1
|
Kelly L, Brown C, Gibbard AG, Jackson T, Swinny JD. Subunit-specific expression and function of AMPA receptors in the mouse locus coeruleus. J Anat 2023; 243:813-825. [PMID: 37391270 PMCID: PMC10557397 DOI: 10.1111/joa.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The locus coeruleus (LC) provides the principal supply of noradrenaline (NA) to the brain, thereby modulating an array of brain functions. The release of NA, and therefore its impact on the brain, is governed by LC neuronal excitability. Glutamatergic axons, from various brain regions, topographically innervate different LC sub-domains and directly alter LC excitability. However, it is currently unclear whether glutamate receptor sub-classes, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, are divergently expressed throughout the LC. Immunohistochemistry and confocal microscopy were used to identify and localise individual GluA subunits in the mouse LC. Whole-cell patch clamp electrophysiology and subunit-preferring ligands were used to assess their impact on LC spontaneous firing rate (FR). GluA1 immunoreactive clusters were associated with puncta immunoreactive for VGLUT2 on somata, and VGLUT1 on distal dendrites. GluA4 was associated with these synaptic markers only in the distal dendrites. No specific signal was detected for the GluA2-3 subunits. The GluA1/2 receptor agonist (S)-CPW 399 increased LC FR, whilst the GluA1/3 receptor antagonist philanthotoxin-74 decreased it. 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide (PEPA), a positive allosteric modulator of GluA3/4 receptors, had no significant effect on spontaneous FR. The data suggest distinct AMPA receptor subunits are targeted to different LC afferent inputs and have contrasting effects on spontaneous neuronal excitability. This precise expression profile could be a mechanism for LC neurons to integrate diverse information contained in various glutamate afferents.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Christopher Brown
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Adina G. Gibbard
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Torquil Jackson
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Jerome D. Swinny
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
2
|
Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K + Channels. Int J Mol Sci 2022; 23:ijms232315334. [PMID: 36499661 PMCID: PMC9738708 DOI: 10.3390/ijms232315334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-à-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.
Collapse
|
3
|
Perdikaris P, Dermon CR. Behavioral and neurochemical profile of MK-801 adult zebrafish model: Forebrain β 2-adrenoceptors contribute to social withdrawal and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110494. [PMID: 34896197 DOI: 10.1016/j.pnpbp.2021.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/29/2023]
Abstract
Deficits in social communication and interaction are core clinical symptoms characterizing multiple neuropsychiatric conditions, including autism spectrum disorder (ASD) and schizophrenia. Interestingly, elevated anxiety levels are a common comorbid psychopathology characterizing individuals with aberrant social behavior. Despite recent progress, the underlying neurobiological mechanisms that link anxiety with social withdrawal remain poorly understood. The present study developed a zebrafish pharmacological model displaying social withdrawal behavior, following a 3-h exposure to 4 μΜ (+)-MK-801, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, for 7 days. Interestingly, MK-801-treated zebrafish displayed elevated anxiety levels along with higher frequency of stereotypical behaviors, rendering this zebrafish model appropriate to unravel a possible link of catecholaminergic and ASD-like phenotypes. MK-801-treated zebrafish showed increased telencephalic protein expression of metabotropic glutamate 5 receptor (mGluR5), dopamine transporter (DAT) and β2-adrenergic receptors (β2-ARs), supporting the presence of excitation/inhibition imbalance along with altered dopaminergic and noradrenergic activity. Interestingly, β2-ARs expression, was differentially regulated across the Social Decision-Making (SDM) network nodes, exhibiting increased levels in ventral telencephalic area (Vv), a key-area integrating reward and social circuits but decreased expression in dorso-medial telencephalic area (Dm) and anterior tuberal nucleus (ATN). Moreover, the co-localization of β2-ARs with elements of GABAergic and glutamatergic systems, as well as with GAP-43, a protein indicating increased brain plasticity potential, support the key-role of β2-ARs in the MK-801 zebrafish social dysfunctions. Our results highlight the importance of the catecholaminergic neurotransmission in the manifestation of ASD-like behavior, representing a site of potential interventions for amelioration of ASD-like symptoms.
Collapse
Affiliation(s)
- Panagiotis Perdikaris
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece
| | - Catherine R Dermon
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece.
| |
Collapse
|
4
|
Dong XZ, Zhao ZR, Hu Y, Lu YP, Liu P, Zhang L. LncRNA COL1A1-014 is involved in the progression of gastric cancer via regulating CXCL12-CXCR4 axis. Gastric Cancer 2020; 23:260-272. [PMID: 31650323 DOI: 10.1007/s10120-019-01011-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aberrant expression of long noncoding RNAs (lncRNAs) is found in various types of cancers and also showed its association with the occurrence and development of gastric cancer (GC). We found lncRNA COL1A1-014 was frequently upregulated in GC. METHODS This study investigated COL1A1-014 for its biological function at both cellular and animal levels, using MTT, flow cytometry, colony formation and transwell assays. The expression levels of COL1A1-014 and other genes were detected by RT-PCR and western blot. Luciferase reporter assay was used to detect the potential binding of miR-1273h-5p to COL1A1-014 and CXCL12. RESULTS We found that COL1A1-014 was frequently upregulated in GC tissues as well as cells. COL1A1-014 increased cell proliferation, colony forming efficiency, migration ability, invasion ability, and weight and volume of grafted tumors, while reduced cell apoptosis. Overexpression of COL1A1-014 increased the mRNA expression of chemokine (CXCmotif) ligand (CXCL12) and high levels of CXCL12 and CXCR4 proteins in GC cells. The levels of miR-1273h-5p showed an inverse correlation with COL1A1-014 and CXCL12 in GC cells transfected with miR-1273h-5p. The mRNAs of wild-type COL1A1-014 and CXCL12 showed reduction in HEK293 cells transfected with miR-1273h-5p. This suggested that COL1A1-014 functions as an efficient miR-1273h-5p sponge and as a competing endogenous RNA (ceRNA) to regulate CXCL12. The proliferative activity of COL1A1-014 on GC cells was blocked by CXCL12-CXCR4 axis inhibitor AMD-3100. CONCLUSIONS These findings demonstrated that COL1A1-014 play an important regulatory role in GC development by functioning as a ceRNA in regulating the CXCL12/CXCR4 axis via sponging miR-1273h-5p.
Collapse
Affiliation(s)
- Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China
| | - Zi-Run Zhao
- Renaissance School of Medicine at Stony Brook University, NY, 11794, USA
| | - Yuan Hu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Pan Lu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Liu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100853, China. .,Department of Clinical Pharmacology, General Hospital of Chinese PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
5
|
Mueller A, Krock RM, Shepard S, Moore T. Dopamine Receptor Expression Among Local and Visual Cortex-Projecting Frontal Eye Field Neurons. Cereb Cortex 2020; 30:148-164. [PMID: 31038690 PMCID: PMC7029694 DOI: 10.1093/cercor/bhz078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dopaminergic modulation of prefrontal cortex plays an important role in numerous cognitive processes, including attention. The frontal eye field (FEF) is modulated by dopamine and has an established role in visual attention, yet the underlying circuitry upon which dopamine acts is not known. We compared the expression of D1 and D2 dopamine receptors (D1Rs and D2Rs) across different classes of FEF neurons, including those projecting to dorsal or ventral extrastriate cortex. First, we found that both D1Rs and D2Rs are more prevalent on pyramidal neurons than on several classes of interneurons and are particularly prevalent on putatively long-range projecting pyramidals. Second, higher proportions of pyramidal neurons express D1Rs than D2Rs. Third, overall a higher proportion of inhibitory neurons expresses D2Rs than D1Rs. Fourth, among inhibitory interneurons, a significantly higher proportion of parvalbumin+ neurons expresses D2Rs than D1Rs, and a significantly higher proportion of calbindin+ neurons expresses D1Rs than D2Rs. Finally, compared with D2Rs, virtually all of the neurons with identified projections to both dorsal and ventral extrastriate visual cortex expressed D1Rs. Our results demonstrate that dopamine tends to act directly on the output of the FEF and that dopaminergic modulation of top-down projections to visual cortex is achieved predominately via D1Rs.
Collapse
Affiliation(s)
- Adrienne Mueller
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M Krock
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Shepard
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tirin Moore
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Bruzos-Cidón C, Llamosas N, Ugedo L, Torrecilla M. Dysfunctional inhibitory mechanisms in locus coeruleus neurons of the wistar kyoto rat. Int J Neuropsychopharmacol 2015; 18:pyu122. [PMID: 25586927 PMCID: PMC4540101 DOI: 10.1093/ijnp/pyu122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The noradrenergic nucleus locus coeruleus (LC) has functional relevance in several psychopathologies such as stress, anxiety, and depression. In addition to glutamatergic and GABAergic synaptic inputs, the activation of somatodendritic α2-adrenoceptors is the main responsible for LC activity regulation. The Wistar Kyoto (WKY) rat exhibits depressive- and anxiety-like behaviors and hyperresponse to stressors. Thus, the goal of the present study was to investigate in vitro the sensitivity of α2-adrenoceptors, as well as the glutamatergic and GABAergic synaptic activity on LC neurons of the WKY strain. METHODS For that purpose patch-clamp whole-cell recordings were done in LC slices. RESULTS The α2-adrenoceptors of LC neurons from WKY rats were less sensitive to the effect induced by the agonist UK 14 304 as compared to that recorded in the Wistar (Wis) control strain. In addition, the GABAergic input to LC neurons of WKY rats was significantly modified compared to that in Wis rats, since the amplitude of spontaneous GABAergic postsynaptic currents was reduced and the half-width increased. On the contrary, no significant alterations were detected regarding glutamatergic input to LC neurons between rat strains. CONCLUSIONS These results point out that in WKY rats the inhibitory control exerted by α2-adrenoceptors and GABAergic input onto LC neurons is dysregulated. Overall, this study supports in this animal model the hypothesis that claims an imbalance between the glutamatergic-GABAergic systems as a key factor in the pathophysiology of depression.
Collapse
Affiliation(s)
| | | | | | - M Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain (Drs Bruzos-Cidón, Ugedo, and Torrecilla, and Llamosas).
| |
Collapse
|
7
|
Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int J Neuropsychopharmacol 2014; 17:1569-78. [PMID: 24925192 DOI: 10.1017/s1461145714000662] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glutamate receptors are promising drug targets for the treatment of urgent suicide ideation and chronic major depressive disorder (MDD) that may lead to suicide completion. Antagonists of glutamatergic NMDA receptors reduce depressive symptoms faster than traditional antidepressants, with beneficial effects occurring within hours. Glutamate is the prominent excitatory input to the noradrenergic locus coeruleus (LC). The LC is activated by stress in part through this glutamatergic input. Evidence has accrued demonstrating that the LC may be overactive in MDD, while treatment with traditional antidepressants reduces LC activity. Pathological alterations of both glutamatergic and noradrenergic systems have been observed in depressive disorders, raising the prospect that disrupted glutamate-norepinephrine interactions may be a central component to depression and suicide pathobiology. This study examined the gene expression levels of glutamate receptors in post-mortem noradrenergic LC neurons from subjects with MDD (most died by suicide) and matched psychiatrically normal controls. Gene expression levels of glutamate receptors or receptor subunits were measured in LC neurons collected by laser capture microdissection. MDD subjects exhibited significantly higher expression levels of the NMDA receptor subunit genes, GRIN2B and GRIN2C, and the metabotropic receptor genes, GRM4 and GRM5, in LC neurons. Gene expression levels of these receptors in pyramidal neurons from prefrontal cortex (BA10) did not reveal abnormalities in MDD. These findings implicate disrupted glutamatergic-noradrenergic interactions at the level of the stress-sensitive LC in MDD and suicide, and provide a theoretical mechanism by which glutamate antagonists may exert rapid antidepressant effects.
Collapse
|
8
|
Chandley M, Ordway G. Noradrenergic Dysfunction in Depression and Suicide. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 2011; 134:2057-73. [PMID: 21705423 PMCID: PMC3122374 DOI: 10.1093/brain/awr137] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/12/2011] [Accepted: 04/24/2011] [Indexed: 12/13/2022] Open
Abstract
Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, reduces dopaminergic and noradrenergic neuronal loss in monkeys rendered parkinsonian by chronic treatment with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Weekly intramuscular 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections (0.2-0.5 mg/kg body weight), in combination with daily administration of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine or vehicle, were performed until the development of parkinsonian motor symptoms in either of the two experimental groups (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine versus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle). After 21 weeks of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment, all 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals displayed parkinsonian symptoms, whereas none of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys were significantly affected. These behavioural observations were consistent with in vivo positron emission tomography dopamine transporter imaging data, and with post-mortem stereological counts of midbrain dopaminergic neurons, as well as striatal intensity measurements of dopamine transporter and tyrosine hydroxylase immunoreactivity, which were all significantly higher in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated animals than in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated monkeys. The 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine treatment also had a significant effect on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced loss of norepinephrine neurons in the locus coeruleus and adjoining A5 and A7 noradrenaline cell groups. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals, almost 40% loss of tyrosine hydroxylase-positive norepinephrine neurons was found in locus coeruleus/A5/A7 noradrenaline cell groups, whereas the extent of neuronal loss was lower than 15% of control values in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys. Our data demonstrate that chronic treatment with the metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, significantly reduces 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity towards dopaminergic and noradrenergic cell groups in non-human primates. This suggests that the use of metabotropic glutamate receptor 5 antagonists may be a useful strategy to reduce degeneration of catecholaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 2011; 16:634-46. [PMID: 20386568 PMCID: PMC2927798 DOI: 10.1038/mp.2010.44] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 12/28/2022]
Abstract
Several studies have proposed that brain glutamate signaling abnormalities and glial pathology have a role in the etiology of major depressive disorder (MDD). These conclusions were primarily drawn from post-mortem studies in which forebrain brain regions were examined. The locus coeruleus (LC) is the primary source of extensive noradrenergic innervation of the forebrain and as such exerts a powerful regulatory role over cognitive and affective functions, which are dysregulated in MDD. Furthermore, altered noradrenergic neurotransmission is associated with depressive symptoms and is thought to have a role in the pathophysiology of MDD. In the present study we used laser-capture microdissection (LCM) to selectively harvest LC tissue from post-mortem brains of MDD patients, patients with bipolar disorder (BPD) and from psychiatrically normal subjects. Using microarray technology we examined global patterns of gene expression. Differential mRNA expression of select candidate genes was then interrogated using quantitative real-time PCR (qPCR) and in situ hybridization (ISH). Our findings reveal multiple signaling pathway alterations in the LC of MDD but not BPD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia. Our data extend previous findings of altered glutamate, astroglial and growth factor functions in MDD for the first time to the brainstem. These findings indicate that such alterations: (1) are unique to MDD and distinguishable from BPD, and (2) affect multiple brain regions, suggesting a whole-brain dysregulation of such functions.
Collapse
Affiliation(s)
- R Bernard
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marinc C, Preisig-Müller R, Prüss H, Derst C, Veh RW. Immunocytochemical localization of TASK-3 (K(2P)9.1) channels in monoaminergic and cholinergic neurons. Cell Mol Neurobiol 2011; 31:323-35. [PMID: 21082237 PMCID: PMC11498383 DOI: 10.1007/s10571-010-9625-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Monoaminergic and cholinergic systems are important regulators of cortical and subcortical systems, and a variety of vegetative functions are controlled by the respective neurotransmitters. Neuronal excitability and transmitter release of these neurons are strongly regulated by their potassium conductances carried by Kir and K(2P) channels. Here we describe the generation and characterization of a polyclonal monospecific antibody against rat TASK-3, a major brain K(2P) channel. After removal of cross-reactivities and affinity purification the antibody was characterized by ELISA, immunocytochemistry of TASK-3 transfected cells, and Western blots indicating that the antibody only detects TASK-3 protein, but not its paralogs TASK-1 and TASK-5. Western blot analysis of brain membrane fractions showed a single band around 45 kD, close to the predicted molecular weight of the TASK-3 protein. In addition, specific immunolabeling using the anti-TASK-3 antibody in Western blot analysis and immunocytochemistry was blocked in a concentration dependent manner by its cognate antigen only. Immunocytochemical analysis of rat brain revealed strong expression of TASK-3 channels in serotoninergic neurons of the dorsal and median raphe, noradrenergic neurons of the locus coeruleus, histaminergic neurons of the tuberomammillary nucleus and in the cholinergic neurons of the basal nucleus of Meynert. Immunofluorescence double-labeling experiments with appropriate marker enzymes confirmed the expression of TASK-3 in cholinergic, serotoninergic, and noradrenergic neurons. In the dopaminergic system strong TASK-3 expression was found in the ventral tegmental area, whereas TASK-3 immunoreactivity in the substantia nigra compacta was only weak. All immunocytochemical results were supported by in situ hybridization using TASK-3 specific riboprobes.
Collapse
Affiliation(s)
- Christiane Marinc
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115 Berlin, Germany
| | - Regina Preisig-Müller
- Institut für Physiologie und Pathophysiologie, Philipps-Universität, Deutschhausstr. 2, D-35037 Marburg, Germany
| | - Harald Prüss
- Abteilung für Experimentelle Neurologie und Klinik für Neurologie, Charité—Universitätsmedizin Berlin, Chariteplatz 1, D-10117 Berlin, Germany
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115 Berlin, Germany
| | - Rüdiger W. Veh
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115 Berlin, Germany
| |
Collapse
|
12
|
Noriega NC, Kohama SG, Urbanski HF. Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain. BMC Mol Biol 2010; 11:47. [PMID: 20565976 PMCID: PMC2914640 DOI: 10.1186/1471-2199-11-47] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/21/2010] [Indexed: 12/18/2022] Open
Abstract
Background Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods. We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA) on the Affymetrix® GeneChip® rhesus Macaque Genome Array. Having shown that qRT-PCR and Affymetrix® GeneChip® data from the same hormone replacement therapy (HRT) study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study). Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. Results Sequences co-annotated for ribosomal protein S27a (RPS27A), and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip® facilitated more targeted analysis than could be accomplished using the rhesus GeneChip®. In the cycle study, multiple probe sets annotated for actin, gamma 1 (ACTG1) showed high signal intensity and were among the most stably expressed. Conclusions Using gene microarray analysis, we identified genes showing high expression stability under various sex-steroid environments in different regions of the rhesus macaque brain. Use of quantile-normalized microarray gene expression values represents an improvement over traditional methods of selecting internal reference genes for PCR analysis.
Collapse
Affiliation(s)
- Nigel C Noriega
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
13
|
Group III mGlu receptor agonist, ACPT-I, attenuates morphine-withdrawal symptoms after peripheral administration in mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1454-7. [PMID: 19660510 DOI: 10.1016/j.pnpbp.2009.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/13/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022]
Abstract
Several lines of evidence implicate dysfunction of glutamatergic neurotransmission in opiate dependence and withdrawal. Functional antagonists of glutamatergic system, including compounds acting on both ionotropic and metabotropic glutamate receptors (group I mGlu receptor antagonists and group II mGlu receptor agonists), have been shown to decrease behavioural signs of opiate withdrawal in rodents. In the present study we analyzed an influence of group III mGlu receptor agonist, ACPT-I, on opioid withdrawal syndrome, induced by repeated morphine administration and final naloxone injection. We show, that ACPT-I significantly attenuated typical symptoms of naloxone-induced morphine withdrawal, after peripheral administration in C57BL/6J mice. These data indicate an important role of group III mGlu receptors in morphine withdrawal states and suggest that activation of group III mGlu receptors may reduce opiate withdrawal symptoms.
Collapse
|
14
|
Bishop CV, Hennebold JD, Stouffer RL. The effects of luteinizing hormone ablation/replacement versus steroid ablation/replacement on gene expression in the primate corpus luteum. Mol Hum Reprod 2009; 15:181-93. [PMID: 19168862 PMCID: PMC2647108 DOI: 10.1093/molehr/gap005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study was designed to provide a genome-wide analysis of the effects of luteinizing hormone (LH) versus steroid ablation/replacement on gene expression in the developed corpus luteum (CL) in primates during the menstrual cycle. On Days 9–11 of the luteal phase, female rhesus monkeys were left untreated (control) or received a GnRH antagonist Antide (A), A + LH, A + LH + the 3β-hydroxysteroid dehydrogenase inhibitor Trilostane (TRL) or A + LH + TRL + a progestin R5020. On Day 12 of the luteal phase, CL were removed and samples of RNA from individual CL were hybridized to Affymetrix™ rhesus macaque total genome microarrays. The greatest number of altered transcripts was associated with the ablation/replacement of LH, while steroid ablation/progestin replacement affected fewer transcripts. Replacement of LH during Antide treatment restored the expression of most transcripts to control levels. Validation of a subset of transcripts revealed that the expression patterns were similar between microarray and real-time PCR. Analyses of protein levels were subsequently determined for two transcripts. This is the first genome-wide analysis of LH and steroid regulation of gene transcription in the developed primate CL. Further analysis of novel transcripts identified in this data set can clarify the relative role for LH and steroids in CL maintenance and luteolysis.
Collapse
Affiliation(s)
- Cecily V Bishop
- Oregon National Primate Research Center, Beaverton, 97006, USA.
| | | | | |
Collapse
|