1
|
Su CW, Yang F, Lai R, Li Y, Naeem H, Yao N, Zhang SP, Zhang H, Li Y, Huang ZG. Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling. Cogn Neurodyn 2025; 19:29. [PMID: 39866663 PMCID: PMC11757662 DOI: 10.1007/s11571-024-10208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 01/28/2025] Open
Abstract
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Fan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Runchen Lai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Yanhai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Hadia Naeem
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Nan Yao
- Department of Applied Physics, Xi’an University of Technology, 710054 Shaanxi, China
| | - Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Haiqing Zhang
- Xi’an Children’s Hospital, Xi’an, 710003 Shaanxi China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| |
Collapse
|
2
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous Cervical Vagus Nerve Stimulation Improves Speech Comprehension in Noise: A Crossover, Placebo-Controlled Study. Neuromodulation 2025:S1094-7159(25)00151-5. [PMID: 40396942 DOI: 10.1016/j.neurom.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Speech comprehension in noisy environments remains a significant challenge, even among individuals with clinically normal hearing and users of hearing aids and cochlear implants. Although conventional assistive hearing devices address limitations in the auditory periphery, they do not directly enhance the brain's capacity to segregate speech from background noise. Because tonic vagus nerve stimulation (VNS) has shown potential for rapidly improving central sensory processing, this study investigated whether tonic transcutaneous cervical VNS (tcVNS) can enhance speech-in-noise intelligibility. MATERIALS AND METHODS Two cohorts of older human adults (aged 60-84 years) participated in a placebo-controlled, crossover study. Participants completed speech-in-noise assessments using either QuickSIN or AzBio sentences while receiving tonic tcVNS to the neck, or placebo stimulation to the neck-shoulder junction. Speech-in-noise performance was assessed by measuring participants' accuracy in repeating sentences presented at varying signal-to-noise ratios (SNR) within background babble. RESULTS Tonic tcVNS improved speech-in-noise intelligibility compared with placebo. At the group level, the SNR threshold for 50% speech intelligibility (SNR-50) improved by 0.76 dB in QuickSIN (p = 0.016) and by 0.38 dB in AzBio (p = 0.045). For individual participants, 50% showed improvements that met a minimum clinically important difference (MCID) of 1 dB. Tonic tcVNS evoked progressively greater improvements as SNR increased in QuickSIN (p = 0.021) and AzBio (p = 0.00023), with the largest gains at SNRs >0 dB. In 55% of participants, tcVNS improved intelligibility beyond an MCID benchmark of 4.9% at 5 dB SNR. Although the magnitude of tcVNS-evoked improvements was inversely related to baseline speech-in-noise impairment (p = 0.028), with the individuals having the most impaired speech-in-noise intelligibility showing the largest gains, it did not correlate with hearing loss severity (p = 0.97) or age (p = 0.88). CONCLUSIONS Our findings indicate that tonic tcVNS can evoke immediate and clinically meaningful enhancements in speech-in-noise comprehension. This suggests tcVNS may complement conventional assistive hearing technologies and inform novel therapies for sensory processing disorders.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Sharper Sense, Inc, New York, NY, USA; Division of Child Neurology, Department of Neurology, Weinberg Family Cerebral Palsy Center, New York, NY, USA; Department of Orthopedics, Weinberg Family Cerebral Palsy Center, New York, NY, USA
| | - Qi Wang
- Sharper Sense, Inc, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Charles Rodenkirch
- Sharper Sense, Inc, New York, NY, USA; The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY, USA.
| |
Collapse
|
3
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves speech comprehension in noise: A crossover, placebo-controlled study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.10.627804. [PMID: 40196667 PMCID: PMC11974696 DOI: 10.1101/2024.12.10.627804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Speech comprehension in noisy environments remains a significant challenge, even among individuals with clinically normal hearing and users of hearing aids and cochlear implants. While conventional assistive hearing devices address limitations in the auditory periphery, they do not directly enhance the brain's capacity to segregate speech from background noise. Because tonic vagus nerve stimulation (VNS) has demonstrated potential for rapidly improving central sensory processing, this study investigated whether tonic transcutaneous cervical VNS (tcVNS) can augment speech-in-noise intelligibility. Two cohorts of older human adults (60-84 years) participated in a placebo-controlled, crossover study. Participants completed speech-in-noise assessments using either QuickSIN or AzBio sentences, while receiving tonic tcVNS to the neck, or placebo stimulation to the neck-shoulder junction. Speech-in-noise performance was assessed by measuring participants' accuracy in repeating sentences presented at varying signal-to-noise ratios (SNR) within background babble. Tonic tcVNS improved speech-in-noise intelligibility compared to placebo. At the group-level, the SNR threshold for 50% speech intelligibility (SNR-50) improved by 0.76 dB in QuickSIN (p=0.016) and by 0.38 dB in AzBio (p=0.045). For individual participants, 50% demonstrated improvements that met a minimum clinically important difference (MCID) of 1 dB. Tonic tcVNS evoked progressively greater improvements as SNR increased in QuickSIN (p=0.021) and AzBio (p=0.00023), with the largest gains above 0 dB SNR. In 55% of participants, tcVNS improved intelligibility beyond an MCID benchmark of 4.9% at 5 dB SNR. While the magnitude of tcVNS-evoked improvements was inversely related to baseline speech-in-noise impairment (p=0.028), with the most impaired individuals demonstrating the largest gains, it did not correlate with hearing loss severity (p=0.97) or age (p=0.88). Our findings indicate that tonic tcVNS can evoke immediate and clinically meaningful enhancements in speech-in-noise comprehension. This suggests tcVNS may complement conventional assistive hearing technologies and inform novel therapies for sensory processing disorders.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Sharper Sense, Inc., New York, NY
- Department of Neurology, Division of Child Neurology, Weinberg Family Cerebral Palsy Center, New York, NY
- Department of Orthopedics, Weinberg Family Cerebral Palsy Center, New York, NY
| | - Qi Wang
- Sharper Sense, Inc., New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY
| |
Collapse
|
4
|
Wang X, Li Z, Wang X, Chen J, Guo Z, Qiao B, Qin L. Effects of Phasic Activation of Locus Ceruleus on Cortical Neural Activity and Auditory Discrimination Behavior. J Neurosci 2024; 44:e1296232024. [PMID: 39134421 PMCID: PMC11391501 DOI: 10.1523/jneurosci.1296-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Although the locus ceruleus (LC) is recognized as a crucial modulator for attention and perception by releasing norepinephrine into various cortical regions, the impact of LC-noradrenergic (LC-NE) modulation on auditory discrimination behavior remains elusive. In this study, we firstly recorded local field potential and single-unit activity in multiple cortical regions associated with auditory-motor processing, including the auditory cortex, posterior parietal cortex, secondary motor cortex, anterior cingulate cortex, prefrontal cortex, and orbitofrontal cortex (OFC), in response to optogenetic activation (40 Hz and 0.5 s) of the LC-NE neurons in awake mice (male). We found that phasic LC stimulation induced a persistent high gamma oscillation (50-80 Hz) in the OFC. Phasic activation of LC-NE neurons also resulted in a corresponding increase in norepinephrine levels in the OFC, accompanied by a pupillary dilation response. Furthermore, when mice were performing a go/no-go auditory discrimination task, we optogeneticaly activated the neural projections from LC to OFC and revealed a shortened latency in behavioral responses to sound stimuli and an increased false alarm rate. These impulsive behavioral responses may be associated with the gamma neural activity in the OFC. These findings have broadened our understanding of the neural mechanisms involved in the role of LC in auditory-motor processing.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Zijie Li
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Xueru Wang
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Ziyu Guo
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Bingqing Qiao
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
5
|
Xie H, Tian Y, Li Z, Wang K, Li R, Yi S, Chen A, Chen J, Liu J, Wei X, Gao X. Activation of Beta-adrenergic Receptors Upregulates the Signal-to-Noise Ratio of Auditory Input in the Medial Prefrontal Cortex and Mediates Auditory Fear Conditioning. Mol Neurobiol 2024; 61:1833-1844. [PMID: 37787950 DOI: 10.1007/s12035-023-03667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Norepinephrine (NE) is involved in auditory fear conditioning (AFC) in posttraumatic stress disorder (PTSD). However, it is still unclear how it acts on neurons. We aimed to investigate whether the activation of the β-adrenergic receptor (β-AR) improves AFC by sensitization of the prelimbic (PL) cortex at the animal, cellular, and molecular levels. In vivo single-cell electrophysiological recording was used to characterize the changes in neurons in the PL cortex after AFC. Then, PL neurons were locally administrated by the β-AR agonist isoproterenol (ISO), the GABAaR agonist muscimol, or intervened by optogenetic method, respectively. Western blotting and immunohistochemistry were finally used to assess molecular changes. Noise and low-frequency tones induced similar AFC. The expression of β-ARs in PL cortex neurons was upregulated after fear conditioning. Microinjection of muscimol into the PL cortex blocked the conformation of AFC, whereas ISO injection facilitated AFC. Moreover, PL neurons can be distinguished into two types, with type I but not type II neurons responding to conditioned sound and being regulated by β-ARs. Our results showed that β-ARs in the PL cortex regulate conditional fear learning by activating type I PL neurons.
Collapse
Affiliation(s)
- Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yueqin Tian
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongli Li
- Respiratory Medicine, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Aimin Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang road, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510282, People's Republic of China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510282, People's Republic of China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
6
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
7
|
Waterhouse BD, Predale HK, Plummer NW, Jensen P, Chandler DJ. Probing the structure and function of locus coeruleus projections to CNS motor centers. Front Neural Circuits 2022; 16:895481. [PMID: 36247730 PMCID: PMC9556855 DOI: 10.3389/fncir.2022.895481] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The brainstem nucleus locus coeruleus (LC) sends projections to the forebrain, brainstem, cerebellum and spinal cord and is a source of the neurotransmitter norepinephrine (NE) in these areas. For more than 50 years, LC was considered to be homogeneous in structure and function such that NE would be released uniformly and act simultaneously on the cells and circuits that receive LC projections. However, recent studies have provided evidence that LC is modular in design, with segregated output channels and the potential for differential release and action of NE in its projection fields. These new findings have prompted a radical shift in our thinking about LC operations and demand revision of theoretical constructs regarding impact of the LC-NE system on behavioral outcomes in health and disease. Within this context, a major gap in our knowledge is the relationship between the LC-NE system and CNS motor control centers. While we know much about the organization of the LC-NE system with respect to sensory and cognitive circuitries and the impact of LC output on sensory guided behaviors and executive function, much less is known about the role of the LC-NE pathway in motor network operations and movement control. As a starting point for closing this gap in understanding, we propose using an intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon Collaterals) as well as established ex vivo electrophysiological assays to characterize efferent connectivity and physiological attributes of mouse LC-motor network projection neurons. The novel hypothesis to be tested is that LC cells with projections to CNS motor centers are scattered throughout the rostral-caudal extent of the nucleus but collectively display a common set of electrophysiological properties. Additionally, we expect to find these LC projection neurons maintain an organized network of axon collaterals capable of supporting selective, synchronous release of NE in motor circuitries for the purpose of coordinately regulating operations across networks that are responsible for balance and movement dynamics. Investigation of this hypothesis will advance our knowledge of the role of the LC-NE system in motor control and provide a basis for treating movement disorders resulting from disease, injury, or normal aging.
Collapse
Affiliation(s)
- Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,*Correspondence: Barry D. Waterhouse,
| | - Haven K. Predale
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| | - Nicholas W. Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| |
Collapse
|
8
|
Knauth K, Peters J. Trial-wise exposure to visual emotional cues increases physiological arousal but not temporal discounting. Psychophysiology 2022; 59:e13996. [PMID: 35037293 DOI: 10.1111/psyp.13996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Humans and many animals devalue future rewards as a function of time (temporal discounting). Increased discounting has been linked to various psychiatric conditions, including substance-use-disorders, behavioral addictions, and obesity. Despite its high intra-individual stability, temporal discounting is partly under contextual control. One prominent manipulation that has been linked to increases in discounting is the exposure to highly arousing appetitive cues. However, results from trial-wise cue exposure studies appear highly mixed, and changes in physiological arousal were not adequately controlled. Here we tested the effects of appetitive (erotic), aversive, and neutral visual cues on temporal discounting in 35 healthy male participants. The contribution of single-trial physiological arousal was assessed using comprehensive monitoring of autonomic activity (pupil size, heart rate, electrodermal activity). Physiological arousal was elevated following aversive and in particular erotic cues. In contrast to our pre-registered hypothesis, steepness of temporal discounting was not significantly affected by emotional cues of either valence. Aversive cues tended to increase decision noise. Computational modeling revealed that trial-wise arousal only accounted for minor variance over and above aversive and erotic condition effects, arguing against a general effect of physiological arousal on temporal discounting.
Collapse
Affiliation(s)
- Kilian Knauth
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Esposito M, Ferrari C, Fracassi C, Miniussi C, Brignani D. Responsiveness to left-prefrontal tDCS varies according to arousal levels. Eur J Neurosci 2022; 55:762-777. [PMID: 34978110 PMCID: PMC9302688 DOI: 10.1111/ejn.15584] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Over the past two decades, the postulated modulatory effects of transcranial direct current stimulation (tDCS) on the human brain have been extensively investigated. However, recent concerns on reliability of tDCS effects have been raised, principally due to reduced replicability and to interindividual variability in response to tDCS. These inconsistencies are likely due to the interplay between the level of induced cortical excitability and unaccounted structural and state‐dependent functional factors. On these grounds, we aimed at verifying whether the behavioural effects induced by a common tDCS montage (F3‐rSOA) were influenced by the participants' arousal levels, as part of a broader mechanism of state‐dependency. Pupillary dynamics were recorded during an auditory oddball task while applying either a sham or real tDCS. The tDCS effects were evaluated as a function of subjective and physiological arousal predictors (STAI‐Y State scores and pre‐stimulus pupil size, respectively). We showed that prefrontal tDCS hindered task learning effects on response speed such that performance improvement occurred during sham, but not real stimulation. Moreover, both subjective and physiological arousal predictors significantly explained performance during real tDCS, with interaction effects showing performance improvement only with moderate arousal levels; likewise, pupil response was affected by real tDCS according to the ongoing levels of arousal, with reduced dilation during higher arousal trials. These findings highlight the potential role of arousal in shaping the neuromodulatory outcome, thus emphasizing a more careful interpretation of null or negative results while also encouraging more individually tailored tDCS applications based on arousal levels, especially in clinical populations.
Collapse
Affiliation(s)
- Marco Esposito
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Fracassi
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Debora Brignani
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
11
|
Nobukawa S, Shirama A, Takahashi T, Takeda T, Ohta H, Kikuchi M, Iwanami A, Kato N, Toda S. Pupillometric Complexity and Symmetricity Follow Inverted-U Curves Against Baseline Diameter Due to Crossed Locus Coeruleus Projections to the Edinger-Westphal Nucleus. Front Physiol 2021; 12:614479. [PMID: 33643064 PMCID: PMC7905168 DOI: 10.3389/fphys.2021.614479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
In addition to photic reflex function, the temporal behavior of the pupil diameter reflects levels of arousal and attention and thus internal cognitive neural activity. Recent studies have reported that these behaviors are characterized by baseline activity, temporal complexity, and symmetricity (i.e., degree of symmetry) between the right and left pupil diameters. We hypothesized that experimental analysis to reveal relationships among these characteristics and model-based analysis focusing on the newly discovered contralateral projection from the locus coeruleus (LC) to the Edinger-Westphal nucleus (EWN) within the neural system for controlling pupil diameter could contribute to another dimension of understanding of complex pupil dynamics. In this study, we aimed to validate our hypothesis by analyzing the pupillary hippus in the healthy resting state in terms of sample entropy (SampEn), to capture complexity, and transfer entropy (TranEn), to capture symmetricity. We also constructed a neural model embedded with the new findings on neural pathways. The following results were observed: first, according to surrogate data analysis, the complexity and symmetricity of pupil diameter changes reflect a non-linear deterministic process. Second, both the complexity and the symmetricity are unimodal, peaking at intermediate pupil diameters. Third, according to simulation results, the neural network that controls pupil diameter has an inverted U-shaped profile of complexity and symmetricity vs. baseline LC activity; this tendency is enhanced by the contralateral synaptic projections from the LCs to the EWNs. Thus, we characterized the typical relationships between the baseline activity and the complexity and symmetricity of the pupillometric data in terms of SampEn and TranEn. Our evaluation method and findings may facilitate the development of estimation and diagnostic tools for exploring states of the healthy brain and psychiatric disorders based on measurements of pupil diameter.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Chiba, Japan
| | - Aya Shirama
- National Center of Neurology and Psychiatry, Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan.,Department of Neuropsychiatry, University of Fukui, Fukui, Japan.,Uozu Shinkei Sanatorium, Uozu, Japan
| | | | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry & Behavioral Science, Kanazawa University, Ishikawa, Japan
| | - Akira Iwanami
- Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Shigenobu Toda
- Department of Psychiatry & Behavioral Science, Kanazawa University, Ishikawa, Japan.,Department of Psychiatry, Showa University East Hospital, Showa University, Tokyo, Japan
| |
Collapse
|
12
|
Tramonti Fantozzi MP, Artoni F, Di Galante M, Briscese L, De Cicco V, Bruschini L, d'Ascanio P, Manzoni D, Faraguna U, Carboncini MC. Effect of the Trigeminal Nerve Stimulation on Auditory Event-Related Potentials. Cereb Cortex Commun 2021; 2:tgab012. [PMID: 34296158 PMCID: PMC8153017 DOI: 10.1093/texcom/tgab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Trigeminal sensorimotor activity stimulates arousal and cognitive performance, likely through activation of the locus coeruleus (LC). In this study we investigated, in normal subjects, the effects of bilateral trigeminal nerve stimulation (TNS) on the LC-dependent P300 wave, elicited by an acoustic oddball paradigm. Pupil size, a proxy of LC activity, and electroencephalographic power changes were also investigated. Before TNS/sham-TNS, pupil size did not correlate with P300 amplitude across subjects. After TNS but not sham-TNS, a positive correlation emerged between P300 amplitude and pupil size within frontal and median cortical regions. TNS also reduced P300 amplitude in several cortical areas. In both groups, before and after TNS/sham-TNS, subjects correctly indicated all the target stimuli. We propose that TNS activates LC, increasing the cortical norepinephrine release and the dependence of the P300 upon basal LC activity. Enhancing the signal-to-noise ratio of cortical neurons, norepinephrine may improve the sensory processing, allowing the subject to reach the best discriminative performance with a lower level of neural activation (i.e., a lower P300 amplitude). The study suggests that TNS could be used for improving cognitive performance in patients affected by cognitive disorders or arousal dysfunctions.
Collapse
Affiliation(s)
- Maria Paola Tramonti Fantozzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Genève 1202, Switzerland
| | | | - Lucia Briscese
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56123, Italy
| | - Paola d'Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| | - Maria Chiara Carboncini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy
| |
Collapse
|
13
|
van Dyck CH, Arnsten AFT, Padala PR, Brawman-Mintzer O, Lerner AJ, Porsteinsson AP, Scherer RW, Levey AI, Herrmann N, Jamil N, Mintzer JE, Lanctôt KL, Rosenberg PB. Neurobiologic Rationale for Treatment of Apathy in Alzheimer's Disease With Methylphenidate. Am J Geriatr Psychiatry 2021; 29:51-62. [PMID: 32461027 PMCID: PMC7641967 DOI: 10.1016/j.jagp.2020.04.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022]
Abstract
The public health burden of Alzheimer's disease (AD) is related not only to cognitive symptoms, but also to neuropsychiatric symptoms, including apathy. Apathy is defined as a quantitative reduction of goal-directed activity in comparison to a previous level of functioning and affects 30%-70% of persons with AD. Previous attempts to treat apathy in AD-both nonpharmacologically and pharmacologically-have been wanting. Catecholaminergic treatment with methylphenidate has shown encouraging results in initial trials of apathy in AD. Understanding the neuronal circuits underlying motivated behavior and their reliance on catecholamine actions helps provide a rationale for methylphenidate actions in the treatment of apathy in patients with AD. Anatomical, physiological, and behavioral studies have identified parallel, cortical-basal ganglia circuits that govern action, cognition, and emotion and play key roles in motivated behavior. Understanding the distinct contributions to motivated behavior of subregions of the prefrontal cortex-dorsolateral, orbital-ventromedial, and dorsomedial-helps to explain why degeneration of these areas in AD results in apathetic behaviors. We propose that the degeneration of the prefrontal cortex in AD produces symptoms of apathy. We further propose that methylphenidate treatment may ameliorate those symptoms by boosting norepinephrine and dopamine actions in prefrontal-striatal-thalamocortical circuits.
Collapse
Affiliation(s)
| | | | - Prasad R Padala
- University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System (PRP), Little Rock, AR
| | - Olga Brawman-Mintzer
- Medical University of South Carolina and Ralph H. Johnson Veterans Administration Medical Center (OB-M, JEM), Charleston, SC
| | - Alan J Lerner
- University Hospitals - Case Western Reserve University (AJL), Cleveland, OH
| | | | - Roberta W Scherer
- Johns Hopkins University Bloomberg School of Public Health (RWS), Baltimore, MD
| | | | - Nathan Herrmann
- Sunnybrook Research Institute (NH, KLL), Toronto, ON, Canada
| | - Nimra Jamil
- Johns Hopkins University School of Medicine (NJ, PBR), Baltimore, MD
| | - Jacobo E Mintzer
- Medical University of South Carolina and Ralph H. Johnson Veterans Administration Medical Center (OB-M, JEM), Charleston, SC
| | | | - Paul B Rosenberg
- Johns Hopkins University School of Medicine (NJ, PBR), Baltimore, MD
| |
Collapse
|
14
|
Trigeminal input, pupil size and cognitive performance: From oral to brain matter. Brain Res 2020; 1751:147194. [PMID: 33159973 DOI: 10.1016/j.brainres.2020.147194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
It has been observed that, in patients affected by temporomandibular disorders (TMDs) and edentulism, a left-right asymmetry in electromyographic (EMG) activity of masseter muscles during clenching and in pupil size at rest (anisocoria) is present. Both are greatly reduced by an orthotic-prosthetic correction. In parallel, the correction significantly improves cognitive performance. These effects are possibly due to the recovery of a cortical balance, via Locus Coeruleus (LC) modulation, whose activity is powerfully affected by the sensorimotor trigeminal input. The role of this functional axis was further investigated in subjects without overt occlusal or dental problems. In these individuals, the EMG asymmetry was significantly correlated to anisocoria at rest, with the dental arches open or in contact. Also in normal subjects, both the EMG and the pupil asymmetry during clenching could be significantly reduced by an orthotic (bite) correction. Closing the arches without bite increased anisocoria and reduced performance in the Spinnler-Tognoni matrices test, as well as the mydriasis induced by a haptic task. When the bite was interposed, anisocoria was reduced, while both performance and task-related mydriasis were enhanced. Since pupil size is considered a proxy of the LC activity, these results suggest that asymmetric occlusion biases the LC discharge and the hemispheric excitability, possibly via a sensorimotor trigeminal imbalance. Removing the anisocoria through bite correction re-establishes a symmetric LC discharge, improving performance and enhancing task-related mydriasis. Therefore, occlusal balancing may represent a tool for improving subjective performance and may be exploited for training and rehabilitative purposes.
Collapse
|
15
|
|
16
|
Rodenkirch C, Liu Y, Schriver BJ, Wang Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat Neurosci 2018; 22:120-133. [PMID: 30559472 PMCID: PMC6301066 DOI: 10.1038/s41593-018-0283-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/01/2018] [Indexed: 12/03/2022]
Abstract
We investigated locus coeruleus (LC) modulation of thalamic feature selectivity through reverse correlation analysis of single-unit recordings from different stages of the rat vibrissa pathway. LC activation increased feature selectivity, drastically improving thalamic information transmission. We found this improvement was dependent on both local activation of α-adrenergic receptors and modulation of T-type calcium channels in the thalamus and was not due to LC modulation of trigeminothalamic feedforward or corticothalamic feedback inputs. Tonic spikes with LC stimulation carried 3-times the information than did tonic spikes without LC stimulation. Modelling confirmed norepinephrine (NE) regulation of intrathalamic circuit dynamics led to the improved information transmission. Behavioral data demonstrated that LC activation increased the perceptual performance of animals performing tactile discrimination tasks through LC-NE optimization of thalamic sensory processing. These results suggest a new sub-dimension within the tonic mode in which brain state can optimize thalamic sensory processing through modulation of intrathalamic circuit dynamics.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Brian J Schriver
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Liu Y, Rodenkirch C, Moskowitz N, Schriver B, Wang Q. Dynamic Lateralization of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic, Contributions. Cell Rep 2018; 20:3099-3112. [PMID: 28954227 DOI: 10.1016/j.celrep.2017.08.094] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023] Open
Abstract
Pupil size is collectively controlled by the sympathetic dilator and parasympathetic sphincter muscles. Locus coeruleus (LC) activation has been shown to evoke pupil dilation, but how the sympathetic and parasympathetic pathways contribute to this dilation remains unknown. We examined pupil dilation elicited by LC activation in lightly anesthetized rats. Unilateral LC activation evoked bilateral but lateralized pupil dilation; i.e., the ipsilateral dilation was significantly larger than the contralateral dilation. Surgically blocking the ipsilateral, but not contralateral, sympathetic pathway significantly reduced lateralization, suggesting that lateralization is mainly due to sympathetic contribution. Moreover, we found that sympathetic, but not parasympathetic, contribution is correlated with LC activation frequency. Together, our results unveil the frequency-dependent contributions of the sympathetic and parasympathetic pathways to LC activation-evoked pupil dilation and suggest that lateralization in task-evoked pupil dilations may be used as a biomarker for autonomic tone.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Nicole Moskowitz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Brian Schriver
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Huang GZ, Taniguchi M, Zhou YB, Zhang JJ, Okutani F, Murata Y, Yamaguchi M, Kaba H. α 2-Adrenergic receptor activation promotes long-term potentiation at excitatory synapses in the mouse accessory olfactory bulb. ACTA ACUST UNITED AC 2018; 25:147-157. [PMID: 29545386 PMCID: PMC5855524 DOI: 10.1101/lm.046391.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The formation of mate recognition memory in mice is associated with neural changes at the reciprocal dendrodendritic synapses between glutamatergic mitral cell (MC) projection neurons and GABAergic granule cell (GC) interneurons in the accessory olfactory bulb (AOB). Although noradrenaline (NA) plays a critical role in the formation of the memory, the mechanism by which it exerts this effect remains unclear. Here we used extracellular field potential and whole-cell patch-clamp recordings to assess the actions of bath-applied NA (10 µM) on the glutamatergic transmission and its plasticity at the MC-to-GC synapse in the AOB. Stimulation (400 stimuli) of MC axons at 10 Hz but not at 100 Hz effectively induced N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation (LTP), which exhibited reversibility. NA paired with subthreshold 10-Hz stimulation (200 stimuli) facilitated the induction of NMDA receptor-dependent LTP via the activation of α2-adrenergic receptors (ARs). We next examined how NA, acting at α2-ARs, facilitates LTP induction. In terms of acute actions, NA suppressed GC excitatory postsynaptic current (EPSC) responses to single pulse stimulation of MC axons by reducing glutamate release from MCs via G-protein coupled inhibition of calcium channels. Consequently, NA reduced recurrent inhibition of MCs, resulting in the enhancement of evoked EPSCs and spike fidelity in GCs during the 10-Hz stimulation used to induce LTP. These results suggest that NA, acting at α2-ARs, facilitates the induction of NMDA receptor-dependent LTP at the MC-to-GC synapse by shifting its threshold through disinhibition of MCs.
Collapse
Affiliation(s)
- Guang-Zhe Huang
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Ye-Bo Zhou
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Jing-Ji Zhang
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Fumino Okutani
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Yoshihiro Murata
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Hideto Kaba
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan .,CREST, Japan Science and Technology Corporation, Saitama 332-0012, Japan.,Division of Adaptation Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
19
|
Stimulation of the Locus Ceruleus Modulates Signal-to-Noise Ratio in the Olfactory Bulb. J Neurosci 2017; 37:11605-11615. [PMID: 29066553 DOI: 10.1523/jneurosci.2026-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/10/2017] [Indexed: 02/01/2023] Open
Abstract
Norepinephrine (NE) has been shown to influence sensory, and specifically olfactory processing at the behavioral and physiological levels, potentially by regulating signal-to-noise ratio (S/N). The present study is the first to look at NE modulation of olfactory bulb (OB) in regards to S/N in vivo We show, in male rats, that locus ceruleus stimulation and pharmacological infusions of NE into the OB modulate both spontaneous and odor-evoked neural responses. NE in the OB generated a non-monotonic dose-response relationship, suppressing mitral cell activity at high and low, but not intermediate, NE levels. We propose that NE enhances odor responses not through direct potentiation of the afferent signal per se, but rather by reducing the intrinsic noise of the system. This has important implications for the ways in which an animal interacts with its olfactory environment, particularly as the animal shifts from a relaxed to an alert behavioral state.SIGNIFICANCE STATEMENT Sensory perception can be modulated by behavioral states such as hunger, fear, stress, or a change in environmental context. Behavioral state often affects neural processing via the release of circulating neurochemicals such as hormones or neuromodulators. We here show that the neuromodulator norepinephrine modulates olfactory bulb spontaneous activity and odor responses so as to generate an increased signal-to-noise ratio at the output of the olfactory bulb. Our results help interpret and improve existing ideas for neural network mechanisms underlying behaviorally observed improvements in near-threshold odor detection and discrimination.
Collapse
|
20
|
Tramonti Fantozzi MP, De Cicco V, Barresi M, Cataldo E, Faraguna U, Bruschini L, Manzoni D. Short-Term Effects of Chewing on Task Performance and Task-Induced Mydriasis: Trigeminal Influence on the Arousal Systems. Front Neuroanat 2017; 11:68. [PMID: 28848404 PMCID: PMC5550729 DOI: 10.3389/fnana.2017.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Trigeminal input to the ascending activating system is important for the maintenance of arousal and may affect the discharge of the noradrenergic neurons of the locus coeruleus (LC), whose activity influences both vigilance state and pupil size, inducing mydriasis. For this reason, pupil size evaluation is now considered an indicator of LC activity. Since mastication activates trigeminal afferent neurons, the aims of the present study, conducted on healthy adult participants, were to investigate whether chewing a bolus of different hardness may: (1) differentially affect the performance on a cognitive task (consisting in the retrieval of specific target numbers within numerical matrices) and (2) increase the dilatation of the pupil (mydriasis) induced by a haptic task, suggesting a change in LC activation. Results show that chewing significantly increased both the velocity of number retrieval (without affecting the number of errors) and the mydriasis associated with the haptic task, whereas simple task repetition did not modify either retrieval or mydriasis. Handgrip exercise, instead, significantly decreased both parameters. Effects were significantly stronger and longer lasting when subjects chewed hard pellets. Finally, chewing-induced improvements in performance and changes in mydriasis were positively correlated, which suggests that trigeminal signals enhanced by chewing may boost the cognitive performance by increasing LC activity.
Collapse
Affiliation(s)
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of PisaPisa, Italy
| | - Massimo Barresi
- Institut des Maladies Neurodégénératives, University of BordeauxBordeaux, France
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of PisaPisa, Italy.,Department of Developmental Neuroscience, IRCCS Foundation Stella MarisPisa, Italy
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of PisaPisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of PisaPisa, Italy
| |
Collapse
|
21
|
Chandler DJ. Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations. Brain Res 2016; 1641:197-206. [PMID: 26607255 PMCID: PMC4879003 DOI: 10.1016/j.brainres.2015.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022]
Abstract
The brainstem nucleus locus coeruleus (LC) innervates the entire central nervous system and is the primary source of norepinephrine (NE) to the neocortex. While classically considered a homogenous modulator of forebrain activity by virtue of highly widespread and divergent axons, recent behavioral and pharmacological evidence suggest this nucleus may execute distinct operations within functionally distinct terminal fields. Summarized in this review are the anatomical and physiological properties of the nucleus within a historical context that led to the interpretation of the nucleus as a homogeneous entity with uniform and simultaneous actions throughout its terminal fields. Also included are findings from several laboratories which point to a more nuanced model of LC/NE function that parallels that seen in other forebrain-projecting monoaminergic nuclei. Such compartmentalized models of the nucleus promote the idea that specific LC circuits are involved in discrete behavioral operations, and therefore, by identifying the networks that are engaged by LC, the substrates for these behaviors can be identified and manipulated. Perturbations in the functional anatomy and physiology of this system may be related to neuropsychiatric conditions associated with dysregulation of the LC-noradrenergic system such as attention deficit hyperactivity disorder. Recent findings regarding the organization and operation of the LC/NE system collectively challenge the classical view of the nucleus as a relatively homogenous modulator of forebrain activity and provide the basis for a renewed scientific interest in this region of the brain. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Daniel J Chandler
- Department of Neurobiology and Anatomy Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
22
|
Panzeri S, Safaai H, De Feo V, Vato A. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces. Front Neurosci 2016; 10:165. [PMID: 27147955 PMCID: PMC4837323 DOI: 10.3389/fnins.2016.00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/01/2016] [Indexed: 01/07/2023] Open
Abstract
Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.
Collapse
Affiliation(s)
- Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| | - Houman Safaai
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| | - Vito De Feo
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| | - Alessandro Vato
- Neural Computation Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| |
Collapse
|
23
|
Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex. PLoS One 2016; 11:e0149004. [PMID: 26863207 PMCID: PMC4749323 DOI: 10.1371/journal.pone.0149004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.
Collapse
|
24
|
Phasic activation of individual neurons in the locus ceruleus/subceruleus complex of monkeys reflects rewarded decisions to go but not stop. J Neurosci 2015; 34:13656-69. [PMID: 25297093 DOI: 10.1523/jneurosci.2566-14.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the brainstem nucleus locus ceruleus (LC) often exhibit phasic activation in the context of simple sensory-motor tasks. The functional role of this activation, which leads to the release of norepinephrine throughout the brain, is not yet understood in part because the conditions under which it occurs remain in question. Early studies focused on the relationship of LC phasic activation to salient sensory events, whereas more recent work has emphasized its timing relative to goal-directed behavioral responses, possibly representing the end of a sensory-motor decision process. To better understand the relationship between LC phasic activation and sensory, motor, and decision processing, we recorded spiking activity of neurons in the LC+ (LC and the adjacent, norepinephrine-containing subceruleus nucleus) of monkeys performing a countermanding task. The task required the monkeys to occasionally withhold planned, saccadic eye movements to a visual target. We found that many well isolated LC+ units responded to both the onset of the visual cue instructing the monkey to initiate the saccade and again after saccade onset, even when it was initiated erroneously in the presence of a stop signal. Many of these neurons did not respond to saccades made outside of the task context. In contrast, neither the appearance of the stop signal nor the successful withholding of the saccade elicited an LC+ response. Therefore, LC+ phasic activation encodes sensory and motor events related to decisions to execute, but not withhold, movements, implying a functional role in goal-directed actions, but not necessarily more covert forms of processing.
Collapse
|
25
|
Scaglione A, Foffani G, Moxon KA. Spike count, spike timing and temporal information in the cortex of awake, freely moving rats. J Neural Eng 2014; 11:046022. [PMID: 25024291 PMCID: PMC4175710 DOI: 10.1088/1741-2560/11/4/046022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Sensory processing of peripheral information is not stationary but is, in general, a dynamic process related to the behavioral state of the animal. Yet the link between the state of the behavior and the encoding properties of neurons is unclear. This report investigates the impact of the behavioral state on the encoding mechanisms used by cortical neurons for both detection and discrimination of somatosensory stimuli in awake, freely moving, rats. APPROACH Neuronal activity was recorded from the primary somatosensory cortex of five rats under two different behavioral states (quiet versus whisking) while electrical stimulation of increasing stimulus strength was delivered to the mystacial pad. Information theoretical measures were then used to measure the contribution of different encoding mechanisms to the information carried by neurons in response to the whisker stimulation. MAIN RESULTS We found that the behavioral state of the animal modulated the total amount of information conveyed by neurons and that the timing of individual spikes increased the information compared to the total count of spikes alone. However, the temporal information, i.e. information exclusively related to when the spikes occur, was not modulated by behavioral state. SIGNIFICANCE We conclude that information about somatosensory stimuli is modulated by the behavior of the animal and this modulation is mainly expressed in the spike count while the temporal information is more robust to changes in behavioral state.
Collapse
Affiliation(s)
- Alessandro Scaglione
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, PA 19104, Philadelphia, USA. National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
26
|
Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014; 8:69. [PMID: 25009467 PMCID: PMC4068295 DOI: 10.3389/fncir.2014.00069] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/07/2014] [Indexed: 01/25/2023] Open
Abstract
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.
Collapse
Affiliation(s)
- Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
27
|
Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci U S A 2014; 111:6816-21. [PMID: 24753596 DOI: 10.1073/pnas.1320827111] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The brainstem nucleus locus coeruleus (LC) is the primary source of norepinephrine (NE) to the mammalian neocortex. It is believed to operate as a homogeneous syncytium of transmitter-specific cells that regulate brain function and behavior via an extensive network of axonal projections and global transmitter-mediated modulatory influences on a diverse assembly of neural targets within the CNS. The data presented here challenge this longstanding notion and argue instead for segregated operation of the LC-NE system with respect to the functions of the circuits within its efferent domain. Anatomical, molecular, and electrophysiological approaches were used in conjunction with a rat model to show that LC cells innervating discrete cortical regions are biochemically and electrophysiologically distinct from one another so as to elicit greater release of norepinephrine in prefrontal versus motor cortex. These findings challenge the consensus view of LC as a relatively homogeneous modulator of forebrain activity and have important implications for understanding the impact of the system on the generation and maintenance of adaptive and maladaptive behaviors.
Collapse
|
28
|
Chandler DJ, Lamperski CS, Waterhouse BD. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res 2013; 1522:38-58. [PMID: 23665053 DOI: 10.1016/j.brainres.2013.04.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive functions and is composed of several distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). These regions serve dissociable cognitive functions, and are heavily innervated by acetylcholine, dopamine, serotonin and norepinephrine systems. In this study, fluorescently labeled retrograde tracers were injected into the ACC, mPFC, and OFC, and labeled cells were identified in the nucleus basalis (NB), ventral tegmental area (VTA), dorsal raphe nucleus (DRN) and locus coeruleus (LC). DRN and LC showed similar distributions of retrogradely labeled neurons such that most were single labeled and the largest population projected to mPFC. VTA showed a slightly greater proportion of double and triple labeled neurons, with the largest population projecting to OFC. NB, on the other hand, showed mostly double and triple labeled neurons projecting to multiple subregions. Therefore, subsets of VTA, DRN and LC neurons may be capable of modulating individual prefrontal subregions independently, whereas NB cells may exert a more unified influence on the three areas simultaneously. These findings emphasize the unique aspects of the cholinergic and monoaminergic projections to functionally and anatomically distinct subregions of PFC.
Collapse
Affiliation(s)
- Daniel J Chandler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19128, United States
| | | | | |
Collapse
|
29
|
Howells FM, Stein DJ, Russell VA. Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab Brain Dis 2012; 27:267-74. [PMID: 22399276 DOI: 10.1007/s11011-012-9287-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
A certain level of arousal is required for an individual to perform optimally, and the locus coeruleus norepinephrine (LC-NE) system plays a central role in optimizing arousal. Tonic firing of LC-NE neurons needs to be held within a narrow range of 1-3 Hz to facilitate phasic firing of the LC-NE neurons; these two modes of activity act synergistically, to allow the individual to perform attentional tasks optimally. How this information can be applied to further our understanding of psychiatric disorders has not been fully elucidated. Here we propose two models of altered LC-NE activity that result in attentional deficits characteristic of psychiatric disorders: 1) 'hypoaroused' individuals with e.g. attention-deficit/hyperactivity disorder (ADHD) have decreased tonic firing of the LC-NE system, resulting in decreased cortical arousal and poor attentional performance and 2) 'hyperaroused' individuals with e.g. anxiety disorders have increased tonic firing of the LC-NE system, resulting in increased cortical arousal and impaired attentional performance. We argue that hypoarousal (decreased tonic firing of LC-NE neurons) and hyperarousal (increased tonic firing of LC-NE neurons) are suboptimal states in which phasic activity of LC-NE neurons is impeded. To further understand the neurobiology of attentional dysfunction in psychiatric disorders a translational approach that integrates findings on the LC-NE arousal system from animal models and human imaging studies may be useful.
Collapse
Affiliation(s)
- Fleur M Howells
- Department of Psychiatry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| | | | | |
Collapse
|
30
|
Chandler D, Waterhouse BD. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front Behav Neurosci 2012; 6:20. [PMID: 22661934 PMCID: PMC3356860 DOI: 10.3389/fnbeh.2012.00020] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive operations. However, this region is not a single functional unit; rather, it is composed of several functionally and anatomically distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). These prefrontal subregions serve dissociable behavioral functions, and are unique in their afferent and efferent connections. Each of these subregions is innervated by ascending cholinergic and noradrenergic systems, each of which likewise has a distinct role in cognitive function; yet the distribution and projection patterns of cells in the source nuclei for these pathways have not been examined in great detail. In this study, fluorescent retrograde tracers were injected into ACC, mPFC, and OFC, and labeled cells were identified in the cholinergic nucleus basalis of Meynert (NBM) and noradrenergic nucleus locus coeruleus (LC). Injections into all three cortical regions consistently labeled cells primarily ipsilateral to the injection site with a minimal contralateral component. In NBM, retrogradely labeled neurons were scattered throughout the rostral half of the nucleus, whereas those in LC tended to cluster in the core of the nucleus, and were rarely localized within the rostral or caudal poles. In NBM, more than half of all retrogradely labeled cells possessed axon collaterals projecting two or more PFC subregions. In LC, however, only 4.3% of retrogradely labeled neurons possessed collaterals targeting any two prefrontal subregions simultaneously, and no cells were identified that projected to all three regions. Of all labeled LC neurons, 49.3% projected only to mPFC, 28.5% projected only to OFC, and 18.0% projected only to ACC. These findings suggest that subsets of LC neurons may be capable of modulating neuronal activity in individual prefrontal subregions independently, whereas assemblies of NBM cells may exert a more unified influence on the three areas, simultaneously. This work emphasizes unique aspects of the cholinergic and noradrenergic projections to functionally and anatomically distinct subregions of PFC and provides insights regarding global versus segregated regulation of prefrontal operations by these neuromodulatory pathways.
Collapse
Affiliation(s)
- Daniel Chandler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | | |
Collapse
|
31
|
Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus. Proc Natl Acad Sci U S A 2011; 108:14956-61. [PMID: 21873241 DOI: 10.1073/pnas.1103168108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
From the perspective of neural coding, the considerable trial-to-trial variability in the responses of neurons to sensory stimuli is puzzling. Trial-to-trial response variability is typically interpreted in terms of "noise" (i.e., it represents either intrinsic noise of the system or information unrelated to the stimuli). However, trial-to-trial response variability can be considerably different across stimuli, suggesting that it could also provide an important contribution to the information conveyed by the neural responses about the stimuli. To test this hypothesis, we addressed the problem of discriminating stimulus location from the spike-count responses of neurons recorded in the ventro-postero-medial (VPM) nucleus of the thalamus in anesthetized rats. Using a recently developed information theory approach, we verified that differences between stimuli in the trial-to-trial spike-count variability of the responses provided an important contribution to the overall information carried by the neurons. In addition, we found that the relatively reliable (sub-Poisson) firing regime of our VPM neurons was not only more informative, but also more redundant between neurons compared with a more variable (Poisson) firing regime with the same total number of spikes. The typical increase in trial-to-trial response variability from the periphery to the cortex could therefore serve as a strategy to reduce redundancy between neurons and promote efficient sparse coding distributed in large populations of neurons. Overall, our data suggest that the trial-to-trial response variability plays a critical role in establishing the trade-off between total information and redundancy between neurons in population codes.
Collapse
|
32
|
Pharmacological stimulation of locus coeruleus reveals a new antipsychotic-responsive pathway for deficient sensorimotor gating. Neuropsychopharmacology 2011; 36:1656-67. [PMID: 21508929 PMCID: PMC3138657 DOI: 10.1038/npp.2011.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surprisingly little is known about the modulation of core endophenotypes of psychiatric disease by discrete noradrenergic (NE) circuits. Prepulse inhibition (PPI), the diminution of startle responses when weak prestimuli precede the startling event, is a widely validated translational paradigm for information-processing deficits observed in several mental disorders including schizophrenia, Tourette's syndrome, and post-traumatic stress disorder (PTSD). Despite putative NE disturbances in these illnesses, NE regulation of PPI remains poorly understood. In these studies, regulation of PPI by the locus coeruleus (LC), the primary source of NE to forebrain, was evaluated in rats using well-established protocols to pharmacologically activate/inactivate this nucleus. The ability of drugs that treat deficient PPI in these illnesses to reverse LC-mediated PPI deficits was also tested. Stimulation of LC receptors produced an anatomically and behaviorally specific deficit in PPI that was blocked by clonidine (Cataprese, an α2 receptor agonist that reduces LC neuronal firing after peri-LC delivery), a postsynaptic α1 NE receptor antagonist (prazosin), and second-generation antipsychotics (olanzapine, seroquel), but not by drugs that antagonized dopamine-1 (SCH23390), dopamine-2 (the first-generation antipsychotic Haloperidol), or serotonin-2 receptors (ritanserin). These results indicate a novel substrate in the regulation of PPI and reveal a novel functional role for the LC. Hence, a hyperactive LC-NE system might underlie a deficient sensorimotor gating endophenotype in a subset of patients suffering from psychiatric illnesses including schizophrenia, Tourette's syndrome, and PTSD, and the ability to normalize LC-NE transmission could contribute to the clinical efficacy of certain drugs (Cataprese, prazosin, and second-generation antipsychotics) in these conditions.
Collapse
|
33
|
Gottesmann C. To what extent do neurobiological sleep-waking processes support psychoanalysis? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 92:233-90. [PMID: 20870071 DOI: 10.1016/s0074-7742(10)92012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département de Biologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
34
|
Discrete forebrain neuronal networks supporting noradrenergic regulation of sensorimotor gating. Neuropsychopharmacology 2011; 36:1003-14. [PMID: 21248721 PMCID: PMC3077269 DOI: 10.1038/npp.2010.238] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prepulse inhibition (PPI) refers to the reduction in the startle response when a startling stimulus is preceded by a weak prestimulus, and is an endophenotype of deficient sensorimotor gating in several neuropsychiatric disorders. Emerging evidence suggests that norepinephrine (NE) regulates PPI, however, the circuitry involved is unknown. We found recently that stimulation of the locus coeruleus (LC), the primary source of NE to the forebrain, induces a PPI deficit that is a result of downstream NE release. Hence, this study sought to identify LC-innervated forebrain regions that mediate this effect. Separate groups of male Sprague-Dawley rats received a cocktail solution of the α1-NE receptor agonist phenylephrine plus the β-receptor agonist isoproterenol (equal parts of each; 0, 3, 10, and 30 μg) into subregions of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc), extended amygdala, mediodorsal thalamus (MD-thalamus), or the dorsal hippocampus (DH) before PPI testing. NE agonist infusion into the posterior mPFC, NAcc shell, bed nucleus of the stria terminalis, basolateral amygdala, and the MD-thalamus disrupted PPI, with particularly strong effects in MD-thalamus. Sites in which NE receptor stimulation did not disrupt PPI (anterior mPFC, NAcc core, central amygdala, and DH) did support PPI disruptions with the dopamine D2 receptor agonist quinpirole (0, 10 μg). This pattern reveals new pathways in the regulation of PPI, and suggests that NE transmission within distinct thalamocortical and ventral forebrain networks may subserve the sensorimotor gating deficits that are seen in disorders such as schizophrenia, Tourette syndrome, and post-traumatic stress disorder.
Collapse
|
35
|
Linster C, Nai Q, Ennis M. Nonlinear effects of noradrenergic modulation of olfactory bulb function in adult rodents. J Neurophysiol 2011; 105:1432-43. [PMID: 21273323 PMCID: PMC3075300 DOI: 10.1152/jn.00960.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/25/2011] [Indexed: 01/28/2023] Open
Abstract
The mammalian main olfactory bulb receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in acquisition of conditioned odor preferences in neonatal animals, in some species-specific odor-dependent behaviors, and in adult odor perception. We provide a detailed review of the functional role of NE in adult rodent main olfactory bulb function. We include cellular, synaptic, network, and behavioral data and use computational simulations to tie these different types of data together.
Collapse
Affiliation(s)
- Christiane Linster
- Department of Neurobiology and Behavior, W245 Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
36
|
Dietrich A, Audiffren M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev 2011; 35:1305-25. [PMID: 21315758 DOI: 10.1016/j.neubiorev.2011.02.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/16/2022]
Abstract
We present here a comprehensive, neurocognitive model to account for the psychological consequences of acute exercise. There is a substantial amount of disparate research and the proposed mechanistic explanation meaningfully integrates this body of brain and behavioral data into a single, unified model. The model's central feature is a cascading, two-step process. First, exercise engages arousal mechanisms in the reticular-activating system. This activation process, which involves a number of neurotransmitter systems, has several interrelated effects on cognition and emotion but, in general, has evolved to facilitate implicit information processing. Second, exercise disengages the higher-order functions of the prefrontal cortex. This deactivation process, which is caused in part by resource limitations, also has several interrelated effects but, in general, has evolved to keep the inefficient explicit system and unhelpful emotional processes from compromising the implicit system's functioning when optimal motor execution is needed most. In this article, we review evidence in support of this reticular-activating hypofrontality (RAH) model of acute exercise and place it into a larger evolutionary context.
Collapse
Affiliation(s)
- Arne Dietrich
- Department of Social and Behavioral Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| | | |
Collapse
|
37
|
Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behav Brain Funct 2010; 6:39. [PMID: 20615239 PMCID: PMC2909988 DOI: 10.1186/1744-9081-6-39] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been suggested that perceived mental effort reflects changes in arousal during tasks of attention. Such changes in arousal may be tonic or phasic, and may be mediated by the locus-coeruleus norepinephrine (LC-NE) system. We hypothesized that perceived mental effort during attentional tasks would correlate with tonic changes in cortical arousal, as assessed by relative electroencephalogram (EEG) band power and theta/beta ratio, and not with phasic changes in cortical arousal, assessed by P300 amplitude and latency. METHODS Forty-six healthy individuals completed tasks that engage the anterior and posterior attention networks (continuous performance task, go/no-go task, and cued target detection task). During completion of the three attentional tasks a continuous record of tonic and phasic arousal was taken. Cortical measures of arousal included frequency band power, theta/beta ratios over frontal and parietal cortices, and P300 amplitude and latency over parietal cortices. Peripheral measures of arousal included skin conductance responses, heart rate and heart rate variance. Participants reported their perceived mental effort during each of the three attentional tasks. RESULTS First, changes in arousal were seen from rest to completion of the three attentional tasks and between the attentional tasks. Changes seen between the attentional tasks being related to the task design and the attentional network activated. Second, perceived mental effort increased when demands of the task increased and correlated with left parietal beta band power during the three tasks of attention. Third, increased mental effort during the go/no-go task and the cued target detection task was inversely related to theta/beta ratios. CONCLUSION These results indicate that perceived mental effort reflects tonic rather than phasic changes in arousal during tasks of attention. We suggest that perceived mental effort may reflect in part tonic activity of the LC-NE system in healthy individuals.
Collapse
|
38
|
LAMBOURNE KATE, AUDIFFREN MICHEL, TOMPOROWSKI PHILLIPD. Effects of Acute Exercise on Sensory and Executive Processing Tasks. Med Sci Sports Exerc 2010; 42:1396-402. [DOI: 10.1249/mss.0b013e3181cbee11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Rinkus GJ. A cortical sparse distributed coding model linking mini- and macrocolumn-scale functionality. Front Neuroanat 2010; 4:17. [PMID: 20577587 PMCID: PMC2889687 DOI: 10.3389/fnana.2010.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/23/2010] [Indexed: 11/23/2022] Open
Abstract
No generic function for the minicolumn – i.e., one that would apply equally well to all cortical areas and species – has yet been proposed. I propose that the minicolumn does have a generic functionality, which only becomes clear when seen in the context of the function of the higher-level, subsuming unit, the macrocolumn. I propose that: (a) a macrocolumn's function is to store sparse distributed representations of its inputs and to be a recognizer of those inputs; and (b) the generic function of the minicolumn is to enforce macrocolumnar code sparseness. The minicolumn, defined here as a physically localized pool of ∼20 L2/3 pyramidals, does this by acting as a winner-take-all (WTA) competitive module, implying that macrocolumnar codes consist of ∼70 active L2/3 cells, assuming ∼70 minicolumns per macrocolumn. I describe an algorithm for activating these codes during both learning and retrievals, which causes more similar inputs to map to more highly intersecting codes, a property which yields ultra-fast (immediate, first-shot) storage and retrieval. The algorithm achieves this by adding an amount of randomness (noise) into the code selection process, which is inversely proportional to an input's familiarity. I propose a possible mapping of the algorithm onto cortical circuitry, and adduce evidence for a neuromodulatory implementation of this familiarity-contingent noise mechanism. The model is distinguished from other recent columnar cortical circuit models in proposing a generic minicolumnar function in which a group of cells within the minicolumn, the L2/3 pyramidals, compete (WTA) to be part of the sparse distributed macrocolumnar code.
Collapse
Affiliation(s)
- Gerard J Rinkus
- Biology Department, Volen Center for Complex Systems, Brandeis University Waltham, MA, USA
| |
Collapse
|
40
|
Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2010; 10:252-69. [PMID: 20498349 PMCID: PMC3403821 DOI: 10.3758/cabn.10.2.252] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An important dimension of cognitive control is the adaptive regulation of the balance between exploitation (pursuing known sources of reward) and exploration (seeking new ones) in response to changes in task utility. Recent studies have suggested that the locus coeruleus-norepinephrine system may play an important role in this function and that pupil diameter can be used to index locus coeruleus activity. On the basis of this, we reasoned that pupil diameter may correlate closely with control state and associated changes in behavior. Specifically, we predicted that increases in baseline pupil diameter would be associated with decreases in task utility and disengagement from the task (exploration), whereas reduced baseline diameter (but increases in task-evoked dilations) would be associated with task engagement (exploitation). Findings in three experiments were consistent with these predictions, suggesting that pupillometry may be useful as an index of both control state and, indirectly, locus coeruleus function.
Collapse
|
41
|
Optimality and robustness of a biophysical decision-making model under norepinephrine modulation. J Neurosci 2009; 29:4301-11. [PMID: 19339624 DOI: 10.1523/jneurosci.5024-08.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The locus ceruleus (LC) can exhibit tonic or phasic activity and release norepinephrine (NE) throughout the cortex, modulating cellular excitability and synaptic efficacy and thus influencing behavioral performance. We study the effects of LC-NE modulation on decision making in two-alternative forced-choice tasks by changing conductances in a biophysical neural network model, and we investigate how it affects performance measured in terms of reward rate. We find that low tonic NE levels result in unmotivated behavior and high levels in impulsive, inaccurate choices, but that near-optimal performance can occur over a broad middle range. Robustness is greatest when pyramidal cells are less strongly modulated than interneurons, and superior performance can be achieved with phasic NE release, provided only glutamatergic synapses are modulated. We also show that network functions such as sensory information accumulation and short-term memory can be modulated by tonic NE levels, and that previously observed diverse evoked cell responses may be due to network effects.
Collapse
|