1
|
Nagase T, Yasuhara T, Kin K, Sasada S, Kawauchi S, Yabuno S, Sugahara C, Hirata Y, Miyake H, Sasaki T, Kawai K, Tanimoto S, Saijo T, Tanaka S. Therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) with voluntary and forced exercise in a rat model of ischemic stroke. Exp Neurol 2025; 386:115145. [PMID: 39805465 DOI: 10.1016/j.expneurol.2025.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery. This study evaluated the effects of voluntary and forced exercise, alone and in combination with SB623 cell transplantation, on neurological and psychological outcomes in a rat model of ischemic stroke. Male Wistar rats that had undergone middle cerebral artery occlusion (MCAO) were divided into six groups: control, voluntary exercise (V-Ex), forced exercise (F-Ex), SB623 transplantation, SB623 + V-Ex, and SB623 + F-Ex. Voluntary exercise was facilitated using running wheels, while forced exercise was conducted on treadmills. Neurological recovery was assessed using the modified neurological severity score (mNSS). Psychological symptoms were evaluated through the open field test (OFT) and forced swim test (FST), and neurogenesis was assessed via BrdU labeling. Both exercise groups exhibited significant changes in body weight post-MCAO. Both exercises enhanced the treatment effect of SB623 transplantation. The forced exercise showed a stronger treatment effect on ischemic stroke than voluntary exercise alone, and the sole voluntary exercise improved depression-like behavior. The SB623 + F-Ex group demonstrated the greatest improvements in motor function, infarct area reduction, and neurogenesis. The SB623 + V-Ex group was most effective in alleviating depression-like behavior. Future research should optimize these exercise protocols and elucidate the underlying mechanisms to develop tailored rehabilitation strategies for stroke patients.
Collapse
Affiliation(s)
- Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuichi Hirata
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hayato Miyake
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Koji Kawai
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shun Tanimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tomoya Saijo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
2
|
Zhou W, Zhou J, Lu Q, Wang L, Liang Y, Xing Y, Zhang Z, Yang J, Zhao W, Li X, Shi G. Time-Dependent Regulation of Sleep-Wakefulness and Electroencephalographic Characteristics by Spontaneous Running in Male Mice. J Sleep Res 2025:e70023. [PMID: 40098571 DOI: 10.1111/jsr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
The relationship between physical activity and sleep quality is a critical area of investigation, given the importance of both behaviours for health and disease. Despite the common use of running wheels to assess circadian rhythms and exercise, their impact on sleep has not been thoroughly explored. Here, we present a detailed analysis of how voluntary running affected sleep/wakefulness duration, architecture and electrophysiological characteristics in mice. Sequential electroencephalogram (EEG) assessments revealed that voluntary running elicits a progressive alteration in sleep/wake configurations, including a reduction in overall daily sleep time and an enhancement in sleep/wakefulness consolidation. These modifications exhibited a temporal association with the intensity of running activities. The observed changes in sleep/wakefulness duration and architecture partially persist even after the discontinuation of running. Spontaneous running also gradually changed the amplitude and/or frequency of EEG theta power not only during the running phase but also in rapid eye movement sleep (REMS). In vivo endoscopic calcium imaging in freely behaving mice revealed that running and REMS were accompanied by the activation of largely shared yet distinctive neuronal cohorts within the hippocampal CA1 region, concomitant with EEG theta oscillations during both behaviours. These findings highlight the dynamic nature of sleep/wakefulness regulation in response to voluntary exercise and suggest that physical activity played a pivotal role in modulating sleep need and the daily balance between sleep and wakefulness.
Collapse
Affiliation(s)
- Wufang Zhou
- School of Medicine, Shenzhen Campus of sun Yat-Sen University, sun Yat-Sen University, Shenzhen, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Department of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jialin Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianyu Lu
- School of Medicine, Shenzhen Campus of sun Yat-Sen University, sun Yat-Sen University, Shenzhen, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Long Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yutao Liang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinshan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenxue Zhao
- School of Medicine, Shenzhen Campus of sun Yat-Sen University, sun Yat-Sen University, Shenzhen, China
| | - Xin Li
- School of Medicine, Shenzhen Campus of sun Yat-Sen University, sun Yat-Sen University, Shenzhen, China
| | - Guangsen Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Department of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Song MK, Jo HS, Kim EJ, Kim JK, Lee SG. Gene Expression of Neurogenesis Related to Exercise Intensity in a Cerebral Infarction Rat Model. Int J Mol Sci 2024; 25:8997. [PMID: 39201683 PMCID: PMC11354542 DOI: 10.3390/ijms25168997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Regular exercise improves several functions, including cognition, in patients with stroke. However, the effect of regular exercise on neurogenesis related to cognition remains doubtful. We investigated the most effective exercise intensity for functional recovery after stroke using RNA sequencing following regular treadmill exercise. Photothrombotic cerebral infarction was conducted for 10-week-old male Sprague-Dawley rats (n = 36). A Morris water maze (MWM) test was performed before a regular treadmill exercise program (5 days/week, 4 weeks). Rats were randomly divided into four groups: group A (no exercise); group B (low intensity, maximal velocity 18 m/min); group C (moderate intensity, maximal velocity 24 m/min) and group D (high intensity, maximal velocity 30 m/min). After 4 weeks, another MWM test was performed, and all rats were sacrificed. RNA sequencing was performed with ipsilesional hippocampal tissue. On the day after cerebral infarction, no differences in escape latency and velocity were observed among the groups. At 4 weeks after cerebral infarction, the escape latencies in groups B, C, and D were shorter than in group A. The escape latencies in groups B and C were shorter than in group D. The velocity in groups A, B, and C was faster than in group D. Thirty gene symbols related to neurogenesis were detected (p < 0.05, fold change > 1.0, average normalized read count > four times). In the neurotrophin-signaling pathway, the CHK gene was upregulated, and the NF-κB gene was downregulated in the low-intensity group. The CHK and NF-κB genes were both downregulated in the moderate-intensity group. The Raf and IRAK genes were downregulated in the high-intensity group. Western blot analysis showed that NF-κB expression was lowest in the moderate-intensity group, whereas CHK and Raf were elevated, and IRAK was decreased in the high-intensity group. Moderate-intensity exercise may contribute to neuroplasticity. Variation in the expression of neurotrophins in neurogenesis according to exercise intensity may reveal the mechanism of neuroplasticity. Thus, NF-κB is the key neurotrophin for neurogenesis related to exercise intensity.
Collapse
Affiliation(s)
| | | | | | | | - Sam-Gyu Lee
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School, #160, Baekseo-ro, Dong-gu, Gwangju 61469, Republic of Korea; (M.-K.S.)
| |
Collapse
|
4
|
Takamatsu Y, Inoue T, Nishio T, Soma K, Kondo Y, Mishima T, Takamura H, Okamura M, Maejima H. Potential effect of physical exercise on the downregulation of BDNF mRNA expression in rat hippocampus following intracerebral hemorrhage. Neurosci Lett 2024; 824:137670. [PMID: 38342427 DOI: 10.1016/j.neulet.2024.137670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES Physical exercise is known to induce expression of the neuroprotective brain derived neurotrophic factor (BDNF) in the hippocampus. This study examined the effects of physical exercise on hippocampal BDNF expression and the potential benefits for preventing remote secondary hippocampal damage and neurological impairment following intracerebral hemorrhage (ICH). MATERIALS AND METHODS Wistar rats were randomly assigned to sham-operated, ICH, and ICH followed by exercise (ICH/Ex) groups. The two ICH groups were injected with type IV collagenase into the left basal ganglia, while sham animals were injected with equal-volume saline. The ICH/Ex group rats ran on a treadmill at 11 m/min for 30 min/day from day 3 to 16 post-ICH. All animals were examined for neurological function on day 2 pretreatment and from day 3 to 15 posttreatment, for spontaneous motor activity in the open field on day 15, and for cognitive ability using the object location test on day 16. Animals were then euthanized and bilateral hippocampi collected for gene expression analyses. RESULTS Experimental ICH induced neurological deficits that were not reversed by exercise. In contrast, ICH did not alter spontaneous activity or object location ability. Expression of BDNF mRNA of the ICH group was significantly downregulated in the ipsilateral hippocampus compared to the SHAM group, but this downregulation was not shown in the ICH/Ex group. The ICH/Ex group showed the downregulation of caspase-3 mRNA expression in the contralateral hippocampus compared to the SHAM group, while neither ICH nor exercise influenced toll-like receptor 4 mRNA expression. CONCLUSIONS ICH induced the secondary BDNF downregulation in the hippocampus remote from the lesion, whereas physical exercise might partially mitigate the downregulation.
Collapse
Affiliation(s)
- Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Department of Physical Therapy, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan.
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan; Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Taichi Nishio
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Kiho Soma
- Department of Health Sciences, School of Medicine, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Kondo
- Department of Health Sciences, School of Medicine, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Taiga Mishima
- Department of Health Sciences, School of Medicine, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hana Takamura
- Department of Health Sciences, School of Medicine, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Misato Okamura
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Wang YL, Chen CC, Chang CP. Effect of stress on the rehabilitation performance of rats with repetitive mild fluid percussion-induced traumatic brain injuries. Cogn Neurodyn 2024; 18:283-297. [PMID: 38406191 PMCID: PMC10881937 DOI: 10.1007/s11571-023-09961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 02/27/2024] Open
Abstract
Animal models of traumatic brain injury (TBI) have shown that impaired motor and cognitive function can be improved by physical exercise. However, not each animal with TBI can be well rehabilitated at the same training intensity due to a high inter-subject variability. Hence, this paper presents a two-stage wheel-based mixed-mode rehabilitation mechanism by which the effect of stress on the rehabilitation performance was investigated. The mixed-mode rehabilitation mechanism consists of a two-week adaptive and a one-week voluntary rehabilitation program as Stages 1 and 2, respectively. In Stage 1, the common over and undertraining problem were completely resolved due to the adaptive design, and rats ran voluntarily over a 30-min duration in Stage 2. The training intensity adapted to the physical condition of all the TBI rats at all times in Stage 1, and then the self-motivated running rats were further rehabilitated under the lowest level of stress in Stage 2. For comparison purposes, another group of rats took a 3-week adaptive rehabilitation program. During the 3-week program, the rehabilitation performance of the rats were assessed using modified neurologic severity score (mNSS) and an 8-arm radial maze. Surprisingly, the group taking the mixed mode program turned out to outperform its counterpart in terms of mNSS. The mixed-mode rehabilitation mechanism was validated as an effective and efficient way to help rats restore motor, neurological and cognitive function after TBI. It was validated that the rehabilitation performance can be optimized under the lowest level of stress.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Center of General Education, Southern Taiwan University of Science and Technology, Tainan, 710301 Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, 710 Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, 41170 Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710 Taiwan
| |
Collapse
|
6
|
Wagner V, Gravesen P, Ghaziani E, Olsen MH, Riberholt CG. Mapping physical activity patterns in hospitalised patients with moderate to severe acquired brain injury - MAP-ABI: Protocol for an observational study. Heliyon 2023; 9:e21927. [PMID: 38034693 PMCID: PMC10682202 DOI: 10.1016/j.heliyon.2023.e21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The physical activity level in patients hospitalised for rehabilitation across multiple diagnoses is low. Moderate to severe acquired brain injury further reduces activity levels as impaired physical and cognitive functioning affect mobility independence. Therefore, supervised out-of-bed mobilisation and physical activity training are essential rehabilitation strategies. Few studies have measured the physical activity patterns in the early phases of rehabilitation after moderate to severe brain injury. Objectives To map and quantify physical activity patterns in patients admitted to brain injury rehabilitation. Further, to investigate which factors are associated with activity and if the early physical activity level is associated with functional outcome at discharge. Methods This observational study includes patients admitted to rehabilitation after moderate to severe acquired brain injury. Mobility and physical activity patterns are measured continuously during rehabilitation at two separate seven-day periods using a wearable activity tracker. Activity will be categorised into four levels and presented descriptively. Linear and logistic regression models will analyse associations between descriptive variables and activity levels. Discussion This protocol describes an observational study investigating patients' mobility and physical activity patterns with moderate to severe acquired brain injury during in-hospital rehabilitation. The ability to increase the amount of mobilisation and physical activity in subgroups may have profound consequences on the rehabilitation outcome. Furthermore, data from this study may be used to inform a large variety of trials investigating physical rehabilitation interventions. (NCT05571462).
Collapse
Affiliation(s)
- Vibeke Wagner
- Department of Brain and Spinal Cord Injury, The Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Pi Gravesen
- Department of Brain and Spinal Cord Injury, The Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Emma Ghaziani
- Department of Brain and Spinal Cord Injury, The Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Christian Gunge Riberholt
- Department of Brain and Spinal Cord Injury, The Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Ferrari F, Rossi D, Ricciardi A, Morasso C, Brambilla L, Albasini S, Vanna R, Fassio C, Begenisic T, Loi M, Bossi D, Zaliani A, Alberici E, Lisi C, Morotti A, Cavallini A, Mazzacane F, Nardone A, Corsi F, Truffi M. Quantification and prospective evaluation of serum NfL and GFAP as blood-derived biomarkers of outcome in acute ischemic stroke patients. J Cereb Blood Flow Metab 2023; 43:1601-1611. [PMID: 37113060 PMCID: PMC10414005 DOI: 10.1177/0271678x231172520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Identification of reliable and accessible biomarkers to characterize ischemic stroke patients' prognosis remains a clinical challenge. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are markers of brain injury, detectable in blood by high-sensitive technologies. Our aim was to measure serum NfL and GFAP after stroke, and to evaluate their correlation with functional outcome and the scores in rehabilitation scales at 3-month follow-up. Stroke patients were prospectively enrolled in a longitudinal observational study within 24 hours from symptom onset (D1) and monitored after 7 (D7), 30 ± 3 (M1) and 90 ± 5 (M3) days. At each time-point serum NfL and GFAP levels were measured by Single Molecule Array and correlated with National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), Trunk Control Test (TCT), Functional Ambulation Classification (FAC) and Functional Independence Measure (FIM) scores. Serum NfL and GFAP showed different temporal profiles: NfL increased after stroke with a peak value at D7; GFAP showed an earlier peak at D1. NfL and GFAP concentrations correlated with clinical/rehabilitation outcomes both longitudinally and prospectively. Multivariate analysis revealed that NfL-D7 and GFAP-D1 were independent predictors of 3-month NIHSS, TCT, FAC and FIM scores, with NfL being the biomarker with the best predictive performance.
Collapse
Affiliation(s)
- Federica Ferrari
- Dept of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Emergency Neurology Unit and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Daniela Rossi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory for Research on Neurodegenerative Disorders, Pavia, Italy
| | - Alessandra Ricciardi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Liliana Brambilla
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory for Research on Neurodegenerative Disorders, Pavia, Italy
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Renzo Vanna
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Chiara Fassio
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Tatjana Begenisic
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Marianna Loi
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Daniela Bossi
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Alberto Zaliani
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Elisa Alberici
- Istituti Clinici Scientifici Maugeri IRCCS, Neuroradiology Unit, Pavia, Italy
| | - Claudio Lisi
- Unit of Rehabilitation, Dept of Medical Sciences and Infectious Disease, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Andrea Morotti
- Neurology Unit, Dept of Neurological Sciences and Vision, ASST Spedali Civili, Brescia, Italy
| | - Anna Cavallini
- Emergency Neurology Unit and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Federico Mazzacane
- Dept of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Emergency Neurology Unit and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Nardone
- Dept of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute and Neurorehabilitation Unit of Montescano Institute, Pavia, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
- Dept of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| |
Collapse
|
8
|
Inoue T, Ikegami R, Takamatsu Y, Fukuchi M, Haga S, Ozaki M, Maejima H. Temporal dynamics of brain BDNF expression following a single bout of exercise: A bioluminescence imaging study. Neurosci Lett 2023; 799:137120. [PMID: 36764480 DOI: 10.1016/j.neulet.2023.137120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Physical exercise increases brain-derived neurotrophic factor (BDNF) expression in the brain. However, the absence of non-invasive and repetitive monitoring of BDNF expression in the brains of living animals has limited the understanding of how BDNF expression changes after exercise. This study aimed to elucidate the temporal dynamics of BDNF expression in the brain after a single bout of exercise, using in vivo bioluminescence imaging. This study included Bdnf-Luc mice with a firefly Luciferase gene inserted at the translation start site of the mouse Bdnf gene. BDNF expression was evaluated based on the luminescence signal of the luciferase substrate administered to mice. Bioluminescence imaging was performed at 0, 1, 3, 6, 12, and 24 h after treadmill exercise (15 m/min for 1 h). Compared to the sedentary condition of each mouse, the luminescence signal increased by approximately 60 % between 1 and 3 h after exercise. The luminescence signal remained slightly increased by approximately 20 % even 6-24 h after exercise. This study is the first to demonstrate exercise-enhanced BDNF expression in the brains of living animals. These results provide evidence that a single bout of exercise transiently increases BDNF expression in the brain within a limited time window.
Collapse
Affiliation(s)
- Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ryo Ikegami
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Sanae Haga
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
9
|
Maguire C, Betschart M, Pohl J, Primani F, Taeymans J, Hund-Georgiadis M. Effects of moderate-intensity aerobic exercise on serum BDNF and motor learning in the upper-limb in patients after chronic-stroke: A randomized, controlled feasibility study with embedded health economic evaluation. NeuroRehabilitation 2023; 52:485-506. [PMID: 36806518 DOI: 10.3233/nre-220239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) promotes activity-dependent neuroplasticity and is released following aerobic-exercise. OBJECTIVE Feasibility and efficacy of 1.Moderate-Intensity Cycle-Ergometer-Training (MI-ET) and 2.Low-Intensity Circuit-Training (LI-CT) on BDNF-serum-concentration in chronic-stroke and consequently efficacy of motor-learning in varying BDNF-concentrations (neuroplasticity being the substrate for motor-learning) via upper-limb robotic-training (RT) in both groups. METHODS Randomised-control feasibility-study. 12-week, 3x/week intervention, 17 chronic-stroke-survivors randomized into: (1) MI-ET&RT or (2) LI-CT&RT. Both groups completed 40 mins MI-ET or LI-CT followed by 40 mins RT. Feasibility outcomes: (1) screening and enrollment-rates, (2) retention-rates, (3) adherence: (i) attendance-rates, (ii) training-duration, (4) adverse events. Primary clinical outcomes: 1. serum-BDNF changes pre-post training (immediate) and pre-training basal-levels over 12-weeks (long-term). 2.upper-limb performance with Action-Research-Arm-Test (ARAT). Additionally, feasibility of an embedded health economic evaluation (HEE) to evaluate health-costs and cost-effectiveness. OUTCOMES cost-questionnaire return-rates, cost-of-illness (COI) and Health-Utitility-Index (HUI). RESULTS 21.5% of eligible and contactable enrolled. 10 randomized to MI-ET and 7 to LI-CT. 85% of training-sessions were completed in MI-ET (306/360) and 76.3% in LI-CT-group (165/216). 12-weeks: Drop-outs MI-ET-10%, LI-CT-43%. CLINICAL OUTCOMES No significant changes in immediate or long-term serum-BDNF in either group. Moderate-intensity aerobic-training did not increase serum-BDNF post-stroke. Individual but no group clinically-relevant changes in ARAT-scores. HEE outcomes at 12-weeks: 100% cost-questionnaires returned. Group-costs baseline and after treatment, consistently favouring MI-ET group. COI: (1-year-time-frame): MI-ET 67382 SD (43107) Swiss-Francs and LI-CT 95701(29473) Swiss-Francs. CONCLUSION The study is feasible with modifications. Future studies should compare high-intensity versus moderate-intensity aerobic-exercise combined with higher dosage arm-training.
Collapse
Affiliation(s)
- Clare Maguire
- REHAB, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland.,Physiotherapy, Department of Health, Bern University of Applied Science, Bern, Switzerland
| | - Martina Betschart
- REHAB, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland.,Physiotherapy, Department of Health, Bern University of Applied Science, Bern, Switzerland.,Kantonal Hospital Winterthur, Winterthur, Switzerland
| | - Johannes Pohl
- Department of Neurology, University Hospital Zurich, Zurich Switzerland
| | - Francesca Primani
- REHAB, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland.,Physiotherapy, Department of Health, Bern University of Applied Science, Bern, Switzerland
| | - Jan Taeymans
- Physiotherapy, Department of Health, Bern University of Applied Science, Bern, Switzerland.,Faculty of Movement and Rehabilitation Sciences, Universiteit Brussel, Brussel, Belgium
| | | |
Collapse
|
10
|
Moderate-Intensity Treadmill Exercise Promotes mTOR-Dependent Motor Cortical Neurotrophic Factor Expression and Functional Recovery in a Murine Model of Crush Spinal Cord Injury (SCI). Mol Neurobiol 2023; 60:960-978. [PMID: 36385234 DOI: 10.1007/s12035-022-03117-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Treadmill exercise is widely considered an effective strategy for restoration of skilled motor function after spinal cord injury (SCI). However, the specific exercise intensity that optimizes recovery and the underlying mechanistic basis of this recovery remain unclear. To that end, we sought to investigate the effect of different treadmill exercise intensities on cortical mTOR activity, a key regulator of functional recovery following CNS trauma, in an animal model of C5 crush spinal cord injury (SCI). Following injury, animals were subjected to treadmill exercise for 4 consecutive weeks at three different intensities (low intensity [LEI]; moderate intensity [MEI]; and high intensity [HEI]). Motor function recovery was assessed by horizontal ladder test, cylinder rearing test, and electrophysiology, while neurotrophic factors and cortical mechanistic target of rapamycin (mTOR) pathway-related proteins were assessed by Western blotting. The activation of the cortical mTOR pathway and axonal sprouting was evaluated by immunofluorescence and the changes of plasticity in motor cortex neurons were assessed by Golgi staining. In keeping with previous studies, we found that 4 weeks of treadmill training resulted in improved skilled motor function, enhanced nerve conduction capability, increased neuroplasticity, and axonal sprouting. Importantly, we also demonstrated that when compared with the LEI group, MEI and HEI groups demonstrated elevated expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), phosphorylated ribosomal S6 protein (p-S6), and protein kinase B (p-Akt), consistent with an intensity-dependent activation of the mTOR pathway and neurotrophic factor expression in the motor cortex. We also observed impaired exercise endurance and higher mortality during training in the HEI group than in the LEI and MEI groups. Collectively, our findings suggest that treadmill exercise following SCI is an effective means of promoting recovery and highlight the importance of the cortical mTOR pathway and neurotrophic factors as mediators of this effect. Importantly, our findings also demonstrate that excessive exercise can be detrimental, suggesting that moderation may be the optimal strategy. These findings provide an important foundation for further investigation of treadmill training as a modality for recovery following spinal cord injury and of the underlying mechanisms.
Collapse
|
11
|
Rahimi MD, Hassani P, Kheirkhah MT, Fadardi JS. Effectiveness of eye movement exercise and diaphragmatic breathing with jogging in reducing migraine symptoms: A preliminary, randomized comparison trial. Brain Behav 2023; 13:e2820. [PMID: 36454123 PMCID: PMC9847608 DOI: 10.1002/brb3.2820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial headache disorder. Maladaptive functional networks or altered circuit-related connectivity in the brain with migraine appear to perturb the effects of usual treatments. OBJECTIVES In the present preliminary trial, we aim to study the effectiveness of performing pieces of body-mind, cognitive, or network reconstruction-based training (i.e., eye movement exercise plus jogging; EME+J and diaphragmatic breathing plus jogging; DB+J) in decreasing migraine symptoms. METHODS We used a three-arm, triple-blind, non-inferiority randomized comparison design with pre-test, post-test, and follow-up measurements to assess the effectiveness of EME+J and DB+J in the brain with migraine. Participants were randomly assigned to one of the study groups to perform either 12 consecutive weeks of EME+J (n = 22), DB+J (n = 19), or receiving, treatment as usual, TAU (n = 22). RESULTS The primary outcome statistical analysis through a linear mixed model showed a significant decrease in the frequency (p = .0001), duration (p = .003), and intensity (p = .007) of migraine attacks among the interventions and measurement times. The pairwise comparisons of simple effects showed that EME+J and DB+J effectively reduced migraine symptoms at the post-test and follow-up (p < .05). Cochran's tests showed that interventions decreased the number of menses-related migraine attacks. EME+J and DB+J effectively decreased over-the-counter (OTC) drug use, refreshed wake-up mode, and improved sleep and water drinking patterns. These are the secondary outcomes that Cochran's tests showed in the interventional groups after the interventions and at 12 months of follow-up. CONCLUSION EME+J or DB+J can be an effective and safe method with no adverse effects to decrease the symptoms of migraine attacks. Moreover, a reduction in the frequency of menstrual cycle-related attacks, OTC drug use, and improved quality of sleep and drinking water were the secondary outcomes of the post-test and a 12-month follow-up.
Collapse
Affiliation(s)
| | - Pouriya Hassani
- Department of Cognitive Neuroscience and Clinical Neuropsychology, University of Padova, Padua, Italy
| | | | - Javad Salehi Fadardi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran.,School of Community and Global Health, Claremont Graduate University, Claremont, California, USA.,School of Psychology, Bangor University, Bangor, UK
| |
Collapse
|
12
|
Haavik H, Niazi IK, Amjad I, Kumari N, Rashid U, Duehr J, Navid MS, Trager RJ, Shafique M, Holt K. The Effects of Four Weeks of Chiropractic Spinal Adjustments on Blood Biomarkers in Adults with Chronic Stroke: Secondary Outcomes of a Randomized Controlled Trial. J Clin Med 2022; 11:jcm11247493. [PMID: 36556107 PMCID: PMC9786914 DOI: 10.3390/jcm11247493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Certain blood biomarkers are associated with neural protection and neural plasticity in healthy people and individuals with prior brain injury. To date, no studies have evaluated the effects chiropractic care on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-II (IGF-II) and glial cell-derived neurotrophic factor (GDNF) in people with stroke. This manuscript reports pre-specified, exploratory, secondary outcomes from a previously completed parallel group randomized controlled trial. We evaluated differences between four weeks of chiropractic spinal adjustments combined with the usual physical therapy (chiro + PT) and sham chiropractic with physical therapy (sham + PT) on resting serum BDNF, IGF-II and GDNF in 63 adults with chronic stroke. Blood samples were assessed at baseline, four weeks (post-intervention), and eight weeks (follow-up). Data were analyzed using a linear multivariate mixed effects model. Within both groups there was a significant decrease in the mean log-concentration of BDNF and IGF-II at each follow-up, and significant increase log-concentration of GDNF at eight-weeks' follow-up. However, no significant between-group differences in any of the blood biomarkers at each time-point were found. Further research is required to explore which factors influence changes in serum BDNF, IGF-II and GDNF following chiropractic spinal adjustments and physical therapy.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Rehabilitation and Allied Health Sciences and Department of Biomedical Engineering, Riphah International University, Islamabad 46000, Pakistan
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
| | - Usman Rashid
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
| | - Jens Duehr
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Muhammad Samran Navid
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Robert J Trager
- Connor Whole Health, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Muhammad Shafique
- Faculty of Rehabilitation and Allied Health Sciences and Department of Biomedical Engineering, Riphah International University, Islamabad 46000, Pakistan
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| |
Collapse
|
13
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
14
|
Sharma N, Luhach K, Golani LK, Singh B, Sharma B. Vinpocetine, a PDE1 modulator, regulates markers of cerebral health, inflammation, and oxidative stress in a rat model of prenatal alcohol-induced experimental attention deficit hyperactivity disorder. Alcohol 2022; 105:25-34. [PMID: 35995260 DOI: 10.1016/j.alcohol.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/26/2023]
Abstract
Prenatal alcohol exposure (PAE) has been shown to induce symptomatology associated with attention deficit hyperactivity disorder (ADHD) by altering neurodevelopmental trajectories. Phosphodiesterase-1 (PDE1) is expressed centrally and has been used in various experimental brain conditions. We investigated the role of vinpocetine, a PDE1 inhibitor, on behavioral phenotypes and important biochemical deficits associated with a PAE rat model of ADHD. Protein markers of cerebral health (synapsin-IIa, BDNF, and pCREB), inflammation (IL-6, IL-10, and TNF-α), and oxidative stress (TBARS, GSH, and SOD) were analyzed in three brain regions (frontal cortex, striatum, and cerebellum). Hyperactivity, inattention, and anxiety introduced in the offspring due to PAE were assayed using open-field, Y-maze, and elevated plus maze, respectively. Administration of vinpocetine (10 & 20 mg/kg, p.o. [by mouth]) to PAE rat offspring for 4 weeks resulted in improvement of the behavioral profile of the animals. Additionally, levels of protein markers such as synapsin-IIa, BDNF, pCREB, IL-10, SOD, and GSH were found to be significantly increased, with a significant reduction in markers such as TNF-α, IL-6, and TBARS in selected brain regions of vinpocetine-treated animals. Vinpocetine, a selective PDE1 inhibitor, rectified behavioral phenotypes associated with ADHD, possibly by improving cerebral function, reducing brain inflammation, and reducing brain oxidative stress. This study provides preliminary analysis and suggests that the PDE1 enzyme may be an important pharmacological tool to study ADHD as a result of PAE.
Collapse
Affiliation(s)
- Niti Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Lalit K Golani
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Bhagwat Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
15
|
Treadmill exercise training improves the high-fat diet-induced behavioral changes in the male rats. Biol Futur 2022; 73:483-493. [PMID: 36495402 DOI: 10.1007/s42977-022-00144-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the effects of treadmill exercise training on obesity-induced behavioral changes in high-fat diet (HFD)-induced male rats. In this study, 40 male Sprague-Dawley rats were divided into 4 groups after they were weaned: Control (C), Exercise (E), Obese (O) and Obese + Exercise (O + E). For the obesity model % 60 high-fat diet were applied. After obesity was induced, rats were either moderate aerobic exercise (treadmill running) trained or left untrained. Different tasks to assess spatial learning and memory (Morris water maze test (MWMT)), depressive-like behavior (forced swimming test(FST), tail suspension test (TST) and anxiety-like behavior (light-dark test (LDT) and open field test (OFT)) were conducted. Exercise caused a significant reduction in duration of immobility in the O group in FST and the decrease in immobility in the O + E rats in TST. The O + E rats demonstrated a significant increase in the time spent in the light box as compared to the O group in the LDT. The O + E rats did not show any behavioral alterations as compared to all the other groups in the OFT. In the O + E group, there was a significant increase in the time spent in the target quadrant compared to the O group in the MWMT. Our results support that treadmill exercise could improve cognitive, depressive-like, anxiety-like behavioral changes in the HFD-induced obese rats.
Collapse
|
16
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
17
|
Chu-Tan JA, Kirkby M, Natoli R. Running to save sight: The effects of exercise on retinal health and function. Clin Exp Ophthalmol 2021; 50:74-90. [PMID: 34741489 DOI: 10.1111/ceo.14023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise to human health have long been recognised. However, only in the past decade have researchers started to discover the molecular benefits that exercise confers, especially to the central nervous system (CNS). These discoveries include the magnitude of molecular messages that are communicated from skeletal muscle to the CNS. Despite these advances in understanding, very limited studies have been conducted to decipher the molecular benefits of exercise in retinal health and disease. Here, we review the latest work on the effects of exercise on the retina and discuss its effects on the wider CNS, with a focus on demonstrating the potential applicability and comparative molecular mechanisms that may be occurring in the retina. This review covers the key molecular pathways where exercise exerts its effects: oxidative stress and mitochondrial health; inflammation; protein aggregation; neuronal health; and tissue crosstalk via extracellular vesicles. Further research on the benefits of exercise to the retina and its molecular messages within extracellular vesicles is highly topical in this field.
Collapse
Affiliation(s)
- Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia.,The Australian National University Medical School, The Australian National University, Acton, Australia
| | - Max Kirkby
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia.,The Australian National University Medical School, The Australian National University, Acton, Australia
| |
Collapse
|
18
|
Limaye NS, Carvalho LB, Kramer S. Effects of Aerobic Exercise on Serum Biomarkers of Neuroplasticity and Brain Repair in Stroke: A Systematic Review. Arch Phys Med Rehabil 2021; 102:1633-1644. [PMID: 33992633 DOI: 10.1016/j.apmr.2021.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To provide a novel overview of the literature and to summarize the evidence for the effects of aerobic exercise (AE) on serum biomarkers neuroplasticity and brain repair in survivors of stroke. DATA SOURCES We conducted a systematic review and searched MEDLINE, Embase, and Cochrane CENTRAL using terms related to AE, neuroplasticity, brain repair, and stroke. STUDY SELECTION Titles, abstracts, and selected full texts were screened by 2 independent reviewers against the following inclusion criteria: including adult survivors of stroke, completing an AE intervention working within the AE capacity, and measuring at least 1 blood biomarker outcome of interest. DATA EXTRACTION Two independent reviewers extracted data and assessed risk of bias using Risk of Bias in Nonrandomized Studies-of Interventions and Cochrane's Risk of Bias 2 tools. DATA SYNTHESIS Nine studies (n=215 participants) were included, reporting on the following outcomes: brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), cortisol, interleukin 6, and myeloperoxidase. A single bout of high-intensity interval training significantly increased BDNF, IGF-1, and VEGF levels, and a 40-45-minute, 24-session, continuous 8-week AE training program significantly increased BDNF levels. No significant difference in response to any other AE intervention was found in other serum biomarkers. CONCLUSIONS AE can significantly increase BDNF, IGF-1, and VEGF across different AE protocols in survivors of stroke. However, more research is needed to determine the optimal exercise intensity and modalities, specifically in survivors of acute and subacute stroke, and how this may relate to functional outcomes.
Collapse
Affiliation(s)
- Neeraj S Limaye
- Melbourne Medical School, University of Melbourne, Parkville, Victoria.
| | - Lilian Braighi Carvalho
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Victoria
| | - Sharon Kramer
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Victoria; School of Nursing and Midwifery, Faculty of Health, Deakin University, Victoria, Australia
| |
Collapse
|
19
|
Rocha LSO, Gama GCB, Rocha RSB, Rocha LDB, Dias CP, Santos LLS, Santos MCDS, Montebelo MIDL, Teodori RM. Constraint Induced Movement Therapy Increases Functionality and Quality of Life after Stroke. J Stroke Cerebrovasc Dis 2021; 30:105774. [PMID: 33848906 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105774] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
This blind randomized clinical trial evaluated the effect of CIMT on the functionality and quality of life (QOL) of chronic hemiparetics. Thirty volunteers were divided into two groups: Control (CG) and CIMT (CIMTG); evaluated before and after 12 and 24 intervention sessions. The scales used were: adapted Fugl-Meyer Motor Assessment (FMA), Modified Ashworth, Stroke Specific Quality Of Life (SS-QOL) and the Functional Reach Test (FRT). The scores for all FMA variables in the CIMTG increased until the 24th session, differing from the pre-treatment. In the CG, the scores increased for pain, coordination/ speed and sensitivity. In the FRT there was an increase in the scores in both groups; after the 12th and 24th sessions, the result of the CIMTG was superior to the CG. For the SS-QOL in the CIMTG, the general score and most of the variables increased, as well as in the CG. Muscle tone in CIMTG was lower compared to CG after 24 sessions. Both protocols used in the study were effective, the CIMT protocol showed benefits in recovering the functionality of the paretic upper limb, in the functional range and in reducing muscle tone, with a consequent improvement in quality of life.
Collapse
Affiliation(s)
- Larissa Salgado Oliveira Rocha
- Physiotherapy Course at the State University of Pará; Belém, Brazil; Postgraduate in Human Movement Sciences at the Methodist University of Piracicaba; Piracicaba, Brazil.
| | | | - Rodrigo Santiago Barbosa Rocha
- Physiotherapy Course at the State University of Pará; Belém, Brazil; Postgraduate in Human Movement Sciences at the Methodist University of Piracicaba; Piracicaba, Brazil
| | | | | | - Luciane Lobato Sobral Santos
- Physiotherapy Course at the State University of Pará; Belém, Brazil; Postgraduate in Human Movement Sciences at the Methodist University of Piracicaba; Piracicaba, Brazil
| | | | | | - Rosana Macher Teodori
- Postgraduate in Human Movement Sciences at the Methodist University of Piracicaba; Piracicaba, Brazil
| |
Collapse
|
20
|
Tamakoshi K, Maeda M, Nakamura S, Murohashi N. Very Early Exercise Rehabilitation After Intracerebral Hemorrhage Promotes Inflammation in the Brain. Neurorehabil Neural Repair 2021; 35:501-512. [PMID: 33825570 DOI: 10.1177/15459683211006337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Very early exercise has been reported to exacerbate motor dysfunction; however, its mechanism is largely unknown. OBJECTIVE This study examined the effect of very early exercise on motor recovery and associated brain damage following intracerebral hemorrhage (ICH) in rats. METHODS Collagenase solution was injected into the left striatum to induce ICH. Rats were randomly assigned to receive placebo surgery without exercise (SHAM) or ICH without (ICH) or with very early exercise within 24 hours of surgery (ICH+VET). We observed sensorimotor behaviors before surgery, and after surgery preexercise and postexercise. Postexercise brain tissue was collected 27 hours after surgery to investigate the hematoma area, brain edema, and Il1b, Tgfb1, and Igf1 mRNA levels in the striatum and sensorimotor cortex using real-time reverse transcription polymerase chain reaction. NeuN, PSD95, and GFAP protein expression was analyzed by Western blotting. RESULTS We observed significantly increased skillful sensorimotor impairment in the horizontal ladder test and significantly higher Il1b mRNA levels in the striatum of the ICH+VET group compared with the ICH group. NeuN protein expression was significantly reduced in both brain regions of the ICH+VET group compared with the SHAM group. CONCLUSION Our results suggest that very early exercise may be associated with an exacerbation of motor dysfunction because of increased neuronal death and region-specific changes in inflammatory factors. These results indicate that implementing exercise within 24 hours after ICH should be performed with caution.
Collapse
|
21
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
22
|
He YY, Wang L, Zhang T, Weng SJ, Lu J, Zhong YM. Aerobic exercise delays retinal ganglion cell death after optic nerve injury. Exp Eye Res 2020; 200:108240. [PMID: 32919994 DOI: 10.1016/j.exer.2020.108240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
Aerobic exercise has been shown to play a crucial role in preventing neurological diseases and improving cognitive function. In the present study, we investigated the effect of treadmill training on retinal ganglion cells (RGCs) following optic nerve transection in adult rats. We exercised the rats on a treadmill for 5 d/week (30 min/d at a rate of 9 m/min) or placed control rats on static treadmills. After 3 weeks of exercise, the left optic nerve of each rat was transected. After the surgery, the rat was exercised for another week. The percentages of surviving RGCs in the axotomized eyes of inactive rats were 67% and 39% at 5 and 7 days postaxotomy, respectively. However, exercised rats had significant more RGCs at 5 (74% survival) and 7 days (48% survival) after axotomy. Moreover, retinal brain-derived neurotrophic factor (BDNF) protein levels were significantly upregulated in response to exercise compared with those in the axotomized eyes of inactive rats. Blocking BNDF signaling during exercise by intraperitoneal injections of ANA-12, a BDNF tropomyosin receptor kinase (TrkB) receptor antagonist, reduced the number of RGCs in exercised rats to the level of RGCs in the inactive rats, effectively abolishing the protection of RGCs afforded by exercise. The results suggest that treadmill training effectively rescues RGCs from neurodegeneration following optic nerve transection by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Yuan-Yuan He
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Zhang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Jun Weng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Lu
- College of Physical & Health, East China Normal University, Shanghai, 200241, China.
| | - Yong-Mei Zhong
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Wang YL, Cheng JC, Chang CP, Su FC, Chen CC. Individualized Running Wheel System with a Dynamically Adjustable Exercise Area and Speed for Rats Following Ischemic Stroke. Med Sci Monit 2020; 26:e924411. [PMID: 32886655 PMCID: PMC7491243 DOI: 10.12659/msm.924411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background An innovative animal running wheel with an individualized design was implemented for the rehabilitation of rats following ischemic stroke. Material/Methods The design of the running wheel platform included the running wheel and a side plate for exercise area adjustments. A U-curve with a width of 2 cm was drawn on the lower half of the side plate for the dynamic adjustments of five infrared (IR) sensors based on the physical fitness of the rats. The individualized training process for this running wheel consisted of 2 days of free training to record their average and maximum speeds, 3 days of progressive training to determine their exercise areas, and 2 weeks of normal training based on their average speeds, maximum speeds, and exercise areas. Blood samples were obtained from the tail veins of all rats before the operations and on Days 14, 21, and 28 postsurgery to measure cortisol levels. The motor function tests were performed on Days 7 and 28 postsurgery. On Day 28 postsurgery, the rats were sacrificed under anesthesia, and their brains were removed for Nissl and H&E staining. Results On Day 28 after surgery, the motor function, lesion volume, and cell damage of the DEARW and control groups differed significantly, indicating that this device is effective for stroke rehabilitation. Conclusions The outcomes of the rats that were rehabilitated using the newly designed training system were better than those of their control-group counterparts, indicating the advantages of this designed system.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jui-Chi Cheng
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| |
Collapse
|
24
|
Chen CC, Chang CP. Development of a three-channel automatic climbing training system for rat rehabilitation after ischemic stroke. ACTA ACUST UNITED AC 2020; 53:e8943. [PMID: 32555931 PMCID: PMC7296713 DOI: 10.1590/1414-431x20208943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/16/2020] [Indexed: 01/21/2023]
Abstract
This paper reports the development of a three-channel automatic speed-matching climbing training system that could train three rats at the same time for rehabilitation after an ischemic stroke. An infrared (IR) remote sensor was installed at the end of each channel to monitor the real-time position of a climbing rat. This research was carried out in five stages: i) system design; ii) hardware circuit; iii) running speed control; iv) functional testing; and v) verification using an animal model of cerebral stroke. The rehabilitated group significantly outperformed the middle cerebral artery occlusion (MCAo) sedentary group in the rota-rod and inclined plate tests 21 days after a stroke. The rehabilitated group also had a cerebral infarction volume of 28.34±19.4%, far below 56.81±18.12% of the MCAo group 28 days after the stroke, validating the effectiveness of this training platform for stroke rehabilitation. The running speed of the climbing rehabilitation training platform was designed to adapt to the physical conditions of subjects, and overtraining injuries can be completely prevented accordingly.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
25
|
Zhang Z, Cao X, Bao X, Zhang Y, Xu Y, Sha D. Cocaine- and amphetamine-regulated transcript protects synaptic structures in neurons after ischemic cerebral injury. Neuropeptides 2020; 81:102023. [PMID: 32005500 DOI: 10.1016/j.npep.2020.102023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
Abstract
Cocaine-regulated and amphetamine-regulated transcript (CART) is a neuropeptide with reported neuroprotective effects in ischemic cerebral injury. However, its mechanism has not yet been elucidated. Herein, we investigated the role and mechanism of CART in synaptic plasticity in neurons after ischemic cerebral stroke. We found that the survival rate of the oxygen-glucose deprivation (OGD) neurons was increased after CART treatment. Moreover, CART treatment significantly attenuated ischemia-induced neuronal synaptic damage and increased synaptophysin expression. In addition, the number of presynaptic vesicles was increased and the postsynaptic density (PSD) was thickened after CART treatment. Mechanistically, CART treatment enhanced the expression of Arc mRNA in a cAMP response element binding protein (CREB) dependent manner in OGD neurons, and blockade of CREB by KG-501 eliminated the protective effect of CART. Collectively, CART protected the synaptic structure in neurons after ischemic cerebral injury by increasing the Arc expression via upregulating p-CREB.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Dujuan Sha
- Department of Emergency, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Effects of exercise timing and intensity on neuroplasticity in a rat model of cerebral infarction. Brain Res Bull 2020; 160:50-55. [PMID: 32305405 DOI: 10.1016/j.brainresbull.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
Exercise therapy plays key roles in functional improvements during neurorehabilitation. However, it may be difficult for some people to properly perform exercise because mobility and endurance might be restricted by neurological deficits due to stroke. Additionally, there is little evidence detailing the biological mechanisms underlying the most effective swimming exercise protocols for neuroplasticity after stroke. Thus, the present study investigated the effects of swimming exercise on neuroplasticity in a cerebral infarction rat model according to the timing and intensity of exercise. A total of 45 male Sprague-Dawley rats (300 ± 50 g, 10 weeks old) were subjected to photothrombotic cerebral infarction and randomly divided into five groups: non-exercise (group A, n = 9); early submaximal (group B, n = 9); early maximal (group C, n = 9); late submaximal (group D, n = 9); and late maximal (group E, n = 9). Swimming exercise was performed five times a week for 4 weeks, and cognition was evaluated with the Morris water maze (MWM) test. Assessments of superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels and immunohistochemical analyses of brain-derived neurotrophic factor (BDNF) were conducted in the ipsilesional hippocampus region. After 4 weeks of exercise, the escape latency was shorter and velocity was greater in group B than in groups A, C, D, and E (p = 0.046, p < 0.001, respectively). Furthermore, SOD activity was higher and MDA levels were lower in group B than in groups A, C, D, and E (p = 0.004, p = 0.019). The immunohistochemistry results revealed that the greatest BDNF immunoreactivity was in group B. Taken together, these results indicate that early submaximal swimming exercise may be the most effective protocol for the recovery of neurological deficits in a rat model of cerebral infarction.
Collapse
|
27
|
Transplantation of Stem Cells from Human Exfoliated Deciduous Teeth Decreases Cognitive Impairment from Chronic Cerebral Ischemia by Reducing Neuronal Apoptosis in Rats. Stem Cells Int 2020; 2020:6393075. [PMID: 32215019 PMCID: PMC7079222 DOI: 10.1155/2020/6393075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are a unique postnatal stem cell population with high self-renewal ability that originates from the cranial neural crest. Since SHED are homologous to the central nervous system, they possess superior capacity to differentiate into neural cells. However, whether and how SHED ameliorate degenerative central nervous disease are unclear. Chronic cerebral ischemia (CCI) is a kind of neurological disease caused by long-term cerebral circulation insufficiency and is characterized by progressive cognitive and behavioral deterioration. In this study, we showed that either systemic transplantation of SHED or SHED infusion into the hippocampus ameliorated cognitive impairment of CCI rats in four weeks after SHED treatment by rescuing the number of neurons in the hippocampus area. Mechanistically, SHED transplantation decreased the apoptosis of neuronal cells in the hippocampus area of CCI rats through downregulation of cleaved caspase-3. In summary, SHED transplantation protected the neuronal function and reduced neuronal apoptosis, resulting in amelioration of cognitive impairment from CCI. Our findings suggest that SHED are a promising stem cell source for cell therapy of neurological diseases in the clinic.
Collapse
|
28
|
Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, Carl D, Khoury JC, Gerson M, Kissela B, Dunning K. Effects of Exercise Intensity on Acute Circulating Molecular Responses Poststroke. Neurorehabil Neural Repair 2020; 34:222-234. [PMID: 31976813 DOI: 10.1177/1545968319899915] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Exercise intensity can influence functional recovery after stroke, but the mechanisms remain poorly understood. Objective. In chronic stroke, an intensity-dependent increase in circulating brain-derived neurotrophic factor (BDNF) was previously found during vigorous exercise. Using the same serum samples, this study tested acute effects of exercise intensity on other circulating molecules related to neuroplasticity, including vascular-endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF1), and cortisol, with some updated analyses involving BDNF. Methods. Using a repeated-measures design, 16 participants with chronic stroke performed 3 exercise protocols in random order: treadmill high-intensity interval training (HIT-treadmill), seated-stepper HIT (HIT-stepper), and treadmill moderate-intensity continuous exercise (MCT-treadmill). Serum molecular changes were compared between protocols. Mediation and effect modification analyses were also performed. Results. VEGF significantly increased during HIT-treadmill, IGF1 increased during both HIT protocols and cortisol nonsignificantly decreased during each protocol. VEGF response was significantly greater for HIT-treadmill versus MCT-treadmill when controlling for baseline. Blood lactate positively mediated the effect of HIT on BDNF and cortisol. Peak treadmill speed positively mediated effects on BDNF and VEGF. Participants with comfortable gait speed ≥0.4 m/s had significantly lower VEGF and higher IGF1 responses, with a lower cortisol response during MCT-treadmill. Conclusions. BDNF and VEGF are promising serum molecules to include in future studies testing intensity-dependent mechanisms of exercise on neurologic recovery. Fast training speed and anaerobic intensity appear to be critical ingredients for eliciting these molecular responses. Serum molecular response differences between gait speed subgroups provide a possible biologic basis for previously observed differences in training responsiveness.
Collapse
Affiliation(s)
| | | | | | | | - Kristal Hatter
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Daniel Carl
- University of Cincinnati, Cincinnati, OH, USA
| | - Jane C Khoury
- University of Cincinnati, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
29
|
Yu KW, Wang CJ, Wu Y, Wang YY, Wang NH, Kuang SY, Liu G, Xie HY, Jiang CY, Wu JF. An enriched environment increases the expression of fibronectin type III domain-containing protein 5 and brain-derived neurotrophic factor in the cerebral cortex of the ischemic mouse brain. Neural Regen Res 2020; 15:1671-1677. [PMID: 32209771 PMCID: PMC7437579 DOI: 10.4103/1673-5374.276339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies have shown that fibronectin type III domain-containing protein 5 (FDNC5) and brain-derived neurotrophic factor (BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia; however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion (pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions (based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities (based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities (based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF (r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval Nos. 20160858A232, 20160860A234) on February 24, 2016.
Collapse
Affiliation(s)
- Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Jie Wang
- Department of Rehabilitation Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nian-Hong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen-Yi Kuang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Cong-Yu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun-Fa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Remarkable cell recovery from cerebral ischemia in rats using an adaptive escalator-based rehabilitation mechanism. PLoS One 2019; 14:e0223820. [PMID: 31603928 PMCID: PMC6788702 DOI: 10.1371/journal.pone.0223820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/01/2019] [Indexed: 12/22/2022] Open
Abstract
Currently, many ischemic stroke patients worldwide suffer from physical and mental impairments, and thus have a low quality of life. However, although rehabilitation is acknowledged as an effective way to recover patients’ health, there does not exist yet an adaptive training platform for animal tests so far. For this sake, this paper aims to develop an adaptive escalator (AE) for rehabilitation of rats with cerebral ischemia. Rats were observed to climb upward spontaneously, and a motor-driven escalator, equipped with a position detection feature and an acceleration/deceleration mechanism, was constructed accordingly as an adaptive training platform. The rehabilitation performance was subsequently rated using an incline test, a rotarod test, the infarction volume, the lesion volume, the number of MAP2 positive cells and the level of cortisol. This paper is presented in 3 parts as follows. Part 1 refers to the escalator mechanism design, part 2 describes the adaptive ladder-climbing rehabilitation mechanism, and part 3 discusses the validation of an ischemic stroke model. As it turned out, a rehabilitated group using this training platform, designated as the AE group, significantly outperformed a control counterpart in terms of a rotarod test. After the sacrifice of the rats, the AE group gave an average infarction volume of (34.36 ± 3.8)%, while the control group gave (66.41 ± 3.1)%, validating the outperformance of the escalator-based rehabilitation platform in a sense. An obvious difference between the presented training platform and conventional counterparts is the platform mechanism, and for the first time in the literature rats can be well and voluntarily rehabilitated at full capacity using an adaptive escalator. Taking into account the physical diversity among rats, the training strength provided was made adaptive as a reliable way to eliminate workout or secondary injury. Accordingly, more convincing arguments can be made using this mental stress-free training platform.
Collapse
|
31
|
Moftah M, Jadavji NM. Role of behavioral training in reducing functional impairments after stroke. Neural Regen Res 2019; 14:1507-1508. [PMID: 31089041 PMCID: PMC6557093 DOI: 10.4103/1673-5374.255967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mahira Moftah
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
32
|
Swenson S, Hamilton J, Robison L, Thanos PK. Chronic aerobic exercise: Lack of effect on brain CB1 receptor levels in adult rats. Life Sci 2019; 230:84-88. [DOI: 10.1016/j.lfs.2019.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/25/2023]
|
33
|
The Impact of Physical Activity Before and After Stroke on Stroke Risk and Recovery: a Narrative Review. Curr Neurol Neurosci Rep 2019; 19:28. [PMID: 31011851 DOI: 10.1007/s11910-019-0949-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE REVIEW Summarising the evidence for pre- and post-stroke physical activity (PA) and exercise to reduce stroke risk, and improve recovery and brain health. RECENT FINDINGS Pre-stroke PA reduces the risk of stroke, and post-stroke PA and exercise reduce cardiovascular risk factors, which can moderate the risk of recurrent strokes. Pre-clinical evidence indicates that exercise enhances neuroplasticity. The results from clinical studies showed that exercise changes brain activity patterns in stroke survivors, which can be a signal neuroplasticity. The intensity of pre- and post-stroke PA and exercise is a key factor with higher intensities leading to greater benefits, including improvement in fitness. Having low fitness levels is an independent predictor for increased risk of stroke. Higher intensity leads to greater benefits; however, the optimum intensity of PA and exercise is yet unknown and needs to be further investigated. Strategies to decrease sedentary behaviour and improve fitness need to be considered.
Collapse
|
34
|
Rahmati M, Kazemi A. Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 2019; 692:185-194. [PMID: 30682386 DOI: 10.1016/j.gene.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Exercise intensity is known to affect neuroplasticity. Although corticosterone and lactate levels have been linked to neuroplasticity, the effect of different endurance exercise intensity-dependent production of these biochemicals on the behaviour of hippocampal growth cone markers remains incompletely explored. Here, we investigated the effects of three different endurance treadmill training episodes for six weeks on GAP-43 and CAP-1 expression in the hippocampus of adult male Wistar rats. Our findings showed that mild exercise intensity (MEI) with a lactate production slightly higher than the lactate threshold (LT) is the optimal form of physical activity for elevating GAP-43 without changing CAP-1 expression. It was further observed that high exercise intensity (HEI) with the highest level of corticosterone and lactate production, reduced GAP-43 expression, yet increased CAP-1 expression in the hippocampus. Like HEI, we further identified similar expression patterns for these markers in low exercise intensity (LEI) with blood lactate production below LT and corticosterone level similar to MEI. The findings suggested that in high-intensity exercise, the negative pattern of hippocampal neuroplasticity depends on both corticosterone and lactate levels, whereas in low-intensity exercise, the most important factor determining this negative pattern is the lactate level. Generally, MEI with a lactate production of slightly higher than LT is the most optimal intensity for improving hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
35
|
Terashi T, Otsuka S, Takada S, Nakanishi K, Ueda K, Sumizono M, Kikuchi K, Sakakima H. Neuroprotective effects of different frequency preconditioning exercise on neuronal apoptosis after focal brain ischemia in rats. Neurol Res 2019; 41:510-518. [PMID: 30822224 DOI: 10.1080/01616412.2019.1580458] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Preconditioning exercise can exert neuroprotective effects after stroke; however, the effects of exercise intensity, frequency, duration are unknown. We investigated the neuroprotective effect of different frequency preconditioning exercise on neuronal apoptosis after cerebral ischemia in rats. METHODS Rats were divided into the following five groups: 5 times a week of exercise (5/w-Ex) group, 3 times a week of exercise (3/w-Ex) group, once a week of exercise (1/w-Ex) group, no exercise (No-Ex) group, and intact control (control) group. Rats were made to run on a treadmill for 30 min per day at a speed of 25 m/min for 3 weeks. After the running program, the rats were subjected to 60-min left middle cerebral artery occlusion. Two days after ischemia, the cerebral infarct volume, neurological and motor function, Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) ratio, expression of caspase-3, and TUNEL positive cells were examined in the cerebral cortex surrounding the ischemic zone. RESULTS The 3/w-Ex and 5/w-Ex groups showed significantly reduced infarct volumes compared with the No-Ex group, but the 1/w-Ex group did not. In addition, the 3/w-Ex and 5/w-Ex groups had improved neurological scores and sensorimotor function compared with the No-Ex group. The Bax/Bcl-2 ratio, expression of caspase-3, and TUNEL-positive cells significantly decreased in the penumbra area in the 3/w-Ex or 5/w-Ex groups compared with the No-Ex group. DISCUSSION Our findings suggested that three times or more per week of high-intensity preconditioning exercise exert neuroprotective effects through the downregulation of the Bax/Bcl-2 ratio and caspase-3 activation after stroke. ABBREVIATIONS TUNEL: terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick and labeling; MCAO:middle cerebral artery occlusion; BAX:Bcl-2-associated X protein; Bcl-2: B-cell lymphoma 2; TTC: 2,3,5-triphenyltetrazorlium chloride.
Collapse
Affiliation(s)
- Takuto Terashi
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Shotaro Otsuka
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Seiya Takada
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Kazuki Nakanishi
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Koki Ueda
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Megumi Sumizono
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Kiyoshi Kikuchi
- b Division of Brain Science, Department of Physiology , Kurume University School of Medicine , Kurume , Japan
| | - Harutoshi Sakakima
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
36
|
Ploughman M, Eskes GA, Kelly LP, Kirkland MC, Devasahayam AJ, Wallack EM, Abraha B, Hasan SMM, Downer MB, Keeler L, Wilson G, Skene E, Sharma I, Chaves AR, Curtis ME, Bedford E, Robertson GS, Moore CS, McCarthy J, Mackay-Lyons M. Synergistic Benefits of Combined Aerobic and Cognitive Training on Fluid Intelligence and the Role of IGF-1 in Chronic Stroke. Neurorehabil Neural Repair 2019; 33:199-212. [PMID: 30816066 DOI: 10.1177/1545968319832605] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paired exercise and cognitive training have the potential to enhance cognition by "priming" the brain and upregulating neurotrophins. METHODS Two-site randomized controlled trial. Fifty-two patients >6 months poststroke with concerns about cognitive impairment trained 50 to 70 minutes, 3× week for 10 weeks with 12-week follow-up. Participants were randomized to 1 of 2 physical interventions: Aerobic (>60% VO2peak using <10% body weight-supported treadmill) or Activity (range of movement and functional tasks). Exercise was paired with 1 of 2 cognitive interventions (computerized dual working memory training [COG] or control computer games [Games]). The primary outcome for the 4 groups (Aerobic + COG, Aerobic + Games, Activity + COG, and Activity + Games) was fluid intelligence measured using Raven's Progressive Matrices Test administered at baseline, posttraining, and 3-month follow-up. Serum neurotrophins collected at one site (N = 30) included brain-derived neurotrophic factor (BDNF) at rest (BDNFresting) and after a graded exercise test (BDNFresponse) and insulin-like growth factor-1 at the same timepoints (IGF-1rest, IGF-1response). RESULTS At follow-up, fluid intelligence scores significantly improved compared to baseline in the Aerobic + COG and Activity + COG groups; however, only the Aerobic + COG group was significantly different (+47.8%) from control (Activity + Games -8.5%). Greater IGF-1response at baseline predicted 40% of the variance in cognitive improvement. There was no effect of the interventions on BDNFresting or BDNFresponse; nor was BDNF predictive of the outcome. CONCLUSIONS Aerobic exercise combined with cognitive training improved fluid intelligence by almost 50% in patients >6 months poststroke. Participants with more robust improvements in cognition were able to upregulate higher levels of serum IGF-1 suggesting that this neurotrophin may be involved in behaviorally induced plasticity.
Collapse
Affiliation(s)
- Michelle Ploughman
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gail A Eskes
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Liam P Kelly
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Megan C Kirkland
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | - Elizabeth M Wallack
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Beraki Abraha
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - S M Mahmudul Hasan
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Matthew B Downer
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Laura Keeler
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Graham Wilson
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Elaine Skene
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Ishika Sharma
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Arthur R Chaves
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Marie E Curtis
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Emily Bedford
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | | | - Craig S Moore
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jason McCarthy
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | |
Collapse
|
37
|
Chen CC, Chang CP, Yang CL. An adaptive fall-free rehabilitation mechanism for ischemic stroke rat patients. Sci Rep 2019; 9:984. [PMID: 30700758 PMCID: PMC6353993 DOI: 10.1038/s41598-018-37282-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
Today’s commercial forced exercise platforms had been validated not as a well-designed rehabilitation environment for rats with a stroke, for the reason that rat with a stroke cannot take exercise at a constant intensity for a long period of time. In light of this, this work presented an adaptive, fall-free ischemic stroke rehabilitation mechanism in an animal model, which was implemented in an infrared-sensing adaptive feedback control running wheel (IAFCRW) platform. Consequently, rats with a stroke can be safely rehabilitated all the time, and particularly at full capacity for approximately one third of a training duration, in a completely fall-free environment according to individual physical differences by repeated use of an acceleration/deceleration mechanism. The performance of this platform was assessed using an animal ischemic stroke model. The IAFCRW therapy regimen was validated to outperform a treadmill and a conventional running wheel counterpart with respect to the reduction in the neurobehavioral deficits caused by middle cerebral artery occlusion (MCAo). IAFCRW is the first adaptive forced exercise training platform short of electrical stimulation-assistance in the literature, and ischemic stroke rats benefit more in terms of the behavioral tests run at the end of a 3-week rehabilitation program after a stroke thereby.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chin-Lung Yang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
38
|
Church G, Parker J, Powell L, Mawson S. The effectiveness of group exercise for improving activity and participation in adult stroke survivors: a systematic review. Physiotherapy 2019; 105:399-411. [PMID: 31003848 DOI: 10.1016/j.physio.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Following post stroke rehabilitation, group exercise interventions can be used to continue improving cardiovascular fitness, activity levels, balance, gait, movement efficiency, and strengthening. However, little is known of the effectiveness of group exercise for improving activity and participation in stroke survivors. OBJECTIVES This review aims to assess the effectiveness of group exercise for improving activity and participation in adult stroke survivors. DATA SOURCES Databases searched were MEDLINE, Web of Science (Core collection), CINAHL, and the Cochrane Library. STUDY ELIGIBILITY CRITERIA Randomised controlled trials (RCTs) of group exercise using validated outcome measures of activity and participation for post stroke rehabilitation. Two independent reviewers assessed all abstracts, extracted data, conducted a narrative synthesis and assessed the quality of all included articles. The Cochrane Risk of Bias Tool assessed methodological quality and included outcome measure quality was assessed. RESULTS 14 RCTs were included (n=624 chronic stroke survivors collectively). Studies ranged between 12 and 243 stroke participants with an average of left:right hemisphere lesions of 32:39 and average age was 66.7 years. Although intervention and control groups improved, no significant difference between group differences were evident. CONCLUSION and implications of key findings: The review found improvements are short-term and less evident at long-term follow up with little improvements in participation after 6months. However, this review was limited to the standard of intervention reporting. Further research should consider consistency in measuring underpinning mechanisms of group exercise interventions, which may explain the lack of activity changes in long-term follow-up. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42017078917.
Collapse
Affiliation(s)
- Gavin Church
- School of Health and Related Research (ScHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, South Yorkshire S14DA, United Kingdom.
| | - Jack Parker
- School of Health and Related Research (ScHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, South Yorkshire S14DA, United Kingdom.
| | - Lauren Powell
- School of Health and Related Research (ScHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, South Yorkshire S14DA, United Kingdom.
| | - Susan Mawson
- School of Health and Related Research (ScHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, South Yorkshire S14DA, United Kingdom.
| |
Collapse
|
39
|
King M, Kelly LP, Wallack EM, Hasan SMM, Kirkland MC, Curtis ME, Chatterjee T, McCarthy J, Ploughman M. Serum levels of insulin-like growth factor-1 and brain-derived neurotrophic factor as potential recovery biomarkers in stroke. Neurol Res 2019; 41:354-363. [PMID: 30620251 DOI: 10.1080/01616412.2018.1564451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Our objectives were: 1) to determine whether maximal aerobic exercise increased serum neurotrophins in chronic stroke and 2) to determine the factors that predict resting and exercise-dependent levels. METHODS We investigated the potential predictors of resting and exercise-dependent serum insulin-like growth factor-1 and brain-derived neurotrophic factor among 35 chronic stroke patients. Predictors from three domains (demographic, disease burden, and cardiometabolic) were entered into 4 separate stepwise linear regression models with outcome variables: resting insulin-like growth factor, resting brain-derived neurotrophic factor, exercise-dependent change in insulin-like growth factor, and exercise-dependent change brain-derived neurotrophic factor. RESULTS Insulin-like growth factor decreased after exercise (p = 0.001) while brain-derived neurotrophic factor did not change (p = 0.38). Greater lower extremity impairment predicted higher resting brain-derived neurotrophic factor (p = 0.004, r2 = 0.23). Higher fluid intelligence predicted greater brain-derived neurotrophic factor response to exercise (p = 0.01, r2 = 0.18). There were no significant predictors of resting or percent change insulin-like growth factor-1. DISCUSSION Biomarkers have the potential to characterize an individual's potential for recovery from stroke. Neurotrophins such as insulin-like growth factor-1 and brain-derived neurotrophic factor are thought to be important in neurorehabilitation; however, the factors that modulate these biomarkers are not well understood. Resting brain-derived neurotrophic factor and percent change in brain-derived neurotrophic factor were related to physical and cognitive recovery in chronic stroke, albeit weakly. Insulin-like growth factor-1 was not an informative biomarker among chronic stroke patients. The novel finding that fluid intelligence positively correlated with exercise-induced change in brain-derived neurotrophic factor warrants further research.
Collapse
Affiliation(s)
- Michael King
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Liam P Kelly
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Elizabeth M Wallack
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - S M Mahmudul Hasan
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Megan C Kirkland
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Marie E Curtis
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Tanaya Chatterjee
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Jason McCarthy
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Michelle Ploughman
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| |
Collapse
|
40
|
Tamakoshi K, Ishida K, Hayao K, Takahashi H, Tamaki H. Behavioral Effect of Short- and Long-Term Exercise on Motor Functional Recovery after Intracerebral Hemorrhage in Rats. J Stroke Cerebrovasc Dis 2018; 27:3630-3635. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/25/2018] [Indexed: 11/25/2022] Open
|
41
|
Song MK, Kim EJ, Kim JK, Park HK, Lee SG. Effect of regular swimming exercise to duration-intensity on neurocognitive function in cerebral infarction rat model. Neurol Res 2018; 41:37-44. [PMID: 30311868 DOI: 10.1080/01616412.2018.1524087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objective: This study investigated the effect of regular swimming exercise according to the duration-intensity on neurocognitive function in a cerebral infarction rat model. Methods: Forty male Sprague-Dawley 10-week-old rats, weighing 300 ± 50 g, were subjected to photothrombotic cerebral infarction. The remaining 36 rats were randomly divided into four groups (n = 9 per group: non-exercise (group A); swimming exercise of short duration-intensity (5 min/day, group B); swimming exercise of moderate duration-intensity (10 min/day, group C); and swimming exercise of long duration-intensity (20 min/day, group D). Exercise was performed five times a week for 4 weeks, beginning the day after cerebral infarction. Neurocognitive function was evaluated with the Morris water maze test. Immunohistochemistry and western blot analysis examined brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) at 4 weeks postinfarction. Results: At 4 weeks postinfarction, escape latency was found to be shorter in group C than in any of groups A, B, or D. Immunohistochemistry revealed the most significant immunoreactivity for BDNF and VEGF in group C. Western blot analysis demonstrated that BDNF and VEGF proteins were markedly expressed in group C. Conclusions: Regular swimming exercise of moderate duration-intensity may be the most effective exercise protocol for the recovery of neurocognitive function in cerebral infarction rat model.
Collapse
Affiliation(s)
- Min-Keun Song
- a Department of Physical & Rehabilitation Medicine , Chonnam National University Hospital & Medical School , Gwangju , Republic of Korea
| | - Eun-Jong Kim
- a Department of Physical & Rehabilitation Medicine , Chonnam National University Hospital & Medical School , Gwangju , Republic of Korea
| | - Jung-Kook Kim
- a Department of Physical & Rehabilitation Medicine , Chonnam National University Hospital & Medical School , Gwangju , Republic of Korea
| | - Hyeng-Kyu Park
- a Department of Physical & Rehabilitation Medicine , Chonnam National University Hospital & Medical School , Gwangju , Republic of Korea
| | - Sam-Gyu Lee
- a Department of Physical & Rehabilitation Medicine , Chonnam National University Hospital & Medical School , Gwangju , Republic of Korea
| |
Collapse
|
42
|
Alcantara CC, García-Salazar LF, Silva-Couto MA, Santos GL, Reisman DS, Russo TL. Post-stroke BDNF Concentration Changes Following Physical Exercise: A Systematic Review. Front Neurol 2018; 9:637. [PMID: 30210424 PMCID: PMC6121011 DOI: 10.3389/fneur.2018.00637] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Research over the last two decades has highlighted the critical role of Brain-derived neurotrophic factor (BDNF) in brain neuroplasticity. Studies suggest that physical exercise may have a positive impact on the release of BDNF and therefore, brain plasticity. These results in animal and human studies have potential implications for the recovery from damage to the brain and for interventions that aim to facilitate neuroplasticity and, therefore, the rehabilitation process. Purpose: The aim of this study was to carry out a systematic review of the literature investigating how aerobic exercises and functional task training influence BDNF concentrations post-stroke in humans and animal models. Data Sources: Searches were conducted in PubMed (via National Library of Medicine), SCOPUS (Elsevier), CINAHL with Full Text (EBSCO), MEDLINE 1946-present with daily updates (Ovid) and Cochrane. Study Selection: All of the database searches were limited to the period from January, 2004 to May, 2017. Data Extraction: Two reviewers extracted study details and data. The methodological quality of the studies that used animal models was assessed using the ARRIVE Guidelines, and the study that evaluated human BDNF was assessed using the PEDro Scale. Data Synthesis: Twenty-one articles were included in this review. BDNF measurements were performed systemically (serum/plasma) or locally (central nervous system). Only one study evaluated human BDNF concentrations following physical exercise, while 20 studies were experimental studies using a stroke model in animals. A wide variation was observed in the training protocol between studies, although treadmill walking was the most common type of intervention among the studies. Studies were of variable quality: the studies that used animal models scored from 8/20 to 15/20 according to the ARRIVE Guidelines. The only study that evaluated human subjects scored 5/10 according to the PEDro scale and, which indicates a quality classified as "fair". Conclusions: The results of the current systematic review suggest that aerobic exercise promotes changes in central BDNF concentrations post-stroke. On the other hand, BDNF responses following functional exercises, such as reaching training and Constraint Induced Movement Therapy (CIMT), seem to be still controversial. Given the lack of studies evaluating post-stroke BDNF concentration following physical exercise in humans, these conclusions are based on animal work.
Collapse
Affiliation(s)
- Carolina C. Alcantara
- Laboratory of Neurological Physiotherapy Research, Physical Therapy Department, Federal University of São Carlos, São Carlos, Brazil
| | - Luisa F. García-Salazar
- Laboratory of Neurological Physiotherapy Research, Physical Therapy Department, Federal University of São Carlos, São Carlos, Brazil
- Escuela de Medicina y Ciencias de la Salud, GI Ciencias de la Rehabilitación, Universidad del Rosario, Bogotá, Colombia
| | - Marcela A. Silva-Couto
- Laboratory of Neurological Physiotherapy Research, Physical Therapy Department, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela L. Santos
- Laboratory of Neurological Physiotherapy Research, Physical Therapy Department, Federal University of São Carlos, São Carlos, Brazil
| | - Darcy S. Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
| | - Thiago L. Russo
- Laboratory of Neurological Physiotherapy Research, Physical Therapy Department, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
43
|
McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Front Behav Neurosci 2018; 12:135. [PMID: 30050416 PMCID: PMC6050361 DOI: 10.3389/fnbeh.2018.00135] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment (EE) has been widely used as a means to enhance brain plasticity mechanisms (e.g., increased dendritic branching, synaptogenesis, etc.) and improve behavioral function in both normal and brain-damaged animals. In spite of the demonstrated efficacy of EE for enhancing brain plasticity, it has largely remained a laboratory phenomenon with little translation to the clinical setting. Impediments to the implementation of enrichment as an intervention for human stroke rehabilitation and a lack of clinical translation can be attributed to a number of factors not limited to: (i) concerns that EE is actually the "normal state" for animals, whereas standard housing is a form of impoverishment; (ii) difficulty in standardizing EE conditions across clinical sites; (iii) the exact mechanisms underlying the beneficial actions of enrichment are largely correlative in nature; (iv) a lack of knowledge concerning what aspects of enrichment (e.g., exercise, socialization, cognitive stimulation) represent the critical or active ingredients for enhancing brain plasticity; and (v) the required "dose" of enrichment is unknown, since most laboratory studies employ continuous periods of enrichment, a condition that most clinicians view as impractical. In this review article, we summarize preclinical stroke recovery studies that have successfully utilized EE to promote functional recovery and highlight the potential underlying mechanisms. Subsequently, we discuss how EE is being applied in a clinical setting and address differences in preclinical and clinical EE work to date. It is argued that the best way forward is through the careful alignment of preclinical and clinical rehabilitation research. A combination of both approaches will allow research to fully address gaps in knowledge and facilitate the implementation of EE to the clinical setting.
Collapse
Affiliation(s)
- Matthew W McDonald
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Kathryn S Hayward
- Stroke Division, Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,NHMRC Centre for Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Ingrid C M Rosbergen
- Division of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia.,Allied Health Services, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Matthew S Jeffers
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| |
Collapse
|
44
|
Choi IA, Lee CS, Kim HY, Choi DH, Lee J. Effect of Inhibition of DNA Methylation Combined with Task-Specific Training on Chronic Stroke Recovery. Int J Mol Sci 2018; 19:ijms19072019. [PMID: 29997355 PMCID: PMC6073594 DOI: 10.3390/ijms19072019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
To develop new rehabilitation therapies for chronic stroke, this study examined the effectiveness of task-specific training (TST) and TST combined with DNA methyltransferase inhibitor in chronic stroke recovery. Eight weeks after photothrombotic stroke, 5-Aza-2'-deoxycytidine (5-Aza-dC) infusion was done on the contralesional cortex for four weeks, with and without TST. Functional recovery was assessed using the staircase test, the cylinder test, and the modified neurological severity score (mNSS). Axonal plasticity and expression of brain-derived neurotrophic factor (BDNF) were determined in the contralateral motor cortex. TST and TST combined with 5-Aza-dC significantly improved the skilled reaching ability in the staircase test and ameliorated mNSS scores and cylinder test performance. TST and TST with 5-Aza-dC significantly increased the crossing fibers from the contralesional red nucleus, reticular formation in medullar oblongata, and dorsolateral spinal cord. Mature BDNF was significantly upregulated by TST and TST combined with 5-Azd-dC. Functional recovery after chronic stroke may involve axonal plasticity and increased mature BDNF by modulating DNA methylation in the contralesional cortex. Our results suggest that combined therapy to enhance axonal plasticity based on TST and 5-Aza-dC constitutes a promising approach for promoting the recovery of function in the chronic stage of stroke.
Collapse
Affiliation(s)
- In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Cheol Soon Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Medical Science Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
45
|
Abraha B, Chaves AR, Kelly LP, Wallack EM, Wadden KP, McCarthy J, Ploughman M. A Bout of High Intensity Interval Training Lengthened Nerve Conduction Latency to the Non-exercised Affected Limb in Chronic Stroke. Front Physiol 2018; 9:827. [PMID: 30013489 PMCID: PMC6036480 DOI: 10.3389/fphys.2018.00827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Evaluate intensity-dependent effects of a single bout of high intensity interval training (HIIT) compared to moderate intensity constant-load exercise (MICE) on corticospinal excitability (CSE) and effects on upper limb performance in chronic stroke. Design: Randomized cross-over trial. Setting: Research laboratory in a tertiary rehabilitation hospital. Participants: Convenience sample of 12 chronic stroke survivors. Outcome measures: Bilateral CSE measures of intracortical inhibition and facilitation, motor thresholds, and motor evoked potential (MEP) latency using transcranial magnetic stimulation. Upper limb functional measures of dexterity (Box and Blocks Test) and strength (pinch and grip strength). Results: Twelve (10 males; 62.50 ± 9.0 years old) chronic stroke (26.70 ± 23.0 months) survivors with moderate level of residual impairment participated. MEP latency from the ipsilesional hemisphere was lengthened after HIIT (pre: 24.27 ± 1.8 ms, and post: 25.04 ± 1.8 ms, p = 0.01) but not MICE (pre: 25.49 ± 1.10 ms, and post: 25.28 ± 1.0 ms, p = 0.44). There were no significant changes in motor thresholds, intracortical inhibition or facilitation. Pinch strength of the affected hand decreased after MICE (pre: 8.96 ± 1.9 kg vs. post: 8.40 ± 2.0 kg, p = 0.02) but not after HIIT (pre: 8.83 ± 2.0 kg vs. post: 8.65 ± 2.2 kg, p = 0.29). Regardless of type of aerobic exercise, higher total energy expenditure was associated with greater increases in pinch strength in the affected hand after exercise (R2 = 0.31, p = 0.04) and decreases in pinch strength of the less affected hand (R2 = 0.26 p = 0.02). Conclusion: A single bout of HIIT resulted in lengthened nerve conduction latency in the affected hand that was not engaged in the exercise. Longer latency could be related to the cross-over effects of fatiguing exercise or to reduced hand spasticity. Somewhat counterintuitively, pinch strength of the affected hand decreased after MICE but not HIIT. Regardless of the structure of exercise, higher energy expended was associated with pinch strength gains in the affected hand and strength losses in the less affected hand. Since aerobic exercise has acute effects on MEP latency and hand strength, it could be paired with upper limb training to potentiate beneficial effects.
Collapse
Affiliation(s)
- Beraki Abraha
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Arthur R Chaves
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Liam P Kelly
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Elizabeth M Wallack
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P Wadden
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jason McCarthy
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Lab, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
46
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
47
|
Allen RS, Hanif AM, Gogniat MA, Prall BC, Haider R, Aung MH, Prunty MC, Mees LM, Coulter MM, Motz CT, Boatright JH, Pardue MT. TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina. Eur J Neurosci 2018. [PMID: 29537701 DOI: 10.1111/ejn.13909] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy is a leading cause of vision loss. Treatment options for early retinopathy are sparse. Exercise protects dying photoreceptors in models of retinal degeneration, thereby preserving vision. We tested the protective effects of exercise on retinal and cognitive deficits in a type 1 diabetes model and determined whether the TrkB pathway mediates this effect. Hyperglycaemia was induced in Long Evans rats via streptozotocin injection (STZ; 100 mg/kg). Following confirmed hyperglycaemia, both control and diabetic rats underwent treadmill exercise for 30 min, 5 days/week at 0 m/min (inactive groups) or 15 m/min (active groups) for 8 weeks. A TrkB receptor antagonist (ANA-12), or vehicle, was injected 2.5 h before exercise training. We measured spatial frequency and contrast sensitivity using optokinetic tracking biweekly post-STZ; retinal function using electroretinography at 4 and 8 weeks; and cognitive function and exploratory behaviour using Y-maze at 8 weeks. Retinal neurotrophin-4 was measured using ELISA. Compared with non-diabetic controls, diabetic rats showed significantly reduced spatial frequency and contrast sensitivity, delayed electroretinogram oscillatory potential and flicker implicit times and reduced cognitive function and exploratory behaviour. Exercise interventions significantly delayed the appearance of all deficits, except for exploratory behaviour. Treatment with ANA-12 significantly reduced this protection, suggesting a TrkB-mediated mechanism. Despite this, no changes in retinal neurotrohin-4 were observed with diabetes or exercise. Exercise protected against early visual and cognitive dysfunction in diabetic rats, suggesting that exercise interventions started after hyperglycaemia diagnosis may be a beneficial treatment. The translational potential is high, given that exercise treatment is non-invasive, patient controlled and inexpensive.
Collapse
Affiliation(s)
- Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam M Hanif
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Marissa A Gogniat
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Brian C Prall
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Raza Haider
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Moe H Aung
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Megan C Prunty
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Lukas M Mees
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Monica M Coulter
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Jeffrey H Boatright
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
48
|
Rezaei R, Nasoohi S, Haghparast A, Khodagholi F, Bigdeli MR, Nourshahi M. High intensity exercise preconditioning provides differential protection against brain injury following experimental stroke. Life Sci 2018. [PMID: 29522768 DOI: 10.1016/j.lfs.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Different modes of physical activity provide cerebrovascular protection against thromboembolic events. Based on recent reports high intensity exercise protocols appear to raise cerebral VEGF levels leading to efficient cerebral angiogenesis. The present study aims to address if moderate continuous training (MCT) and high intensity interval training (HIT) differ in preconditioning against ischemic stroke. METHODS Wistar rats were subjected to HIT or MCT for 8 weeks before transient middle cerebral artery occlusion (tMCAO) surgery. As indexes for improved angiogenic signals, VEGF-A and its pivotal receptor VEGF-R2 were immunoblotted just before occlusive stroke. KEY FINDINGS Both training protocols induced a remarkable protection against neurological deficit and tissue injury following stroke. Cerebral infarctions were better improved in HIT animals which explained the slightly but not significantly higher neurological function. HIT brains developed higher levels of cortical VEGF-A and striatal VEGF-R2. SIGNIFICANCE These data conclude preconditioning with high intensity protocols might excel continued moderate exercise to induce VEGF signaling and alleviate stroke outcomes. Further investigations may provide complementary mechanistic views.
Collapse
Affiliation(s)
- Rasoul Rezaei
- Department of Sport Sciences, Faculty of Educational Sciences and Psychology, Shiraz University, Shiraz, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nourshahi
- Department of Exercise Physiology, School of Physical Education and Sport Sciences, Shahid Beheshti University of Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Harnish SM, Rodriguez AD, Blackett DS, Gregory C, Seeds L, Boatright JH, Crosson B. Aerobic Exercise as an Adjuvant to Aphasia Therapy: Theory, Preliminary Findings, and Future Directions. Clin Ther 2017; 40:35-48.e6. [PMID: 29277374 DOI: 10.1016/j.clinthera.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE This study investigated whether participation in aerobic exercise enhances the effects of aphasia therapy, and the degree to which basal serum brain-derived neurotropic factor (BDNF) concentrations fluctuate after the beginning of aerobic exercise or stretching activities in individuals with poststroke aphasia. METHODS The study used a single-subject, multiple-baseline design. Seven individuals with chronic poststroke aphasia participated in 2 Blocks of aphasia therapy: aphasia therapy alone (Block 1), followed by aphasia therapy with the addition of aerobic activity via bicycle ergometer (n = 5) or stretching (n = 2) (Block 2). Serum BDNF concentrations from blood draws were analyzed in 4 participants who exercised and in 1 participant who stretched. FINDINGS Three of the five exercise participants demonstrated larger Tau-U effects when aphasia therapy was paired with aerobic exercise, whereas 1 of the 2 stretching participants demonstrated a larger effect size when aphasia therapy was paired with stretching. Group-level comparisons revealed a greater overall increase in effect size in the aerobic exercise group, as indicated by differences in Tau-U weighted means. BDNF data showed that all 4 exercise participants demonstrated a decrease in BDNF concentrations during the first 6 weeks of exercise and an increase in BDNF levels near or at baseline during the last 6 weeks of exercise. The stretching participant did not show the same pattern. IMPLICATIONS Additional research is needed to understand the mechanism of effect and to identify the factors that mediate response to exercise interventions, specifically the optimal dose of exercise and timing of language intervention with exercise. ClinicalTrials.gov identifier: NCT01113879.
Collapse
Affiliation(s)
- Stacy M Harnish
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio.
| | - Amy D Rodriguez
- Atlanta VA RR&D Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia
| | | | - Christopher Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina
| | - Lauren Seeds
- Department of Physical Therapy, Brooks Rehabilitation, Jacksonville, Florida
| | - Jeffrey H Boatright
- Atlanta VA RR&D Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia; Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Bruce Crosson
- Atlanta VA RR&D Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Psychology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
50
|
Zhou ZW, Yang QD, Tang QP, Yang J, Guo RJ, Jiang W. Effect of willed movement training on neurorehabilitation after focal cerebral ischemia and on the neural plasticity-associated signaling pathway. Mol Med Rep 2017; 17:1173-1181. [PMID: 29115485 DOI: 10.3892/mmr.2017.7964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Neurorehabilitation training is a therapeutic intervention for the loss of neural function induced by focal cerebral ischemia, however, the effect varies depending on the neurorehabilitation exercises. Willed movement (WM) training is defined as task‑oriented training, which increases enthusiasm of patients to accomplish a specific task. The current study was performed to the evaluate effect of WM training on neurorehabilitation following focal cerebral ischemia, and further investigate the influence on neural plasticity‑associated signaling pathway. Sprague‑Dawley rats following temporary middle cerebral artery occlusion (tMCAO) were randomly divided into four groups: tMCAO (no rehabilitation training), CR (control rehabilitation), EM (environmental modification) and WM groups. Rats in the CR group were forced to exercise (running) in a rotating wheel. In the WM group, food was used to entice rats to climb on a herringbone ladder. Herringbone ladders were also put into the cages of the rats in the CR and EM groups, however without the food attraction. WM group exhibited an improvement in neurobehavioral performance compared with other groups. TTC staining indicated an evident reduction in brain damage in the WM group. There were increased synaptic junctions following WM training, based on the observations of transmission election microscopy. Investigation of the molecular mechanism suggested that WM training conferred the greatest effect on stimulating the extracellular signal‑related kinase (ERK)/cyclic adenosine monophosphate response element‑binding protein 1 (CREB) pathway and glutamate receptor 2 (GluR2)/glutamate receptor interacting protein 1‑associated protein 1 (GRASP‑1)/protein interacting with C‑kinase 1 (PICK1) cascades among groups. Collectively, the improvement of neurobehavioral performance by WM training following tMCAO is suggested to involve the ERK/CREB pathway and GluR2/GRASP‑1/PICK1 cascades. The present study provided a preliminary foundation for future research on the therapeutic effect of WM training against stroke‑induced neuron damage.
Collapse
Affiliation(s)
- Zhi-Wen Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qi-Dong Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing-Ping Tang
- Department of Physiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong-Jing Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wen Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|