1
|
Rossetti MG, Patalay P, Mackey S, Allen NB, Batalla A, Bellani M, Chye Y, Cousijn J, Goudriaan AE, Hester R, Hutchison K, Li CSR, Martin-Santos R, Momenan R, Sinha R, Schmaal L, Sjoerds Z, Solowij N, Suo C, van Holst RJ, Veltman DJ, Yücel M, Thompson PM, Conrod P, Garavan H, Brambilla P, Lorenzetti V. Gender-related neuroanatomical differences in alcohol dependence: findings from the ENIGMA Addiction Working Group. NEUROIMAGE-CLINICAL 2021; 30:102636. [PMID: 33857771 PMCID: PMC8065340 DOI: 10.1016/j.nicl.2021.102636] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
We tested gender differences in brain volumes of alcohol dependent vs control groups. Group differences in brain volumes emerged as gross and widespread. Group-by-gender effects emerged in selected brain regions (cerebellum, amygdala) In dependent users, greater alcohol use predicted smaller amygdala and larger cerebellum GM volume. Our results highlight the need to account for gender differences in MRI studies of alcohol dependence.
Gender-related differences in the susceptibility, progression and clinical outcomes of alcohol dependence are well-known. However, the neurobiological substrates underlying such differences remain unclear. Therefore, this study aimed to investigate gender differences in the neuroanatomy (i.e. regional brain volumes) of alcohol dependence. We examined the volume of a priori regions of interest (i.e., orbitofrontal cortex, hippocampus, amygdala, nucleus accumbens, caudate, putamen, pallidum, thalamus, corpus callosum, cerebellum) and global brain measures (i.e., total grey matter (GM), total white matter (WM) and cerebrospinal fluid). Volumes were compared between 660 people with alcohol dependence (228 women) and 326 controls (99 women) recruited from the ENIGMA Addiction Working Group, accounting for intracranial volume, age and education years. Compared to controls, individuals with alcohol dependence on average had (3–9%) smaller volumes of the hippocampus (bilateral), putamen (left), pallidum (left), thalamus (right), corpus callosum, total GM and WM, and cerebellar GM (bilateral), the latter more prominently in women (right). Alcohol-dependent men showed smaller amygdala volume than control men, but this effect was unclear among women. In people with alcohol dependence, more monthly standard drinks predicted smaller amygdala and larger cerebellum GM volumes. The neuroanatomical differences associated with alcohol dependence emerged as gross and widespread, while those associated with a specific gender may be confined to selected brain regions. These findings warrant future neuroscience research to account for gender differences in alcohol dependence to further understand the neurobiological effects of alcohol dependence.
Collapse
Affiliation(s)
- Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Praveetha Patalay
- Centre for Longitudinal Studies and MRC Unit for Lifelong Health and Ageing, IOE and Population Health Sciences, UCL, United Kingdom
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, & Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Robert Hester
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Kent Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Zsuzsika Sjoerds
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, & Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - Ruth J van Holst
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Dick J Veltman
- Department of Psychiatry, University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, & Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Patricia Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montreal, Quebec, Canada
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Sharma R, Sharma A, Sahota P, Thakkar MM. Orexin gene expression is downregulated in alcohol dependent rats during acute alcohol withdrawal. Neurosci Lett 2020; 739:135347. [PMID: 33011195 DOI: 10.1016/j.neulet.2020.135347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
Alcohol use disorders (AUD) are chronic relapsing brain disorder characterized by compulsive and heavy alcohol consumption. During acute withdrawal, patients with AUD display excessive daytime sleepiness, a condition linked to serious life-threatening complications, however, the mechanism is not known. Orexin and melanin-concentrating hormone (MCH) are the two hypothalamic neuropeptides that regulate many behaviors including sleep-wakefulness, and alcohol consumption, reinforcement, and reinstatement. Importantly, loss of orexin neurons causes narcolepsy, a severe sleep disorder with excessive daytime sleepiness. Does acute alcohol withdrawal reduce orexin gene expression? To investigate this, male Sprague-Dawley rats were divided in two groups: Rats were either administered with alcohol, mixed with infant formula (alcohol group) or control mixture containing water and infant formula (Controls) by gastric intubation every 8 h for 4 days using Majchrowicz's chronic binge drinking protocol. The doses of alcohol were adjusted depending on degree of intoxication, exhibited by animals, prior to each dose. The animals were euthanized after 12 h of last alcohol/water administration. During withdrawal, the hypothalamus was rapidly dissected out, and the expressions of orexin and MCH genes were examined by Real-time PCR. There was a significant reduction in orexin gene expression in rats subjected to alcohol withdrawal as compared to controls. No such change was observed in the MCH gene expression. These results suggest that downregulation of orexin gene expression may be a possible mechanism responsible for excessive daytime sleepiness associated with alcohol withdrawal in patients with AUD.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, 65201, United States
| | - Abhilasha Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, 65201, United States
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, 65201, United States
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, 65201, United States.
| |
Collapse
|
3
|
Gatta E, Guidotti A, Saudagar V, Grayson DR, Aspesi D, Pandey SC, Pinna G. Epigenetic Regulation of GABAergic Neurotransmission and Neurosteroid Biosynthesis in Alcohol Use Disorder. Int J Neuropsychopharmacol 2020; 24:130-141. [PMID: 32968808 PMCID: PMC7883893 DOI: 10.1093/ijnp/pyaa073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is a chronic relapsing brain disorder. GABAA receptor (GABAAR) subunits are a target for the pharmacological effects of alcohol. Neurosteroids play an important role in the fine-tuning of GABAAR function in the brain. Recently, we have shown that AUD is associated with changes in DNA methylation mechanisms. However, the role of DNA methylation in the regulation of neurosteroid biosynthesis and GABAergic neurotransmission in AUD patients remains under-investigated. METHODS In a cohort of postmortem brains from 20 male controls and AUD patients, we investigated the expression of GABAAR subunits and neurosteroid biosynthetic enzymes and their regulation by DNA methylation mechanisms. Neurosteroid levels were quantified by gas chromatography-mass spectrometry. RESULTS The α 2 subunit expression was reduced due to increased DNA methylation at the gene promoter region in the cerebellum of AUD patients, a brain area particularly sensitive to the effects of alcohol. Alcohol-induced alteration in GABAAR subunits was also observed in the prefrontal cortex. Neurosteroid biosynthesis was also affected with reduced cerebellar expression of the 18kDa translocator protein and 3α-hydroxysteroid dehydrogenase mRNAs. Notably, increased DNA methylation levels were observed at the promoter region of 3α-hydroxysteroid dehydrogenase. These changes were associated with markedly reduced levels of allopregnanolone and pregnanolone in the cerebellum. CONCLUSION Given the key role of neurosteroids in modulating the strength of GABAAR-mediated inhibition, our data suggest that alcohol-induced impairments in GABAergic neurotransmission might be profoundly impacted by reduced neurosteroid biosynthesis most likely via DNA hypermethylation.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois,Correspondence: Dr Alessandro Guidotti, Center for Alcohol Research in Epigenetics, Psychiatric Institute - Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612 ()
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Dario Aspesi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Graziano Pinna
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Sureshchandra S, Raus A, Jankeel A, Ligh BJK, Walter NAR, Newman N, Grant KA, Messaoudi I. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci Rep 2019; 9:7847. [PMID: 31127176 PMCID: PMC6534547 DOI: 10.1038/s41598-019-44302-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
It is well established that chronic heavy alcohol drinking (CHD) results in significant organ damage, increased susceptibility to infections, and poor outcomes following injury. In contrast, chronic moderate drinking (CMD) has been associated with improved cardiovascular health and immunity. These differential outcomes have been linked to alterations in both innate and adaptive branches of the immune system; however, the mechanisms remain poorly understood. To address this question, we determined the impact of chronic drinking on the transcriptional and functional responses of peripheral blood mononuclear cells (PBMC) collected from male rhesus macaques classified as CMD or CHD after 12 months of voluntary ethanol self-administration. Our analysis suggests that chronic alcohol drinking, regardless of dose alters resting transcriptomes of PBMC, with the largest impact seen in innate immune cells. These transcriptional changes are partially explained by alterations in microRNA profiles. Additionally, chronic alcohol drinking is associated with a dose dependent heightened inflammatory profiled at resting and following LPS stimulation. Moreover, we observed a dose-dependent shift in the kinetics of transcriptional responses to LPS. These findings may explain the dichotomy in clinical and immunological outcomes observed with moderate versus heavy alcohol drinking.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Anthony Raus
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Brian Jin Kee Ligh
- Department of Biomedical Engineering, University of California-Irvine, 92697, Irvine, CA, USA
| | - Nicole A R Walter
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Natali Newman
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Kathleen A Grant
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA.
| |
Collapse
|
5
|
Zebrafish models of epigenetic regulation of CNS functions. Brain Res Bull 2018; 142:344-351. [DOI: 10.1016/j.brainresbull.2018.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
|
6
|
Louis LK, Gopurappilly R, Surendran H, Dutta S, Pal R. Transcriptional profiling of human neural precursors post alcohol exposure reveals impaired neurogenesis via dysregulation of ERK signaling and miR-145. J Neurochem 2017; 146:47-62. [PMID: 28833141 DOI: 10.1111/jnc.14155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
Abstract
Gestational alcohol exposure causes a range of neuropsychological disorders by modulating neurodevelopmental genes and proteins. The extent of damage depends on the stage of the embryo as well as dosage, duration and frequency of exposure. Here, we investigated the neurotoxic effects of alcohol using human embryonic stem cells. Multiple read-outs were engaged to assess the proliferation and differentiation capacity of neural precursor cells upon exposure to 100 mM ethanol for 48 h corresponding to the blood alcohol levels for binge drinkers. Whole-genome analysis revealed a spatiotemporal dysregulation of neuronal- and glial-specific gene expression that play critical roles in central nervous system (CNS) development. Alterations observed in the transcriptome may be attributed to epigenetic constitution witnessed by differential histone H3 Lys-4/Lys-27 modifications and acetylation status. In-depth mRNA and protein expression studies revealed abrogated extracellular signal-regulated kinases signaling in alcohol-treated cells. Consistent with this finding, ingenuity pathway analysis and micro-RNA profiling demonstrated up-regulation of miR-145 by targeting the neural specifier Sox-2. We also show that the neurite branching complexity of tubulin, beta 3 class III+ neurons was greatly reduced in response to alcohol. Finally, in vivo studies using zebrafish embryos reconfirmed the in vitro findings. Employing molecular endpoints in a human model, this report indicates for the first time that acute alcohol exposure could lead to impaired brain development via perturbation of extracellular signal-regulated kinases pathway and miR-145. However, it still needs to be addressed whether these modulations sustain throughout development, compromising the ability of the individual during adulthood and aging.
Collapse
Affiliation(s)
- Lithin K Louis
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | | - Harshini Surendran
- School of Regenerative Medicine, Manipal University, Bangalore, India
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore, India
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajarshi Pal
- School of Regenerative Medicine, Manipal University, Bangalore, India
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore, India
- School of Life Sciences, TransDisciplinary University, Yelahanka, Bangalore, India
| |
Collapse
|
7
|
Gatta E, Auta J, Gavin DP, Bhaumik DK, Grayson DR, Pandey SC, Guidotti A. Emerging Role of One-Carbon Metabolism and DNA Methylation Enrichment on δ-Containing GABAA Receptor Expression in the Cerebellum of Subjects with Alcohol Use Disorders (AUD). Int J Neuropsychopharmacol 2017; 20:1013-1026. [PMID: 29020412 PMCID: PMC5716183 DOI: 10.1093/ijnp/pyx075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cerebellum is an area of the brain particularly sensitive to the effects of acute and chronic alcohol consumption. Alcohol exposure decreases cerebellar Purkinje cell output by increasing GABA release from Golgi cells onto extrasynaptic α6/δ-containing GABAA receptors located on glutamatergic granule cells. Here, we studied whether chronic alcohol consumption induces changes in GABAA receptor subunit expression and whether these changes are associated with alterations in epigenetic mechanisms via DNA methylation. METHODS We used a cohort of postmortem cerebellum from control and chronic alcoholics, here defined as alcohol use disorders subjects (n=25/group). S-adenosyl-methionine/S-adenosyl-homocysteine were measured by high-performance liquid chromatography. mRNA levels of various genes were assessed by reverse transcriptase-quantitative polymerase chain reaction. Promoter methylation enrichment was assessed using methylated DNA immunoprecipitation and hydroxy-methylated DNA immunoprecipitation assays. RESULTS mRNAs encoding key enzymes of 1-carbon metabolism that determine the S-adenosyl-methionine/S-adenosyl-homocysteine ratio were increased, indicating higher "methylation index" in alcohol use disorder subjects. We found that increased methylation of the promoter of the δ subunit GABAA receptor was associated with reduced mRNA and protein levels in the cerebellum of alcohol use disorder subjects. No changes were observed in α1- or α6-containing GABAA receptor subunits. The expression of DNA-methyltransferases (1, 3A, and 3B) was unaltered, whereas the mRNA level of TET1, which participates in the DNA demethylation pathway, was decreased. Hence, increased methylation of the δ subunit GABAA receptor promoter may result from alcohol-induced reduction of DNA demethylation. CONCLUSION Together, these results support the hypothesis that aberrant DNA methylation pathways may be involved in cerebellar pathophysiology of alcoholism. Furthermore, this work provides novel evidence for a central role of DNA methylation mechanisms in the alcohol-induced neuroadaptive changes of human cerebellar GABAA receptor function.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - James Auta
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - David P Gavin
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Dulal K Bhaumik
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Dennis R Grayson
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Subhash C Pandey
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Alessandro Guidotti
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey),Correspondence: Alessandro Guidotti, MD, Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612 ()
| |
Collapse
|
8
|
Martenson JS, Yamasaki T, Chaudhury NH, Albrecht D, Tomita S. Assembly rules for GABA A receptor complexes in the brain. eLife 2017; 6:27443. [PMID: 28816653 PMCID: PMC5577914 DOI: 10.7554/elife.27443] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
GABAA receptor (GABAAR) pentamers are assembled from a pool of 19 subunits, and variety in subunit combinations diversifies GABAAR functions to tune brain activity. Pentamers with distinct subunit compositions localize differentially at synaptic and non-synaptic sites to mediate phasic and tonic inhibition, respectively. Despite multitudes of theoretical permutations, limited subunit combinations have been identified in the brain. Currently, no molecular model exists for combinatorial GABAAR assembly in vivo. Here, we reveal assembly rules of native GABAAR complexes that explain GABAAR subunit subcellular distributions using mice and Xenopus laevis oocytes. First, α subunits possess intrinsic signals to segregate into distinct pentamers. Second, γ2 is essential for GABAAR assembly with Neuroligin-2 (NL2) and GARLHs, which localize GABAARs at synapses. Third, δ suppresses α6 synaptic localization by preventing assembly with GARLHs/NL2. These findings establish the first molecular model for combinatorial GABAAR assembly in vivo and reveal an assembly pathway regulating GABAAR synaptic localization.
Collapse
Affiliation(s)
- James S Martenson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, United States
| | - Tokiwa Yamasaki
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, United States
| | - Nashid H Chaudhury
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, United States
| | - David Albrecht
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, United States
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
9
|
Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017; 122:85-99. [PMID: 28108359 DOI: 10.1016/j.neuropharm.2017.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Abstract
Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
10
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
11
|
Valenzuela CF, Jotty K. Mini-Review: Effects of Ethanol on GABAA Receptor-Mediated Neurotransmission in the Cerebellar Cortex--Recent Advances. THE CEREBELLUM 2016; 14:438-46. [PMID: 25575727 DOI: 10.1007/s12311-014-0639-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies from several laboratories have shown that ethanol impairs cerebellar function, in part, by altering GABAergic transmission. Here, we discuss recent advances in our understanding of the acute effects of ethanol on GABA(A) receptor-mediated neurotransmission at cerebellar cortical circuits, mainly focusing on electrophysiological studies with slices from laboratory animals. These studies have shown that acute ethanol exposure increases GABA release at molecular layer interneuron-to-Purkinje cell synapses and also at reciprocal synapses between molecular layer interneurons. In granule cells, studies with rat cerebellar slices have consistently shown that acute ethanol exposure both potentiates tonic currents mediated by extrasynaptic GABA(A) receptors and also increases the frequency of spontaneous inhibitory postsynaptic currents mediated by synaptic GABA(A) receptors. These effects have been also documented in some granule cells from mice and nonhuman primates. Currently, there are two distinct models on how ethanol produces these effects. In one model, ethanol primarily acts by directly potentiating extrasynaptic GABA(A) receptors, including a population that excites granule cell axons and stimulates glutamate release onto Golgi cells. In the other model, ethanol acts indirectly by increasing spontaneous Golgi cell firing via inhibition of the Na(+)/K(+) ATPase, a quinidine-sensitive K(+) channel, and neuronal nitric oxide synthase. It was also demonstrated that a direct inhibitory effect of ethanol on tonic currents can be unmasked under conditions of low protein kinase C activity. In the last section, we briefly discuss studies on the chronic effect of ethanol on cerebellar GABA(A) receptor-mediated transmission and highlight potential areas where future research is needed.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA,
| | | |
Collapse
|
12
|
Bekdash RA, Harrison NL. Downregulation of Gabra4 expression during alcohol withdrawal is mediated by specific microRNAs in cultured mouse cortical neurons. Brain Behav 2015; 5:e00355. [PMID: 26357588 PMCID: PMC4559018 DOI: 10.1002/brb3.355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alcohol abuse and dependence are a serious public health problem. A large number of alcohol-regulated genes, (ARGs) are known to be influenced by alcohol use and withdrawal (AW), and recent evidence suggests that neuroadaptation to alcohol may be due in part to epigenetic changes in the expression of ARGs. Gabra4, which encodes the α4 subunit of GABAA receptors (GABAARs), is one of a number of ARGs that show remarkable plasticity in response to alcohol, being rapidly upregulated by acute alcohol exposure. This study addressed the effects of AW on changes in the expression of Gabra4 and related genes that encode other subunits of GABAARs, and the potential regulation of Gabra4 by microRNAs. METHODS We studied gene and microRNAs expression, using RT-PCR and microRNA microarray in cultured cortical neurons treated with alcohol, which was then removed in order to simulate AW in vitro. We also used microRNA mimics or inhibitors, and a promoter-reporter construct carrying the 3'UTR of Gabra4. RESULTS Eleven hours after removal of alcohol, Gabra4 was downregulated, with a modest increase in the expression of Gabrg2, but no change in the expression of Gabra1, Gabrd, or Gabrb2. microRNA profiling in neurons undergoing AW revealed upregulation in the expression of miR-155, miR-186, miR-24, and miR-375 after 8 h of AW. Transfection with molecular mimics of miR-186, miR-24, or miR-375 also downregulated Gabra4 expression, whereas transfection with the corresponding inhibitors of these microRNAs normalized Gabra4 expression in AW neurons to the level measured in control neurons. Promoter-reporter experiments supported the idea that miR-155, miR-186, miR-24, miR-27b, or miR-375 bind to the 3'UTR of Gabra4 and thereby inhibit protein production. CONCLUSIONS Our data suggest that AW decreases Gabra4 expression, and that this may be mediated in part by the induction of specific microRNAs in cortical neurons during AW.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Anesthesiology, Columbia UniversityNew York, New York, 10032
| | - Neil L Harrison
- Department of Anesthesiology, Columbia UniversityNew York, New York, 10032
- Department of Pharmacology, Columbia UniversityNew York, New York, 10032
| |
Collapse
|
13
|
Hengen KB, Nelson NR, Stang KM, Johnson SM, Smith SM, Watters JJ, Mitchell GS, Behan M. Daily isoflurane exposure increases barbiturate insensitivity in medullary respiratory and cortical neurons via expression of ε-subunit containing GABA ARs. PLoS One 2015; 10:e0119351. [PMID: 25748028 PMCID: PMC4352015 DOI: 10.1371/journal.pone.0119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
The parameters governing GABAA receptor subtype expression patterns are not well understood, although significant shifts in subunit expression may support key physiological events. For example, the respiratory control network in pregnant rats becomes relatively insensitive to barbiturates due to increased expression of ε-subunit-containing GABAARs in the ventral respiratory column. We hypothesized that this plasticity may be a compensatory response to a chronic increase in inhibitory tone caused by increased central neurosteroid levels. Thus, we tested whether increased inhibitory tone was sufficient to induce ε-subunit upregulation on respiratory and cortical neurons in adult rats. Chronic intermittent increases in inhibitory tone in male and female rats was induced via daily 5-min exposures to 3% isoflurane. After 7d of treatment, phrenic burst frequency was less sensitive to barbiturate in isoflurane-treated male and female rats in vivo. Neurons in the ventral respiratory group and cortex were less sensitive to pentobarbital in vitro following 7d and 30d of intermittent isoflurane-exposure in both male and female rats. The pentobarbital insensitivity in 7d isoflurane-treated rats was reversible after another 7d. We hypothesize that increased inhibitory tone in the respiratory control network and cortex causes a compensatory increase in ε-subunit-containing GABAARs.
Collapse
Affiliation(s)
- Keith B. Hengen
- Neuroscience Training Program, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Nathan R. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Kyle M. Stang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephen M. Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephanie M. Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Altered expression of δGABAA receptors in health and disease. Neuropharmacology 2014; 88:24-35. [PMID: 25128850 DOI: 10.1016/j.neuropharm.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are expressed in multiple types of neurons throughout the central nervous system, where they generate a tonic conductance that shapes neuronal excitability and synaptic plasticity. These receptors regulate a variety of important behavioral functions, including memory, nociception and anxiety, and may also modulate neurogenesis. Given their functional significance, δGABAA receptors are considered to be novel therapeutic targets for the treatment of memory dysfunction, pain, insomnia and mood disorders. These receptors are highly responsive to sedative-hypnotic drugs, general anesthetics and neuroactive steroids. A further remarkable feature of δGABAA receptors is that their expression levels are highly dynamic and fluctuate substantially during development and in response to physiological changes including stress and the reproductive cycle. Furthermore, the expression of these receptors varies in pathological conditions such as alcoholism, fragile X syndrome, epilepsy, depression, schizophrenia, mood disorders and traumatic brain injury. Such fluctuations in receptor expression have significant consequences for behavior and may alter responsiveness to therapeutic drugs. This review considers the alterations in the expression of δGABAA receptors associated with various states of health and disease and the implications of these changes.
Collapse
|
15
|
Mohr C, Kolotushkina O, Kaplan JS, Welsh J, Daunais JB, Grant KA, Rossi DJ. Primate cerebellar granule cells exhibit a tonic GABAAR conductance that is not affected by alcohol: a possible cellular substrate of the low level of response phenotype. Front Neural Circuits 2013; 7:189. [PMID: 24324408 PMCID: PMC3840389 DOI: 10.3389/fncir.2013.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/08/2013] [Indexed: 11/13/2022] Open
Abstract
In many rodent brain regions, alcohol increases vesicular release of GABA, resulting in an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and the magnitude of tonic GABAA receptor (GABAAR) currents. A neglected issue in translating the rodent literature to humans is the possibility that phylogenetic differences alter the actions of alcohol. To address this issue we made voltage-clamp recordings from granule cells (GCs) in cerebellar slices from the non-human primate (NHP), Macaca fascicularis. We found that similar to Sprague Dawley rats (SDRs), NHP GCs exhibit a tonic conductance generated by α6δ subunit containing GABAARs, as evidenced by its blockade by the broad spectrum GABAAR antagonist, GABAzine (10 μM), inhibition by α6 selective antagonist, furosemide (100 μM), and enhancement by THDOC (10-20 nM) and THIP (500 nM). In contrast to SDR GCs, in most NHP GCs (~60%), application of EtOH (25-105 mM) did not increase sIPSC frequency or the tonic GABAAR current. In a minority of cells (~40%), EtOH did increase sIPSC frequency and the tonic current. The relative lack of response to EtOH was associated with reduced expression of neuronal nitric oxide synthase (nNOS), which we recently reported mediates EtOH-induced enhancement of vesicular GABA release in rats. The EtOH-induced increase in tonic GABAAR current was significantly smaller in NHPs than in SDRs, presumably due to less GABA release, because there were no obvious differences in the density of GABAARs or GABA transporters between SDR and NHP GCs. Thus, EtOH does not directly modulate α6δ subunit GABAARs in NHPs. Instead, EtOH enhanced GABAergic transmission is mediated by enhanced GABA release. Further, SDR GC responses to alcohol are only representative of a subpopulation of NHP GCs. This suggests that the impact of EtOH on NHP cerebellar physiology will be reduced compared to SDRs, and will likely have different computational and behavioral consequences.
Collapse
Affiliation(s)
- Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
17
|
Shen Y, Lindemeyer AK, Spigelman I, Sieghart W, Olsen RW, Liang J. Plasticity of GABAA receptors after ethanol pre-exposure in cultured hippocampal neurons. Mol Pharmacol 2011; 79:432-42. [PMID: 21163967 PMCID: PMC3061361 DOI: 10.1124/mol.110.068650] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/15/2010] [Indexed: 12/23/2022] Open
Abstract
Alcohol use causes many physiological changes in brain with behavioral sequelae. We previously observed (J Neurosci 27:12367-12377, 2007) plastic changes in hippocampal slice recordings paralleling behavioral changes in rats treated with a single intoxicating dose of ethanol (EtOH). Here, we were able to reproduce in primary cultured hippocampal neurons many of the effects of in vivo EtOH exposure on GABA(A) receptors (GABA(A)Rs). Cells grown 11 to 15 days in vitro demonstrated GABA(A)R δ subunit expression and sensitivity to enhancement by short-term exposure to EtOH (60 mM) of GABA(A)R-mediated tonic current (I(tonic)) using whole-cell patch-clamp techniques. EtOH gave virtually no enhancement of mIPSCs. Cells pre-exposed to EtOH (60 mM) for 30 min showed, 1 h after EtOH withdrawal, a 50% decrease in basal I(tonic) magnitude and tolerance to short-term EtOH enhancement of I(tonic), followed by reduced basal mIPSC area at 4 h. At 24 h, we saw considerable recovery in mIPSC area and significant potentiation by short-term EtOH; in addition, GABA(A)R currents exhibited reduced enhancement by benzodiazepines. These changes paralleled significant decreases in cell-surface expression of normally extrasynaptic δ and α4 GABA(A)R subunits as early as 20 min after EtOH exposure and reduced α5-containing GABA(A)Rs at 1 h, followed by a larger reduction of normally synaptic α1 subunit at 4 h, and then by increases in α4γ2-containing cell-surface receptors by 24 h. Measuring internalization of biotinylated GABA(A)Rs, we showed for the first time that the EtOH-induced loss of I(tonic) and cell-surface δ/α4 20 min after withdrawal results from increased receptor endocytosis rather than decreased exocytosis.
Collapse
Affiliation(s)
- Yi Shen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sharma R, Engemann S, Sahota P, Thakkar MM. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence. J Neurochem 2010; 115:782-94. [PMID: 20807311 PMCID: PMC2970767 DOI: 10.1111/j.1471-4159.2010.06980.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insomnia is a severe symptom of alcohol withdrawal; however, the underlying neuronal mechanism is yet unknown. We hypothesized that chronic ethanol exposure will impair basal forebrain (BF) adenosinergic mechanism resulting in insomnia-like symptoms. We performed a series of experiments in Sprague-Dawley rats to test our hypothesis. We used Majchrowicz's chronic binge ethanol protocol to induce ethanol dependency. Our first experiment verified the effects of ethanol withdrawal on sleep-wakefulness. Significant increase in wakefulness was observed during ethanol withdrawal. Next, we examined c-Fos expression (marker of neuronal activation) in BF wake-promoting neurons during ethanol withdrawal. There was a significant increase in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Our third experiment examined the effects of ethanol withdrawal on sleep deprivation induced increase in BF adenosine levels. Sleep deprivation did not increase BF adenosine levels in ethanol dependent rats. Our last experiment examined the effects of ethanol withdrawal on equilibrative nucleoside transporter 1 and A1 receptor expression in the BF. There was a significant reduction in A1 receptor and equilibrative nucleoside transporter 1 expression in the BF of ethanol dependent rats. Based on these results, we suggest that insomnia observed during ethanol withdrawal is caused because of impaired adenosinergic mechanism in the BF.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri 65210, USA
| | | | | | | |
Collapse
|
19
|
Thakkar MM, Engemann SC, Sharma R, Mohan RR, Sahota P. Sleep-wakefulness in alcohol preferring and non-preferring rats following binge alcohol administration. Neuroscience 2010; 170:22-7. [PMID: 20621165 DOI: 10.1016/j.neuroscience.2010.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
The alcohol-preferring (P) rat is a valid animal model of alcoholism. However, the effect of alcohol on sleep in P or alcohol non-preferring (NP) rats is unknown. Since alcohol consumption has tremendous impact on sleep, the present study compared the effects of binge alcohol administration on sleep-wakefulness in P and NP rats. Using standard surgical procedures, the P and NP rats were bilaterally implanted with sleep recording electrodes. Following post-operative recovery and habituation, pre-ethanol (baseline) sleep-wakefulness was electrographically recorded for 48 h. Subsequently, ethanol was administered beginning with a priming dose of 5 g/Kg followed by two doses of 2 g/Kg every 8 h on the first day and three doses of 3 g/Kg/8 h on the second day. On the following day (post-ethanol), undisturbed sleep-wakefulness was electrographically recorded for 24 h. Our initial results suggest that, during baseline conditions, the time spent in each of the three behavioral states: wakefulness, non-rapid eye movement (NREM) sleep and REM sleep, was comparable between P and NP rats. However, the P rats were more susceptible to changes in sleep-wakefulness following 2 days of binge ethanol treatment. As compared to NP rats, the P rats displayed insomnia like symptoms including a significant reduction in the amount of time spent in NREM sleep coupled with a significant increase in wakefulness on post-ethanol day. Subsequent analysis revealed that binge ethanol induced increased wakefulness and reduced NREM sleep in P rats occurred mainly in the dark period. This is the first study that: (1) demonstrates spontaneous sleep-wake profile in P and NP rats, and (2) compares the effects of binge ethanol treatment on sleep in P and NP rats. Our results suggest that, as compared to NP rats, the P rats were more susceptible to sleep disruptions after binge ethanol treatment. In addition, the P rats exhibited insomnia-like symptoms observed during abstinence from alcohol in human subjects.
Collapse
Affiliation(s)
- M M Thakkar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201-5297,USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
It is well established that the continued intake of drugs of abuse is reinforcing-that is repeated consumption increases preference. This has been shown in some studies to extend to other drugs of abuse; use of one increases preference for another. In particular, the present review deals with the interaction of nicotine and alcohol as it has been shown that smoking is a risk factor for alcoholism and alcohol use is a risk factor to become a smoker. The review discusses changes in the brain caused by chronic nicotine and chronic alcohol intake to approach the possible mechanisms by which one drug increases the preference for another. Chronic nicotine administration was shown to affect nicotine receptors in the brain, affecting not only receptor levels and distribution, but also receptor subunit composition, thus affecting affinity to nicotine. Other receptor systems are also affected among others catecholamine, glutamate, GABA levels and opiate and cannabinoid receptors. In addition to receptor systems and transmitters, there are endocrine, metabolic and neuropeptide changes as well induced by nicotine. Similarly chronic alcohol intake results in changes in the brain, in multiple receptors, transmitters and peptides as discussed in this overview and also illustrated in the tables. The changes are sex and age-dependent-some changes in males are different from those in females and in general adolescents are more sensitive to drug effects than adults. Although nicotine and alcohol interact-not all the changes induced by the combined intake of both are additive-some are opposing. These opposing effects include those on locomotion, acetylcholine metabolism, nicotine binding, opiate peptides, glutamate transporters and endocannabinoid content among others. The two compounds lower the negative withdrawal symptoms of each other which may contribute to the increase in preference, but the mechanism by which preference increases-most likely consists of multiple components that are not clear at the present time. As the details of induced changes of nicotine and alcohol differ, it is likely that the mechanisms of increasing nicotine preference may not be identical to that of increasing alcohol preference. Stimulation of preference of yet other drugs may again be different -representing one aspect of drug specificity of reward mechanisms.
Collapse
Affiliation(s)
- A Lajtha
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | |
Collapse
|
21
|
Mancinelli R, Franchitto A, Gaudio E, Onori P, Glaser S, Francis H, Venter J, Demorrow S, Carpino G, Kopriva S, White M, Fava G, Alvaro D, Alpini G. After damage of large bile ducts by gamma-aminobutyric acid, small ducts replenish the biliary tree by amplification of calcium-dependent signaling and de novo acquisition of large cholangiocyte phenotypes. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1790-1800. [PMID: 20185575 PMCID: PMC2843470 DOI: 10.2353/ajpath.2010.090677] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2009] [Indexed: 01/06/2023]
Abstract
Large cholangiocytes secrete bicarbonate in response to secretin and proliferate after bile duct ligation by activation of cyclic adenosine 3', 5'-monophosphate signaling. The Ca(2+)-dependent adenylyl cyclase 8 (AC8, expressed by large cholangiocytes) regulates secretin-induced choleresis. Ca(2+)-dependent protein kinase C (PKC) regulates small cholangiocyte function. Because gamma-aminobutyric acid (GABA) affects cell functions by activation of both Ca(2+) signaling and inhibition of AC, we sought to develop an in vivo model characterized by large cholangiocyte damage and proliferation of small ducts. Bile duct ligation rats were treated with GABA for one week, and we evaluated: GABA(A), GABA(B), and GABA(C) receptor expression; intrahepatic bile duct mass (IBDM) and the percentage of apoptotic cholangiocytes; secretin-stimulated choleresis; and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation and activation of Ca(2+-)dependent PKC isoforms and AC8 expression. We found that both small and large cholangiocytes expressed GABA receptors. GABA: (i) induced apoptosis of large cholangiocytes and reduced large IBDM; (ii) decreased secretin-stimulated choleresis; and (iii) reduced ERK1/2 phosphorylation and AC8 expression in large cholangiocytes. Small cholangiocytes: (i) proliferated leading to increased IBDM; (ii) displayed activation of PKCbetaII; and (iii) de novo expressed secretin receptor, cystic fibrosis transmembrane regulator, Cl(-)/HCO(3)(-) anion exchanger 2 and AC8, and responded to secretin. Therefore, in pathologies of large ducts, small ducts replenish the biliary epithelium by amplification of Ca(2+)-dependent signaling and acquisition of large cholangiocyte phenotypes.
Collapse
Affiliation(s)
- Romina Mancinelli
- Texas A & M Health Science Center, Medical Research Building, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
23
|
Abstract
There is no specialized alcohol addiction area in the brain; rather, alcohol acts on a wide range of excitatory and inhibitory nervous networks to modulate neurotransmitters actions by binding with and altering the function of specific proteins. With no hemato-encephalic barrier for alcohol, its actions are strongly related to the amount of intake. Heavy alcohol intake is associated with both structural and functional changes in the central nervous system with long-term neuronal adaptive changes contributing to the phenomena of tolerance and withdrawal. The effects of alcohol on the function of neuronal networks are heterogeneous. Because ethanol affects neural activity in some brain sites but is without effect in others, its actions are analyzed in terms of integrated connectivities in the functional circuitry of neuronal networks, which are of particular interest because of the cognitive interactions discussed in the manuscripts contributing to this review. Recent molecular data are reviewed as a support for the other contributions dealing with cognitive disturbances related to alcohol acute and addicted consumption.
Collapse
Affiliation(s)
- Claude Tomberg
- Brain Research Unit, Faculty of Medicine and CENOLI, Free University of Brussels, Belgium
| |
Collapse
|
24
|
Pueta M, Abate P, Haymal OB, Spear NE, Molina JC. Ethanol exposure during late gestation and nursing in the rat: effects upon maternal care, ethanol metabolism and infantile milk intake. Pharmacol Biochem Behav 2008; 91:21-31. [PMID: 18602418 PMCID: PMC2568972 DOI: 10.1016/j.pbb.2008.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/23/2022]
Abstract
Ethanol experiences, during late gestation as well as during nursing, modify the behavioral dynamics of the dam/pup dyad, and leads to heightened ethanol intake in the offspring. This study focuses on: a) behavioral and metabolic changes in intoxicated dams with previous exposure to ethanol during pregnancy and b) infantile consumption of milk when the dam is either under the effects of ethanol or sober. Pregnant rats received water, 1.0 or 2.0 g/kg ethanol, and were administered with water or ethanol during the postpartum period. Intoxication during nursing disrupted the capability of the dam to retrieve the pups and to adopt a crouching posture. These disruptions were attenuated when dams had exposure to ethanol during pregnancy. Ethanol experiences during gestation did not affect pharmacokinetic processes during nursing, whereas progressive postpartum ethanol experience resulted in metabolic tolerance. Pups suckling from intoxicated dams, with previous ethanol experiences, ingested more milk than did infants suckling from ethanol-intoxicated dams without such experience. Ethanol gestational experience results in subsequent resistance to the drug's disruptions in maternal care. Consequently, better maternal care by an intoxicated dam with ethanol experience during gestation facilitates access of pups to milk which could be contaminated with ethanol.
Collapse
Affiliation(s)
- Mariana Pueta
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC - CONICET), Córdoba, C.P 5016, Argentina.
| | | | | | | | | |
Collapse
|