capacity in the purification of crocin-I. Meanwhile, in the animal experiment, the forced swimming tests were regulated by crocin-I and Gardenia yellow, which demonstrated that crocin-I was the main constituent of Gardenia yellow and had potential antidepressant biological activities.
Collapse
|
24
|
Aslani MR, Amani M, Masrori N, Boskabady MH, Ebrahimi HA, Chodari L. Crocin attenuates inflammation of lung tissue in ovalbumin-sensitized mice by altering the expression of endoplasmic reticulum stress markers. Biofactors 2022; 48:204-215. [PMID: 34856021 DOI: 10.1002/biof.1809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in the pathogenesis of asthma. The present study aimed to investigate the reducing or suppressing effects of crocin in ovalbumin (OVA)-sensitized mice on ER stress markers. Mice were divided into six groups (n = 5 per group) including control, OVA-sensitized (OVA), OVA-treated crocin (OVA-Cr25, OVA-Cr50, and OVA-Cr100 mg/kg), and OVA-treated dexamethasone (1 mg/kg), (OVA-Dexa) groups. Animals 5 later groups were sensitized to OVA and the treatment groups received intraperitoneally crocin/dexamethasone in the last 5 days of the model. At the end of the study, lung tissue was evaluated for airway inflammation, caspase 12 and CHOP protein levels, and expression of ER stress markers using real-time-PCR. Sensitization with OVA significantly caused airway inflammation and induction of ER stress in mice compared to the control group based on the elevated inflammatory cells and ER stress markers in the lung tissue. Treatment with crocin and dexamethasone reduced airway inflammation and suppressed ER stress markers. Interestingly, in the OVA-Cr100 group, the suppressive effects on ER stress apoptotic markers were comparable to the OVA-Dexa group. The results suggest that crocin mediates maladaptive ER stress conditions possibly by creating adaptive ER stress status and driving protein folding correctly.
Collapse
Affiliation(s)
- Mohammad Reza Aslani
- Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mojtaba Amani
- Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Neghin Masrori
- Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Wang Y, Li P, Zhang X, Li L, Liu M, Li X, Dai Y, Zhang C, Li S. Mitochondrial-Respiration-Improving Effects of Three Different Gardeniae Fructus Preparations and Their Components. ACS OMEGA 2021; 6:34229-34241. [PMID: 34963909 PMCID: PMC8697009 DOI: 10.1021/acsomega.1c03265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/25/2021] [Indexed: 05/24/2023]
Abstract
The processing method for Chinese traditional herbal medicine is "Pao Zhi" in Chinese. This study examined the efficacy of the Pao Zhi on the preparations of Gardeniae Fructus (GF) on a mitochondrial respiratory function in rats. To determine the efficacy of Pao Zhi, we investigated the effects of GF heat processing on mitochondrial respiratory function. To test the GF components, the rats were randomly divided into a geniposide-alone group, crocin-alone group, and combination groups and treated with geniposide and crocin at different ratios. The results showed that a high dose, raw GF was more effective in improving the neurological function, mitochondrial respiratory function, and activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase than the preparations that underwent heating. Moreover, mitochondrial ROS production was the lowest in the raw GF-treated group. In addition, treatments with crocin and GC3 were more effective than geniposide in improving the functional deficit in MCAO rats. In conclusion, our results suggest that raw GF is the most suitable preparation for the treatment of cerebral ischemia, and its underlying mechanisms may be associated with the improvement of mitochondrial respiratory function, increased activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase, and reduced oxidative stress in mitochondria. Our findings suggest that raw GF, especially crocin, could be an ideal therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Yun Wang
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Puling Li
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- School
of Pharmacy, Henan University of TCM, Zhengzhou 450008, China
| | - Xue Zhang
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Lingyun Li
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- School
of Pharmacy, Henan University of TCM, Zhengzhou 450008, China
| | - Mengjiao Liu
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoqing Li
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- School
of Pharmacy, Henan University of TCM, Zhengzhou 450008, China
| | - Yejia Dai
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Cun Zhang
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- School
of Pharmacy, Henan University of TCM, Zhengzhou 450008, China
| | - Shaojing Li
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
26
|
Naderi R, Pardakhty A, Abbasi MF, Ranjbar M, Iranpour M. Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia-reperfusion injuries in rat kidney. Sci Rep 2021; 11:23525. [PMID: 34876613 PMCID: PMC8651637 DOI: 10.1038/s41598-021-02073-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
As a powerful antioxidant compound, crocin can partially protect against renal ischemia/reperfusion (I/R) injuries. The encapsulation of components in niosomes (non-ionic surfactant-based vesicle) as nano-sized carrier systems has been proposed as they improve the solubility, stability, and bioavailability of drugs. Herein, the encapsulation of crocin in nano-niosomes and the effects of crocin-loaded nano-niosomes on renal ischemia/reperfusion-induced damages were evaluated. Nano-niosomes containing crocin were formulated by a modified heating method and were characterized for their physicochemical characteristics. Ischemia was induced by clamping the renal artery for 30 min followed by 1 or 24 h of reperfusion. Rats received an intra-arterial injection of nano-niosome-loaded crocin at the outset of reperfusion. Blood samples were taken after reperfusion to measure urea, creatinine (Cr), malondialdehyde (MDA), and superoxide dismutase (SOD) activity. The right kidney was removed for histological examination. The results showed that crocin-contain nano-niosomes have appropriate size and morphology, acceptable encapsulation efficiency, and a proper release pattern of crocin. I/R enhanced creatinine (Cr), urea, and malondialdehyde (MDA) serum levels and reduced SOD activity and histological damages in the renal tissue.
Collapse
Affiliation(s)
- Reyhaneh Naderi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran
| | - Mohammad Farajli Abbasi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Razavi SE, Jafari SM. Effect of corm age on the antioxidant, bactericidal and fungicidal activities of saffron (Crocus sativus L.) stigmas. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Praveen Kumar P, D. M, Siva Sankar Reddy L, Dastagiri Reddy Y, Somasekhar G, Sirisha N, Nagaraju K, Shouib M, Rizwaan A. A new cerebral ischemic injury model in rats, preventive effect of gallic acid and in silico approaches. Saudi J Biol Sci 2021; 28:5204-5213. [PMID: 34466098 PMCID: PMC8381014 DOI: 10.1016/j.sjbs.2021.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.
Collapse
Affiliation(s)
- P. Praveen Kumar
- Santhiram College of Pharmacy, Nandyal, Kurnool, Andhra Pradesh, India
| | - Madhuri D.
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | | | | | - G. Somasekhar
- SKU College of Pharmaceutical Sciences, Anantapur, Andhra Pradesh, India
| | - N.V.L. Sirisha
- Nitte College of Pharmaceutical Sciences, Banglaore, Karnataka, India
| | - K. Nagaraju
- C.R Reddy College of Pharmacy, Eluru, West Godavari, Andhra Pradesh, India
| | - M.S. Shouib
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - A.S. Rizwaan
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| |
Collapse
|
29
|
Mohamed Mowafy S, Awad Hegazy A, A Mandour D, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 2021; 45:307-318. [PMID: 34459708 DOI: 10.1080/01913123.2021.1970660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
The use of copper oxide nanoparticles (CUONPs) on a large-scale application is a reason for many health problems and morbidities involving most body tissues, particularly those of the nervous system. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects, such as antioxidant, anticancer, and memory-improving activities. This study was conducted to elaborate the effects of CUONP exposureon the cerebellar cortical tissues of rats and explore the potential protecting role of crocin through biochemical, light microscopic, and ultrastructural examinations. Twenty four adult male albino rats were randomly divided into four equal groups: Group I (negative control); Group II (crocin-treated group; 30mg/kg body weight (BW) intraperitoneal (IP) crocin daily); Group III (CUONP-treatedgroup; 0.5-mg/kg BW IP CUONP daily); and Group IV (CUONP/crocin-treated group). After 14 days of the experiment, venous blood samples were collected to determine red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels. Besides, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were measured. Cerebellar tissue samples were examined under light and electron microscopy along with a histomorphological analysis. CUONPs induced oxidative/antioxidative imbalance as evidenced by a significant increase in serum MDA levels and decreased GPx and TAC activities. CUONPs caused a significant decrease in RBC and Hb levels and an increase in WBC count. Histopathological alterations in the cerebellar cortex were observed. The administration of crocin showed some protection against the toxic effects of CUONPs. Crocin is suggested to have a mitigating role on oxidative stress and structure alterations in the cerebellar tissues induced by CUONPs.
Collapse
Affiliation(s)
- Sarah Mohamed Mowafy
- Department of Anatomy and Embryology, Faculty of Medicine, PortSaid University, Egypt
| | - Abdelmonem Awad Hegazy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
30
|
Song YN, Wang Y, Zheng YH, Liu TL, Zhang C. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia 2021; 153:104969. [PMID: 34147548 DOI: 10.1016/j.fitote.2021.104969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/29/2021] [Indexed: 01/17/2023]
Abstract
Crocins, as a kind of water-soluble carotenoid pigment, are a series of ester compounds formed from crocetin and gentibiose or glucose, and mainly distributed among Crocus sativus L. (CSL), Gardenia jasminoides Ellis. (GJE). Crocins exhibit a wide range of pharmacological effects on neurodegeneration, cardiovascular disease, cerebrovascular disease, depression, liver disease, arthritis, tumor, diabetes, etc. This review systematically discussed the pharmacologic study of crocins in the aspect of structural characteristic and pharmacokinetics, and summarized the mechanism of treating disease. It summarized the abundant research of crocins from 1984 to 2020 based on the above aspects, which provide a reference for the deeply development and application of crocins.
Collapse
Affiliation(s)
- Ya-Nan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying-Hao Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | - Cun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
31
|
Hadipour M, Bahari Z, Afarinesh MR, Jangravi Z, Shirvani H, Meftahi GH. Administering crocin ameliorates anxiety-like behaviours and reduces the inflammatory response in amyloid-beta induced neurotoxicity in rat. Clin Exp Pharmacol Physiol 2021; 48:877-889. [PMID: 33686675 DOI: 10.1111/1440-1681.13494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/06/2021] [Indexed: 12/19/2022]
Abstract
Anxiety, hippocampus synaptic plasticity deficit, as well as pro-inflammatory cytokines, are involved in Alzheimer's disease (AD). The present study is designed to evaluate the possible therapeutic effect of crocin on anxiety-like behaviours, hippocampal synaptic plasticity and neuronal shape, as well as pro-inflammatory cytokines in the hippocampus using in vivo amyloid-beta (Aβ) models of AD. The Aβ peptide (1-42) was bilaterally injected into the frontal-cortex. Five hours after the surgery, the rats were given intraperitoneal (IP) crocin (30 mg/kg) daily up to 12 days. Elevated plus maze results showed that crocin treatment after bilateral Aβ injection significantly increased the percentage of spent time into open arms, frequency of entries, and percentage of entries into open arms as compared with the Aβ group. In the open field test, the Aβ+crocin group showed a higher percentage of spent time in the centre and frequency of entries into central zone as compare with the Aβ treated animals. Administering crocin increased the number of soma, dendrites and axonal arbores in the CA1 neurons among the rats with Aβ neurotoxicity. Cresyl violet (CV) staining showed that crocin increased the number of CV-positive cells in the CA1 region of the hippocampus compared with the Aβ group. Silver-nitrate staining indicated that crocin reduced neurofibrillary tangle formation induced by Aβ. Crocin treatment attenuated the expression of TNF-α and IL-1β mRNA in the hippocampus compared with the Aβ group. Our results suggest that crocin attenuated Aβ-induced anxiety-like behaviours and neuronal damage, and synaptic plasticity loss in hippocampal CA1 neurons may via its anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Zahra Bahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Afarinesh
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Effect of Saffron Extract on the Hepatotoxicity Induced by Copper Nanoparticles in Male Mice. Molecules 2021; 26:molecules26103045. [PMID: 34065267 PMCID: PMC8161208 DOI: 10.3390/molecules26103045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Nanotechnology application has widespread use in many products. Copper nanoparticles (CuNPs) are widely used in industrial applications. The present study was conducted to investigate the effect of the ethanolic saffron extract (ESE) as a natural antioxidant on the hepatotoxicity induced by CuNPs in male mice. Methods: The characterization of CuNPs was determined using ultraviolet–visible absorption spectroscopy, particle size analysis, zeta potential, Fourier-transform infrared spectroscopy, and electron microscope. The effect of saffron on the hepatotoxicity induced by CuNPs in mice was evaluated by evaluating the survival rate of the mice, oxidative stress, antioxidant capacity, DNA evaluation, as well as its effect on the histology and transmission electron microscope of the liver. Results: The results revealed that all parameters were affected in a dose-dependent manner by CuNPs. These effects have been improved when the treatment of CuNPs is combined with ethanolic saffron extract. Conclusions: We can conclude that saffron and its bioactive crocin portion can prevent CuNP-induced oxidative liver damage. This substance should be useful as a new pharmacological tool for oxidative stress prevention.
Collapse
|
33
|
Wang Y, Cai X, Wu Z, Tang L, Lu L, Xu Y, Bao X. Tetrandrine attenuates ischemia/reperfusion‑induced neuronal damage in the subacute phase. Mol Med Rep 2021; 23:297. [PMID: 33649825 PMCID: PMC7930946 DOI: 10.3892/mmr.2021.11936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke, the third leading cause of disability globally, imposes a notable economic burden. Tetrandrine (Tet), which has been widely used clinically, exhibits potential protective effects against stroke. However, there has been little pre‑clinical research to evaluate the therapeutic effects of Tet on stroke. The present study investigated the beneficial effect of Tet on ischemia‑reperfusion (I/R) injury and its underlying mechanism in rats. Rats were subjected to occlusion of the middle cerebral artery, then treated with Tet (30 mg/kg/day, intraperitoneal) in the subacute phase for 7 days. In order to detect the effects of Tet on the behavior of rats, modified neurological severity score and longa behavior, grasping capability and inclined plane tests were conducted on days 1, 3 and 7 following cerebral ischemia. In addition, neuronal apoptosis in the cortex and hippocampus following ischemia was assessed by Nissl staining and TUNEL assay. Finally, oxidative stress was evaluated by measurement of free radicals and immunofluorescence staining of LC3 was used to assess autophagy. Tet improved neurological function and decreased infarct volume in I/R injury rats. Tet also prevented neuronal apoptosis in the cortex and hippocampus region. In addition, Tet protected against oxidative damage following ischemia, which was reflected by decreased levels of nitric oxide and malondialdehyde and increased levels of glutathione (GSH) and GSH peroxidase. In addition, the expression levels of the autophagy marker LC3 decreased in the Tet treatment group. In conclusion, Tet attenuated I/R‑induced neuronal damage in the subacute phase by decreasing oxidative stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xinjun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhiheng Wu
- School of Clinical Medicine, Wannan Medicial College, Wuhu, Anhui 241002, P.R. China
| | - Leilei Tang
- Department of Pharmacy, Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Lingqun Lu
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yinyin Xu
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
34
|
Pitsikas N. Crocus sativus L. Extracts and Its Constituents Crocins and Safranal; Potential Candidates for Schizophrenia Treatment? Molecules 2021; 26:molecules26051237. [PMID: 33669124 PMCID: PMC7956290 DOI: 10.3390/molecules26051237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a chronic mental devastating disease. Current therapy suffers from various limitations including low efficacy and serious side effects. Thus, there is an urgent necessity to develop new antipsychotics with higher efficacy and safety. The dried stigma of the plant Crocus sativus L., (CS) commonly known as saffron, are used in traditional medicine for various purposes. It has been demonstrated that saffron and its bioactive components crocins and safranal exert a beneficial action in different pathologies of the central nervous system such as anxiety, depression, epilepsy and memory problems. Recently, their role as potential antipsychotic agents is under investigation. In the present review, I intended to critically assess advances in research of these molecules for the treatment of schizophrenia, comment on their advantages over currently used neuroleptics as well-remaining challenges. Up to our days, few preclinical studies have been conducted to this end. In spite of it, results are encouraging and strongly corroborate that additional research is mandatory aiming to definitively establish a role for saffron and its bioactive components for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| |
Collapse
|
35
|
Safdari MR, Shakeri F, Mohammadi A, Bibak B, Alesheikh P, Jamialahmadi T, Sathyapalan T, Sahebkar A. Role of Herbal Medicines in the Management of Brain Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:287-305. [DOI: 10.1007/978-3-030-73234-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani ASM, Sahab Uddin M, Heydari M, Khayrullin M, Shariati MA, Aremu AO, Alafnan A, Rengasamy KRR. Nutritional and health beneficial properties of saffron ( Crocus sativus L): a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2683-2706. [PMID: 33327732 DOI: 10.1080/10408398.2020.1857682] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Ahood Khalid
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mojtaba Heydari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
- Plekhanov Russian University of Economics, Moscow, Russian Federation
- A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Adeyemi Oladapo Aremu
- Faculty of Natural and Agricultural Sciences, Indigenous Knowledge Systems Centre, North-West University, Mahikeng, North West Province, South Africa
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
37
|
Bian Y, Zhao C, Lee SMY. Neuroprotective Potency of Saffron Against Neuropsychiatric Diseases, Neurodegenerative Diseases, and Other Brain Disorders: From Bench to Bedside. Front Pharmacol 2020; 11:579052. [PMID: 33117172 PMCID: PMC7573929 DOI: 10.3389/fphar.2020.579052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing morbidity rates of brain disorders and conditions such as anxiety, depression, Alzheimer’s disease, and Parkinson’s disease have become a severe problem in recent years. Although researchers have spent considerable time studying these diseases and reported many positive outcomes, there still are limited drugs available for their treatment. As a common traditional Chinese medicine (TCM), saffron was employed to treat depression and some other inflammatory diseases in ancient China due to its antioxidant, anti-inflammatory, and antidepressant properties. In modern times, saffron and its constituents have been utilized, alone and in TCM formulas, to treat neuropsychiatric and neurodegenerative diseases. In this review, we mainly focus on recent clinical and preclinical trials of brain disorders in which saffron was applied, and summarize the neuroprotective properties of saffron and its constituents from chemical, pharmacokinetic, and pharmacological perspectives. We discuss the properties of saffron and its constituents, as well as their applications for treating brain disorders; we hope that this review will serve as a comprehensive reference for studies aimed at developing therapeutic drugs based on saffron.
Collapse
Affiliation(s)
- Yaqi Bian
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
38
|
Kermanshahi S, Ghanavati G, Abbasi-Mesrabadi M, Gholami M, Ulloa L, Motaghinejad M, Safari S. Novel Neuroprotective Potential of Crocin in Neurodegenerative Disorders: An Illustrated Mechanistic Review. Neurochem Res 2020; 45:2573-2585. [PMID: 32940861 DOI: 10.1007/s11064-020-03134-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Recent studies reported that crocin, a carotenoid chemical compound common in crocus and gardenia flowers, has protective effects in neurodegenerative disorders due to its anti-oxidative, anti-inflammatory, and anti-apoptotic properties in the nervous system. This article reviews the new experimental, clinical, and pharmacological studies on the neuroprotective properties of crocin and its potential mechanisms to modulate metabolic oxidative stress and inflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sareh Kermanshahi
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Ghazal Ghanavati
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Mobina Abbasi-Mesrabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, USA.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| |
Collapse
|
39
|
Therapeutic potentials of crocin in medication of neurological disorders. Food Chem Toxicol 2020; 145:111739. [PMID: 32916219 DOI: 10.1016/j.fct.2020.111739] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Neurological sicknesses are serious, multifactorial, debilitating disorders that may cause neurodegeneration. Neuroprotection is the protection of the structure and capacity of neurons from affronts emerging from cell injuries instigated by an assortment of specialists or neurodegenerative diseases. Various neurodegenerative diseases, including Alzheimer's, Parkinson's, and epilepsy, afflict many people worldwide, with increasing age representing the leading risk factor. Crocin is a natural carotenoid compound which was found to have therapeutic potentials in the management of the neurological disease. In this review, we focused on the restorative capabilities of Crocin as a neuroprotective agent. The general neuroprotective impact and the various conceivable basic components identified with Crocin have been examined. In light of the substantial proof indicating the neuro-pharmacological viability of Crocin to different exploratory standards, it is concluded that Crocin exerts direct antioxidant, antiapoptotic and anti-inflammatory activities by multiple signaling pathways. Besides, Crocin was found to elevate dopamine level in the brain during the experimental model of Parkinson's disease. Thus, this compound has been demonstrated to be a promising option for the treatment of neurodegenerative diseases, with few adverse effects. It ought to be further considered as a potential contender for neuro-therapeutics, concentrating on the mechanistic and clinical evidence for its effects.
Collapse
|
40
|
Yuan Y, Shan X, Men W, Zhai H, Qiao X, Geng L, Li C. The effect of crocin on memory, hippocampal acetylcholine level, and apoptosis in a rat model of cerebral ischemia. Biomed Pharmacother 2020; 130:110543. [PMID: 32738637 DOI: 10.1016/j.biopha.2020.110543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/05/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Although the memory- improving effect of crocin has been suggested by previous evidences, the association between this effect and hippocampal acetylcholine (Ach) level and apoptosis is not well investigated. This study aimed to determine the protective effects of crocin on memory, hippocampal Ach level, and apoptosis in a rat model of cerebral ischemia. Male Wistar rats were divided into sham group received saline, and other 3 groups underwent 4-vessel occlusion brain ischemia (4VOI), received oral administration of either saline or crocin in doses of 30 mg/day and 60 mg/day for 7 days. Outcomes were memory, determined by radial eight-arm maze (RAM) task and Morris water maze (MWM) test, Ach release in the dorsal hippocampus (evaluated by microdialysis-HPLC) and apoptosis (investigated by TUNEL assay). 4VOI impaired memory reduced dorsal hippocampus Ach level, and induced apoptosis. Crocin, significantly improved the memory (F = 343.20; P < 0.001 for RAM error choices and F = 182.5; P < 0.0001 for MWM), increased Ach level (F = 115.1; P < 0.001) and prevented hippocampal neuronal apoptosis (W = 183.50; P < 0.001) as compared statistically by ANOVA test. Crocin can be suggested as a promising therapy for ischemic cerebrovascular accidents by its memory preserving, Ach-increasing, and neuroprotective effects.
Collapse
Affiliation(s)
- Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Xiaosong Shan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Weidong Men
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Hexin Zhai
- Emergency Department, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Xiaoxia Qiao
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Lianting Geng
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Chunhui Li
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
| |
Collapse
|
41
|
Vafaei S, Motejaded F, Ebrahimzadeh-Bideskan A. Protective effect of crocin on electromagnetic field-induced testicular damage and heat shock protein A2 expression in male BALB/c mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:102-110. [PMID: 32395207 PMCID: PMC7206838 DOI: 10.22038/ijbms.2019.38896.9229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objective(s): Exposure to electromagnetic fields (EMF) emitted from mobile phones may cause a deleterious effect on human health and may affect the male reproductive system. Crocin, a carotenoid isolated from Crocus Sativus L. (Saffron), is a phar¬macologically active component of saffron. So, this study was conducted to investigate the protective effect of crocin on the male reproductive system of 60 day old mice after EMF exposure. Materials and Methods: Twenty-four male BALB/c mice were randomly divided into 4 groups: 1. Em group (2100 MHZ); 2. Cr group (50 mg/kg); 3. Em+Cr group (2100 MHZ+50 mg/kg), and 4. Control group. Sperm parameters (count, and abnormal percent), testis weight index, testis volume, seminiferous tubule diam¬eter, germinal epithelium thickness, LH, FSH and testosterone serum level, testicular Heat shock protein A2 (HspA2) immunoreactivity, and apoptosis were evaluated. Results: HspA2 immunoreactivity, apoptosis in the germinal epithelium and abnormal sperm were increased in Em group compared with the control group (P<0.05). Sperm count, LH, and testosterone serum level were decreased in the Em group compared with the control group (P<0.05). These parameters were improved in the Em+Cr group compared with Em group significantly (P<0.05). Conclusion: our findings revealed that EMF exposure leads to harmful impressions on the male reproductive system, while crocin can attenuate EMF-induced destructive effects.
Collapse
Affiliation(s)
- Shayan Vafaei
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Motejaded
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Chu X, Zhang Y, Xue Y, Li Z, Shi J, Wang H, Chu L. Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-κB signal pathway in vivo and vitro. Int Immunopharmacol 2020; 84:106548. [PMID: 32388215 DOI: 10.1016/j.intimp.2020.106548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) is widely used to treat multiple of tumors, but its clinical trials are allied with some serious adverse events mainly cardiac functional abnormalities. So the objective of our investigation is to identify the cardioprotective action of crocin (CRO), a natural compound derived from saffron, against DOX-induced cardiotoxicity. CRO was injected intraperitoneally (i.p.) to rats for sixconsecutive days and DOX (i.p.) was administered on the fourth day. H9c2 cells were treated with DOX for 24 h after being pre-treated by CRO for 2 h. CROreduced tachycardiaand J-point elevation,decreased the levelsof serum creatine kinase, lactate dehydrogenase,glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase.CRO exerted positive effect on DOX-induced ROS productionand changes of oxidative stress biomarkers. CRO significantlydecreased intracellular Ca2+ concentration andincreased mitochondria membrane potentialin H9c2 cells. CRO also resisted the DOX-induced high expressionof tumor necrosis factor-αand interleukin-6, inhibitedapoptosisand improved the abnormal expression levels of Bcl-2, Bax and Caspase-3 proteins.CRO obviously restrained DOX-mediatedhigh expression of toll-like receptor-2 (TLR-2) and nuclear factor kappa-B (NF-κB) in ventricular tissue. Inbrief,CRO distinctly restrained DOX-mediated cardiotoxicity by inhibiting oxidative stress, inflammation, apoptoticandredressingcardiomyocyte calcium dyshomeostasis and mitochondria damage.These cardioprotective effects may berelated closely with the TLR2/NF-κB pathway.
Collapse
Affiliation(s)
- Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Ziliang Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jing Shi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China.
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
43
|
Abdel-Rahman RF, El Awdan SA, Hegazy RR, Mansour DF, Ogaly HA, Abdelbaset M. Neuroprotective effect of Crocus sativus against cerebral ischemia in rats. Metab Brain Dis 2020; 35:427-439. [PMID: 31728890 DOI: 10.1007/s11011-019-00505-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
Abstract
The present study aimed to investigate the role of vascular endothelial growth factor (VEGF) in the neuroprotective effect of Crocus sativus (saffron) against cerebral ischemia/reperfusion injury (I/R) in rats. Four groups of a total forty I/R rats with 60-min occlusion followed by 48 h reperfusion or sham surgery were used. The sham and left-brain I/R control groups where treated with normal saline. The rats of the other two groups received saffron extract (100 or 200 mg/kg, ip, respectively) for 3 successive weeks prior to left-brain I/R. Other four doses of saffron extract were received by the rats of the last 2 groups 60 min prior to operation, during the surgery, and on days 1 and 2 following reperfusion. I/R group showed marked neurobehavioral, neurochemical and histopathological alterations. The results revealed a significant reduction in neurological deficit scores in the saffron-treated rats at both doses. Saffron significantly attenuated lipid peroxidation, decreased NO and brain natriuretic peptide (BNP) contents in I/R-brain tissue. On the other hand, saffron reversed the depletion of GSH in the injured brain. Moreover, saffron treatment evidently reduced apoptosis as revealed by a decrease in caspase-3 and Bax protein expression with a marked decrease in the apoptotic neuronal cells compared to I/R group. In addition, saffron administration effectively upregulated the expression of VEGF in I/R-brain tissue. In conclusion, saffron treatment offers significant neuroprotection against I/R damage possibly through diminishing oxidative stress and apoptosis and enhancement of VEGF.
Collapse
Affiliation(s)
| | | | - Rehab R Hegazy
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Dina F Mansour
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - H A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
44
|
Ghotbeddin Z, Tabandeh MR, Borujeni MP, Truski FF, Tabrizian L. Study the effect of crocin in three maternal hypoxia protocols with different oxygen intensities on motor activity and balance in rat offspring. Acta Neurol Belg 2020; 120:155-161. [PMID: 29882009 DOI: 10.1007/s13760-018-0953-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
Hypoxia as one of the most common clinical disturbances in pregnancy period can cause destructive changes in motor sensory cortex and can lead to imperfect organization in motor reactions. Crocin, a water-soluble carotenoid, is the most active ingredients of saffron and a lot of studies declare its positive effectiveness on improving motor activity. Since the hypoxia intensity affects its malicious amount on movement, in this paper, we have studied the effect of crocin in three maternal hypoxia protocols with different oxygen intensities on motor activity and balance in rat offspring. In this experiment, female rats (Wistar) were used on the 20th day of pregnancy. The rats were randomly divided into eight experimental groups: sham, crocin, hypoxia with three different intensities: 10% oxygen and 90% nitrogen for 1 h (hypoxia-ɪ), 7% oxygen and 93% nitrogen for 1 h (hypoxia-ɪɪ), 7% oxygen and 93% nitrogen for 3 h (hypoxia-ɪɪɪ) and treated-crocin hypoxia groups. To produce hypoxia, pregnant rats were placed in a hypoxia box. In crocin group, rat offspring received 30 mg/kg crocin via IP injection at P14-28. Control group also received saline injection at the same time. Finally, balance and motor activity in offspring were measured respectively by rotarod and open-field devices. Results showed that motor activity significantly decreased in hypoxia-ɪɪɪ group as compared with sham group (p < 0.01). Balance in hypoxia-ɪɪɪ group significantly decreased as compared with sham group (p < 0.05). As a result, crocin treatment improved all these changes. The results of this study implied that both hypoxia duration and intensity have profound effects on motor activities impairments.
Collapse
|
45
|
Pandey DK, Nandy S, Mukherjee A, Dey A. Advances in bioactive compounds from Crocus sativus (saffron): Structure, bioactivity and biotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-12-817907-9.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
46
|
Rajabian A, Hosseini A, Hosseini M, Sadeghnia HR. A Review of Potential Efficacy of Saffron ( Crocus sativus L.) in Cognitive Dysfunction and Seizures. Prev Nutr Food Sci 2019; 24:363-372. [PMID: 31915630 PMCID: PMC6941716 DOI: 10.3746/pnf.2019.24.4.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
Crocus sativus (saffron) is traditionally used to relieve several ailments. Experimental researches have also investigated applications of saffron and its active constituents for the treatment of a wide spectrum of disorders. This review discusses pharmacological/therapeutic properties of saffron and its main components on memory function, learning ability and seizures, to highlight their merit for alleviating these disorders. An extensive literature review was carried out using various databases including ISI Web of Knowledge, Medline/PubMed, Science Direct, Scopus, Google Scholar, Embase, Biological Abstracts, and Chemical Abstracts. The growing body of evidence showed the value of saffron and its' components, alone, or in combination with the other pharmaceuticals, for improving learning and memory abilities and controlling seizures. These findings may provide pharmacological basis for the use of saffron in cognitive disturbance and epilepsy. However, further preclinical and clinical studies are necessary.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| |
Collapse
|
47
|
Korani S, Korani M, Sathyapalan T, Sahebkar A. Therapeutic effects of Crocin in autoimmune diseases: A review. Biofactors 2019; 45:835-843. [PMID: 31430413 DOI: 10.1002/biof.1557] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The immune system when acts against selfmolecules results in an imbalance in immunologic tolerance leading to the development of several autoimmune diseases (ADs) such as rheumatoid arthritis, asthma, ulcerative colitis, type 1 diabetes, and multiple sclerosis. Improved recognition of the mechanisms of ADs has led to the advancement of the management of these diseases. The principal mediators of ADs are inflammatory molecules. The herbal medicines due to their antioxidant and antiinflammatory properties have an important role in the management of ADs. Crocin is the principal chemical component extracted from saffron, which is a medicinal plant. This review focuses on the therapeutic effects of Crocin in various ADs.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Korani
- Nanotechnology Research Center, Buali (Avicenna) Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Hermawati E, Arfian N, Mustofa M, Partadiredja G. Chlorogenic acid ameliorates memory loss and hippocampal cell death after transient global ischemia. Eur J Neurosci 2019; 51:651-669. [PMID: 31437868 DOI: 10.1111/ejn.14556] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
Chlorogenic acid (CGA) is known to have antioxidant potentials, yet the effect of CGA on brain ischemia has not been sufficiently understood. Brain ischemia such as transient global ischemia disrupts many areas of the brain of rats, including the hippocampus. Male Wistar rats were randomly assigned into five groups, that is, sham-operated (SO), bilateral common carotid occlusion (BCCO), and BCCO+ 15, 30, and 60 mg/kg bw CGA groups (CGA15, CGA30, and CGA60, respectively). Brain ischemia was induced in Wistar rats with BCCO for 20 min followed by intraperitoneal injection of CGA. The rats were examined for the spatial memory in a Morris water maze test on the 3rd day and were euthanized on the 10th day after BCCO. The total number of pyramidal cells was estimated, and the mRNA expressions of Bcl2, Bax, caspase-3, SOD2, SOD1, GPx, ET-1, eNOS, CD31, and VEGF-A were measured. The BCCO group spent less time and distance in the target quadrant than any other group in the spatial memory retention test. The CA1 pyramidal cell numbers in the BCCO and CGA15 groups were lower than in the CGA30 and CGA60 groups. The mRNA expressions of Bcl2, SOD2, and CD31 in the BCCO group were lower than in the CGA15, CGA30, and CGA60 groups. The ET-1 expression was higher in the BCCO and CGA15 groups than in the SO, CGA30, and CGA60 groups. CGA improves the spatial memory and prevents the CA1 pyramidal cell death after BCCO by increasing Bcl2, SOD2, and CD31 expressions and decreasing ET-1 expression.
Collapse
Affiliation(s)
- Ery Hermawati
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Physiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
49
|
Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMNR, Alonso GL. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019; 24:molecules24152827. [PMID: 31382514 PMCID: PMC6696252 DOI: 10.3390/molecules24152827] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
Crocus sativus L. has been cultivated throughout history to obtain its flowers, whose dried stigmas give rise to the spice known as saffron. Crocetin esters, picrocrocin, and safranal are the main metabolites of this spice, which possess a great bioactivity, although the mechanisms of action and its bioavailability are still to be solved. The rest of the flower is composed by style, tepals, and stamens that have other compounds, such as kaempferol and delphinidin, which have an important antioxidant capacity, and these can be applied in foods, phytopharmaceuticals, and cosmetics. The aim of this work was to provide an updated and critical review of the research on the main compounds of Crocus sativus L. flower, including the adequate analytical methods for their identification and quantification, with a focus on their bioactivity and bioavailability.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - María José Bagur
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | | | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
50
|
Mu SW, Dang Y, Fan YC, Zhang H, Zhang JH, Wang W, Wang SS, Gu JJ. Effect of HMGB1 and RAGE on brain injury and the protective mechanism of glycyrrhizin in intracranial‑sinus occlusion followed by mechanical thrombectomy recanalization. Int J Mol Med 2019; 44:813-822. [PMID: 31257456 PMCID: PMC6657987 DOI: 10.3892/ijmm.2019.4248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
The key to successful treatment of cerebral venous-sinus occlusion (CVO) is the rapid recanalization of the sinus following venous-sinus occlusion; however, rapid recanalization of the sinus may also cause secondary cerebral injury. The present study examined mechanical thrombectomy-related brain injury and the possible molecular mechanisms following CVO recanalization, and investigated the protective effect of glycyrrhizin (GL) in CVO recanalization. The cerebral venous sinus thrombosis (CVST) model was induced in rats using 40% FeCl3. Mechanical thrombectomy was performed at 6 h post-thrombosis. GL was administered to rats following thromboembolism. Neurological function and brain water content were measured prior to sacrifice of the rats. Serum malondialdehyde, superoxide dismutase and nitric-oxide synthase concentrations were measured. The expression levels of high-mobility group box 1 (HMGB1) and receptor of advanced glycation end products (RAGE) and its downstream inflammatory mediators were measured in serum and brain tissues. Rapid CVO recanalization caused brain injury, and the brain parenchymal damage and neurological deficits caused by CVO were not completely restored following recanalization. Similarly, following rapid recanalization in the venous sinus, the expression levels of HMGB1 and RAGE were lower than those in the CVST group, but remained significantly higher than those of the sham group. The combination of mechanical thrombectomy and GL improved cerebral infarction and cerebral edema in rats, and inhibited the extracellular transport of HMGB1, and the expression of downstream inflammatory factors and oxidative-stress products. The administration of exogenous recombinant HMGB1 reversed the neural protective effects of GL. In conclusion, mechanical thrombectomy subsequent to CVO in rats can cause brain injury following recanalization. HMGB1 and RAGE promote inflammation in the process of brain injury following recanalization. GL has a relatively reliable neuroprotective effect on brain injury by inhibiting HMGB1 and its downstream inflammatory factors, and decreasing oxidative stress.
Collapse
Affiliation(s)
- Shu-Wen Mu
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian 350025, P.R. China
| | - Yuan Dang
- Department of Comparative Medicine, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian 350025, P.R. China
| | - Ya-Cao Fan
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Jian-He Zhang
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Wei Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian 350025, P.R. China
| | - Jian-Jun Gu
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|