1
|
Trzeciak JR, Steele AD. Studying food entrainment: Models, methods, and musings. Front Nutr 2022; 9:998331. [PMID: 36211505 PMCID: PMC9532691 DOI: 10.3389/fnut.2022.998331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
The ability to tell time relative to predictable feeding opportunities has a long history of research, going back more than 100 years with behavioral observations of honeybees and rats. Animals that have access to food at a particular time of day exhibit “food anticipatory activity” (FAA), which is a preprandial increase in activity and arousal thought to be driven by food entrained circadian oscillator(s). However, the mechanisms behind adaptation of behavior to timed feeding continue to elude our grasp. Methods used to study circadian entrainment by food vary depending on the model system and the laboratory conducting the experiments. Most studies have relied on rodent model systems due to neuroanatomical tools and genetic tractability, but even among studies of laboratory mice, methods vary considerably. A lack of consistency within the field in experimental design, reporting, and definition of food entrainment, or even FAA, makes it difficult to compare results across studies or even within the same mutant mouse strain, hindering interpretation of replication studies. Here we examine the conditions used to study food as a time cue and make recommendations for study design and reporting.
Collapse
|
2
|
McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020; 14:590528. [PMID: 33177999 PMCID: PMC7596164 DOI: 10.3389/fnbeh.2020.590528] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is highly interconnected with brain areas that control reward-seeking behavior. Despite this known connectivity, broad manipulations of PVT often lead to mixed, and even opposing, behavioral effects, clouding our understanding of how PVT precisely contributes to reward processing. Although the function of PVT in influencing reward-seeking is poorly understood, recent studies show that forebrain and hypothalamic inputs to, and nucleus accumbens (NAc) and amygdalar outputs from, PVT are strongly implicated in PVT responses to conditioned and appetitive or aversive stimuli that determine whether an animal will approach or avoid specific rewards. These studies, which have used an array of chemogenetic, optogenetic, and calcium imaging technologies, have shown that activity in PVT input and output circuits is highly heterogeneous, with mixed activity patterns that contribute to behavior in highly distinct manners. Thus, it is important to perform experiments in precisely defined cell types to elucidate how the PVT network contributes to reward-seeking behaviors. In this review, we describe the complex heterogeneity within PVT circuitry that appears to influence the decision to seek or avoid a reward and point out gaps in our understanding that should be investigated in future studies.
Collapse
Affiliation(s)
- Jacqueline F. McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | | |
Collapse
|
3
|
de Lartigue G, McDougle M. Dorsal striatum dopamine oscillations: Setting the pace of food anticipatory activity. Acta Physiol (Oxf) 2019; 225:e13152. [PMID: 29920950 DOI: 10.1111/apha.13152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Predicting the uncertainties of the ever-changing environment provides a competitive advantage for animals. The need to anticipate food sources has provided a strong evolutionary drive for synchronizing behavioural and internal processes with daily circadian cycles. When food is restricted to a few hours per day, rodents exhibit increased wakefulness and foraging behaviour preceding the arrival of food. Interestingly, while the master clock located in the suprachiasmatic nucleus entrains daily rhythms to the light cycle, it is not necessary for this food anticipatory activity. This suggests the existence of a food-entrained oscillator located elsewhere. Based on the role of nigrostriatal dopamine in reward processing, motor function, working memory and internal timekeeping, we propose a working model by which food-entrained dopamine oscillations in the dorsal striatum can enable animals maintained on a restricted feeding schedule to anticipate food arrival. Finally, we summarize how metabolic signals in the gut are conveyed to the nigrostriatal pathway to suggest possible insight into potential input mechanisms for food anticipatory activity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory; New Haven Connecticut
- Department of Cellular and Molecular Physiology; Yale Medical School; New Haven Connecticut
| | | |
Collapse
|
4
|
Scheduled feeding restores memory and modulates c-Fos expression in the suprachiasmatic nucleus and septohippocampal complex. Sci Rep 2017; 7:6755. [PMID: 28754901 PMCID: PMC5533780 DOI: 10.1038/s41598-017-06963-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022] Open
Abstract
Disruptions in circadian timing impair spatial memory in humans and rodents. Circadian-arrhythmic Siberian hamsters (Phodopus sungorus) exhibit substantial deficits in spatial working memory as assessed by a spontaneous alternation (SA) task. The present study found that daily scheduled feeding rescued spatial memory deficits in these arrhythmic animals. Improvements in memory persisted for at least 3 weeks after the arrhythmic hamsters were switched back to ad libitum feeding. During ad libitum feeding, locomotor activity resumed its arrhythmic state, but performance on the SA task varied across the day with a peak in daily performance that corresponded to the previous daily window of food anticipation. At the end of scheduled feeding, c-Fos brain mapping revealed differential gene expression in entrained versus arrhythmic hamsters in the suprachiasmatic nucleus (SCN) that paralleled changes in the medial septum and hippocampus, but not in other neural structures. These data show that scheduled feeding can improve cognitive performance when SCN timing has been compromised, possibly by coordinating activity in the SCN and septohippocampal pathway.
Collapse
|
5
|
Gavrila AM, Hood S, Robinson B, Amir S. Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats. PLoS One 2017; 12:e0179370. [PMID: 28594962 PMCID: PMC5464650 DOI: 10.1371/journal.pone.0179370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023] Open
Abstract
Food anticipatory activity (FAA) refers to a daily rhythm of locomotor activity that emerges under conditions of food restriction, whereby animals develop an intense, predictable period of activity in the few hours leading up to a predictable, daily delivery of food. The neural mechanisms by which FAA is regulated are not yet fully understood. Although a number of brain regions appear to be involved in regulating the development and expression of FAA, there is little evidence to date concerning the role of the anterior agranular insular cortex (AICa). The AICa plays a critical role in integrating the perception of visceral states with motivational behaviour such as feeding. We assessed the effect of bilateral electrolytic or ibotenic acid lesions of the AICa on FAA in male Wistar rats receiving food for varying lengths of time (2 h, 3 h, or 5 h) during the middle of the light phase (starting at either ZT4 or ZT6). Contrary to our initial expectations, we found that both electrolytic and ibotenic acid lesions significantly increased, rather than decreased, the amount of FAA expressed in lesioned rats. Despite increased FAA, lesioned rats did not eat significantly more during restricted feeding (RF) periods than control rats. Similar to controls, AlCa-lesioned rats showed negligible anticipatory activity to a restricted treat suggesting that the increased anticipatory activity in lesioned rats is associated with food restriction, rather than the appetitive value of the meal. Monitoring behaviour in an open field indicated that increased FAA in AlCa-lesioned rats was not explained by a general increase in locomotor activity. Together, these findings suggest that the AICa contributes to the network of brain regions involved in FAA.
Collapse
Affiliation(s)
- Alex M. Gavrila
- Department of Psychology, Center for Studies in Behavioural Neurobiology/FRSQ Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Hood
- Department of Psychology, Bishop's University, Sherbrooke, Quebec, Canada
| | - Barry Robinson
- Department of Psychology, Center for Studies in Behavioural Neurobiology/FRSQ Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Shimon Amir
- Department of Psychology, Center for Studies in Behavioural Neurobiology/FRSQ Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
6
|
Munn RG, Hardcastle K, Porter B, Bilkey D. Circadian-scale periodic bursts in theta and gamma-band coherence between hippocampus, cingulate and insular cortices. Neurobiol Sleep Circadian Rhythms 2017; 3:26-37. [PMID: 31236501 PMCID: PMC6575562 DOI: 10.1016/j.nbscr.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/10/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
Previous studies have demonstrated that mean activity levels in the hippocampus oscillate on a circadian timescale, both at the single neuron and EEG level. This oscillation is also entrained by the availability of food, suggesting that the circadian modulation of hippocampal activity might comprise part of the recently discovered food-entrainable circadian oscillator (FEO). In order to determine whether the circadian oscillation in hippocampal activity is linked to activity in other brain regions, we recorded field-potential EEG from hippocampus and two cortical regions known to connect to hippocampus; the anterior cingulate cortex and the agranular insular cortex. These latter regions are involved in executive control (cingulate) and gustatory feedback (insula) and so are in a position where they could usefully contribute to, or benefit from, hippocampal memorial information in order to undertake task-related processing. We recorded EEG from these three regions for 20 m every hour for 58 consecutive hours in one continuous exposure to the recording environment. We found that there are regular and distinct increases in magnitude coherence between hippocampus and both cortical regions for EEG in both theta (6-12 Hz) and gamma (30-48 Hz) bands. These periods of increased coherence are spaced approximately one solar day apart, appear not to be specifically light-entrained, and are most apparent for gamma frequency activity. The gamma association between the two cortical regions shows the same temporal pattern of coherence peaks as the hippocampal-cortical coherences. We propose that these peaks in coherence represent the transient synchronization of temporally tagged memorial information between the hippocampus and other brain regions for which this information may be relevant. These findings suggest that the FEO involves coordinated activity across a number of brain regions and may underlie a mechanism via which an organism can store and recall salient gustatory events on a circadian timescale.
Collapse
Affiliation(s)
- Robert G.K. Munn
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Department of Neurobiology, Stanford University, USA
| | | | - Blake Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Mollayeva T, Mollayeva S, Colantonio A. The Risk of Sleep Disorder Among Persons with Mild Traumatic Brain Injury. Curr Neurol Neurosci Rep 2016; 16:55. [PMID: 27079955 DOI: 10.1007/s11910-016-0657-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sleep disorders and mild traumatic brain injury (mTBI) are among the most commonly occurring neurological problems clinicians encounter simultaneously. Each can cause the other, and both share common predisposing factors. An important question that remains to be addressed is whether high-risk groups can be defined. We observed an accumulation of considerable knowledge on sleep dysfunction in mTBI in recently published works. The results highlight sleep disturbances in mTBI as the product of diverse internal and external influences, acting on a genetically determined substrate. This may partially explain the clinical heterogeneity of mTBI, pointing to the importance of establishing an accurate history on the onset and course of a specific sleep disorder in the early stages post-mTBI in the individual patient. Such an approach will aid not only diagnosis and treatment but may also lead to identification of disorders whose symptoms mimic those of TBI and thereby direct the most suitable treatment and management.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- Acquired Brain Injury Lab, Rehabilitation Science Institute, University of Toronto, Toronto Rehabilitation Institute, 550 University Avenue, Rm 11207, Toronto, ON, M5G 2A2, Canada.
| | - Shirin Mollayeva
- Department of Cell & Systems Biology, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Angela Colantonio
- Acquired Brain Injury Lab, Rehabilitation Science Institute, University of Toronto, 160-500 University Ave., Toronto, ON, M5G 1V7, Canada
| |
Collapse
|
8
|
Namvar S, Gyte A, Denn M, Leighton B, Piggins HD. Dietary fat and corticosterone levels are contributing factors to meal anticipation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R711-23. [PMID: 26818054 PMCID: PMC4867411 DOI: 10.1152/ajpregu.00308.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
Abstract
Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content.
Collapse
Affiliation(s)
- Sara Namvar
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Amy Gyte
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Mark Denn
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Brendan Leighton
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| |
Collapse
|
9
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
10
|
Lamont EW, Bruton J, Blum ID, Abizaid A. Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions. Eur J Neurosci 2013; 39:207-17. [DOI: 10.1111/ejn.12390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/16/2013] [Indexed: 12/01/2022]
Affiliation(s)
- E. Waddington Lamont
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
- Department of Psychology; Thompson Rivers University; Kamloops BC Canada
| | - J. Bruton
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - I. D. Blum
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - A. Abizaid
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| |
Collapse
|
11
|
Merkestein M, Verhagen LAW, Adan RAH. Food-Anticipatory Activity: Rat Models and Underlying Mechanisms. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-104-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Nolasco N, Juárez C, Morgado E, Meza E, Caba M. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity. PLoS One 2012; 7:e47779. [PMID: 23094084 PMCID: PMC3477144 DOI: 10.1371/journal.pone.0047779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022] Open
Abstract
Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.
Collapse
Affiliation(s)
- Nahum Nolasco
- Doctorado en Ciencias Biomédicas, CIB, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Claudia Juárez
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Elvira Morgado
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
- * E-mail:
| |
Collapse
|
13
|
Abstract
The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.
Collapse
Affiliation(s)
- Jennifer A Mohawk
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
| | | | | |
Collapse
|
14
|
Jansen HT, Sergeeva A, Stark G, Sorg BA. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat. Chronobiol Int 2012; 29:454-68. [PMID: 22475541 DOI: 10.3109/07420528.2012.667467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A unique extra-suprachiasmatic nucleus (SCN) oscillator, operating independently of the light-entrainable oscillator, has been hypothesized to generate feeding and drug-related rhythms. To test the validity of this hypothesis, sham-lesioned (Sham) and SCN-lesioned (SCNx) rats were housed in constant dim-red illumination (LL(red)) and received a daily cocaine injection every 24 h for 7 d (Experiment 1). In a second experiment, rats underwent 3-h daily restricted feeding (RF) followed 12 d later by the addition of daily cocaine injections given every 25 h in combination with RF until the two schedules were in antiphase. In both experiments, body temperature and total activity were monitored continuously. Results from Experiment 1 revealed that cocaine, but not saline, injections produced anticipatory increases in temperature and activity in SCNx and Sham rats. Following withdrawal from cocaine, free-running temperature rhythms persisted for 2-10 d in SCNx rats. In Experiment 2, robust anticipatory increases in temperature and activity were associated with RF and cocaine injections; however, the feeding periodicity (23.9 h) predominated over the cocaine periodicity. During drug withdrawal, the authors observed two free-running rhythms of temperature and activity that persisted for >14 d in both Sham and SCNx rats. The periods of the free-running rhythms were similar to the feeding entrainment (period = 23.7 and 24.0 h, respectively) and drug entrainment (period = 25.7 and 26.1 h, respectively). Also during withdrawal, the normally close correlation between activity and temperature was greatly disrupted in Sham and SCNx rats. Taken together, these results do not support the existence of a single oscillator mediating the rewarding properties of both food and cocaine. Rather, they suggest that these two highly rewarding behaviors can be temporally isolated, especially during drug withdrawal. Under stable dual-entrainment conditions, food reward appears to exhibit a slightly greater circadian influence than drug reward. The ability to generate free-running temperature rhythms of different frequencies following combined food and drug exposures could reflect a state of internal desynchrony that may contribute to the addiction process and drug relapse.
Collapse
Affiliation(s)
- Heiko T Jansen
- Neuroscience Program, Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, 99164-6520, USA.
| | | | | | | |
Collapse
|
15
|
Verhagen LAW, Luijendijk MCM, de Groot JW, van Dommelen LPG, Klimstra AG, Adan RAH, Roeling TAP. Anticipation of meals during restricted feeding increases activity in the hypothalamus in rats. Eur J Neurosci 2011; 34:1485-91. [DOI: 10.1111/j.1460-9568.2011.07880.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Mitra A, Lenglos C, Martin J, Mbende N, Gagné A, Timofeeva E. Sucrose modifies c-fos mRNA expression in the brain of rats maintained on feeding schedules. Neuroscience 2011; 192:459-74. [PMID: 21718761 DOI: 10.1016/j.neuroscience.2011.06.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/19/2011] [Accepted: 06/10/2011] [Indexed: 11/25/2022]
Abstract
Food intake is regulated according to circadian activity, metabolic needs and the hedonic value of food. Rodents placed on a fixed feeding schedule show behavioral and physiological anticipation of mealtime referred to as food-anticipatory activity (FAA). FAA is driven by the food-entrainable oscillator (FEO), whose anatomical substrate is not yet known. Recent data have shown that restricted feeding schedules for regular chow and daily limited access to palatable food in free-feeding rats activate distinct brain regions during FAA. The combination of a deprivation regimen and scheduled access to palatable food may give rise to a more global anticipatory mechanism because the temporal cycles of energy balance would be strongly modulated by the incentive properties of palatable food; however, the neuronal response to this combined treatment is not yet known. The present study investigated how adding palatable sucrose to feeding schedules affects the pattern of brain c-fos mRNA expression during FAA (0-3 h) and 1 h following feeding. The rats maintained on scheduled chow access increased their daily chow intake, while the rats maintained on scheduled sucrose and chow mainly increased their daily sucrose intake. Adding sucrose to scheduled feeding displaced c-fos mRNA expression from the dorsomedial and paraventricular hypothalamic nuclei and posterior lateral hypothalamus (LH) to the prefrontal cortex, lateral septum, nucleus accumbens and anterior LH. During refeeding, the rats on scheduled sucrose demonstrated higher activation of the nucleus of the solitary tract. The present results suggest that palatable sucrose combined with restricted feeding schedules activate a distinct neuronal network compared to neuronal activation produced by scheduled access to regular chow. These data provide evidence that the brain may contain different food-oscillatory systems and that food palatability may shift the neuronal activity from the medial hypothalamus to the limbic and reward-related areas even at the negative metabolic state.
Collapse
Affiliation(s)
- A Mitra
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculty of Medicine, Department of Psychiatry and Neuroscience, Université Laval, Québec (QC), G1V 4G5, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Mistlberger RE. Neurobiology of food anticipatory circadian rhythms. Physiol Behav 2011; 104:535-45. [PMID: 21527266 DOI: 10.1016/j.physbeh.2011.04.015] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 12/29/2022]
Abstract
Circadian rhythms in mammals can be entrained by daily schedules of light or food availability. A master light-entrainable circadian pacemaker located in the suprachiasmatic nucleus (SCN) is comprised of a population of cell autonomous, transcriptionally based circadian oscillators with defined retinal inputs, circadian clock genes and neural outputs. By contrast, the neurobiology of food-entrainable circadian rhythmicity remains poorly understood at the systems and cellular levels. Induction of food-anticipatory activity rhythms by daily feeding schedules does not require the SCN, but these rhythms do exhibit defining properties of circadian clock control. Clock gene rhythms expressed in other brain regions and in peripheral organs are preferentially reset by mealtime, but lesions of specific hypothalamic, corticolimbic and brainstem structures do not eliminate all food anticipatory rhythms, suggesting control by a distributed, decentralized system of oscillators, or the existence of a critical oscillator at an unknown location. The melanocortin system and dorsomedial hypothalamus may play modulatory roles setting the level of anticipatory activity. The metabolic hormones ghrelin and leptin are not required to induce behavioral food anticipatory rhythms, but may also participate in gain setting. Clock gene mutations that disrupt light-entrainable rhythms generally do not eliminate food anticipatory rhythms, suggesting a novel timing mechanism. Recent evidence for non-transcriptional and network based circadian rhythmicity provides precedence, but any such mechanisms are likely to interact closely with known circadian clock genes, and some important double and triple clock gene knockouts remain to be phenotyped for food entrainment. Given the dominant role of food as an entraining stimulus for metabolic rhythms, the timing of daily food intake and the fidelity of food entrainment mechanisms are likely to have clinical relevance.
Collapse
Affiliation(s)
- Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| |
Collapse
|
18
|
Hayasaka N, Aoki K, Kinoshita S, Yamaguchi S, Wakefield JK, Tsuji-Kawahara S, Horikawa K, Ikegami H, Wakana S, Murakami T, Ramabhadran R, Miyazawa M, Shibata S. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice. PLoS One 2011; 6:e17655. [PMID: 21408016 PMCID: PMC3052372 DOI: 10.1371/journal.pone.0017655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs) of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN), the master circadian light-entrainable oscillator (LEO) of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA) targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO)-driven elevated food-anticipatory activity (FAA) observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s).
Collapse
Affiliation(s)
- Naoto Hayasaka
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Klingerman CM, Williams WP, Simberlund J, Brahme N, Prasad A, Schneider JE, Kriegsfeld LJ. Food Restriction-Induced Changes in Gonadotropin-Inhibiting Hormone Cells are Associated with Changes in Sexual Motivation and Food Hoarding, but not Sexual Performance and Food Intake. Front Endocrinol (Lausanne) 2011; 2:101. [PMID: 22649396 PMCID: PMC3355909 DOI: 10.3389/fendo.2011.00101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 12/01/2011] [Indexed: 12/20/2022] Open
Abstract
We hypothesized that putative anorectic and orexigenic peptides control the motivation to engage in either ingestive or sex behaviors, and these peptides function to optimize reproductive success in environments where energy fluctuates. Here, the putative orexigenic peptide, gonadotropin-inhibiting hormone (GnIH, also known as RFamide-related peptide-3), and the putative anorectic hormones leptin, insulin, and estradiol were examined during the course of food restriction. Groups of female Syrian hamsters were restricted to 75% of their ad libitum food intake or fed ad libitum for 4, 8, or 12 days. Two other groups were food-restricted for 12 days and then re-fed ad libitum for 4 or 8 days. After testing for sex and ingestive behavior, blood was sampled and assayed for peripheral hormones. Brains were immunohistochemically double-labeled for GnIH and the protein product of the immediate early gene, c-fos, a marker of cellular activation. Food hoarding, the number of double-labeled cells, and the percent of GnIH-Ir cells labeled with Fos-Ir were significantly increased at 8 and 12 days after the start of food restriction. Vaginal scent marking and GnIH-Ir cell number significantly decreased after the same duration of restriction. Food hoarding, but not food intake, was significantly positively correlated with cellular activation in GnIH-Ir cells. Vaginal scent marking was significantly negatively correlated with cellular activation in GnIH-Ir cells. There were no significant effects of food restriction on plasma insulin, leptin, estradiol, or progesterone concentrations. In the dorsomedial hypothalamus (DMH) of energetically challenged females, strong projections from NPY-Ir cells were found in close apposition to GnIH-Ir cells. Together these results are consistent with the idea that metabolic signals influence sexual and ingestive motivation via NPY fibers that project to GnIH cells in the DMH.
Collapse
Affiliation(s)
| | - Wilbur P. Williams
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | | | - Nina Brahme
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | - Ankita Prasad
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | - Jill E. Schneider
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, USA
- *Correspondence: Jill E. Schneider, Department of Biological Sciences, Lehigh University,111 Research Drive, Bethlehem, PA 18015, USA. e-mail:
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
20
|
AGUILAR-ROBLERO R, DÍAZ-MUÑOZ M. Chronostatic adaptations in the liver to restricted feeding: The FEO as an emergent oscillator. Sleep Biol Rhythms 2010. [DOI: 10.1111/j.1479-8425.2009.00415.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Angeles-Castellanos M, Salgado-Delgado R, Rodriguez K, Buijs RM, Escobar C. The suprachiasmatic nucleus participates in food entrainment: a lesion study. Neuroscience 2009; 165:1115-26. [PMID: 20004704 DOI: 10.1016/j.neuroscience.2009.11.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 11/19/2022]
Abstract
Daily feeding schedules entrain temporal patterns of behavior, metabolism, neuronal activity and clock gene expression in several brain areas and periphery while the suprachiasmatic nucleus (SCN), the biological clock, remains coupled to the light/dark cycle. Because bilateral lesions of the SCN do not abolish food entrained behavioral and hormonal rhythms it is suggested that food entrained and light entrained systems are independent of each other. Special circumstances indicate a possible interaction between the light and the food entrained systems and indicate modulation of SCN activity by restricted feeding. This study explores the influence of the SCN on food entrained rhythms. Food entrained temporal profiles of behavior, core temperature, corticosterone and glucose, as well as Fos and PER1 immunoreactivity in the hypothalamus and corticolimbic structures were explored in rats bearing bilateral SCN lesions (SCNX). In SCNX rats food anticipatory activity and the food entrained temperature and corticosterone increase were expressed with earlier onset and higher values than in intact controls. Glucose levels were lower in SCNX rats in all time points and SCNX rats anticipation to a meal induced higher c-Fos positive neurons in the hypothalamus, while a decreased c-Fos response was observed in corticolimbic structures. SCNX rats also exhibited an upregulation of the PER1 peak in hypothalamic structures, especially in the dorsomedial hypothalamic nucleus (DMH), while in some limbic structures PER1 rhythmicity was dampened. The present results indicate that the SCN participates actively during food entrainment modulating the response of hypothalamic and corticolimbic structures, resulting in an increased anticipatory response.
Collapse
Affiliation(s)
- M Angeles-Castellanos
- Departamento de Anatomía, Fac de Medicina, Universidad Nacional Autónoma de México, México DF
| | | | | | | | | |
Collapse
|
22
|
Gillman AG, Leffel JK, Kosobud AEK, Timberlake W. Fentanyl, but not haloperidol, entrains persisting circadian activity episodes when administered at 24- and 31-h intervals. Behav Brain Res 2009; 205:102-14. [PMID: 19595707 PMCID: PMC2755526 DOI: 10.1016/j.bbr.2009.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 02/01/2023]
Abstract
Administration of several drugs of abuse on a 24-h schedule has been shown to entrain both pre-drug (anticipatory) and post-drug (evoked) circadian activity episodes that persist for several days when the drug is withheld. The present study tested the entrainment effects of fentanyl, an opioid agonist with a noted abuse liability, and haloperidol, an anti-psychotic dopamine antagonist without apparent abuse liability. Adult female Sprague-Dawley rats housed under constant light in cages with attached running wheels received repeated low, medium, or high doses of either fentanyl or haloperidol on a 24-h administration schedule followed by a 31-h schedule (Experiment 1) or solely on a 31-h schedule (Experiment 2). The results showed that all three doses of fentanyl entrained both pre-drug and post-drug episodes of wheel running when administered every 24h, and the combined pre- and post-fentanyl activity episodes persisted for at least 3 days when the drug was withheld during test days. On the 31-h schedule, fentanyl produced an "ensuing" activity episode approximately 24h post-administration, but failed to produce an anticipatory episode 29-31h post-administration. In contrast, haloperidol injections failed to produce both pre-drug episodes on the 24-h schedule and circadian ensuing episodes on the 31-h schedule, and post-haloperidol suppression of activity appeared to mask the free-running activity rhythm. Taken together, these results provide additional evidence that drugs of abuse share a common ability to entrain circadian activity episodes.
Collapse
Affiliation(s)
- Andrea G Gillman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States.
| | | | | | | |
Collapse
|
23
|
Szentirmai E, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2009; 298:R467-77. [PMID: 19939974 DOI: 10.1152/ajpregu.00557.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin signaling is required for FEO function by studying food anticipatory activity (FAA) in preproghrelin knockout (KO) and wild-type (WT) mice. Sleep-wake activity, locomotor activity, body temperature, food intake, and body weight were measured for 12 days in mice on a RF paradigm with food available only for 4 h daily during the light phase. On RF days 1-3, increases in arousal occurred. This response was significantly attenuated in preproghrelin KO mice. There were progressive changes in sleep architecture and body temperature during the subsequent nine RF days. Sleep increased at night and decreased during the light periods while the total daily amount of sleep remained at baseline levels in both KO and WT mice. Body temperature fell during the dark but was elevated during and after feeding in the light. In the premeal hours, anticipatory increases in body temperature, locomotor activity, and wakefulness were present from RF day 6 in both groups. Results indicate that the preproghrelin gene is not required for the manifestation of FAA but suggest a role for ghrelinergic mechanisms in food deprivation-induced arousal in mice.
Collapse
Affiliation(s)
- Eva Szentirmai
- WWAMI Medical Education Program, Washington State Univ., Spokane, P.O. Box 1495, Spokane, WA 99210-1495, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Mother rabbits nurse their young once a day with circadian periodicity. Nursing bouts are brief (ca. 3 min) and occur inside the maternal burrow. Despite this limited contact mother rabbits and their pups are tuned to each other to ensure that the capacities of each party are used efficiently to ensure the weaning of a healthy litter. In this review we present behavioral, metabolic and hormonal correlates of this phenomenon in mother rabbits and their pups. Research is revealing that the circadian rhythm of locomotion shifts in parallel to the timing of nursing in both parties. In pups corticosterone has a circadian rhythm with highest levels at the time of nursing. Other metabolic and hormonal parameters follow an exogenous or endogenous rhythm which is affected by the time of nursing. In the brain, clock genes and their proteins (e.g. Per1) are differentially expressed in specific brain regions (e.g. suprachiasmatic nucleus, paraventricular nucleus) in relation to providing or ingesting milk in mothers and young, respectively. These findings suggest that circadian activities are modulated, in the mothers, by suckling stimulation and, in the young, by the ingestion of milk and/or the perception of the mammary pheromone. In conclusion, the rabbit pup is an extraordinary model for studying the entraining by a single daily food pulse with minimal manipulations. The mother offers the possibility of studying nursing as a non-photic synchronizer, also with minimal manipulation, as suckling stimulation from the litter occurs only once daily.
Collapse
Affiliation(s)
- Mario Caba
- Dirección General de Investigaciones, Universidad Veracruzana, Apdo. Postal 114, Xalapa, Ver., México.
| | | |
Collapse
|
25
|
Webb IC, Baltazar RM, Lehman MN, Coolen LM. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber? Eur J Neurosci 2009; 30:1739-48. [PMID: 19878278 DOI: 10.1111/j.1460-9568.2009.06966.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reward is mediated by a distributed series of midbrain and basal forebrain structures collectively referred to as the brain reward system. Recent evidence indicates that an additional regulatory system, the circadian system, can modulate reward-related learning. Diurnal or circadian changes in drug self-administration, responsiveness to drugs of abuse and reward to natural stimuli have been reported. These variations are associated with daily rhythms in mesolimbic electrical activity, dopamine synthesis and metabolism, and local clock gene oscillations. Conversely, the presentation of rewards appears capable of influencing circadian timing. Rodents can anticipate a daily mealtime by the entrainment of a series of oscillators that are anatomically distinct from the suprachiasmatic nucleus. Other work has indicated that restricted access to non-nutritive reinforcers (e.g. drugs of abuse, sex) or to palatable food in the absence of an energy deficit is capable of inducing relatively weak anticipatory activity, suggesting that reward alone is sufficient to induce anticipation. Recent attempts to elucidate the neural correlates of anticipation have revealed that both restricted feeding and restricted palatable food access can entrain clock gene expression in many reward-related corticolimbic structures. By contrast, restricted feeding alone can induce or entrain clock gene expression in hypothalamic nuclei involved in energy homeostasis. Thus, under ad libitum feeding conditions, the weak anticipatory activity induced by restricted reward presentation may result from the entrainment of reward-associated corticolimbic structures. The additional induction or entrainment of oscillators in hypothalamic regulatory areas may contribute to the more robust anticipatory activity associated with restricted feeding schedules.
Collapse
Affiliation(s)
- Ian C Webb
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
26
|
Abstract
Behavior ablation remains a powerful, if not cutting-edge, approach for localization of function within the nervous system. The initial discovery of the suprachiasmatic nuclei as the site of the mammalian light-entrainable circadian pacemaker is owed to this approach. Food-anticipatory activity (FAA), an output of a putative feeding-entrainable circadian pacemaker, is a behavior that has been surprisingly resilient to elimination by surgical lesion. Here we review this literature, with particular attention paid to recent studies aimed at defining the role of the dorsomedial hypothalamus in the generation of FAA. This literature is fraught with examples of inconsistent results among lesion studies, which in some cases can be accounted for by varied endpoint measures. The site of the feeding-entrainable circadian pacemaker, if it resides in a discrete structure at all, remains unknown.
Collapse
Affiliation(s)
- Alec J Davidson
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| |
Collapse
|
27
|
Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 2009; 32:1127-34. [PMID: 19750917 PMCID: PMC2737570 DOI: 10.1093/sleep/32.9.1127] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
STUDY OBJECTIVES The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). DESIGN We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. RESULTS The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. CONCLUSIONS These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period.
Collapse
Affiliation(s)
- Sandor Kantor
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | - Erika Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Seiji Nishino
- Department of Psychiatry, Stanford University, Palo Alto, CA
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
28
|
Hsu DT, Price JL. Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 2009; 512:825-48. [PMID: 19085970 DOI: 10.1002/cne.21934] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study examines subcortical connections of paraventricular thalamic nucleus (Pa) following small anterograde and retrograde tracer injections in cynomolgus monkeys (Macaca fascicularis). An anterograde tracer injection into the dorsal midline thalamus revealed strong projections to the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus. Retrograde tracer injections into these areas labeled neurons specifically in Pa. Following a retrograde tracer injection into Pa, labeled neurons were found in the hypothalamus, dorsal raphe, and periaqueductal gray. Pa contained a remarkably high density of axons and axonal varicosities immunoreactive for serotonin (5-HT) and orexin/hypocretin (ORX), as well as a moderate density of fibers immunoreactive for corticotropin-releasing hormone (CRH). A retrograde tracer injection into Pa combined with immunohistochemistry demonstrated that ORX and 5-HT axons originate from neurons in the hypothalamus and midbrain. Pa-projecting neurons were localized in the same nuclei of the hypothalamus, amygdala, and midbrain as CRH neurons, although no double labeling was found. The connections of Pa and its innervation by 5-HT, ORX, and CRH suggest that it may relay stress signals between the midbrain and hypothalamus with the accumbens nucleus, basal amygdala, and subgenual cortex as part of a circuit that manages stress and possibly stress-related psychopathologies.
Collapse
Affiliation(s)
- David T Hsu
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
29
|
Retinal projections to the thalamic paraventricular nucleus in the rock cavy (Kerodon rupestris). Brain Res 2008; 1241:56-61. [DOI: 10.1016/j.brainres.2008.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/08/2008] [Accepted: 09/08/2008] [Indexed: 11/22/2022]
|
30
|
Abstract
The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.
Collapse
|
31
|
Poulin AM, Timofeeva E. The dynamics of neuronal activation during food anticipation and feeding in the brain of food-entrained rats. Brain Res 2008; 1227:128-41. [DOI: 10.1016/j.brainres.2008.06.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/04/2008] [Accepted: 06/15/2008] [Indexed: 02/04/2023]
|
32
|
Abstract
Mammalian behavior and physiology undergo daily rhythms that are coordinated by an endogenous circadian timing system. This system has a hierarchical structure, in that a master pacemaker, residing in the suprachiasmatic nucleus of the ventral hypothalamus, synchronizes peripheral oscillators in virtually all body cells. While the basic molecular mechanisms generating the daily rhythms are similar in all cells, most clock outputs are cell-specific. This conclusion is based on genome-wide transcriptome profiling studies in several tissues that have revealed hundreds of rhythmically expressed genes. Cyclic gene expression in the various organs governs overt rhythms in behavior and physiology, encompassing sleep-wake cycles, metabolism, xenobiotic detoxification, and cellular proliferation. As a consequence, chronic perturbation of this temporal organization may lead to increased morbidity and reduced lifespan.
Collapse
Affiliation(s)
- Ueli Schibler
- Department of Molecular Biology and National Center of Competence in Research "Frontiers in Genetics" Sciences III, University of Geneva, Switzerland.
| |
Collapse
|
33
|
Vansteensel MJ, Michel S, Meijer JH. Organization of cell and tissue circadian pacemakers: a comparison among species. ACTA ACUST UNITED AC 2007; 58:18-47. [PMID: 18061682 DOI: 10.1016/j.brainresrev.2007.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
In most animal species, a circadian timing system has evolved as a strategy to cope with 24-hour rhythms in the environment. Circadian pacemakers are essential elements of the timing system and have been identified in anatomically discrete locations in animals ranging from insects to mammals. Rhythm generation occurs in single pacemaker neurons and is based on the interacting negative and positive molecular feedback loops. Rhythmicity in behavior and physiology is regulated by neuronal networks in which synchronization or coupling is required to produce coherent output signals. Coupling occurs among individual clock cells within an oscillating tissue, among functionally distinct subregions within the pacemaker, and between central pacemakers and the periphery. Recent evidence indicates that peripheral tissues can influence central pacemakers and contain autonomous circadian oscillators that contribute to the regulation of overt rhythmicity. The data discussed in this review describe coupling and synchronization mechanisms at the cell and tissue levels. By comparing the pacemaker systems of several multicellular animal species (Drosophila, cockroaches, crickets, snails, zebrafish and mammals), we will explore general organizational principles by which the circadian system regulates a 24-hour rhythmicity.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Feillet CA, Mendoza J, Albrecht U, Pévet P, Challet E. Forebrain oscillators ticking with different clock hands. Mol Cell Neurosci 2007; 37:209-21. [PMID: 17996461 DOI: 10.1016/j.mcn.2007.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022] Open
Abstract
Clock proteins like PER1 and PER2 are expressed in the brain, but little is known about their functionality outside the main suprachiasmatic clock. Here we show that PER1 and PER2 were neither uniformly present nor identically phased in forebrain structures of mice fed ad libitum. Altered expression of the clock gene Cry1 was observed in respective Per1 or Per2 mutants. In response to hypocaloric feeding, PERs timing was not markedly affected in few forebrain structures (hippocampus). In most other forebrain oscillators, including those expressing only PER1 (e.g., dorsomedial hypothalamus), PER2 (e.g., paraventricular hypothalamus) or both (e.g., paraventricular thalamus), PER1 was up-regulated and PER2 largely phase-advanced. Cry1 expression was selectively modified in the forebrain of Per mutants challenged with hypocaloric feeding. Our results suggest that there is not one single cerebral clock, but a system of multiple brain oscillators ticking with different clock hands and differentially sensitive to nutritional cues.
Collapse
Affiliation(s)
- Céline A Feillet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, IFR37, University Louis Pasteur,67084 Strasbourg, France
| | | | | | | | | |
Collapse
|