1
|
Ruiz-Rubio S, Ortiz-Leal I, Torres MV, Elsayed MGA, Somoano A, Sanchez-Quinteiro P. The Accessory Olfactory Bulb in Arvicola scherman: A Neuroanatomical Study in a Subterranean Mammal. Animals (Basel) 2024; 14:3285. [PMID: 39595335 PMCID: PMC11591111 DOI: 10.3390/ani14223285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The accessory olfactory bulb (AOB) processes chemical signals crucial for species-specific socio-sexual behaviors. There is limited information about the AOB of wild rodents, and this study aims to characterize the neurochemical organization of the AOB in the fossorial water vole (Arvicola scherman), a subterranean Cricetidae rodent. We employed histological, immunohistochemical, and lectin-histochemical techniques. The AOB of these voles exhibits a distinct laminar organization, with prominent mitral cells and a dense population of periglomerular cells. Lectin histochemistry and G-protein immunohistochemistry confirmed the existence of an antero-posterior zonation. Immunohistochemical analysis demonstrated significant expression of PGP 9.5, suggesting its involvement in maintaining neuronal activity within the AOB. In contrast, the absence of SMI-32 labelling in the AOB, compared to its strong expression in the main olfactory bulb, highlights functional distinctions between these two olfactory subsystems. Calcium-binding proteins allowed the characterization of atypical sub-bulbar nuclei topographically related to the AOB. All these features suggest that the AOB of Arvicola scherman is adapted for enhanced processing of chemosensory signals, which may play a pivotal role in its subterranean lifestyle. Our results provide a foundation for future studies exploring the implications of these adaptations, including potential improvements in the management of these vole populations.
Collapse
Affiliation(s)
- Sara Ruiz-Rubio
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
| | - Mateo V. Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Mostafa G. A. Elsayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 1646130, Egypt;
| | - Aitor Somoano
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain;
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain; (S.R.-R.); (I.O.-L.); (M.V.T.)
| |
Collapse
|
2
|
Khan M, Clijsters M, Choi S, Backaert W, Claerhout M, Couvreur F, Van Breda L, Bourgeois F, Speleman K, Klein S, Van Laethem J, Verstappen G, Dereli AS, Yoo SJ, Zhou H, Dan Do TN, Jochmans D, Laenen L, Debaveye Y, De Munter P, Gunst J, Jorissen M, Lagrou K, Meersseman P, Neyts J, Thal DR, Topsakal V, Vandenbriele C, Wauters J, Mombaerts P, Van Gerven L. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron 2022; 110:3919-3935.e6. [PMID: 36446381 PMCID: PMC9647025 DOI: 10.1016/j.neuron.2022.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Michiel Claerhout
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Floor Couvreur
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laure Van Breda
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Florence Bourgeois
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Sam Klein
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Johan Van Laethem
- Department of Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gill Verstappen
- Department of Otorhinolaryngology - Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Seung-Jun Yoo
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Thuc Nguyen Dan Do
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lies Laenen
- Department of Laboratory Medicine & National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Yves Debaveye
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine & National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Neuropathology, Department of Imaging & Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology - Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Neuroanatomical and Immunohistological Study of the Main and Accessory Olfactory Bulbs of the Meerkat ( Suricata suricatta). Animals (Basel) 2021; 12:ani12010091. [PMID: 35011198 PMCID: PMC8749820 DOI: 10.3390/ani12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In wild mammals, chemical senses are crucial to survival, but sensory system information is lacking for many species, including the meerkat (Suricata suricatta), an iconic mammal with a marked social hierarchy that has been ambiguously classified in both canid and felid families. We studied the neuroanatomical basis of the meerkat olfactory and accessory olfactory bulbs, aiming to provide information on the relevance of both systems to the behaviors of this species and contributing to improving its taxonomic classification. The accessory olfactory bulb serves as the integration center of vomeronasal information. When examined microscopically, the accessory olfactory bulb of the meerkat presents a lamination pattern more defined than observed in dogs and approaching the pattern described in cats. The degree of lamination and development in the meerkat main olfactory bulb is comparable to the general pattern observed in mammals but with numerous specific features. Our study supports the functionality of the olfactory and vomeronasal integrative centers in meerkats and places this species within the suborder Feliformia. Our study also confirms the importance of chemical signals in mediating the social behaviors of this species and provides essential neuroanatomical information for understanding the functioning of their chemical senses. Abstract We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques were used to extract the olfactory bulbs. The samples were subjected to hematoxylin-eosin and Nissl stains, histochemical (Ulex europaeus agglutinin, Lycopersicon esculentum agglutinin) and immunohistochemical labelling (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2, SMI-32, growth-associated protein 43). Microscopically, the meerkat AOB lamination pattern is more defined than the dog’s, approaching that described in cats, with well-defined glomeruli and a wide mitral-plexiform layer, with scattered main cells and granular cells organized in clusters. The degree of lamination and development of the meerkat MOB suggests a macrosmatic mammalian species. Calcium-binding proteins allow for the discrimination of atypical glomerular subpopulations in the olfactory limbus between the MOB and AOB. Our observations support AOB functionality in the meerkat, indicating chemosensory specialization for the detection of pheromones, as identified by the characterization of the V1R vomeronasal receptor family and the apparent deterioration of the V2R receptor family.
Collapse
|
4
|
Structural, morphometric and immunohistochemical study of the rabbit accessory olfactory bulb. Brain Struct Funct 2019; 225:203-226. [PMID: 31802255 DOI: 10.1007/s00429-019-01997-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/23/2019] [Indexed: 10/25/2022]
Abstract
The accessory olfactory bulb (AOB) is the first neural integrative centre of the vomeronasal system (VNS), which is associated primarily with the detection of semiochemicals. Although the rabbit is used as a model for the study of chemocommunication, these studies are hampered by the lack of knowledge regarding the topography, lamination, and neurochemical properties of the rabbit AOB. To fill this gap, we have employed histological stainings: lectin labelling with Ulex europaeus (UEA-I), Bandeiraea simplicifolia (BSI-B4), and Lycopersicon esculentum (LEA) agglutinins, and a range of immunohistochemical markers. Anti-G proteins Gαi2/Gαo, not previously studied in the rabbit AOB, are expressed following an antero-posterior zonal pattern. This places Lagomorpha among the small groups of mammals that conserve a double-path vomeronasal reception. Antibodies against olfactory marker protein (OMP), growth-associated protein-43 (GAP-43), glutaminase (GLS), microtubule-associated protein-2 (MAP-2), glial fibrillary-acidic protein (GFAP), calbindin (CB), and calretinin (CR) characterise the strata and the principal components of the BOA, demonstrating several singular features of the rabbit AOB. This diversity is accentuated by the presence of a unique organisation: four neuronal clusters in the accessory bulbar white matter, two of them not previously characterised in any species (the γ and δ groups). Our morphometric study of the AOB has found significant differences between sexes in the numerical density of principal cells, with larger values in females, a pattern completely opposite to that found in rats. In summary, the rabbit possesses a highly developed AOB, with many specific features that highlight the significant role played by chemocommunication among this species.
Collapse
|
5
|
Kim BY, Park J, Kim E, Kim B. Olfactory Ensheathing Cells Mediate Neuroplastic Mechanisms After Olfactory Training in Mouse Model. Am J Rhinol Allergy 2019; 34:217-229. [PMID: 31680531 DOI: 10.1177/1945892419885036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Several studies have reported beneficial effects of olfactory training (OT) on the olfactory nervous system. However, the mechanisms underlying the regeneration of the olfactory system induced by OT are still under investigation. Objectives To determine the key mechanisms involved in the olfactory system recovery and to assess the neuroplastic effects of OT. Methods Thirty healthy female C57BL/6 mice were randomly allocated to 4 groups: control, n = 6; anosmia (no treatment), n = 8; OT, n = 8; and steroid treatment; n = 8. Except for the control group, mice were administered 3-methylindole. Anosmia was assessed using a food-finding test (FFT). The olfactory neuroepithelium was for histological examinations, gene ontology with pathway analyses, RNA, and protein studies. Results FFT was significantly reduced at 3 weeks in the OT mice versus steroids (78.27 s vs 156.83 s, P < .008) and controls (78.27 s vs 13.14 s, P < .003), although final outcome in the FFT was similar in these groups. Expression of olfactory and neurogenesis marker was higher in the olfactory neuroepithelium of the OT group than in the anosmia group without treatment. The mechanisms underlying olfactory regeneration might be related to early olfactory receptor stimulation, followed by neurotrophic factor stimulation of neuronal plasticity. Conclusion OT can improve olfactory function and accelerate olfactory recovery. The mechanisms underlying olfactory regeneration might be related to an initial stimulation of olfactory receptors followed by neurogenesis. Olfactory ensheathing cells might play an important role in olfactory regeneration following OT, based on the observed changes in messenger ribonucleic acid (mRNA) and protein expression, as well as the findings of the gene analysis.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - JuYeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - EuiJin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - ByungGuk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Paul Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Yao R, Murtaza M, Velasquez JT, Todorovic M, Rayfield A, Ekberg J, Barton M, St John J. Olfactory Ensheathing Cells for Spinal Cord Injury: Sniffing Out the Issues. Cell Transplant 2018; 27:879-889. [PMID: 29882418 PMCID: PMC6050914 DOI: 10.1177/0963689718779353] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are glia reported to sustain the continuous axon extension and successful topographic targeting of the olfactory receptor neurons responsible for the sense of smell (olfaction). Due to this distinctive property, OECs have been trialed in human cell transplant therapies to assist in the repair of central nervous system injuries, particularly those of the spinal cord. Though many studies have reported neurological improvement, the therapy remains inconsistent and requires further improvement. Much of this variability stems from differing olfactory cell populations prior to transplantation into the injury site. While some studies have used purified cells, others have used unpurified transplants. Although both preparations have merits and faults, the latter increases the variability between transplants received by recipients. Without a robust purification procedure in OEC transplantation therapies, the full potential of OECs for spinal cord injury may not be realised.
Collapse
Affiliation(s)
- R Yao
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Murtaza
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J Tello Velasquez
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Todorovic
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - A Rayfield
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J Ekberg
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - M Barton
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J St John
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Oprych K, Cotfas D, Choi D. Common olfactory ensheathing glial markers in the developing human olfactory system. Brain Struct Funct 2016; 222:1877-1895. [PMID: 27718014 PMCID: PMC5406434 DOI: 10.1007/s00429-016-1313-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
The in situ immunocytochemical properties of olfactory ensheathing cells (OECs) have been well studied in several small to medium sized animal models including rats, mice, guinea pigs, cats and canines. However, we know very little about the antigenic characteristics of OECs in situ within the adult and developing human olfactory bulb and nerve roots. To address this gap in knowledge we undertook an immunocytochemical analysis of the 11–19 pcw human foetal olfactory system. Human foetal OECs in situ possessed important differences compared to rodents in the expression of key surface markers. P75NTR was not observed in OECs but was strongly expressed by human foetal Schwann cells and perineurial olfactory nerve fibroblasts surrounding OECs. We define OECs throughout the 11–19 pcw human olfactory system as S100/vimentin/SOX10+ with low expression of GFAP. Our results suggest that P75NTR is a robust marker that could be utilised with cell sorting techniques to generate enriched OEC cultures by first removing P75NTR expressing Schwann cells and fibroblasts, and subsequently to isolate OECs after P75NTR upregulation in vitro. O4 and PSA-NCAM were not found to be suitable surface antigens for OEC purification owing to their ambiguous and heterogeneous expression. Our results highlight the importance of corroborating cell markers when translating cell therapies from animal models to the clinic.
Collapse
Affiliation(s)
- Karen Oprych
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Daniel Cotfas
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - David Choi
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
8
|
Holbrook EH, Rebeiz L, Schwob JE. Office-based olfactory mucosa biopsies. Int Forum Allergy Rhinol 2016; 6:646-53. [PMID: 26833660 DOI: 10.1002/alr.21711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Requests from researchers for olfactory mucosal biopsies are increasing as a result of advances in the fields of neuroscience and stem cell biology. Published studies report variable rates of success in obtaining true olfactory tissue, often below 50%. In cases where biopsies are not obtained carefully and confirmed through histological techniques, erroneous conclusions are made. Attention to the epithelium alone without submucosal analysis may add to the confusion. A consistent biopsy technique can help rhinologists obtain higher yields of olfactory mucosa. Confirmatory tissue staining analysis assures olfactory mucosa has been obtained, thereby strengthening clinical correlations and scientific conclusions. METHODS Biopsies of the septum within the anterior olfactory cleft were obtained under endoscopic guidance in an office procedure room using topical local anesthetic (lidocaine). After mucosal incision, a small, cupped, biopsy forceps was used to obtain specimens approximately 2 to 3 mm in size. Specimens were sectioned and analyzed with immunohistochemistry for presence of olfactory epithelium and/or olfactory fascicles. RESULTS A total of 14 subjects were biopsied in this analysis. Four subjects had biopsies in the operating room (OR). The remaining 10 underwent biopsies in the clinic. All biopsies obtained in the OR revealed evidence of olfactory mucosa. Of the 10 clinic biopsies, 8 (80%) revealed evidence of olfactory mucosa. No complications were encountered. CONCLUSION High yields of olfactory mucosa can be obtained safely in an office-based setting. Technique, including attention to the area of biopsy, and confirmatory analysis are important in assuring presence of olfactory tissue.
Collapse
Affiliation(s)
- Eric H Holbrook
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA.,Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | - Lina Rebeiz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | - James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
9
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae). Brain Struct Funct 2014; 221:955-67. [PMID: 25433448 DOI: 10.1007/s00429-014-0949-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/22/2014] [Indexed: 01/18/2023]
Abstract
The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
| | - Simone Bettini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Valeria Franceschini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
10
|
Murthy M, Bocking S, Verginelli F, Stifani S. Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells. Gene 2014; 540:191-200. [PMID: 24582971 DOI: 10.1016/j.gene.2014.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/30/2014] [Accepted: 02/21/2014] [Indexed: 11/18/2022]
Abstract
The olfactory system undergoes persistent regeneration throughout life. Olfactory ensheathing cells (OECs) are a specialized class of glia found exclusively in the olfactory system. OECs wrap olfactory sensory neuron axons and support their growth from the olfactory epithelium, and targeting to the olfactory bulb, during development and life-long regeneration. Because of this function and their ability to cross the boundary between central and peripheral nervous systems, OECs are attractive candidates for cell-based regenerative therapies to promote axonal repair in the injured nervous system. OECs are a molecularly, topologically and functionally heterogeneous group of cells and the mechanisms underlying the development and function of specific OEC subpopulations are poorly defined. This situation has affected the outcome and interpretation of OEC-based regenerative strategies. Here we show that the transcription factor Runx1 is selectively expressed in OECs of the inner olfactory nerve layer of the mouse olfactory bulb and in their precursors in the OEC migratory mass. Furthermore, we provide evidence that in vivo knockdown of mouse Runx1 increases the proliferation of the OECs in which Runx1 is expressed. Conversely, Runx1 overexpression in primary cultures of OECs reduces cell proliferation in vitro. Decreased Runx1 activity also leads to an increase in Runx1-expressing OEC precursors, with a parallel decrease in the number of more developmentally mature OECs. These results identify Runx1 as a useful new marker of a distinct OEC subpopulation and suggest that Runx1 is important for the development of this group of OECs. These observations provide an avenue for further exploration into the molecular mechanisms underlying the development and function of specific OEC subpopulations.
Collapse
Affiliation(s)
- Manjari Murthy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah Bocking
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Federica Verginelli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish. J Anat 2014; 224:192-206. [PMID: 24164558 PMCID: PMC3969062 DOI: 10.1111/joa.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/01/2023] Open
Abstract
Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated 'olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether regional and interspecific differences in immunostaining patterns of olfactory pathway markers have functional significance requires further investigation.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
12
|
Quintana-Urzainqui I, Rodríguez-Moldes I, Candal E. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct 2014; 219:85-104. [PMID: 23224251 PMCID: PMC3889696 DOI: 10.1007/s00429-012-0486-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/16/2012] [Indexed: 11/02/2022]
Abstract
The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Rawji KS, Zhang SX, Tsai YY, Smithson LJ, Kawaja MD. Olfactory ensheathing cells of hamsters, rabbits, monkeys, and mice express α-smooth muscle actin. Brain Res 2013; 1521:31-50. [PMID: 23665391 DOI: 10.1016/j.brainres.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Olfactory ensheathing cells (OECs) are the chief glial population of the mammalian olfactory nervous system, residing in the olfactory mucosa and at the surface of the olfactory bulb. We investigated the neurochemical features of OECs in a variety of mammalian species (including adult hamsters, rabbits, monkeys, and mice, as well as fetal pigs) using three biomarkers: α-smooth muscle actin (αSMA), S100β, and glial fibrillary acidic protein (GFAP). Mucosal and bulbar OECs from all five mammalian species express S100β. Both mucosal and bulbar OECs of monkeys express αSMA, yet only bulbar OECs of hamsters and only mucosal OECs of rabbits express αSMA as well. Mucosal OECs, but not bulbar OECs, also express GFAP in hamsters and monkeys; mice, by comparison, have only a sparse population of OECs expressing GFAP. Though αSMA immunostaining is not detected in OECs of adult mice, GFAP-expressing mucosal OECs isolated from adult mice do coexpress αSMA in vitro. Moreover, mucosal OECs from adult mutant mice lacking αSMA expression display perturbed cellular morphology (i.e., fewer cytoplasmic processes extending among the hundreds of olfactory axons in the olfactory nerve fascicles and nuclei having degenerative features). In sum, these findings highlight the efficacy of αSMA and S100β as biomarkers of OECs from a variety of mammalian species. These observations provide definitive evidence that mammalian OECs express the structural protein αSMA (at various levels of detection), which appears to play a pivotal role in their ensheathment of olfactory axons.
Collapse
Affiliation(s)
- Khalil S Rawji
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
14
|
Sandvig I, Hoang L, Sardella TCP, Barnett SC, Brekken C, Tvedt K, Berry M, Haraldseth O, Sandvig A, Thuen M. Labelling of olfactory ensheathing cells with micron-sized particles of iron oxide and detection by MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:403-10. [PMID: 22649046 DOI: 10.1002/cmmi.1465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A crucial issue in transplant-mediated repair of the damaged central nervous system (CNS) is serial non-invasive imaging of the transplanted cells, which has led to interest in the application of magnetic resonance imaging (MRI) combined with designated intracellular magnetic labels for cell tracking. Micron-sized particles of iron oxide (MPIO) have been successfully used to track cells by MRI, yet there is relatively little known about either their suitability for efficient labelling of specific cell types, or their effects on cell viability. The purpose of this study was to develop a suitable MPIO labelling protocol for olfactory ensheathing cells (OECs), a type of glia used to promote the regeneration of CNS axons after transplantation into the injured CNS. Here, we demonstrate an OEC labelling efficiency of >90% with an MPIO incubation time as short as 6 h, enabling intracellular particle uptake for single-cell detection by MRI without affecting cell proliferation, migration and viability. Moreover, MPIO are resolvable in OECs transplanted into the vitreous body of adult rat eyes, providing the first detailed protocol for efficient and safe MPIO labelling of OECs for non-invasive MRI tracking of transplanted OECs in real time for use in studies of CNS repair and axon regeneration.
Collapse
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Immunocytochemical characterization of olfactory ensheathing cells in fish. Brain Struct Funct 2012; 218:539-49. [DOI: 10.1007/s00429-012-0414-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/03/2012] [Indexed: 02/03/2023]
|
16
|
Kaplinovsky T, Cunningham AM. Differential expression of RET receptor isoforms in the olfactory system. Neuroscience 2010; 175:49-65. [PMID: 21118713 DOI: 10.1016/j.neuroscience.2010.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/20/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family supports neurons by activating the tyrosine kinase receptor RET. The two main isoforms of RET, RET9 and RET51, differ in their carboxyl termini and have been implicated with distinct functions in the enteric and central nervous systems. Previously we reported the cellular localization of GDNF, neurturin and RET9 in the olfactory system [Maroldt H, Kaplinovsky T, Cunningham AM (2005) J Neurocytol 34:241-255]. In the current study, we examined immunohistochemical expression of RET9 and RET51 in neonatal and adult rat olfactory neuroepithelium (ON) and bulb to explore their potential functional roles. In the ON, RET9 was expressed by olfactory receptor neurons (ORNs) throughout the olfactory neuroepithelial sheet, whereas RET51 was restricted to ORNs situated in ventromedial and ventrolateral regions. Within these regions, RET51 was expressed by a subset of RET9-expressing ORNs. In olfactory bulb, RET9 expression was primarily on cell bodies, including olfactory ensheathing and periglomerular cells, and again, RET51 was expressed by a subset of RET9-expressing cells. RET51 was identified on axons in the olfactory nerve layer and glomerular neuropil, but only in the ventromedial and ventrolateral regions of the bulb. This regionalization correlated with the predicted axonal projection from expressing regions of the ON. RET51 was also expressed on dendrites in the external plexiform layer and glomerular neuropil. These results suggest RET9 may be the predominant functional isoform in the ON while RET51 plays a more selective role in a restricted region of the olfactory neuroepithelial sheet. In the bulb, RET9 is likely the main functional isoform while RET51 may be important in axonal and dendritic function/targeting.
Collapse
Affiliation(s)
- T Kaplinovsky
- University of New South Wales,Sydney Children’s Hospital, High Street, Randwick, NSW 2031, Australia
| | | |
Collapse
|
17
|
Babiarz J, Kane-Goldsmith N, Basak S, Liu K, Young W, Grumet M. Juvenile and adult olfactory ensheathing cells bundle and myelinate dorsal root ganglion axons in culture. Exp Neurol 2010; 229:72-9. [PMID: 20850435 DOI: 10.1016/j.expneurol.2010.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/29/2010] [Accepted: 08/25/2010] [Indexed: 01/09/2023]
Abstract
Olfactory ensheathing cells (OEC), which normally associate closely with but do not myelinate axons in situ, myelinate axons in the adult mammalian spinal cord. They are of clinical interest as candidate cells for autologous transplantation but the ability of OEC to myelinate axons in vitro has been controversial. To clarify this issue, we isolated OEC from olfactory bulbs (OB) of juvenile and adult rats expressing GFP and analyzed their ability to myelinate axons. Using a well-defined assay for myelination of dorsal root ganglia (DRG) axons in culture, we found that OEC from juvenile pups associated with and then myelinated DRG axons. OEC assembled into bundles with the axons by 1week and required more than a week before myelination on axons was detected. In contrast, rat Schwann cells did not bundle axons and they formed P0(+) and MBP(+) myelin segments after as little as 1week. Most of the OEC in culture exhibited staining for calponin, a marker that was not found on Schwann cells in culture, whereas in both OEC and Schwann cell populations nearly all cells were positive for p75NTR and GFAP. These results confirm previous reports showing only subtle immunological differences between Schwann cells and OEC. Besides differences in the rate of myelination, we detected two additional functional differences in the interactions of OEC and Schwann cells with DRG axons. First, the diameter of OEC generated myelin was greater than for Schwann cell myelin on DRG axons. Second, OEC but not Schwann cells myelinated DRG axons in the absence of vitamin C. OEC isolated from adult OB were also found to bundle and myelinate DRG axons but the latter occurred only after incubation times of at least 3weeks. The results indicate that adult OEC require longer incubation times than juvenile OEC to myelinate axons and suggest that patterns of myelination by OEC and Schwann cells are distinguishable at least on axons in vitro. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Joanne Babiarz
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
18
|
Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol 2010; 229:174-80. [PMID: 20832402 DOI: 10.1016/j.expneurol.2010.08.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/22/2010] [Indexed: 12/15/2022]
Abstract
Olfactory mucosa, the sense organ of smell, is an adult tissue that is regenerated and repaired throughout life to maintain the integrity of the sense of smell. When the sensory neurons of the olfactory epithelium die they are replaced by proliferation of stem cells and their axons grow from the nose to brain assisted by olfactory ensheathing cells located in the lamina propria beneath the sensory epithelium. When transplanted into the site of traumatic spinal cord injury in rat, olfactory lamina propria or purified olfactory ensheathing cells promote behavioural recovery and assist regrowth of some nerves in the spinal cord. A Phase I clinical trial demonstrated that autologous olfactory ensheathing cell transplantation is safe, with no adverse outcomes recorded for three years following transplantation. Autologous olfactory mucosa transplantation is also being investigated in traumatic spinal cord injury although this whole tissue contains many cells in addition to olfactory ensheathing cells, including stem cells. If olfactory ensheathing cells are proven therapeutic for human spinal cord injury there are several important practical issues that will need to be solved before they reach general clinical application. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
|
19
|
Gorrie CA, Hayward I, Cameron N, Kailainathan G, Nandapalan N, Sutharsan R, Wang J, Mackay-Sim A, Waite PME. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res 2010; 1337:8-20. [PMID: 20399758 DOI: 10.1016/j.brainres.2010.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/16/2023]
Abstract
Numerous reports indicate that rodent olfactory ensheathing cells (OECs) assist in spinal cord repair and clinical trials have been undertaken using autologous transplantation of human olfactory ensheathing cells (hOECs) as a treatment for spinal cord injury. However, there are few studies investigating the efficacy of hOECs in animal models of spinal cord injury. In this study hOECs were derived from biopsies of human olfactory mucosa, purified by culture in a serum-free medium containing neurotrophin-3, genetically labelled with EGFP, and stored frozen. These hOEC-derived cells were thawed and transplanted into the spinal cord injury site 7 days after a moderate contusion injury of the spinal cord at thoracic level T10 in the athymic rat. Six weeks later the animals receiving the hOEC-derived transplants had greater functional improvement in their hindlimbs than controls, assessed using open field (BBB scale) and horizontal rung walking tests. Histological analysis demonstrated beneficial effects of hOEC-derived cell transplantation: reductions in the volume of the lesion and the cavities within the lesion. The transplanted cells were located at the periphery of the lesion where they integrated with GFAP-positive astrocytes resulting in a significant reduction of GFAP staining intensity adjacent to the lesion. Although their mechanism of action is unclear we conclude that hOEC-derived cell transplants improved functional recovery after transplantation into the contused spinal cord, probably by modulating inflammatory responses and reducing secondary damage to the cord.
Collapse
Affiliation(s)
- Catherine Anne Gorrie
- Neural Injury Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|