1
|
Cueto-Ureña C, Ramírez-Expósito MJ, Carrera-González MP, Martínez-Martos JM. Age-Dependent Changes in Taurine, Serine, and Methionine Release in the Frontal Cortex of Awake Freely-Moving Rats: A Microdialysis Study. Life (Basel) 2025; 15:295. [PMID: 40003704 PMCID: PMC11857320 DOI: 10.3390/life15020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Brain function declines because of aging and several metabolites change their concentration. However, this decrease may be a consequence or a driver of aging. It has been described that taurine levels decrease with age and that taurine supplementation increases health span in mice and monkeys, finding taurine as a driver of aging. The frontal cortex is one of the most key areas studied to know the normal processes of cerebral aging, due to its relevant role in cognitive processes, emotion, and motivation. In the present work, we analyzed by intracerebral microdialysis in vivo in the prefrontal cortex of young (3 months) and old (24 months) awake rats, the basal- and K+-evoked release of taurine, and its precursors methionine and serine. The taurine/serine/methionine (TSM) ratio was also calculated as an index of transmethylation reactions. No changes were found in the basal levels of taurine, serine, or methionine between young and aged animals. On the contrary, a significant decrease in the K+-evoked release of serine and taurine appeared in aged rats when compared with young animals. No changes were seen in methionine. TSM ratio also decreased with age in both basal- and K+-stimulated conditions. Therefore, taurine and its related precursor serine decrease with age in the frontal cortex of aged animals under K+-stimulated but not basal conditions, which supports the importance of the decline of evoked taurine in its functions at the brain level, also supporting the idea proposed by other authors of a pharmacological and/or nutritional intervention to its restoration. A deficit of precursors for transmethylation reactions in the brain with age is also considered.
Collapse
Affiliation(s)
| | | | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E-23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.P.C.-G.)
| |
Collapse
|
2
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Pearson A, Ortiz C, Eisenbaum M, Arrate C, Browning M, Mullan M, Bachmeier C, Crawford F, Ojo JO. Deletion of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Mol Cell Neurosci 2023; 125:103855. [PMID: 37084991 DOI: 10.1016/j.mcn.2023.103855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Traumatic brain injury is a leading cause of morbidity and mortality in adults and children in developed nations. Following the primary injury, microglia, the resident innate immune cells of the CNS, initiate several inflammatory signaling cascades and pathophysiological responses that may persist chronically; chronic neuroinflammation following TBI has been closely linked to the development of neurodegeneration and neurological dysfunction. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that have been shown to regulate several key mechanisms in the inflammatory response to TBI. Increasing evidence has shown that the modulation of the PI3K/AKT signaling pathway has the potential to influence the cellular response to inflammatory stimuli. However, directly targeting PI3K signaling poses several challenges due to its regulatory role in several cell survival pathways. We have previously identified that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), the major negative regulator of PI3K/AKT signaling, is dysregulated following exposure to repetitive mild traumatic brain injury (r-mTBI). Moreover, this dysregulated PI3K/AKT signaling was correlated with chronic microglial-mediated neuroinflammation. Therefore, we interrogated microglial-specific PTEN as a therapeutic target in TBI by generating a microglial-specific, Tamoxifen inducible conditional PTEN knockout model using a CX3CR1 Cre recombinase mouse line PTENfl/fl/CX3CR1+/CreERT2 (mcg-PTENcKO), and exposed them to our 20-hit r-mTBI paradigm. Animals were treated with tamoxifen at 76 days post-last injury, and the effects of microglia PTEN deletion on immune-inflammatory responses were assessed at 90-days post last injury. We observed that the deletion of microglial PTEN ameliorated the proinflammatory response to repetitive brain trauma, not only reducing chronic microglial activation and proinflammatory cytokine production but also rescuing TBI-induced reactive astrogliosis, demonstrating that these effects extended beyond microglia alone. Additionally, we observed that the pharmacological inhibition of PTEN with BpV(HOpic) ameliorated the LPS-induced activation of microglial NFκB signaling in vitro. Together, these data provide support for the role of PTEN as a regulator of chronic neuroinflammation following repetitive mild TBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom.
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Clara Arrate
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | | | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Joseph O Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
4
|
Cumbres-Vargas IM, Zamudio SR, Pichardo-Macías LA, Ramírez-San Juan E. Thalidomide Attenuates Epileptogenesis and Seizures by Decreasing Brain Inflammation in Lithium Pilocarpine Rat Model. Int J Mol Sci 2023; 24:ijms24076488. [PMID: 37047461 PMCID: PMC10094940 DOI: 10.3390/ijms24076488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1β concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1β concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.
Collapse
Affiliation(s)
- Irán M Cumbres-Vargas
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Luz A Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
5
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
6
|
Palmer AA, Stezoski JP, Janesko-Feldman K, Kochanek PM, Drabek T. Targeting TNFα-mediated cytotoxicity using thalidomide after experimental cardiac arrest in rats: An exploratory study. Exp Ther Med 2022; 23:380. [PMID: 35495588 PMCID: PMC9019692 DOI: 10.3892/etm.2022.11307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Cardiac arrest (CA) results in a central and systemic cytokine and inflammatory response. Thalidomide has been reported to be neuroprotective by selectively decreasing TNFα synthesis. We hypothesized that thalidomide would decrease the systemic and organ-specific TNFα/cytokine response and biomarkers of injury in rats subjected to 10 min CA. Naïves, CA treated with vehicle (CA) and CA treated with thalidomide (50 mg/kg; CA+T) were studied (n=6 per group). TNFα and key cytokines were assessed at 3 h after resuscitation in the cortex, hippocampus, striatum, cerebellum, plasma, heart and lung. Neuron specific enolase (NSE), S100b, cardiac troponin T (cTnT) and intestinal fatty acid binding protein (IFABP) were used to assess neuronal, glial, cardiac and intestinal damage, respectively. CA increased TNFα and multiple pro-inflammatory cytokines in plasma and selected tissues with no differences between the CA and CA+T groups in any region. NSE, S100b, cTnT and IFABP were increased after CA or CA+T vs. in the naïve group (all P<0.05) without significant differences between the CA and CA+T groups. In conclusion, CA resulted in a TNFα and cytokine response, with increased biomarkers of organ injury. Notably, thalidomide at a dose reported to improve the outcome in in vivo models of brain ischemia did not decrease TNFα or cytokine levels in plasma, brain or extracerebral organs, or biomarkers of injury. Although CA at 3 h post resuscitation produces a robust TNFα response, it cannot be ruled out that an alternative dosing regimen or assessment at other time-points might yield different results. The marked systemic and regional cytokine response to CA remains a potential therapeutic target.
Collapse
Affiliation(s)
- Abigail A. Palmer
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Graduate Medical Education, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jason P. Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Graduate Medical Education, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Enhanced Ca 2+ Entry Sustains the Activation of Akt in Glucose Deprived SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms23031386. [PMID: 35163310 PMCID: PMC8835965 DOI: 10.3390/ijms23031386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The two crucial cellular insults that take place during cerebral ischemia are the loss of oxygen and loss of glucose, which can both activate a cascade of events leading to neuronal death. In addition, the toxic overactivation of neuronal excitatory receptors, leading to Ca2+ overload, may contribute to ischemic neuronal injury. Brain ischemia can be simulated in vitro by oxygen/glucose deprivation, which can be reversible by the re-establishment of physiological conditions. Accordingly, we examined the effects of glucose deprivation on the PI3K/Akt survival signaling pathway and its crosstalk with HIF-1α and Ca2+ homeostasis in SH-SY5Y human neuroblastoma cells. It was found that glucose withdrawal decreased HIF-1α protein levels even in the presence of the ischemia-mimicking CoCl2. On the contrary, and despite neuronal death, we identified a strong activation of the master pro-survival kinase Akt, a finding that was also confirmed by the increased phosphorylation of GSK3, a direct target of p-Akt. Remarkably, the elevated Ca2+ influx recorded was found to promptly trigger the activation of Akt, while a re-addition of glucose resulted in rapid restoration of both Ca2+ entry and p-Akt levels, highlighting the plasticity of neurons to respond to ischemic challenges and the important role of glucose homeostasis for multiple neurological disorders.
Collapse
|
8
|
Sosa-Acosta P, Melani RD, Quiñones-Vega M, Melo A, Garcez PP, Nogueira FCS, Domont GB. Proteomics of ZIKV infected amniotic fluids of microcephalic fetuses reveals extracellular matrix and immune system dysregulation. Proteomics Clin Appl 2021; 16:e2100041. [PMID: 34676661 DOI: 10.1002/prca.202100041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022]
Abstract
During pregnancy, the vertical transmission of the Zika virus (ZIKV) can cause some disorders in the fetus, called Congenital Zika Syndrome (CZS). Several efforts have been made to understand the molecular mechanism of the CZS. However, the study of CZS pathogenesis through infected human samples is scarce. Therefore, the main goal of this study is to identify and understand the biological processes affected by CZS development. We analyzed by a shotgun proteomic approach the amniotic fluid of pregnant women infected with Zika carrying microcephalic (MC+ ) or non-microcephalic (Z+ ) fetuses compared to Zika negative controls (CTR). Several groups of extracellular matrix (ECM) proteins were dysregulated in the Z+ and MC+ patients, triggering an opposite dysregulation. The down-regulation of the ECM proteins in the MC+ groups can be another factor that contributes to CZS. On the contrary, the Z+ group could be developing a neuroprotective response through ECM proteins up-regulation. The neutrophil degranulation process was disrupted in the Z+ and MC+ groups, where the MC+ groups showed a complex dysregulation. These results suggest that the microcephalic phenotypes are modulated by a down-regulation of the ECM and the impairment of the innate immune system processes.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Adriana Melo
- Instituto Pesquisa Professor Joaquim Amorim Neto (IPESQ), Campina Grande, Paraíba, Brazil
| | - Patrícia P Garcez
- Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
9
|
Shati AA, El-Kott AF, Alkhateeb MA. Resolvin D1 prevents cadmium chloride-induced memory loss and hippocampal damage in rats by activation/upregulation of PTEN-induced suppression of PI3K/Akt/mTOR signaling pathway. Clin Exp Pharmacol Physiol 2021; 49:275-290. [PMID: 34570918 DOI: 10.1111/1440-1681.13596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
This study evaluated the protective effect of resolvin D1 (RVD1) against cadmium chloride (CdCl2 )-induced hippocampal damage and memory loss in rats and investigated if such protection is mediated by modulating the PTEN/PI3K/Akt/mTOR pathway. Adult male Wistar rats (n = 18/group) were divided as control, control + RVD1, CdCl2 , CdCl2 + RVD1 and CdCl2 + RVD1 + bpV(pic), a PTEN inhibitor. All treatments were conducted for 4 weeks. Resolvin D1 improved the memory function as measured by Morris water maze (MWM), preserved the structure of CA1 area of the hippocampus, and increased hippocampal levels of RVD1 in the CdCl2 -treated rats. Resolvin D1 also suppressed the generation of reactive oxygen species (ROS), tumour necrosis factor-α and interleukine-6 (IL-6), inhibited nuclear factor κB (NF-κB) p65, stimulated levels of glutathione (GSH), manganese superoxide dismutase (MnSOD), and Bcl2 but reduced the expression of Bax and cleaved caspase 3 in hippocampi of CdCl2 -treated rats. Concomitantly, it stimulated levels and activity of PTEN and reduced the phosphorylation (activation) of PI3K, Akt and mTOR in hippocampi of CdCl2 -treated rats. In conclusion, RVD1 attenuates CdCl2 -induced memory loss and hippocampal damage in rats mainly by activating PTEN-induced suppression of PI3K/Akt/mTOR, an effect that seems secondary to its' anti-oxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Ye L, Sun Y, Jiang Z, Wang G. L-Serine, an Endogenous Amino Acid, Is a Potential Neuroprotective Agent for Neurological Disease and Injury. Front Mol Neurosci 2021; 14:726665. [PMID: 34552468 PMCID: PMC8450333 DOI: 10.3389/fnmol.2021.726665] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Central nervous system (CNS) lesions are major causes of human death and disability worldwide, and they cause different extents of motor and sensory dysfunction in patients. Thus, it is crucial to develop new effective neuroprotective drugs and approaches targeted to the heterogeneous nature of CNS injury and disease. L-serine is an indispensable neurotrophic factor and a precursor for neurotransmitters. Although L-serine is a native amino acid supplement, its metabolic products have been shown to be essential not only for cell proliferation but also for neuronal development and specific functions in the brain. Growing evidence has suggested that L-serine regulates the release of several cytokines in the brain under some neuropathological conditions to recover cognitive function, improve cerebral blood flow, inhibit inflammation, promote remyelination and exert other neuroprotective effects on neurological injury. L-serine has also been used to treat epilepsy, schizophrenia, psychosis, and Alzheimer’s Disease as well as other neurological diseases. Furthermore, the dosing of animals with L-serine and human clinical trials investigating the therapeutic effects of L-serine generally support the safety of L-serine. The high significance of this review lies in its emphasis on the therapeutic potential of using L-serine as a general treatment for numerous CNS diseases and injuries. Because L-serine performs a broad spectrum of functions, it may be clinically used as an effective neuroprotective agent.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yechao Sun
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Aydinlik S, Uvez A, Kiyan HT, Gurel-Gurevin E, Yilmaz VT, Ulukaya E, Armutak EI. Palladium (II) complex and thalidomide intercept angiogenic signaling via targeting FAK/Src and Erk/Akt/PLCγ dependent autophagy pathways in human umbilical vein endothelial cells. Microvasc Res 2021; 138:104229. [PMID: 34339726 DOI: 10.1016/j.mvr.2021.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
The current study assessed the effects of the thalidomide and palladium (II) saccharinate complex of terpyridine on the suppression of angiogenesis-mediated cell proliferation. The viability was assessed after treatment with palladium (II) complex (1.56-100 μM) and thalidomide (0.1-400 μM) alone by using ATP assay for 48 h. Palladium (II) complex was found to inhibit growth statistically significant in a dose-dependent manner in HUVECs and promoted PARP-1 cleavage through the production of ROS. On the other hand, thalidomide did not cause any significant change in cell viability. Moreover, cell death was observed to be manifested as late apoptosis due to Annexin V/SYTOX staining after palladium (II) complex treatment however, thalidomide did not demonstrate similar results. Thalidomide and palladium (II) complex also suppressed HUVEC migration and capillary-like structure tube formation in vitro in a time-dependent manner. Palladium (II) complex (5 mg/ml) treatment showed a strong antiangiogenic effect similar to positive control thalidomide (5 mg/ml) and successfully disrupted the vasculature and reduced the thickness of the vessels compared to control (agar). Furthermore, suppression of autophagy enhanced the cell death and anti-angiogenic effect of thalidomide and palladium (II) complex. We also showed that being treated with thalidomide and palladium (II) complex inhibited phosphorylation of the signaling regulators downstream of the VEGFR2. These results provide evidence for the regulation of endothelial cell functions that are relevant to angiogenesis through the suppression of the FAK/Src/Akt/ERK1/2 signaling pathway. Our results also indicate that PLC-γ1 phosphorylation leads to activation of p-Akt and p-Erk1/2 which cause stimulation on cell proliferation at lower doses. Hence, we demonstrated that palladium (II) and thalidomide can induce cell death via the Erk/Akt/PLCγ signaling pathway and that this pathway might be a novel mechanism.
Collapse
Affiliation(s)
- Seyma Aydinlik
- Department of Biology, Faculty of Arts and Science, Uludag University, Bursa, Turkey
| | - Ayca Uvez
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, 34500 Buyukcekmece/Istanbul, Turkey
| | - Hulya Tuba Kiyan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Ebru Gurel-Gurevin
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Veysel Turan Yilmaz
- Department of Chemistry, Faculty of Arts and Science, Uludag University, Bursa, Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, 34500 Buyukcekmece/Istanbul, Turkey.
| |
Collapse
|
12
|
Fan J, Li L, Qu P, Diao Y, Sun Y. κ‑opioid receptor agonist U50488H attenuates postoperative cognitive dysfunction of cardiopulmonary bypass rats through the PI3K/AKT/Nrf2/HO‑1 pathway. Mol Med Rep 2021; 23:293. [PMID: 33649775 PMCID: PMC7931006 DOI: 10.3892/mmr.2021.11933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/29/2020] [Indexed: 02/04/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following cardiopulmonary bypass (CPB). U50488H, a κ‑opioid receptor (KOR) agonist, can specifically activate KORs on hippocampal nerve cells, resulting in neuroprotective effects. The present study established a CPB rat model, observed the protective effect of U50488H on CPB‑induced POCD and brain damage and explored the regulatory mechanism of the PI3K/AKT/nuclear factor erythroid 2‑related factor 2 (Nrf2)/heme oxygenase (HO)‑1 pathway. Sprague‑Dawley rats were divided into the following groups: Sham operation (Sham group), CPB (CPB group), KOR agonist (U50488H) + CPB (U50488H group), CPB + U50488H + HO‑1 antagonist (ZnPP‑IX; ZnPP group) and CPB + U50488H + PI3K antagonist (LY294002; LY294002 group), with 10 rats in each group. Neurological scores and the Morris water maze test were used to evaluate cognitive function; hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling assays were performed to observe hippocampal neuron damage in rats. Immunofluorescence was used to detect reactive oxygen species, glial fibrillary acidic protein and Nrf2 expression in the hippocampus. Enzyme‑linked immunosorbent assays were used to detect inflammatory and oxidative stress factors. Western blotting was used to examine the expression of PI3K/AKT/Nrf2/HO‑1‑related proteins. It was demonstrated that U50488H significantly reduced the neural function score of rats with POCD induced by CPB, relieved cognitive dysfunction, reduced hippocampal neuron damage, inhibited the rate of apoptosis, repaired oxidative stress injury and protected against brain damage caused by CPB. In addition, U50488H could promote Nrf2 entry into the nucleus and upregulate HO‑1 and thioredoxin 1 (Trx1) expression. In CPB rats treated with PI3K inhibitors, less Nrf2 was detected in the nucleus and HO‑1 and Trx‑1 expression levels were reduced in the nucleus. Therefore, U50488H, a KOR agonist, can activate Nrf2/HO‑1 via the PI3K/AKT pathway to improve cognitive function and reduce brain damage in CPB rats.
Collapse
Affiliation(s)
- Jianing Fan
- Postgraduate Training Base of The General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121013, P.R. China
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Long Li
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Pengxia Qu
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yingjie Sun
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
13
|
Silymarin Inhibits Glutamate Release and Prevents against Kainic Acid-Induced Excitotoxic Injury in Rats. Biomedicines 2020; 8:biomedicines8110486. [PMID: 33182349 PMCID: PMC7695262 DOI: 10.3390/biomedicines8110486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Silymarin, a polyphenoic flavonoid derived from the seeds of milk thistle (Silybum marianum), exhibits neuroprotective effects. In this study, we used a model of rat cerebrocortical synaptosomes to investigate whether silymarin affects the release of glutamate, an essential neurotransmitter involved in excitotoxicity. Its possible neuroprotective effect on a rat model of kainic acid (KA)-induced excitotoxicity was also investigated. In rat cortical synaptosomes, silymarin reduced glutamate release and calcium elevation evoked by the K+ channel blocker 4-aminopyridine but did not affect glutamate release caused by the Na+ channel activator veratridine or the synaptosomal membrane potential. Decreased glutamate release by silymarin was prevented by removal of extracellular calcium and blocking of N- and P/Q-type Ca2+ channel or extracellular signal-regulated kinase 1/2 (ERK1/2) but not by blocking of intracellular Ca2+ release. Immunoblotting assay results revealed that silymarin reduced 4-aminopyridine-induced phosphorylation of ERK1/2. Moreover, systemic treatment of rats with silymarin (50 or 100 mg/kg) 30 min before systemic KA (15 mg/kg) administration attenuated KA-induced seizures, glutamate concentration elevation, neuronal damage, glial activation, and heat shock protein 70 expression as well as upregulated KA-induced decrease in Akt phosphorylation in the rat hippocampus. Taken together, the present study demonstrated that silymarin depressed synaptosomal glutamate release by suppressing voltage-dependent Ca2+ entry and ERK1/2 activity and effectively prevented KA-induced in vivo excitotoxicity.
Collapse
|
14
|
Xu J, Zheng Y, Lv S, Kang J, Yu Y, Hou K, Li Y, Chi G. Lactate Promotes Reactive Astrogliosis and Confers Axon Guidance Potential to Astrocytes under Oxygen-Glucose Deprivation. Neuroscience 2020; 442:54-68. [PMID: 32634533 DOI: 10.1016/j.neuroscience.2020.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
During cerebral ischemia, brain lactate concentration increases, and astrogliosis is triggered. Herein, we investigated lactate's role in astrogliosis and explored the functions of lactate-activated astrocytes in vitro. In rat models of cerebral ischemia, we observed increased glial fibrillary acidic protein (GFAP) expression, reflecting astrogliosis, and increased lactate levels in the ischemic brain region. Lactate upregulated GFAP and SRY-box transcription factor 9 (SOX9) expression and activated Akt and signal transducer and activator of transcription 3 (STAT3) signaling pathways in astrocytes cultured under oxygen-glucose deprivation (OGD); these effects were abrogated upon monocarboxylate transporter 1 (MCT1) knockdown. RNA-Seq analysis revealed 221 differentially expressed genes (DEGs) between lactate-treated and untreated astrocytes. Genes upregulated by lactate treatment included those regulating astrogliosis and axon guidance. Consistently, lactate-treated astrocytes induced neuronal outgrowth upon coculture. Our results suggest that lactate promotes reactive astrogliosis and confers axon guidance potential to astrocytes under OGD.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Juanjuan Kang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
15
|
Mu J, Cheng X, Zhong S, Chen X, Zhao C. Neuroprotective effects of miR-532-5p against ischemic stroke. Metab Brain Dis 2020; 35:753-763. [PMID: 32086725 DOI: 10.1007/s11011-020-00544-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Stroke can cause death and disability and has a high incidence with many complications. So far, effective treatment options for stroke are still limited. MicroRNA-532-5p (miR-532-5p) is significantly downregulated in stroke. However, the role of miR-532-5p in ischemic stroke is still unclear. In this study, we established an in vivo middle cerebral artery occlusion (MCAO) model in mice. The expression level of miR-532-5p, neurological score, infarct area, neuronal apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway-related molecules were examined. Low miR-532-5p levels and high phosphatase and tensin homolog deleted on chromosome 10 (PTEN) levels were detected in the mouse MCAO model. MiR-532-5p overexpression improved neurological dysfunction, reduced the infarct area, attenuated neuronal injury and apoptosis, and promoted the activation of the PI3K/Akt signaling pathway in MCAO mice. In vitro, we treated mouse neuroblastoma cells (N2a) with oxygen-glucose deprivation and reperfusion (OGD/R). The expression level of miR-532-5p, cell viability, cell apoptosis, and the PI3K/Akt signaling pathway-related molecules were detected. Consistent with the in vivo tests, the miR-532-5p level was decreased and the PTEN level was increased in OGD-treated N2a cells in vitro. The miR-532-5p mimic increased cell viability, decreased cell apoptosis, and activated the PI3K/Akt signaling pathway. Furthermore, PTEN was verified as a target gene of miR-532-5p by luciferase reporter assay. PTEN overexpression attenuated the protective effect of miR-532-5p in OGD-treated N2a cells. In summary, these findings reveal that miR-532-5p protects against ischemic stroke by inhibiting PTEN and activating the PI3K/Akt signaling pathway and may serve as a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jingwei Mu
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China
| | - Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China
| | - Xiaohong Chen
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
16
|
Li J, Lv H, Che YQ. Long non-coding RNA Gas5 potentiates the effects of microRNA-21 downregulation in response to ischaemic brain injury. Neuroscience 2020; 437:87-97. [PMID: 31982471 DOI: 10.1016/j.neuroscience.2020.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
Brain ischaemia, which can cause severe nerve injury, is a global health challenge. Long non-coding RNA (lncRNA) growth-arrest specific 5 (Gas5) has been documented to exert tumour suppressive effects in several cancers. However, its role in cerebrovascular disease still requires further investigation. Therefore, in this study, we focused on the role of lncRNA regulatory signalling related to lncRNA Gas5 in ischaemic brain injury. Middle cerebral artery occlusion (MCAO) was employed as a model of ischaemic brain injury in rats. The expression of lncRNA Gas5 and microRNA-21 (miR-21) was altered in neurons to elucidate their effects in ischaemic brain injury and to identify the interactions among lncRNA Gas5, miR-21 and Pten. The neuronal survival rate, apoptosis and the expression of phosphatidyl inositol 3-kinase (PI3K)/Akt signalling pathway-related genes were also evaluated in vitro to determine the effects of lncRNA Gas5. In the brains of rats subjected to MCAO, the expression of lncRNA Gas5 and Pten was upregulated, while miR-21 was downregulated. LncRNA Gas5 inhibited miR-21 expression, leading to elevated levels of Pten. In vitro experiments revealed that lncRNA Gas5 depletion and miR-21 elevation resulted in the suppression of neuronal apoptosis, thus promoting neuronal survival via the PI3K/Akt signalling pathway. These findings demonstrate that lncRNA Gas5 increases miR-21 and activates Pten, contributing to the development of ischaemic brain injury, supporting the silencing of lncRNA Gas5 as a possible therapeutic target for the treatment of ischaemic brain injury.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, PR China.
| |
Collapse
|
17
|
Jung YJ, Tweedie D, Scerba MT, Greig NH. Neuroinflammation as a Factor of Neurodegenerative Disease: Thalidomide Analogs as Treatments. Front Cell Dev Biol 2019; 7:313. [PMID: 31867326 PMCID: PMC6904283 DOI: 10.3389/fcell.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is initiated when glial cells, mainly microglia, are activated by threats to the neural environment, such as pathogen infiltration or neuronal injury. Although neuroinflammation serves to combat these threats and reinstate brain homeostasis, chronic inflammation can result in excessive cytokine production and cell death if the cause of inflammation remains. Overexpression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine with a central role in microglial activation, has been associated with neuronal excitotoxicity, synapse loss, and propagation of the inflammatory state. Thalidomide and its derivatives, termed immunomodulatory imide drugs (IMiDs), are a class of drugs that target the 3'-untranslated region (3'-UTR) of TNF-α mRNA, inhibiting TNF-α production. Due to their multi-potent effects, several IMiDs, including thalidomide, lenalidomide, and pomalidomide, have been repurposed as drug treatments for diseases such as multiple myeloma and psoriatic arthritis. Preclinical studies of currently marketed IMiDs, as well as novel IMiDs such as 3,6'-dithiothalidomide and adamantyl thalidomide derivatives, support the development of IMiDs as therapeutics for neurological disease. IMiDs have a competitive edge compared to similar anti-inflammatory drugs due to their blood-brain barrier permeability and high bioavailability, with the potential to alleviate symptoms of neurodegenerative disease and slow disease progression. In this review, we evaluate the role of neuroinflammation in neurodegenerative diseases, focusing specifically on the role of TNF-α in neuroinflammation, as well as appraise current research on the potential of IMiDs as treatments for neurological disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | | | | | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
18
|
Kranz TM, Lent KL, Miller KE, Chao MV, Brenowitz EA. Rapamycin blocks the neuroprotective effects of sex steroids in the adult birdsong system. Dev Neurobiol 2019; 79:794-804. [PMID: 31509642 DOI: 10.1002/dneu.22719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022]
Abstract
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase-dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α-dihydrotestosterone (DHT) and 17 β-estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3-kinase (PI3K)-Akt (a serine/threonine kinase)-mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Karin L Lent
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Kimberly E Miller
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Moses V Chao
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Eliot A Brenowitz
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
He F, Zhang N, Lv Y, Sun W, Chen H. Low‑dose lipopolysaccharide inhibits neuronal apoptosis induced by cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1 signaling pathway in rats. Mol Med Rep 2019; 19:1443-1452. [PMID: 30628689 PMCID: PMC6390019 DOI: 10.3892/mmr.2019.9827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/03/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of low‑dose lipopolysaccharide (LPS) on ischemia/reperfusion (I/R)‑induced brain injury, and to explore the mechanism of phosphoinositide 3‑kinase (PI3K)/Akt/forkhead box protein (Fox)O1 signaling pathway. Male Sprague‑Dawley rats were divided into control group (control), ischemia/reperfusion surgery group (I/R) and low‑dose LPS treatment group (LPS). An I/R model was established and the hemodynamic parameters were recorded at the end of I/R injury. The brain tissues were observed by hematoxylin and eosin staining, immunohistochemistry and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling staining. Microglia were treated with LPS following hypoxia/reoxygenation. The cellular viability was detected by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. The apoptotic rate of microglia was detected using AnnexinV/propidium iodide staining. The expression of B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated X (Bax), and caspase‑3 were detected by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Akt, phosphorylated (p)‑Akt, FoxO1 and p‑FoxO1 expression were detected by western blotting. It was previously reported that, following I/R injury, neuronal cells were disorderly and brain injury markers (neuron‑specific enolase and S100 β), inflammatory cytokines [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α] levels were significantly upregulated. In the present study, the expression levels of Bax, caspase‑3 Akt and p‑Akt were significantly higher, while that of Bcl‑2, FoxO1 and p‑FoxO1 were significantly lower in the I/R group. LPS treatment significantly increased the viability of neuronal cells and decreased the rate of neuronal cell apoptosis. Following the addition of PI3K signaling pathway inhibitor LY294002 to microglia, LPS reduced the levels of activated Akt, increased the downstream regulatory gene phosphorylation of FoxO1 and reduced microglia apoptosis. It was concluded that LPS can alleviate I/R‑induced brain injury, inhibit neuronal cells apoptosis and protect neuronal cells via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Fan He
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Nannan Zhang
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Lv
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Wenhao Sun
- Department of Neurology, The General Hospital of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Huisheng Chen
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
20
|
Luo Z, Zhang M, Niu X, Wu D, Tang J. Inhibition of the PI3K/Akt signaling pathway impedes the restoration of neurological function following hypoxic-ischemic brain damage in a neonatal rabbit model. J Cell Biochem 2019; 120:10175-10185. [PMID: 30614032 DOI: 10.1002/jcb.28302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Hypoxic-ischemic brain damage (HIBD), frequently occurring in infancy and childhood, is a major cause of mortality and severe neurologic impairment. This study was performed to examine the effect of the PI3K/Akt signaling pathway on HIBD in a neonatal rabbit model. MATERIALS AND METHODS Uterine artery occlusion was used to establish HIBD models in neonatal rabbits, which were then subjected to sham operation, dimethyl sulfoxide (2 mL) or LY294002 (inhibitor of PI3K/Akt signaling pathway, 6.4 μg/kg). Behavioral neurological assessment was performed in neonatal rabbits delivered by cesarean section, after which serum neuron-specific enolase (NSE) level and cerebral water content were determined. The level of cleaved caspase-3 level and apoptosis of neurons were observed by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Furthermore, the expression of PI3K/Akt signaling pathway- and apoptosis-related factors was examined. RESULTS In neonatal rabbits, HIBD increased the fetal death rate; reduced neurological scores of posture, righting reflex, and deglutition reflex; elevated serum NSE levels, cerebral water content, cleaved caspase-3-positive expression in hippocampal CA1 region and apoptotic neurons; inactivated PI3K/Akt signaling pathway as well as reduced Bcl-2 expression and increased BAD and Bax expression. Notably, the treatment of LY294002 further aggravated neurological impairment in neonatal rabbits in response to HIBD. CONCLUSION Following the HIBD caused by intrauterine asphyxia, the LY294002 administered through auricular vein infusion into pregnant rabbits exacerbates neurological impairment of neonatal rabbits, suggesting that inhibition of PI3K/Akt signaling pathway may serve as a candidate therapeutic target for neurological recovery.
Collapse
Affiliation(s)
- Zhihua Luo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Min Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xia Niu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
21
|
Gao JX, Li Y, Wang SN, Chen XC, Lin LL, Zhang H. Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson's disease. Int J Mol Med 2018; 43:209-220. [PMID: 30431059 PMCID: PMC6257840 DOI: 10.3892/ijmm.2018.3982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of microRNA-183 (miR-183) on substantia nigra neurons by targeting oncostatin M receptor (OSMR) in a mouse model of Parkinson’s disease (PD). The positive expression rates of OSMR and the apoptosis of substantia nigra neurons were detected by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling, respectively. Substantia nigra neurons in normal and PD mice were cultured in vitro. The association between miR-183 and OSMR was verified using a dual luciferase reporter gene assay. The expression of miR-183 and the phosphoinositide 3-kinase-Akt signaling pathway-associated genes were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell apoptosis was detected by flow cytometry. OSMR is the target gene of miR-183. The number of OSMR-positive cells and the apoptotic rate of substantia nigra neurons were increased in the PD group. Neurons transfected with miR-183 mimic exhibited elevated expression levels of miR-183, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-9 and increased apoptotic rate, and reduced expression levels of OSMR, Akt, phosphorylated (p-)Akt, glycogen synthase kinase-3 (GSK-3β), p-GSK-3β, Bcl-2, insulin-like growth factor 1 (IGF-1), mammalian target of rapamycin (mTOR) and p-mTOR. The miR-183 inhibitor decreased the expression levels of miR-183, Bax and caspase-9 and the apoptotic rate; however, increased the expression of OSMR, Akt, p-Akt, GSK-3β, p-GSK-3β, Bcl-2, IGF-1, mTOR and p-mTOR. The results of the present study provide evidence that the overexpression of miR-183 promotes the apoptosis of substantia nigra neurons by inhibiting the expression of OSMR.
Collapse
Affiliation(s)
- Jin-Xia Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yu Li
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Sai-Nan Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xing-Chi Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lu-Lu Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Hui Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
22
|
microRNA-212-induced protection of the heart against myocardial infarction occurs via the interplay between AQP9 and PI3K/Akt signaling pathway. Exp Cell Res 2018; 370:531-541. [DOI: 10.1016/j.yexcr.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
|
23
|
Inhibition of PTEN protects PC12 cells against oxygen-glucose deprivation induced cell death through mitoprotection. Brain Res 2018; 1692:100-109. [DOI: 10.1016/j.brainres.2018.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 01/06/2023]
|
24
|
Minaei Beyrami S, Khadem Ansari MH, Rasemi Y, Shakib N, Karimi P. Complete inhibition of phosphatase and tensin homolog promotes the normal and oxygen-glucose deprivation/reperfusion-injured PC12 cells to cell death. J Cardiovasc Thorac Res 2018; 10:83-89. [PMID: 30116506 PMCID: PMC6088763 DOI: 10.15171/jcvtr.2018.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/26/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction: Lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN) antagonizes phosphoinositide 3-kinase (PI3K)/AKT cell survival pathway. The effect of PTEN inhibitors has been rarely examined on cell survival following reperfusion injury. In this study, we investigated the neuroprotective effect of SF1670, as a new PTEN inhibitor, on an in vitro stroke-like model.
Methods: PC12 cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R). The cells were treated in five conditions as follows: normoxic normoglycemic (NO/NG); 60 minutes OGD; 60 minutes OGD and 6 h reperfusion (OGD/R); OGD/R treated with 10 µM SF1670 (OGD/R-SF), and NO/NG treated with 10 µM SF1670 (NO/NG-SF). Then, phosphorylation levels of AKT, P38 in PC12 cells were measured by immunoblotting. The cell viability was also determined by colorimetric assay.
Results: The results of immunoblotting revealed that following OGD/R the levels of phospho-AKT (p-AKT) significantly decreased, compared to NO/NG cells (P < 0.05). However, the ratio of p-AKT/total AKT significantly increased in the presence of SF1670 in the OGD/R-SF group, compared to the OGD/R condition. On the other hand, SF1670 significantly reduced the p-P38 MAPK and p-JNK levels, compared to OGD/R cells. Moreover, cell viability significantly decreased in the OGD and OGD/R condition compared to NO/NG cells. Surprisingly, SF-treated cells (OGD/R-SF and NO/NG-SF group) showed low cell viability compared to NO/NG condition.
Conclusion: Overall, our results demonstrated that complete inhibition of phosphatase activity of PTEN not only did not exhibit neuroprotective effect but also promoted PC12-deprived cells to death.
Collapse
Affiliation(s)
- Sohrab Minaei Beyrami
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Yousef Rasemi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nader Shakib
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
SIRT2 Inhibition Confers Neuroprotection by Downregulation of FOXO3a and MAPK Signaling Pathways in Ischemic Stroke. Mol Neurobiol 2018; 55:9188-9203. [DOI: 10.1007/s12035-018-1058-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
|
26
|
Piperlongumine activates Sirtuin1 and improves cognitive function in a murine model of Alzheimer’s disease. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
The Neuroprotective Effect of Thalidomide against Ischemia through the Cereblon-mediated Repression of AMPK Activity. Sci Rep 2018; 8:2459. [PMID: 29410497 PMCID: PMC5802741 DOI: 10.1038/s41598-018-20911-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/25/2018] [Indexed: 01/28/2023] Open
Abstract
Thalidomide was originally used as a sedative and found to be a teratogen, but now thalidomide and its derivatives are widely used to treat haematologic malignancies. Accumulated evidence suggests that thalidomide suppresses nerve cell death in neurologic model mice. However, detailed molecular mechanisms are unknown. Here we examined the molecular mechanism of thalidomide’s neuroprotective effects, focusing on its target protein, cereblon (CRBN), and its binding protein, AMP-activated protein kinase (AMPK), which plays an important role in maintaining intracellular energy homeostasis in the brain. We used a cerebral ischemia rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). Thalidomide treatment significantly decreased the infarct volume and neurological deficits of MCAO/R rats. AMPK was the key signalling protein in this mechanism. Furthermore, we considered that the AMPK–CRBN interaction was altered when neuroprotective action by thalidomide occurred in cells under ischemic conditions. Binding was strong between AMPK and CRBN in normal SH-SY5Y cells, but was weakened by the addition of H2O2. However, when thalidomide was administered at the same time as H2O2, the binding of AMPK and CRBN was partly restored. These results suggest that thalidomide inhibits the activity of AMPK via CRBN under oxidative stress and suppresses nerve cell death.
Collapse
|
28
|
Kim SE, Han JH, Ko IG, Kim CJ, Kim KH. Alpha1-adrenergic receptor antagonist tamsulosin ameliorates aging-induced memory impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus of old-aged rats. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1404492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee Medical Center, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University School of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
29
|
Lam KYC, Yao P, Wang H, Duan R, Dong TTX, Tsim KWK. Asarone from Acori Tatarinowii Rhizome prevents oxidative stress-induced cell injury in cultured astrocytes: A signaling triggered by Akt activation. PLoS One 2017; 12:e0179077. [PMID: 28598994 PMCID: PMC5466315 DOI: 10.1371/journal.pone.0179077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Acori Tatarinowii Rhizome (ATR; the dried rhizome of Acori tatarinowii Schott) is a well-known herb being used for mental disorder in China and Asia. Volatile oil is considered as the active ingredient of ATR, and asarones account for more than 90% of total volatile oil. Here, the protective effects of ATR oil and asarones, both α-asarone and β-asarone, were probed in cultured rat astrocytes. The cyto-protective effect of ATR oil and asarones against tBHP-induced astrocyte injury was revealed, and additionally ATR oil and asarones reduced the tBHP-induced intracellular reactive oxygen species (ROS) accumulation. In parallel, the activity of anti-oxidant response element (ARE) promoter construct (pARE-Luc), being transfected in cultured astrocytes, was markedly induced by application of ATR oil and asarones. The mRNAs encoding anti-oxidant enzymes, e.g. glutathione S-transferase (GST), glutamate-cysteine ligase modulatory subunit (GCLM), glutamate-cysteine ligase catalytic subunit (GCLC) and NAD(P)H quinone oxidoreductase (NQO1) were induced by ATR oil and asarones in a dose-dependent manner. The ATR oil/asarone-induced gene expression could be mediated by Akt phosphorylation; because the applied LY294002, a phosphoinositide 3-kinase inhibitor, fully abolished the induction. These results demonstrated that α-asarone and β-asarone could account, at least partly, the function of ATR being a Chinese medicinal herb.
Collapse
Affiliation(s)
- Kelly Y. C. Lam
- Division of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ping Yao
- Division of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huaiyou Wang
- Division of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, China
| | - Ran Duan
- Division of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, China
| | - Tina T. X. Dong
- Division of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, China
| | - Karl W. K. Tsim
- Division of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, China
- * E-mail:
| |
Collapse
|
30
|
Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem 2017; 141:766-782. [PMID: 28376279 PMCID: PMC5643047 DOI: 10.1111/jnc.14033] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Luo
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Huajun Jin
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Vellareddy Anantharam
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Arthi Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
31
|
Frosk P, Arts HH, Philippe J, Gunn CS, Brown EL, Chodirker B, Simard L, Majewski J, Fahiminiya S, Russell C, Liu YP, Hegele R, Katsanis N, Goerz C, Del Bigio MR, Davis EE. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. J Med Genet 2017; 54:490-501. [PMID: 28264986 PMCID: PMC5502313 DOI: 10.1136/jmedgenet-2016-104296] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022]
Abstract
Background Hydranencephaly is a congenital anomaly leading to replacement of the cerebral hemispheres with a fluid-filled cyst. The goals of this work are to describe a novel autosomal-recessive syndrome that includes hydranencephaly (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly (MARCH)); to identify its genetic cause(s) and to provide functional insight into pathomechanism. Methods We used homozygosity mapping and exome sequencing to identify recessive mutations in a single family with three affected fetuses. Immunohistochemistry, RT-PCR and imaging in cell lines, and zebrafish models, were used to explore the function of the gene and the effect of the mutation. Results We identified a homozygous nonsense mutation in CEP55 segregating with MARCH. Testing the effect of this allele on patient-derived cells indicated both a reduction of the overall CEP55 message and the production of a message that likely gives rise to a truncated protein. Suppression or ablation of cep55l in zebrafish embryos recapitulated key features of MARCH, most notably renal dysplasia, cerebellar hypoplasia and craniofacial abnormalities. These phenotypes could be rescued by full-length but not truncated human CEP55 message. Finally, we expressed the truncated form of CEP55 in human cells, where we observed a failure of truncated protein to localise to the midbody, leading to abscission failure and multinucleated daughter cells. Conclusions CEP55 loss of function mutations likely underlie MARCH, a novel multiple congenital anomaly syndrome. This association expands the involvement of centrosomal proteins in human genetic disorders by highlighting a role in midbody function.
Collapse
Affiliation(s)
- Patrick Frosk
- Departments of Pediatrics and Child Health, University of Manitoba, Manitoba, Canada.,Departments of Biochemistry and Medical Genetics, University of Manitoba, Manitoba, Canada
| | - Heleen H Arts
- Departments of Biochemistry, University of Western Ontario, London, Ontario, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Julien Philippe
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Carter S Gunn
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Emma L Brown
- Departments of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Bernard Chodirker
- Departments of Pediatrics and Child Health, University of Manitoba, Manitoba, Canada.,Departments of Biochemistry and Medical Genetics, University of Manitoba, Manitoba, Canada
| | - Louise Simard
- Departments of Biochemistry and Medical Genetics, University of Manitoba, Manitoba, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Somayyeh Fahiminiya
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Chad Russell
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Yangfan P Liu
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Robert Hegele
- Departments of Biochemistry, University of Western Ontario, London, Ontario, Canada.,Departments of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Conrad Goerz
- Departments of Pathology, University of Manitoba, Manitoba, Canada
| | - Marc R Del Bigio
- Departments of Pathology, University of Manitoba, Manitoba, Canada.,Diagnostic Services Manitoba, Manitoba, Canada
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
32
|
Valera E, Spencer B, Fields JA, Trinh I, Adame A, Mante M, Rockenstein E, Desplats P, Masliah E. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun 2017; 5:2. [PMID: 28057080 PMCID: PMC5217191 DOI: 10.1186/s40478-016-0409-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/18/2016] [Indexed: 11/10/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in oligodendrocytes. Therapeutic efforts to stop or delay the progression of MSA have yielded suboptimal results in clinical trials, and there are no efficient treatments currently available for MSA patients. We hypothesize that combining therapies targeting different aspects of the disease may lead to better clinical outcomes. To test this hypothesis, we combined the use of a single-chain antibody targeting α-syn modified for improved central nervous system penetration (CD5-D5) with an unconventional anti-inflammatory treatment (lenalidomide) in the myelin basic protein (MBP)-α-syn transgenic mouse model of MSA. While the use of either CD5-D5 or lenalidomide alone had positive effects on neuroinflammation and/or α-syn accumulation in this mouse model of MSA, the combination of both approaches yielded better results than each single treatment. The combined treatment reduced astrogliosis, microgliosis, soluble and aggregated α-syn levels, and partially improved behavioral deficits in MBP-α-syn transgenic mice. These effects were associated with an activation of the Akt signaling pathway, which may mediate cytoprotective effects downstream tumor necrosis factor alpha (TNFα). These results suggest that a strategic combination of treatments may improve the therapeutic outcome in trials for MSA and related neurodegenerative disorders.
Collapse
|
33
|
Chen W, Caston R, Balakrishnan B, Siddiqi A, Parmar K, Tang M, Feng M, Lai K. Assessment of ataxia phenotype in a new mouse model of galactose-1 phosphate uridylyltransferase (GALT) deficiency. J Inherit Metab Dis 2017; 40:131-137. [PMID: 27783170 PMCID: PMC5203948 DOI: 10.1007/s10545-016-9993-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022]
Abstract
Despite adequate dietary management, patients with classic galactosemia continue to have increased risks of cognitive deficits, speech dyspraxia, primary ovarian insufficiency, and abnormal motor development. A recent evaluation of a new galactose-1 phosphate uridylyltransferase (GALT)-deficient mouse model revealed reduced fertility and growth restriction. These phenotypes resemble those seen in human patients. In this study, we further assess the fidelity of this new mouse model by examining the animals for the manifestation of a common neurological sequela in human patients: cerebellar ataxia. The balance, grip strength, and motor coordination of GALT-deficient and wild-type mice were tested using a modified rotarod. The results were compared to composite phenotype scoring tests, typically used to evaluate neurological and motor impairment. The data demonstrated abnormalities with varying severity in the GALT-deficient mice. Mice of different ages were used to reveal the progressive nature of motor impairment. The varying severity and age-dependent impairments seen in the animal model agree with reports on human patients. Finally, measurements of the cerebellar granular and molecular layers suggested that mutant mice experience cerebellar hypoplasia, which could have resulted from the down-regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wyman Chen
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Rose Caston
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
- Dartmouth College, Hanover, NH, USA
| | - Bijina Balakrishnan
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Anwer Siddiqi
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Kamalpreet Parmar
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Manshu Tang
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Merry Feng
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
34
|
Lv B, Li F, Fang J, Xu L, Sun C, Han J, Hua T, Zhang Z, Feng Z, Wang Q, Jiang X. Activated Microglia Induce Bone Marrow Mesenchymal Stem Cells to Produce Glial Cell-Derived Neurotrophic Factor and Protect Neurons Against Oxygen-Glucose Deprivation Injury. Front Cell Neurosci 2016; 10:283. [PMID: 28018176 PMCID: PMC5160383 DOI: 10.3389/fncel.2016.00283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated interactions among microglia (MG), bone marrow mesenchymal stem cells (BMSCs) and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD) model. Rat BMSCs were incubated with conditioned medium (CM) from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF) on rat neuron viability, apoptosis, lactate dehydrogenase (LDH) leakage and mitochondrial membrane potential (MMP) were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01). Tumor necrosis factor-α (TNFα), but not interleukin-6 (IL6) or interleukin 1β (IL1β), promoted GDNF production by BMSCs (P < 0.001). GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01); these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and phosphoinositide-3-kinase (PI3K)/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2) and heat shock 60 kDa protein 1 (HSP60) levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.
Collapse
Affiliation(s)
- Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Jie Fang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Qinghua Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| |
Collapse
|
35
|
Duffy CM, Nixon JP, Butterick TA. Orexin A attenuates palmitic acid-induced hypothalamic cell death. Mol Cell Neurosci 2016; 75:93-100. [PMID: 27449757 DOI: 10.1016/j.mcn.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022] Open
Abstract
Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health.
Collapse
Affiliation(s)
- Cayla M Duffy
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Dr, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Dr, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Dr, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA; Minnesota Obesity Center, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
36
|
Güntert T, Gassmann M, Ogunshola OO. Temporal Rac1 – HIF-1 crosstalk modulates hypoxic survival of aged neurons. Brain Res 2016; 1642:298-307. [DOI: 10.1016/j.brainres.2016.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
|
37
|
Yu ZH, Cai M, Xiang J, Zhang ZN, Zhang JS, Song XL, Zhang W, Bao J, Li WW, Cai DF. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:8-19. [PMID: 26805466 DOI: 10.1016/j.jep.2016.01.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongxinluo (TXL), a compound prescription, is formulated according to the collateral disease doctrine of traditional Chinese medicine, and is widely used for the treatment of cardio-cerebrovascular diseases in China. AIM OF THE STUDY We aimed to investigate the neuroprotective effect of TXL on focal cerebral ischemia and reperfusion injury in rats by attenuating its brain damage and neuronal apoptosis, and to assess the potential role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in this protection. MATERIALS AND METHODS Adult Male Sprague-Dawley rats (n=120) were randomly divided into 5 groups: sham, cerebral ischemia and reperfusion (I/R), cerebral ischemia and reperfusion plus TXL (1.6g/kg/day) (TXL1.6), TXL1.6 plus LY294002 and dimethyl sulfoxide (DMSO) (TXL1.6+LY294002), TXL1.6 plus DMSO (TXL1.6+vehicle). Prior to the grouping, TXL1.6 was selected to be the optimal dose of TXL by evaluating the neurological deficits score of five group rats (Sham, I/R, TXL0.4, TXL0.8 and TXL1.6, n=30) at 0, 1, 3, 5, and 7 days after reperfusion. Rats, being subjected to middle cerebral artery occlusion (MCAO) for 90min followed by 24h reperfusion, were the cerebral ischemia/reperfusion models. At 24h after reperfusion, cerebral infarct area was measured via tetrazolium staining and neuronal damage was showed by Nissl staining. The double staining of Terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) staining and immunofluorescence labeling with NeuN, was performed to evaluate neuronal apoptosis. Proteins involved in PI3K/Akt pathway were detected by Western blot. RESULTS The results showed that TXL markedly improved neurological function, reduced cerebral infarct area, decreased neuronal damage, and significantly attenuated neuronal apoptosis, while these effects were eliminated by inhibition of PI3K/Akt with LY294002. We also found that TXL up-regulated the expression levels of p-PDK1, p-Akt, p-c-Raf, p-BAD and down-regulated Cleaved caspase 3 expression notably, which were partially reversed by LY294002. Additionally, the increment of p-PTEN level on which LY294002 had little effect was also detected in response to TXL treatment. CONCLUSIONS These findings demonstrated that TXL provided neuroprotection against cerebral ischemia/reperfusion injury and neuronal apoptosis, and this effect was mediated partly by activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhong-Hai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Zhen-Nian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jing-Si Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xiao-Ling Song
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jie Bao
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wen-Wei Li
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ding-Fang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
38
|
Chen CH, Sung CS, Huang SY, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH, Wen ZH, Chen WF. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 2016; 278:27-41. [PMID: 26828688 DOI: 10.1016/j.expneurol.2016.01.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - San-Nan Yang
- I-Shou University, School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis 2015; 6:e1775. [PMID: 26043075 PMCID: PMC4669828 DOI: 10.1038/cddis.2015.146] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that is sensitive to cell swelling, arachidonic acid and its metabolites, epoxyeicosatrienoic acids, which are associated with cerebral ischemia. The activation of TRPV4 induces cytotoxicity in many types of cells, accompanied by an increase in the intracellular free calcium concentration. TRPV4 activation modulates the mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)/ protein kinase B (Akt) signaling pathways that regulate cell death and survival. Herein, we examined TRPV4-induced neuronal apoptosis by intracerebroventricular (ICV) injection of a TRPV4 agonist (GSK1016790A) and assessed its involvement in cerebral ischemic injury. ICV injection of GSK1016790A dose-dependently induced apoptosis in the mouse hippocampi (GSK-injected mice). The protein level of phosphorylated p38 MAPK (p-p38 MAPK) was markedly increased and that of phosphorylated c-Jun N-terminal protein kinase (p-JNK) was virtually unchanged. TRPV4 activation also decreased Bcl-2/Bax protein ratio and increased the cleaved caspase-3 protein level, and these effects were blocked by a PI3K agonist and a p38 MAPK antagonist, but were unaffected by a JNK antagonist. ICV injection of the TRPV4 antagonist HC-067047 reduced brain infarction after reperfusion for 48 h in mice with middle cerebral artery occlusion (MCAO). In addition, HC-067047 treatment attenuated the decrease in the phosphorylated Akt protein level and the increase in p-p38 MAPK protein level at 48 h after MCAO, while the increase in p-JNK protein level remained unchanged. Finally, the decreased Bcl-2/Bax protein ratio and the increased cleaved caspase-3 protein level at 48 h after MCAO were markedly attenuated by HC-067047. We conclude that activation of TRPV4 induces apoptosis by downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways, which is involved in cerebral ischemic injury.
Collapse
|
40
|
Palencia G, Medrano JÁN, Ortiz-Plata A, Farfán DJ, Sotelo J, Sánchez A, Trejo-Solís C. Anti-apoptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats. J Neurol Sci 2015; 351:78-87. [DOI: 10.1016/j.jns.2015.02.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/06/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
|
41
|
Galinato MH, Orio L, Mandyam CD. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience 2014; 286:97-108. [PMID: 25463524 DOI: 10.1016/j.neuroscience.2014.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 11/08/2014] [Indexed: 01/05/2023]
Abstract
Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1h/day) or extended access (6h/day) paradigm for 17days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of N-methyl-d-aspartate (NMDA) receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in hippocampal subregions that may contribute to the altered synaptic activity in the hippocampus, which may underlie enhanced negative affective symptoms and perpetuation of the addiction cycle.
Collapse
Affiliation(s)
- M H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA
| | - L Orio
- Departamento de Psicobiología, Facultad Psicología, Universidad Complutense de Madrid, Campus Somosaguas, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - C D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Li C. Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat. PLoS One 2014; 9:e102342. [PMID: 25036185 PMCID: PMC4103831 DOI: 10.1371/journal.pone.0102342] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/16/2014] [Indexed: 12/02/2022] Open
Abstract
Inflammation and apoptosis play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that vagus nerve stimulation (VNS) following focal cerebral ischemia and reperfusion (I/R) may be neuroprotective by limiting infarct size. However, the underlying molecular mechanisms remain unclear. In this study, we investigated whether the protective effects of VNS in acute cerebral I/R injury were associated with anti-inflammatory and anti-apoptotic processes. Male Sprague-Dawley (SD) rats underwent VNS at 30 min after focal cerebral I/R surgery. Twenty-four h after reperfusion, neurological deficit scores, infarct volume, and neuronal apoptosis were evaluated. In addition, the levels of pro-inflammatory cytokines were detected using enzyme-linked immune sorbent assay (ELISA), and immunofluorescence staining for the endogenous "cholinergic anti-inflammatory pathway" was also performed. The protein expression of a7 nicotinic acetylcholine receptor (a7nAchR), phosphorylated Akt (p-Akt), and cleaved caspase 3 in ischemic penumbra were determined with Western blot analysis. I/R rats treated with VNS (I/R+VNS) had significantly better neurological deficit scores, reduced cerebral infarct volume, and decreased number of TdT mediated dUTP nick end labeling (TUNEL) positive cells. Furthermore, in the ischemic penumbra of the I/R+VNS group, the levels of pro-inflammatory cytokines and cleaved caspase 3 protein were significantly decreased, and the levels of a7nAchR and phosphorylated Akt were significantly increased relative to the I/R alone group. These results indicate that VNS is neuroprotective in acute cerebral I/R injury by suppressing inflammation and apoptosis via activation of cholinergic and a7nAchR/Akt pathways.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longling Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanhong Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Asaithambi A, Ay M, Jin H, Gosh A, Anantharam V, Kanthasamy A, Kanthasamy AG. Protein kinase D1 (PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress. PLoS One 2014; 9:e96947. [PMID: 24806360 PMCID: PMC4013052 DOI: 10.1371/journal.pone.0096947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/12/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.
Collapse
Affiliation(s)
- Arunkumar Asaithambi
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Muhammet Ay
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Anamitra Gosh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
44
|
Payandemehr B, Rahimian R, Gooshe M, Bahremand A, Gholizadeh R, Berijani S, Ahmadi-Dastgerdi M, Aminizade M, Sarreshte-Dari A, Dianati V, Amanlou M, Dehpour AR. Nitric oxide mediates the anticonvulsant effects of thalidomide on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 2014; 34:99-104. [PMID: 24735834 DOI: 10.1016/j.yebeh.2014.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 11/20/2022]
Abstract
Thalidomide is an old glutamic acid derivative which was initially used as a sedative medication but withdrawn from the market due to the high incidence of teratogenicity. Recently, it has reemerged because of its potential for counteracting number of diseases, including neurodegenerative disorders. Other than the antiemetic and hypnotic aspects, thalidomide exerts some anticonvulsant properties in experimental settings. However, the underlying mechanisms of thalidomide actions are not fully realized yet. Some investigations revealed that thalidomide could elicit immunomodulatory or neuromodulatory properties by affecting different targets, including cytokines (such as TNF α), neurotransmitters, and nitric oxide (NO). In this regard, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether the anticonvulsant effect of thalidomide is affected through modulation of the l-arginine-nitric oxide pathway or not. Injection of a single effective dose of thalidomide (10 mg/kg, i.p. or higher) significantly increased the seizure threshold (P<0.05). On the one hand, pretreatment with low and per se noneffective dose of l-arginine [NO precursor] (10, 30 and 60 mg/kg) prevented the anticonvulsant effect of thalidomide. On the other hand, NOS inhibitors [l-NAME and 7-NI] augmented the anticonvulsant effect of a subeffective dose of thalidomide (1 and 5 mg/kg, i.p.) at relatively low doses. Meanwhile, several doses of aminoguanidine [an inducible NOS inhibitor] (20, 50 and 100 mg/kg) failed to alter the anticonvulsant effect of thalidomide significantly. In summary, our findings demonstrated that the l-arginine-nitric oxide pathway can be involved in the anticonvulsant properties of thalidomide, and the role of constitutive nNOS is prominent in the reported neuroprotective feature.
Collapse
Affiliation(s)
- Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Gooshe
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Bahremand
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Berijani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Aminizade
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sarreshte-Dari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Dianati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
D'Ambrosio R, Eastman CL, Fattore C, Perucca E. Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation. Expert Rev Neurother 2014; 13:615-25. [PMID: 23738999 DOI: 10.1586/ern.13.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed, which are expected to capture the epileptogenic mechanisms operating in corresponding patient populations, and to exhibit similar treatment responsiveness. Recently, an intervention known to have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for antiepileptogenic activity in these models. If results of such studies are positive, these compounds could rapidly enter Phase III trials in patients at high risk of developing epilepsy.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
46
|
Luna-López A, González-Puertos VY, Romero-Ontiveros J, Ventura-Gallegos JL, Zentella A, Gomez-Quiroz LE, Königsberg M. A noncanonical NF-κB pathway through the p50 subunit regulates Bcl-2 overexpression during an oxidative-conditioning hormesis response. Free Radic Biol Med 2013; 63:41-50. [PMID: 23648765 DOI: 10.1016/j.freeradbiomed.2013.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/27/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Cells can respond to damage and stress by activating various repair and survival pathways. One of these responses can be induced by preconditioning the cells with sublethal stress to provoke a prosurvival response that will prevent damage and death, and which is known as hormesis. Bcl-2, an antiapoptotic protein recognized by its antioxidant and prosurvival functions, has been documented to play an important role during oxidative-conditioning hormesis. Using an oxidative-hormetic model, which was previously established in the L929 cell line by subjecting the cells to a mild oxidative stress of 50 μM H₂O₂ for 9 h, we identified two different transductional mechanisms that participate in the regulation of Bcl-2 expression during the hormetic response. These mechanisms converge in activating the nuclear transcription factor NF-κB. Interestingly, the noncanonical p50 subunit of the NF-κB family is apparently the subunit that participates during the oxidative-hormetic response.
Collapse
|
47
|
Li J, Qu Y, Chen D, Zhang L, Zhao F, Luo L, Pan L, Hua J, Mu D. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation. Neuroscience 2013; 252:346-58. [PMID: 23968592 DOI: 10.1016/j.neuroscience.2013.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 01/14/2023]
Abstract
Telomerase reverse transcriptase (TERT) is reported to protect neurons from apoptosis induced by various stresses including hypoxia-ischemia (HI). However, the mechanisms by which TERT exerts its anti-apoptotic role in neurons with HI injury remain unclear. In this study, we examined the protective role and explored the possible mechanisms of TERT in neurons with HI injury in vitro. Primary cultured neurons were exposed to oxygen and glucose deprivation (OGD) for 3h followed by reperfusion to mimic HI injury in vivo. Plasmids containing TERT antisense, sense nucleotides, or mock were transduced into neurons at 48h before OGD. Expression and distribution of TERT were measured by immunofluorescence labeling and western blot. The expression of cleaved caspase 3 (CC3), Bcl-2 and Bax were detected by western blot. Neuronal apoptosis was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The mitochondrial reactive oxygen species (ROS) were measured by MitoSOX Red staining. Fluorescent probe JC-1 was used to measure the mitochondrial membrane potential (ΔΨm). We found that TERT expression increased at 8h and peaked at 24h in neurons after OGD. CC3 expression and neuronal apoptosis were induced and peaked at 24h after OGD. TERT inhibition significantly increased CC3 expression and neuronal apoptosis after OGD treatment. Additionally, TERT inhibition decreased the expression ratio of Bcl-2/Bax, and enhanced ROS production and ΔΨm dissipation after OGD. These data suggest that TERT plays a neuroprotective role via anti-apoptosis in neurons after OGD. The underlying mechanisms may be associated with regulating Bcl-2/Bax expression ratio, attenuating ROS generation, and increasing mitochondrial membrane potential.
Collapse
Affiliation(s)
- J Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Targeted delivery of neurogenin-2 protein in the treatment for cerebral ischemia-reperfusion injury. Biomaterials 2013; 34:8786-97. [PMID: 23942209 DOI: 10.1016/j.biomaterials.2013.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/21/2013] [Indexed: 12/28/2022]
Abstract
Neurogenin-2 (Ngn2), as a proneural gene that promotes the survival and differentiation of neural precursor cells, is an attractive candidate for therapy against cerebral ischemia-reperfusion injury. However, the delivery approach limits its clinical application. To deliver Ngn2 protein into the cerebral ischemic region and exert a therapeutic effect on injured neurons after ischemia, we here reported that the fusion protein TAT-LBD-Ngn2 was constructed by fusing a transactivator of transcription (TAT) domain and a laminin-binding domain (LBD) to Ngn2. TAT-LBD-Ngn2 promoted the outgrowth of neuronal neurite, increased the survival rate and alleviated apoptosis of hippocampal neurons exposed to oxygen glucose deprivation in vitro. Furthermore, a focal cerebral ischemia model in C57BL/6 mice showed that TAT-LBD-Ngn2 efficiently crossed the blood brain barrier, aggregated in the ischemic zone and was consistently incorporated into neurons. Moreover, TAT-LBD-Ngn2 transduced into brains attenuated neuronal degeneration and apoptosis in the ischemic zone. TAT-LBD-Ngn2 treatment resulted in a reduction of infarct volume that was associated with a parallel improvement in neurological functional outcomes after reperfusion. In conclusion, the targeted delivery of TAT-LBD-Ngn2 into the ischemic zone attenuated cerebral ischemia-reperfusion injury through the inhibition of neuronal degeneration and apoptosis, suggesting that TAT-LBD-Ngn2 is a promising target candidate for the treatment of ischemic stroke.
Collapse
|
49
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Reimers D, Herranz AS, Rodríguez-Serrano M, Miranda C, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease. PLoS One 2013; 8:e67771. [PMID: 23861803 PMCID: PMC3701531 DOI: 10.1371/journal.pone.0067771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
| | | | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Antonio Sánchez Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Cristina Miranda
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Juan José Díaz-Gil
- Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
50
|
The early activation of PI3K strongly enhances the resistance of cortical neurons to hypoxic injury via the activation of downstream targets of the PI3K pathway and the normalization of the levels of PARP activity, ATP, and NAD⁺. Mol Neurobiol 2012; 47:757-69. [PMID: 23254998 DOI: 10.1007/s12035-012-8382-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/29/2012] [Indexed: 01/29/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) plays several important roles in neuronal survival. Activation of the pathway is essential for the neuroprotective mechanisms of materials that shield neuronal cells from many stressful conditions. However, there have been no reports to date about the effect of the direct activation of the pathway in hypoxic injury of neuronal cells. We investigated whether the direct activation of the PI3K pathway inhibits neuronal cell death induced by hypoxia. Primary cultured cortical neurons (PCCNs) were exposed to hypoxic conditions (less than 1 mol% O2) and/or treated with PI3K activator. Hypoxia reduced the viability of PCCNs in a time-dependent manner, but treatment with PI3K significantly restored viability in a concentration-dependent manner. Among the signaling proteins involved in the PI3K pathway, those associated with survival, including Akt and glycogen synthase kinase-3β, were decreased shortly after exposure to hypoxia and those associated with cell death, including BAX, apoptosis-induced factor, cytochrome c, caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP), were increased. However, treatment with PI3K activator normalized the expression levels of those signaling proteins. PARP activity and levels of ATP and NAD(+) altered by hypoxia were also normalized with direct PI3K activation. All these findings suggest that direct and early activation is important for protecting neuronal cells from hypoxic injury.
Collapse
|