1
|
Imam F, Mukhopadhyay S, Kothiyal P, Alshehri S, Saad Alharbi K, Afzal M, Iqbal M, Rashid Khan M, Khalid Anwer M, Ahmed Hattab Alanazi A, Ghanem Alqahtani A, Abdullah Alhamamah M. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer's disease. Saudi Pharm J 2024; 32:102048. [PMID: 38585197 PMCID: PMC10997905 DOI: 10.1016/j.jsps.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Memory loss or dementia is a progressive disorder, and one of its common forms is Alzheimer's disease (AD), effecting mostly middle aged and older adults. In the present study, we developed Rivastigmine (RIV) nanoparticles using poly(lactic-co-glycolic acid) (RIV-loaded PLGA NPs) and polyvinyl alcohol (PVA). The prepared RIV-PLGA nanoparticles was evaluated for the management of Alzheimer's disease (AD). The nanoparticles were prepared by the slightly modified nano-precipitation technique. The developed formulations were evaluated for particle size, zeta potential (ZP), polydispersibility index (PDI) and surface morphology and drug content. The experimental result revealed that prepared RIV-loaded PLGA NPs (F1) was optimized having particle size (61.2 ± 4.6 nm), PDI (0.292), ZP (-11.2 ± 1.2). SEM study confirms the prepared nanoparticles depicted non-aggregated as well smooth surface particles without any fracture. This formulation (F1) was further assessed for in vivo studies on animal model. A pharmacological screening on an animal model of Alzheimer's disease revealed that RIV-loaded PLGA NPs formulations treat CNS disorders like Alzheimer's effectively. In addition to that, an in-vivo brain cholinesterase estimation study found that, animals treated with optimized formulation significantly (p < 0.01) reduced brain cholinesterase activity when compared to scopolamine-treated animals. According to the above results, it can be concluded that RIV-loaded PLGA NPs are ideal carriers for delivering the drug at a specific target site in the brain, thus may treat Alzheimer's disease efficiently and improve patient compliance.
Collapse
Affiliation(s)
- Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | - Preeti Kothiyal
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Navagaon, Maduwala, Dehradun 248007, Uttarakhand, India
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Al-Qassim, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrazaq Ahmed Hattab Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Security Forces Specialized Polyclinics in East Riyadh, General Department of Medical Services, MOI, P. O. Box 7838, Riyadh 11134, Saudi Arabia
| | - Ali Ghanem Alqahtani
- Department of Pharmaceutical Care, Assir Health, Ministry of Health, Abha 11176, Saudi Arabia
| | - Mohammed Abdullah Alhamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Kyung J, Kim D, Shin K, Park D, Hong SC, Kim TM, Choi EK, Kim YB. Repeated Intravenous Administration of Human Neural Stem Cells Producing Choline Acetyltransferase Exerts Anti-Aging Effects in Male F344 Rats. Cells 2023; 12:2711. [PMID: 38067139 PMCID: PMC10706332 DOI: 10.3390/cells12232711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major features of aging might be progressive decreases in cognitive function and physical activity, in addition to withered appearance. Previously, we reported that the intracerebroventricular injection of human neural stem cells (NSCs named F3) encoded the choline acetyltransferase gene (F3.ChAT). The cells secreted acetylcholine and growth factors (GFs) and neurotrophic factors (NFs), thereby improving learning and memory function as well as the physical activity of aged animals. In this study, F344 rats (10 months old) were intravenously transplanted with F3 or F3.ChAT NSCs (1 × 106 cells) once a month to the 21st month of age. Their physical activity and cognitive function were investigated, and brain acetylcholine (ACh) and cholinergic and dopaminergic system markers were analyzed. Neuroprotective and neuroregenerative activities of stem cells were also confirmed by analyzing oxidative damages, neuronal skeletal protein, angiogenesis, brain and muscle weights, and proliferating host stem cells. Stem cells markedly improved both cognitive and physical functions, in parallel with the elevation in ACh levels in cerebrospinal fluid and muscles, in which F3.ChAT cells were more effective than F3 parental cells. Stem cell transplantation downregulated CCL11 and recovered GFs and NFs in the brain, leading to restoration of microtubule-associated protein 2 as well as functional markers of cholinergic and dopaminergic systems, along with neovascularization. Stem cells also restored muscular GFs and NFs, resulting in increased angiogenesis and muscle mass. In addition, stem cells enhanced antioxidative capacity, attenuating oxidative damage to the brain and muscles. The results indicate that NSCs encoding ChAT improve cognitive function and physical activity of aging animals by protecting and recovering functions of multiple organs, including cholinergic and dopaminergic systems, as well as muscles from oxidative injuries through secretion of ACh and GFs/NFs, increased antioxidant elements, and enhanced blood flow.
Collapse
Affiliation(s)
- Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyungha Shin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
3
|
Soto PL, Young ME, DiMarco GM, George B, Melnikova T, Savonenko AV, Harris BN. Longitudinal assessment of cognitive function in the APPswe/PS1dE9 mouse model of Alzheimer's-related beta-amyloidosis. Neurobiol Aging 2023; 128:85-99. [PMID: 37120419 PMCID: PMC10239324 DOI: 10.1016/j.neurobiolaging.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
Preclinical models of Alzheimer's disease (AD)-related cognitive decline can be useful for developing therapeutics. The current study longitudinally assessed short-term memory, using a delayed matching-to-position (DMTP) task, and attention, using a 3-choice serial reaction time (3CSRT) task, from approximately 18 weeks of age through death or 72 weeks of age in APPswe/PS1dE9 mice, a widely used mouse model of AD-related amyloidosis. Both transgenic (Tg) and non-Tg mice exhibited improvements in DMTP accuracy over time. Breaks in testing reduced DMTP accuracy but accuracy values quickly recovered in both Tg and non-Tg mice. Both Tg and non-Tg mice exhibited high accuracy in the 3CSRT task with breaks in testing briefly reducing accuracy values equivalently in the 2 genotypes. The current results raise the possibility that deficits in Tg APPswe/PS1dE9 mice involve impairments in learning rather than declines in established performances. A better understanding of the factors that determine whether deficits develop will be useful for designing evaluations of potential pharmacotherapeutics and may reveal interventions for clinical application.
Collapse
Affiliation(s)
- Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | - Michael E Young
- Department of Psychology, Kansas State University, Manhattan, KS, USA
| | - Giuliana M DiMarco
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Brianna George
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
5
|
Wang J, Yu Z, Peng Y, Xu B. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer's disease. J Nutr Biochem 2023:109397. [PMID: 37301484 DOI: 10.1016/j.jnutbio.2023.109397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in which senile plaques, neurofibrillary tangles, insulin resistance, oxidative stress, chronic neuroinflammation, and abnormal neurotransmission are the potential mechanisms involved in its onset and development. Although it is still an intractable disorder, diet intervention has been developed as an innovative strategy for AD prevention. Some bioactive compounds and micronutrients from food, including soy isoflavones, rutin, vitamin B1, etc., have exhibited numerous neuronal health-promoting effects in both in vivo and in vitro studies. It is well known that their antiapoptotic, antioxidative, and anti-inflammatory properties prevent the neuronal or glial cells from injury or death, minimize oxidative damage, inhibit the production of proinflammatory cytokines by modulating typical signaling pathways of MAPK, NF-kβ, and TLR, and further reduce Aβ genesis and tau hyperphosphorylation. However, parts of the dietary components trigger AD-related proteins productions and inflammasome as well as inflammatory gene upregulation. This review summarized the neuroprotective or nerve damage-promoting role and underlying molecular mechanisms of flavonoids, vitamins, and fatty acids via the data from library databases, PubMed, and journal websites, which provides a comprehensive analysis of the prevention potential of these dietary components against AD.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
6
|
Bashir DJ, Manzoor S, Sarfaraj M, Afzal SM, Bashir M, Nidhi, Rastogi S, Arora I, Samim M. Magnoflorine-Loaded Chitosan Collagen Nanocapsules Ameliorate Cognitive Deficit in Scopolamine-Induced Alzheimer's Disease-like Conditions in a Rat Model by Downregulating IL-1β, IL-6, TNF-α, and Oxidative Stress and Upregulating Brain-Derived Neurotrophic Factor and DCX Expressions. ACS OMEGA 2023; 8:2227-2236. [PMID: 36687096 PMCID: PMC9850486 DOI: 10.1021/acsomega.2c06467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/12/2022] [Indexed: 08/19/2023]
Abstract
Dementia or the loss of cognitive functioning is one of the major health issues in elderly people. Alzheimer's disease (AD) is one of the common forms of dementia. Treatment chiefly involves the use of acetylcholinesterase (AChE) inhibitors in AD. However, oxidative stress has also been found to be involved in the proliferation of the disease. Magnoflorine is one of the active compounds of Coptidis Rhizoma and has high anti-oxidative properties. Active principle-loaded nanoparticles have shown increased efficiency for neurodegenerative diseases due to their ability to cross the blood-brain barrier more easily. An in vitro study involving magnoflorine-loaded chitosan collagen nanocapsules (MF-CCNc) has shown them to possess inhibitory effects against oxidative stress and to some extent on AChE as well. In the current study, both nootropic and anti-amnesic effects of magnoflorine and MF-CCNc on scopolamine-induced amnesia in rats were evaluated. The treatment was done intraperitoneally (i.p.) once daily for 17 consecutive days with MF-CCNc (0.25, 0.5, and 1 mg), magnoflorine (1 mg), and donepezil (1 mg). To induce amnesia, hence, cognitive deficit rats were induced with scopolamine (1 mg/kg) daily for the last 9 days. Novel object recognition (NOR) and elevated plus maze (EPM) behavioral analysis were done to assess memory functioning. Hippocampal tissues were extracted to study the effect on biochemicals (AChE, MDA, SOD, and CAT), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and immunohistochemistry (brain-derived neurotrophic factor (BDNF) and DCX). MF-CCNc showed memory-enhancing effects in nootropic as well as chronic scopolamine-treated rats in NOR and an increase in inflexion ratio in EPM. MF-CCNc reduced the levels of AChE and MDA while increasing SOD and CAT levels in the hippocampus. MF-CCNc further lowered the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These nanocapsules further increased the expression of BDNF and DCX that are necessary for adult neurogenesis. From the research findings, it can be concluded that MF-CCNc has high anti-amnesic properties and could be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Dar Junaid Bashir
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saliha Manzoor
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Sarfaraj
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shekh Mohammad Afzal
- Department
of Medical Elementology & Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Masarat Bashir
- COTS,
Mirgund, Shalimar, SKUAST Kashmir, Srinagar, Jammu and Kashmir 193121, India
| | - Nidhi
- Centre
for Translational and Clinical Research, Jamia Hamdard, New Delhi 110062, India
| | - Shweta Rastogi
- Hansraj
College, Delhi University, New Delhi, Delhi 110007, India
| | - Indu Arora
- Shaheed
Rajguru College of Applied Sciences for Women, Vasundhara Enclave, New
Delhi, Delhi 110096, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
7
|
Chakrovorty A, Bhattacharjee B, Saxena A, Samadder A, Nandi S. Current Naturopathy to Combat Alzheimer's Disease. Curr Neuropharmacol 2023; 21:808-841. [PMID: 36173068 PMCID: PMC10227918 DOI: 10.2174/1570159x20666220927121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.
Collapse
Affiliation(s)
- Arnob Chakrovorty
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Banani Bhattacharjee
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Aaruni Saxena
- Department of Cardiovascular Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
8
|
Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain. Int J Mol Sci 2022; 23:ijms231710073. [PMID: 36077475 PMCID: PMC9456256 DOI: 10.3390/ijms231710073] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.
Collapse
|
9
|
Effects of Perilla frutescens var. acuta in amyloid β toxicity and Alzheimer's disease-like pathology in 5XFAD mice. Food Chem Toxicol 2022; 161:112847. [DOI: 10.1016/j.fct.2022.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 11/20/2022]
|
10
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
11
|
Roy J, Tsui KC, Ng J, Fung ML, Lim LW. Regulation of Melatonin and Neurotransmission in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136841. [PMID: 34202125 PMCID: PMC8268832 DOI: 10.3390/ijms22136841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder associated with age, and is characterized by pathological markers such as amyloid-beta plaques and neurofibrillary tangles. Symptoms of AD include cognitive impairments, anxiety and depression. It has also been shown that individuals with AD have impaired neurotransmission, which may result from the accumulation of amyloid plaques and neurofibrillary tangles. Preclinical studies showed that melatonin, a monoaminergic neurotransmitter released from the pineal gland, is able to ameliorate AD pathologies and restore cognitive impairments. Theoretically, inhibition of the pathological progression of AD by melatonin treatment should also restore the impaired neurotransmission. This review aims to explore the impact of AD on neurotransmission, and whether and how melatonin can enhance neurotransmission via improving AD pathology.
Collapse
|
12
|
El-Ganainy SO, Gowayed MA, Agami M, Mohamed P, Belal M, Farid RM, Hanafy AS. Galantamine nanoparticles outperform oral galantamine in an Alzheimer's rat model: pharmacokinetics and pharmacodynamics. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:1281-1296. [PMID: 34013783 DOI: 10.2217/nnm-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Galantamine is an acetylcholinesterase inhibitor frequently used in Alzheimer's disease management. Its cholinergic adverse effects and rapid elimination limit its therapeutic outcomes. We investigated the pharmacodynamics and pharmacokinetics of 2-week intranasal galantamine-bound chitosan nanoparticles (G-NP) treatment in scopolamine-induced Alzheimer's disease rat model. Materials & methods: Behavioral, neurobiochemical and histopathological changes were assessed and compared with oral and nasal solutions. Brain uptake and pharmacokinetics were determined using a novel validated LC/MS assay. Results: G-NP enhanced spatial memory, exploring behavior and cholinergic transmission in rats. Beta-amyloid deposition and Notch signaling were suppressed and the histopathological degeneration was restored. G-NP potentiated galantamine brain delivery and delayed its elimination. Conclusion: G-NP hold promising therapeutic potentials and brain targeting, outperforming conventional galantamine therapy.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mahmoud Agami
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt
| | - Passant Mohamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Marwa Belal
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Beheira, 22511, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Amira S Hanafy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| |
Collapse
|
13
|
Mirshekar MA, Lakzaei H, Shabani S. Therapeutic effects of levothyroxine in a rat model of scopolamine-induced cognitive impairment: An electrophysiological, behavioral, and biochemical study. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Adedayo BC, Ogunsuyi OB, Akinniyi ST, Oboh G. Effect ofAndrographis paniculataandPhyllanthus amarusleaf extracts on selected biochemical indices inDrosophila melanogastermodel of neurotoxicity. Drug Chem Toxicol 2020; 45:407-416. [DOI: 10.1080/01480545.2019.1708377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bukola Christiana Adedayo
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Stephanie Tolulope Akinniyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
15
|
Retinasamy T, Shaikh MF, Kumari Y, Othman I. Ethanolic Extract of Orthosiphon stamineus Improves Memory in Scopolamine-Induced Amnesia Model. Front Pharmacol 2019; 10:1216. [PMID: 31736744 PMCID: PMC6828736 DOI: 10.3389/fphar.2019.01216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative brain disease which is characterized by impairment in cognitive functioning. Orthosiphon stamineus (OS) Benth. (Lamiaceae) is a medicinal plant found around Southeast Asia that has been employed as treatments for various diseases. OS extract contains many active compounds that have been shown to possess various pharmacological properties whereby in vitro studies have demonstrated neuroprotective as well as cholinesterase inhibitory effects. This study, therefore aimed at determining whether this Malaysian plant derived flavonoid can reverse scopolamine induced learning and memory dysfunction in the novel object recognition (NOR) test and the elevated plus maze (EPM) test. In the present study, rats were treated once daily with OS 50 mg/kg, 100 mg/kg, 200 mg/kg and donepezil 1 mg/kg via oral dosing and were given intraperitoneal (ip) injection of scopolamine 1 mg/kg daily to induce cognitive deficits. Rats were subjected to behavioral analysis to assess learning and memory functions and hippocampal tissues were extracted for gene expression and immunohistochemistry studies. All the three doses demonstrated improved scopolamine-induced impairment by showing shortened transfer latency as well as the higher inflexion ratio when compared to the negative control group. OS extract also exhibited memory-enhancing activity against chronic scopolamine-induced memory deficits in the long-term memory novel object recognition performance as indicated by an increase in the recognition index. OS extract was observed to have modulated the mRNA expression of CREB1, BDNF, and TRKB genes and pretreatment with OS extract were observed to have increased the immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by the DCX-positive stained cells. These research findings suggest that the OS ethanolic extract demonstrated an improving effect on memory and hence could serve as a potential therapeutic target for the treatment of neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
16
|
Zhang L, Dong H, Si Y, Wu N, Cao H, Mei B, Meng B. miR-125b promotes tau phosphorylation by targeting the neural cell adhesion molecule in neuropathological progression. Neurobiol Aging 2019; 73:41-49. [DOI: 10.1016/j.neurobiolaging.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
|
17
|
Effect of Qingxin Kaiqiao Fang on Hippocampus mRNA Expression of the Inflammation-Related Genes IL-1 β, GFAP, and A β in an Alzheimer's Disease Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9267653. [PMID: 29670662 PMCID: PMC5835248 DOI: 10.1155/2018/9267653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
Objective To investigate the effects of QKF on expression of amyloid-beta (Aβ), interleukin-1 beta (IL-1β), and glial fibrillary acidic protein (GFAP) using a rat model of AD. Materials and Methods Fifty-six male Sprague-Dawley rats were randomly divided into seven groups (eight rats each): control group, sham-operated group, AD model group, groups of AD rats administered with low, medium, and high doses of QKF, and the donepezil group. AD was established by bilateral injection of β-amyloid (Aβ) 1–40 into the hippocampus. Two days after AD was established, drugs were administered by gavage. After 14 days of treatment, we used RT-PCR, Western blotting, and immunohistochemistry to measure the transcript expression and protein abundance of Aβ, IL-1β, and GFAP, and methenamine silver staining was used to detect amyloid protein particle deposition. Results Compared to the control group, the rats from the AD model group showed significantly greater expression levels of Aβ, IL-1β, and GFAP. However, these differences in expression were abolished by treatment with QKF or donepezil. Conclusion QKF possesses therapeutic potential against AD because it downregulated Aβ, IL-1β, and GFAP in the hippocampus of AD rats. Future studies should further examine the mechanisms through which QKF produces its effects and the consequences of long-term QKF administration.
Collapse
|
18
|
Behavioral and biochemical evidences for nootropic activity of boldine in young and aged mice. Biomed Pharmacother 2017; 97:895-904. [PMID: 29136766 DOI: 10.1016/j.biopha.2017.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Boldine, a bioactive compound, has been reported to be neuroprotective, but its effect on learning and memory has not been explored. So, the present study was aimed to study the effect of boldine on the learning and memory of the Swiss albino male young and aged mice. Boldine (1.5, 3 and 6mg/kg, po) and physostigmine salicylate (0.1mg/kg, ip) were administered to separate groups of mice for 7 successive days. Morris water maze was utilized as a behavioural model to study the effect of drugs on learning and memory of mice. Boldine and physostigmine significantly improved learning and memory of young as well as aged mice, as indicated by decrease in escape latency time during training session and increase in time spent in target quadrant during retrieval session. No significant effect on locomotor activities of mice was observed due to drug treatments. Memory-enhancing activity of boldine (3mg/kg) was found to be comparable to physostigmine. Boldine significantly reversed scopolamine-, sodium nitrite- and aging-induced amnesia in mice. Moreover, boldine attenuated oxidative stress, as shown by a significant decrease in brain malondialdehyde as well as brain nitrite levels and a significant increase in brain GSH level of young as well as aged mice. Brain acetylcholinesterase activity was also significantly inhibited by boldine in young as well as aged mice. In conclusion boldine administered for 7 successive days exhibited significant improvement of learning and memory of young and aged mice possibly through inhibition of brain acetylcholinesterase activity and alleviation of brain oxidative stress.
Collapse
|
19
|
Lu HY, Wang W, Zhou Z, Liu CY, Liu Y, Xiao W, Dong FS, Wang J. Treatment of obstructive sleep apnoea–hypopnea syndrome by mandible advanced device reduced neuron apoptosis in frontal cortex of rabbits. Eur J Orthod 2017; 40:273-280. [DOI: 10.1093/ejo/cjx060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hai-yan Lu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wen Wang
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Zheng Zhou
- Department of Periodontology, University of Detroit Mercy, Detroit, MI, USA
| | - Chun-yan Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Ye Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wei Xiao
- Department of Stomatology, FengTai Hospital, Beijing, P.R. of China
| | - Fu-sheng Dong
- Department of Oral and Maxillofacial Surgery, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| |
Collapse
|
20
|
Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats. Neurotox Res 2017; 34:834-847. [DOI: 10.1007/s12640-017-9813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022]
|
21
|
Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer’s disease mice. Behav Brain Res 2017; 331:54-66. [DOI: 10.1016/j.bbr.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023]
|
22
|
Soni K, Parle M. Trachyspermum ammi Seeds Supplementation Helps Reverse Scopolamine, Alprazolam and Electroshock Induced Amnesia. Neurochem Res 2017; 42:1333-1344. [DOI: 10.1007/s11064-017-2177-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
|
23
|
Wang Y, Zhou Z, Tan H, Zhu S, Wang Y, Sun Y, Li XM, Wang JF. Nitrosylation of Vesicular Transporters in Brain of Amyloid Precursor Protein/Presenilin 1 Double Transgenic Mice. J Alzheimers Dis 2016; 55:1683-1692. [DOI: 10.3233/jad-160700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ying Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Zhu Zhou
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Hua Tan
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Shenghua Zhu
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yiran Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yingxia Sun
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Jun-Feng Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
- Department of Psychiatry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
24
|
Takeda Y, Oue H, Okada S, Kawano A, Koretake K, Michikawa M, Akagawa Y, Tsuga K. Molar loss and powder diet leads to memory deficit and modifies the mRNA expression of brain-derived neurotrophic factor in the hippocampus of adult mice. BMC Neurosci 2016; 17:81. [PMID: 27919226 PMCID: PMC5137215 DOI: 10.1186/s12868-016-0319-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It is known that tooth loss is known to be a risk factor for Alzheimer's disease and soft diet feeding induces memory impairment. Recent studies have shown that brain-derived neurotrophic factor (BDNF) is associated with tooth loss or soft diet in young animal model, and that BDNF expression is decreased in patients with Alzheimer's disease. However, single or combined effect of tooth loss and/or soft diet on brain function has not fully understood. Here we examined the effect of molar loss and powder diet on memory ability and the expression of BDNF mRNA in the hippocampus of adult C57BL/6J mice. Twenty eight-weeks-old C57BL/6J mice were divided into intact molar group and extracted molar group. They were randomly divided into the I/S group (Intact upper molar teeth/Solid diet feeding), the E/S group (Extracted upper molar teeth/Solid diet feeding), the I/P group (Intact upper molar teeth/Powder diet feeding), and the E/P group (Extracted upper molar teeth/Powder diet feeding). The observation periods were 4 and 16-week. To analyze the memory ability, the step-through passive avoidance test was conducted. BDNF-related mRNA in the hippocampus was analyzed by real-time polymerase chain reaction (RT-PCR). RESULTS At 4 weeks later, we performed memory test and isolated brains to analyze. There were no differences in memory function and BDNF mRNA level between these four groups. However, at 16 weeks later, E/S and E/P group showed memory impairment, and decreased level of BDNF mRNA. Whereas, the powder diet had no effect on memory function and BDNF mRNA level even at 16 weeks later. CONCLUSIONS These results suggest that the effect of molar loss and powder diet on memory function and BDNF mRNA levels were different, molar loss may have a greater long-term effect on memory ability than powder diet does.
Collapse
Affiliation(s)
- Yosuke Takeda
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Shinsuke Okada
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Akira Kawano
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsunori Koretake
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasumasa Akagawa
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
25
|
Abstract
Abstract
Ω-3 unsaturated fatty acids are compounds belonging to the group of essential fatty acids (EFAs). The history of the discovery of EFAs dates back to the 1930s of the twentieth century, however, growing interest in ω-3 EFAs in the context of mental health has been observed since the year 2000. In view of their multidirectional action, these compounds are a promising form of adjunctive therapy of many illnesses, including psychiatric disorders. The present article aims to review the literature on the clinical applicability of ω-3 EFAs in treating schizophrenia. We present the results of preclinical studies in this area and the mechanisms of ω-3 EFAs action discussed by the authors. The randomized controlled trials (RCTs) evaluating the possibility of using ω-3 EFAs in schizophrenia are characterized in detail. The results of the tests are not clear, which may result from the methodological diversity of interventions made. Ω-3 EFAs seem to be a promising form of adjunctive therapy of schizophrenia. Further research is needed, which will allow for defining groups of patients in which intervention will bring the expected results.
Collapse
|
26
|
Haiyan H, Yiyu W, Yihui Z, Wenhua W, Dongmei X, Zhiyu C, Xiaoyan Z, Dandan M. Effect of Qingxinkaiqiao compound on cortical mRNA expression of the apoptosis-related genes Bcl-2, BAX, caspase-3, and Aβ in an Alzheimer's disease rat model. J TRADIT CHIN MED 2016; 36:654-62. [DOI: 10.1016/s0254-6272(16)30086-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Phoenixin-14 enhances memory and mitigates memory impairment induced by Aβ1-42 and scopolamine in mice. Brain Res 2015; 1629:298-308. [DOI: 10.1016/j.brainres.2015.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
|
28
|
Cai Z, Xiao M, Chang L, Yan LJ. Role of insulin resistance in Alzheimer's disease. Metab Brain Dis 2015; 30:839-51. [PMID: 25399337 DOI: 10.1007/s11011-014-9631-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
A critical role of insulin resistance (IR) in Alzheimer's disease (AD) includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles (NFTs), failure of synaptic transmission and neuronal degeneration. Aβ is sequentially cleavaged from APP by two proteolytic enzymes: β-secretase and γ-secretase. IR could regulate Aβ production via enhancing β- and γ-secretase activity. Meanwhile, IR induces oxidative stress and inflammation in the brain which contributes to Aβ and tau pathology. Aβ accumulation can enhance IR through Aβ-mediated inflammation and oxidative stress. IR is a possible linking between amyloid plaques and NFTs pathology via oxidative stress and neuroinflammation. Additionally, IR could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that insulin could be useful in the treatment of AD. Thus, an effective measure to inhibit IR may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China,
| | | | | | | |
Collapse
|
29
|
Shah D, Blockx I, Guns PJ, De Deyn PP, Van Dam D, Jonckers E, Delgado Y Palacios R, Verhoye M, Van der Linden A. Acute modulation of the cholinergic system in the mouse brain detected by pharmacological resting-state functional MRI. Neuroimage 2015; 109:151-9. [PMID: 25583611 DOI: 10.1016/j.neuroimage.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The cholinergic system is involved in learning and memory and is affected in neurodegenerative disorders such as Alzheimer's disease. The possibility of non-invasively detecting alterations of neurotransmitter systems in the mouse brain would greatly improve early diagnosis and treatment strategies. The hypothesis of this study is that acute modulation of the cholinergic system might be reflected as altered functional connectivity (FC) and can be measured using pharmacological resting-state functional MRI (rsfMRI). MATERIAL AND METHODS Pharmacological rsfMRI was performed on a 9.4T MRI scanner (Bruker BioSpec, Germany) using a gradient echo EPI sequence. All mice were sedated with medetomidine. C57BL/6 mice (N = 15/group) were injected with either saline, the cholinergic antagonist scopolamine, or methyl-scopolamine, after which rsfMRI was acquired. For an additional group (N = 8), rsfMRI scans of the same mouse were acquired first at baseline, then after the administration of scopolamine and finally after the additional injection of the cholinergic agonist milameline. Contextual memory was evaluated with the same setup as the pharmacological rsfMRI using the passive avoidance behavior test. RESULTS Scopolamine induced a dose-dependent decrease of FC between brain regions involved in memory. Scopolamine-induced FC deficits could be recovered completely by milameline for FC between the hippocampus-thalamus, cingulate-retrosplenial, and visual-retrosplenial cortex. FC between the cingulate-rhinal, cingulate-visual and visual-rhinal cortex could not be completely recovered by milameline. This is consistent with the behavioral outcome, where milameline only partially recovered scopolamine-induced contextual memory deficits. Methyl-scopolamine administered at the same dose as scopolamine did not affect FC in the brain. CONCLUSION The results of the current study are important for future studies in mouse models of neurodegenerative disorders, where pharmacological rsfMRI may possibly be used as a non-invasive read-out tool to detect alterations of neurotransmitter systems induced by pathology or treatment.
Collapse
Affiliation(s)
- Disha Shah
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Ines Blockx
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Pieter-Jan Guns
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Lindendreef 1, 2020 Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | |
Collapse
|
30
|
Tucci P, Mhillaj E, Morgese MG, Colaianna M, Zotti M, Schiavone S, Cicerale M, Trezza V, Campolongo P, Cuomo V, Trabace L. Memantine prevents memory consolidation failure induced by soluble beta amyloid in rats. Front Behav Neurosci 2014; 8:332. [PMID: 25285073 PMCID: PMC4168698 DOI: 10.3389/fnbeh.2014.00332] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
It has been well documented that β-amyloid (Aβ) peptide accumulation and aggregation in the brain plays a crucial role in the pathophysiology of Alzheimer's disease (AD). However, a new orientation of the amyloid cascade hypothesis has evidenced that soluble forms of the peptide (sAβ) are involved in Aβ-induced cognitive impairment and cause rapid disruption of the synaptic mechanisms underlying memory. The primary aim of this study was to elucidate the effects of sAβ, acutely injected intracerebrally (i.c.v., 4 μM), on the short term and long term memory of young adult male rats, by using the novel object recognition task. Glutamatergic receptors have been proposed as mediating the effect of Aβ on synaptic plasticity and memory. Thus, we also investigated the effects of sAβ on prefrontal cortex (PFC) glutamate release and the specific contribution of N-methyl-D-aspartate (NMDA) receptor modulation to the effects of sAβ administration on the cognitive parameters evaluated. We found that a single i.c.v. injection of sAβ 2 h before testing did not alter the ability of rats to differentiate between a familiar and a novel object, in a short term memory test, while it was able to negatively affect consolidation/retrieval of long term memory. Moreover, a significant increase of glutamate levels was found in PFC of rats treated with the peptide 2 h earlier. Interestingly, memory deficit induced by sAβ was reversed by a NMDA-receptor antagonist, memantine (5 mg/kg i.p), administered immediately after the familiarization trial (T1). On the contrary, memantine administered 30 min before T1 trial, was not able to rescue long term memory impairment. Taken together, our results suggest that an acute i.c.v. injection of sAβ peptide interferes with the consolidation/retrieval of long term memory. Moreover, such sAβ-induced effect indicates the involvement of glutamatergic system, proposing that NMDA receptor inhibition might prevent or lead to the recovery of early cognitive impairment.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia Foggia, Italy
| | - Emanuela Mhillaj
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia Foggia, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia Foggia, Italy
| | - Marilena Colaianna
- Department of Pathology and Immunology, University of Geneva Geneva, Switzerland
| | - Margherita Zotti
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia Foggia, Italy
| | - Stefania Schiavone
- Department of Mental Health and Psychiatry, Geneva University Hospital and University of Geneva Geneva, Switzerland
| | - Maria Cicerale
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia Foggia, Italy
| | - Viviana Trezza
- Department of Sciences, University "Roma Tre" Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, La Sapienza, University of Rome Rome, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
31
|
Beggiato S, Giuliani A, Sivilia S, Lorenzini L, Antonelli T, Imbimbo B, Giardino L, Calzà L, Ferraro L. CHF5074 and LY450139 sub-acute treatments differently affect cortical extracellular glutamate levels in pre-plaque Tg2576 mice. Neuroscience 2014; 266:13-22. [DOI: 10.1016/j.neuroscience.2014.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 02/01/2023]
|
32
|
Farina D, Alvau MD, Puggioni G, Calia G, Bazzu G, Migheli R, Sechi O, Rocchitta G, Desole MS, Serra PA. Implantable (Bio)sensors as new tools for wireless monitoring of brain neurochemistry in real time. World J Pharmacol 2014; 3:1-17. [DOI: 10.5497/wjp.v3.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Implantable electrochemical microsensors are characterized by high sensitivity, while amperometric biosensors are very selective in virtue of the biological detecting element. Each sensor, specific for every neurochemical species, is a miniaturized high-technology device resulting from the combination of several factors: electrode material, shielding polymers, applied electrochemical technique, and in the case of biosensors, biological sensing material, stabilizers, and entrapping chemical nets. In this paper, we summarize the available technology for the in vivo electrochemical monitoring of neurotransmitters (dopamine, norepinephrine, serotonin, acetylcholine, and glutamate), bioenergetic substrates (glucose, lactate, and oxygen), neuromodulators (ascorbic acid and nitric oxide), and exogenous molecules such as ethanol. We also describe the most represented biotelemetric technologies in order to wirelessly transmit the signals of the above-listed neurochemicals. Implantable (Bio)sensors, integrated into miniaturized telemetry systems, represent a new generation of analytical tools that could be used for studying the brain’s physiology and pathophysiology and the effects of different drugs (or toxic chemicals such as ethanol) on neurochemical systems.
Collapse
|
33
|
Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm 2014; 461:192-202. [DOI: 10.1016/j.ijpharm.2013.11.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
34
|
Canas PM, Simões AP, Rodrigues RJ, Cunha RA. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology 2014; 76 Pt A:51-6. [DOI: 10.1016/j.neuropharm.2013.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
|
35
|
Laursen B, Mørk A, Plath N, Kristiansen U, Bastlund JF. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration. Brain Res 2013; 1543:253-62. [PMID: 24231553 DOI: 10.1016/j.brainres.2013.10.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023]
Abstract
The Alzheimer's disease (AD) mouse model Tg2576 overexpresses an AD associated mutant variant of human APP and accumulates amyloid beta (Aβ) in an age-dependent manner. Using the selective cholinergic immunotoxin mu p75-saporin (SAP), we induced a partial basal forebrain cholinergic degeneration (BFCD) in 3 months old male Tg2576 mice to co-express cholinergic degeneration with Aβ overexpression as these characteristics constitutes key hallmarks of AD. At 9 months, SAP lesioned Tg2576 mice were cognitively impaired in two spatial paradigms addressing working memory and mid to long-term memory. Conversely, there was no deterioration of cognitive functioning in sham lesioned Tg2576 mice or wild type littermates (wt) receiving the immunotoxin. At 10 months of age, release of acetylcholine (ACh) was addressed by microdialysis in conscious mice. Scopolamine-induced increases in hippocampal ACh efflux was significantly reduced in SAP lesioned Tg2576 mice compared to sham lesioned Tg2576 mice. Intriguingly, there was no significant difference in ACh efflux between wt treatment groups. Following SAP treatment, choline acetyltransferase activity was reduced in the hippocampus and frontal cortex and the reduction was comparable between groups. Our results suggest that partial BFCD acts collectively with increased levels of Aβ to induce cognitive decline and to compromise cholinergic release. Tg2576 mice with BFCD may constitute a new and suitable AD mouse model to study the interrelations between cholinergic deficits and amsyloid deposition.
Collapse
Affiliation(s)
- Bettina Laursen
- H. Lundbeck A/S, Synaptic Transmission 1, Ottiliavej 9, 2500 Valby, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Arne Mørk
- H. Lundbeck A/S, Synaptic Transmission 1, Ottiliavej 9, 2500 Valby, Denmark
| | - Niels Plath
- H. Lundbeck A/S, Synaptic Transmission 1, Ottiliavej 9, 2500 Valby, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
36
|
Ye H, Wang J, Greer T, Strupat K, Li L. Visualizing neurotransmitters and metabolites in the central nervous system by high resolution and high accuracy mass spectrometric imaging. ACS Chem Neurosci 2013; 4:1049-56. [PMID: 23607816 DOI: 10.1021/cn400065k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The spatial localization and molecular distribution of metabolites and neurotransmitters within biological organisms is of tremendous interest to neuroscientists. In comparison to conventional imaging techniques such as immunohistochemistry, matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging (MSI) has demonstrated its unique advantage by directly localizing the distribution of a wide range of biomolecules simultaneously from a tissue specimen. Although MALDI-MSI of metabolites and neurotransmitters is hindered by numerous matrix-derived peaks, high-resolution and high-accuracy mass spectrometers (HRMS) allow differentiation of endogenous analytes from matrix peaks, unambiguously obtaining biomolecular distributions. In this study, we present MSI of metabolites and neurotransmitters in rodent and crustacean central nervous systems acquired on HRMS. Results were compared with those obtained from a medium-resolution mass spectrometer (MRMS), tandem time-of-flight instrument, to demonstrate the power and unique advantages of HRMSI and reveal how this new tool would benefit molecular imaging applications in neuroscience.
Collapse
|
37
|
Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 2013; 38:1523-42. [PMID: 23677775 PMCID: PMC3691476 DOI: 10.1007/s11064-013-1060-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer’s disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.
Collapse
|
38
|
Nagpal K, Singh SK, Mishra DN. Nanoparticle mediated brain targeted delivery of gallic acid:in vivobehavioral and biochemical studies for protection against scopolamine-induced amnesia. Drug Deliv 2013; 20:112-9. [DOI: 10.3109/10717544.2013.779330] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
39
|
Choi YJ, Park J, Lee SH. Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer's disease studies. Biomaterials 2013; 34:2938-46. [DOI: 10.1016/j.biomaterials.2013.01.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/05/2013] [Indexed: 12/20/2022]
|
40
|
Facilitation of memory impairment and cholinergic disturbance in a mouse model of Alzheimer's disease by mild ischemic burden. Neurosci Lett 2013; 536:74-9. [DOI: 10.1016/j.neulet.2012.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/27/2012] [Indexed: 11/23/2022]
|
41
|
Giuliani A, Beggiato S, Baldassarro VA, Mangano C, Giardino L, Imbimbo BP, Antonelli T, Calzà L, Ferraro L. CHF5074 restores visual memory ability and pre-synaptic cortical acetylcholine release in pre-plaque Tg2576 mice. J Neurochem 2013; 124:613-20. [PMID: 23278303 DOI: 10.1111/jnc.12136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/23/2012] [Accepted: 12/24/2012] [Indexed: 12/11/2022]
Abstract
CHF5074, a new microglial modulator, attenuates memory deficit in Alzheimer's disease transgenic mice. In this study, the effect of an acute or subacute CHF5074 treatment on in vivo novel object recognition test and on [³H]Acetylcholine (ACh) and GABA release in pre-plaque (7-month-old) Tg2576 mice have been compared with those induced by the γ-secretase inhibitor LY450139 (semagacestat). Vehicle-treated Tg2576 mice displayed an impairment of recognition memory compared with wild-type animals. This impairment was recovered in transgenic animals acutely treated with CHF5074 (30 mg/kg), while LY450139 (1, 3, 10 mg/kg) was ineffective. In frontal cortex synaptosomes from vehicle-treated Tg2576 mice, K⁺-evoked [³H]ACh release was lower than that measured in wild-type mice. This reduction was absent in transgenic animals subacutely treated with CHF5074 (30 mg/kg daily for 8 days), while it was slightly, not significantly, amplified by LY450139 (3 mg/kg daily for 8 days). There were no differences between the groups on spontaneous [³H]ACh release as well as spontaneous and K⁺-evoked GABA release. These results suggest that CHF5074 has beneficial effects on visual memory and cortical cholinergic dysfunctions in pre-plaque Tg2576 mice. Together with previous findings, these data suggest that CHF5074 could be a possible candidate for early Alzheimer's disease therapeutic regimens.
Collapse
Affiliation(s)
- Alessandro Giuliani
- Department of Veterinary Medicine and Health Science, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nagakura A, Shitaka Y, Yarimizu J, Matsuoka N. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer's disease and effects of donepezil and memantine. Eur J Pharmacol 2012; 703:53-61. [PMID: 23276665 DOI: 10.1016/j.ejphar.2012.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease is characterized by a progressive decline in cognitive function and involves β-amyloid (Aβ) in its pathogenesis. To characterize cognitive deficits associated with Aβ accumulation, we analyzed PS1/APP mice overexpressing mutant presenilin-1 (PS1, M146L; line 6.2) and amyloid precursor protein (APP, K670N/M671L; line Tg2576), a mouse model of Alzheimer's disease with accelerated Aβ production. Age-dependent changes in working and spatial memory behaviors were investigated using Y-maze and Morris water maze tasks, respectively, in female PS1/APP mice at ages of 2, 4, 6, and 12 months. Significant deficits in working and spatial memory were observed from 4 and 6 months of age, respectively. Acute single-dose administrations of memantine, a low-to-moderate-affinity N-methyl-d-aspartate (NMDA) antagonist, showed improvements in working memory deficits at 4 months of age, whereas donepezil, an acetylcholinesterase (AChE) inhibitor, did not. However, both drugs improved spatial memory dysfunction at 6 months of age at therapeutically relevant doses. No age-related dramatic changes were observed in expression levels of several proteins relating to memory dysfunction and also the mechanisms of donepezil and memantine in the cerebral cortex of PS1/APP mice until 6 months of age. Taken together, these results suggest dysfunctions in cholinergic and/or glutamatergic transmissions may be involved in the cognitive deficits associated with Aβ toxicity. Since donepezil and memantine have been widely used for treating patients of Alzheimer's disease, these results also suggest that cognitive deficits in PS1/APP mice assessed in the Y-maze and Morris water maze tasks are a useful animal model for evaluating novel Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Akira Nagakura
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | |
Collapse
|
43
|
Effect of Nigella sativa and wheat germ oils on scopolamine-induced memory impairment in rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bfopcu.2012.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Memory-enhancing activity of palmatine in mice using elevated plus maze and morris water maze. Adv Pharmacol Sci 2012; 2012:357368. [PMID: 23193393 PMCID: PMC3501795 DOI: 10.1155/2012/357368] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/29/2012] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to evaluate the effect of palmatine on memory of Swiss young male albino mice. Palmatine (0.1, 0.5, 1 mg/kg, i.p.) and physostigmine (0.1 mg/kg, i.p.) per se were administered for 10 successive days to separate groups of mice. Effect of drugs on learning and memory of mice was evaluated using elevated plus maze and Morris water maze. Brain acetylcholinesterase activity was also estimated. Effect of palmatine on scopolamine- and diazepam-induced amnesia was also investigated. Palmatine (0.5 and 1 mg/kg) and physostigmine significantly improved learning and memory of mice, as indicated by decrease in transfer latency using elevated plus maze, and decrease in escape latency during training and increase in time spent in target quadrant during retrieval using Morris water maze. The drugs did not show any significant effect on locomotor activity of the mice. Memory-enhancing activity of palmatine (1 mg/kg) was comparable to physostigmine. Palmatine (1 mg/kg) significantly reversed scopolamine- and diazepam-induced amnesia in mice. Palmatine and physostigmine also significantly reduced brain acetylcholinesterase activity of mice. Thus, palmatine showed memory-enhancing activity in mice probably by inhibiting brain acetylcholinesterase activity, through involvement of GABA-benzodiazepine pathway, and due to its antioxidant activity.
Collapse
|
45
|
Bae D, Seol H, Yoon HG, Na JR, Oh K, Choi CY, Lee DW, Jun W, Youl Lee K, Lee J, Hwang K, Lee YH, Kim S. Inhaled essential oil from Chamaecyparis obtuse ameliorates the impairments of cognitive function induced by injection of β-amyloid in rats. PHARMACEUTICAL BIOLOGY 2012; 50:900-910. [PMID: 22468783 DOI: 10.3109/13880209.2011.642886] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Chamaecyparis obtusa Sieb. & Zucc., Endlicher (Cupressaceae) forest bathing or aromatherapy has been shown in various studies to have biological functions such as anticancer, antiallergies, antiinflammatory, and antioxidant activity. However, no reports exist on the pharmacological or biological activities of the essential oil of C. obtusa (EOCO) or its effects on central nervous system. OBJECTIVE The aggregation and formation of β-amyloid peptides (Aβ) into fibrils are central events in the pathogenesis of Alzheimer's disease (AD), and overproduction and aggregation of Aβ into oligomers have been known to trigger neurotoxicity. In this study, we investigated the effects of inhaled EOCO on cognitive function and neuronal apoptosis in rats intrahippocampally injected with Aβ. MATERIALS AND METHODS To model AD, 4 μg of aggregated Aβ was injected into the hippocampus. To test the effects of EOCO, behavioral performance in the Morris water maze was tested 4 days after injection. After behavioral testing, brain sections were prepared for TTC staining and TUNEL assay. RESULTS Inhaled EOCO protected spatial learning and memory from the impairments induced by Aβ(1-40) injection. In addition, the behavioral deficits accompanying Aβ(1-40)-induced AD were attenuated by inhalation of EOCO. Furthermore, acetylcholinesterase (AChE) activity and neuronal apoptosis were significantly inhibited in rats treated with Aβ(1-40) and EOCO compared to rats treated only with Aβ(1-40). DISCUSSION AND CONCLUSION EOCO suppressed both AD-related neuronal cell apoptosis and AD-related dysfunction of the memory system. Thus, the results of this study support EOCO as a candidate drug for the treatment of AD.
Collapse
Affiliation(s)
- Donghyuck Bae
- Jeollanamdo Institute of Natural Resources Research, Jeollanamdo 529-851, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A Pilot Study for the Neuroprotective Effect of Gongjin-dan on Transient Middle Cerebral Artery Occlusion-Induced Ischemic Rat Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:682720. [PMID: 22719787 PMCID: PMC3375177 DOI: 10.1155/2012/682720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/03/2022]
Abstract
In this study, we investigated whether gongjin-dan improves functional recovery and has neuroprotective effects on reducing the infarct volume after transient middle cerebral artery occlusion (MCAo). Infarct volume was measured using TTC staining and glucose utilization by F-18 FDG PET. Functional improvement was evaluated with the Rota-rod, treadmill, Garcia score test, and adhesive removal test. At 14 days after MCAo, neuronal cell survival, astrocytes expansion, and apoptosis were assessed by immunohistofluorescence staining in the peri-infarct region. Also, the expression of neurotrophic factors and inflammatory cytokines such as VEGF, BDNF, Cox-2, TNF-α, IL-1β, and IL-1α was measured in ischemic hemisphere regions. The gongjin-dan-treated group showed both reduced infarct volume and increased glucose utilization. Behavior tests demonstrated a significant improvement compared to the control. Also in the gongjin-dan treated group, NeuN-positive cells were increased and number of astrocytes, microglia, and apoptotic cells was significantly decreased compared with the control group in the ischemic peri-infarct area. Furthermore, the expression of VEGF and BDNF was increased and level of Cox-2, TNF-α, IL-1β, and IL-1α was decreased. These results suggest that gongjin-dan may improve functional outcome through the rapid restoration of metabolism and can be considered as a potential neuroprotective agent.
Collapse
|
47
|
Zhang W, Bai M, Xi Y, Hao J, Liu L, Mao N, Su C, Miao J, Li Z. Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med 2012; 52:1443-52. [PMID: 22342520 DOI: 10.1016/j.freeradbiomed.2012.01.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 01/08/2012] [Accepted: 01/26/2012] [Indexed: 12/23/2022]
Abstract
A large body of evidence has shown that cognitive deficits occur early, before amyloid plaque deposition, suggesting that soluble amyloid-β protein (Aβ) contributes to the development of early cognitive dysfunction in Alzheimer disease (AD). However, the underlying mechanism(s) through which soluble Aβ exerts its neurotoxicity responsible for cognitive dysfunction in the early stage of AD remains unclear so far. In this study, we used preplaque APPswe/PS1dE9 mice ages 2.5 and 3.5 months to examine alterations in cognitive function, oxidative stress, and cholinergic function. We found that only soluble Aβ, not insoluble Aβ, was detected in these preplaque APPswe/PS1dE9 mice. APPswe/PS1dE9 mice 2.5 months of age did not show any significant changes in the measures of cognitive function, oxidative stress, and cholinergic function, whereas 3.5-month-old APPswe/PS1dE9 mice exhibited spatial memory impairment in the Morris water maze, accompanied by significantly decreased acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) as well as increased malondialdehyde (MDA) and protein carbonyls. In 3.5-month-old preplaque APPswe/PS1dE9 mice, correlational analyses revealed that the performance of impaired spatial memory was inversely correlated with soluble Aβ, MDA, and protein carbonyls, as well as being positively correlated with ACh, ChAT, SOD, and GSH-px; soluble Aβ level was inversely correlated with ACh, ChAT, SOD, and GSH-px, as well as being positively correlated with MDA and protein carbonyls; ACh level showed a significant positive correlation with ChAT, SOD, and GSH-px, as well as a significant inverse correlation with MDA and protein carbonyls. Collectively, this study provides direct evidence that increased oxidative damage and cholinergic dysfunction may be early pathological responses to soluble Aβ and involved in early memory deficits in the preplaque stage of AD. These findings suggest that early antioxidant therapy and improving cholinergic function may be a promising strategy to prevent or delay the onset and progression of AD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Singla N, Dhawan DK. N-methyl N-nitrosourea induced functional and structural alterations in mice brain-role of curcumin. Neurotox Res 2012; 22:115-26. [PMID: 22247011 DOI: 10.1007/s12640-011-9307-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022]
Abstract
Curcumin is being widely used both as an herbal drug and a food additive in Asian countries. However, its prophylactic potential in containing certain brain disorders is yet to be fully explored. The present study was conceived with an idea that curcumin may prove to be effective in ameliorating N-methyl N-nitrosourea (MNU)-induced adverse effects in cerebrum and cerebellum of mice. Male laca mice received either intravenous MNU treatment at a dose of 10 mg/kg body weight in sterile double distilled water, curcumin alone 60 mg/kg body weight in drinking water via oral gavage, or combined MNU and curcumin treatment on alternate days for a total duration of 2 months. MNU treatment resulted in significant alteration in neurobehavior, reactive oxygen species, lipid profile and histoarchitecture which showed appreciable signs of improvements upon curcumin supplementation. Therefore, the study concludes that prophylactic treatment with curcumin shall prove to be effective in containing MNU-induced neurotoxicity.
Collapse
Affiliation(s)
- Neha Singla
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
49
|
Khan A, Ab Ghani S. Multienzyme microbiosensor based on electropolymerized o-phenylenediamine for simultaneous in vitro determination of acetylcholine and choline. Biosens Bioelectron 2011; 31:433-8. [PMID: 22154168 DOI: 10.1016/j.bios.2011.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 01/17/2023]
Abstract
The electrochemical biosensors based on poly(o-phenylenediamine) (PoPD) and acetylcholinesterase (AChE) and choline oxidase (ChO) enzymes were fabricated on carbon fibre (CF) substrate. The electropolymerized PoPD was used to reduce the interfering substances. The electrode assembly was completed by depositing functionalized carbon nano tubes (FCNTs) and Nafion (Naf). Amperometric detection of acetylcholine (ACh) and choline (Ch) were realized at an applied potential of +750 mV vs Ag/AgCl (saturated KCl). At pH 7.4, the final assembly, Naf-FCNTs/AChE-ChO((10:1))/PoPD/CF(Elip), was observed to have high sensitivity towards Ch (6.3±0.3 μA mM(-1)) and ACh (5.8±0.3 μA mM(-1)), linear range for Ch (K(M)=0.52±0.03 mM) and ACh (K(M)=0.59±0.07 mM), and for Ch the highest ascorbic acid blocking capacity (97.2±2 1mM AA). It had a response time of <5s and with 0.045 μM limit of detection. Studies on different ratio (ACh/Ch) revealed that 10:1, gave best overall response.
Collapse
Affiliation(s)
- Anish Khan
- Pusat Pengajian Sains Kimia, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | | |
Collapse
|
50
|
Sant'Anna MCB, Soares VDM, Seibt KJ, Ghisleni G, Rico EP, Rosemberg DB, de Oliveira JR, Schröder N, Bonan CD, Bogo MR. Iron exposure modifies acetylcholinesterase activity in zebrafish (Danio rerio) tissues: distinct susceptibility of tissues to iron overload. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:573-581. [PMID: 21194010 DOI: 10.1007/s10695-010-9459-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
Iron is one the most abundant metals on the earth being essential for living organisms even though its free form can be toxic. The overload of this metal may be related with some disorders, like Alzheimer and Parkinson diseases, and hemochromatosis in the liver. The aim of the present study was to evaluate the effects of iron on acetylcholinesterase (AChE) activity in brain and liver of zebrafish and to investigate the possible correlation with the iron content in these tissues. Different corresponding concentrations of iron were tested using in vitro (0.018, 0.268, and 2.6 mM) and in vivo (1, 15, and 150 mg/l) assays. The in vitro studies showed that iron promoted a significant increase in AChE activity in brain (52%) and liver (53%) at the higher concentration (2.6 mM). In the in vivo assays, a significant increase in this enzyme activity was observed in the presence of 15 mg/l in both, brain (62%) and liver tissue (70%). Semiquantitative RT-PCR did not reveal significant changes in acetylthiocholinesterase mRNA levels. Moreover, we observed that iron content was significantly increased in liver tissue when exposed to 15 (226%) and 150 mg/l (200%). These results indicate that iron can promote significant alterations in AChE activity which probably is not directly related to the iron content in zebrafish tissues.
Collapse
Affiliation(s)
- M C B Sant'Anna
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|