1
|
Jang JP, Roh J, Kim GS, Park J, Hwang GJ, Park B, Lee HW, Takahashi S, Hong YS, Ko SK, Jang JH. Jejupeptins A and B: Polyketide-Cyclic Peptide Hybrids with Anti-Corticosterone Activity from Streptomyces sp. KCB15JA151. JOURNAL OF NATURAL PRODUCTS 2025; 88:433-439. [PMID: 39902661 DOI: 10.1021/acs.jnatprod.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Two new polyketide-cyclic peptide hybrids jejupeptins A (1) and B (2), together with a known compound eurystatin B (3), were isolated from a culture of Streptomyces sp. KCB15JA151. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and DP4+ probability analyses. Comprehensive spectroscopic analysis revealed that 1 and 2 are the first examples of hybrid peptide-polyketides possessing an unprecedented 4-amino-3-hydroxymethyl-3-methyl-2-oxopentanoic acid moiety. A plausible biosynthetic pathway for these compounds was proposed. Biological evaluation demonstrated that compounds 1 and 2 exhibit protective effects against corticosterone-induced apoptosis and cellular oxidative stress without any associated cytotoxicity.
Collapse
Affiliation(s)
- Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jongtae Roh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biomolecular Science, KRIBB school of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gil Soo Kim
- Central Research and Development, Hanpoong Pharmaceutical Co., LTD., Wanju 54843, Republic of Korea
| | - Jihun Park
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Gwi Ja Hwang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Beomcheol Park
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Hyeok-Won Lee
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biomolecular Science, KRIBB school of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biomolecular Science, KRIBB school of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biomolecular Science, KRIBB school of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
3
|
Zhao J, Han Z, Ding L, Wang P, He X, Lin L. The molecular mechanism of aging and the role in neurodegenerative diseases. Heliyon 2024; 10:e24751. [PMID: 38312598 PMCID: PMC10835255 DOI: 10.1016/j.heliyon.2024.e24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Aging is a complex and inevitable biological process affected by a combination of external environmental and genetic factors. Humans are currently living longer than ever before, accompanied with aging-related alterations such as diminished autophagy, decreased immunological function, mitochondrial malfunction, stem cell failure, accumulation of somatic and mitochondrial DNA mutations, loss of telomere, and altered nutrient metabolism. Aging leads to a decline in body functions and age-related diseases, for example, Alzheimer's disease, which adversely affects human health and longevity. The quality of life of the elderly is greatly diminished by the increase in their life expectancy rather than healthy life expectancy. With the rise in the age of the global population, aging and related diseases have become the focus of attention worldwide. In this review, we discuss several major mechanisms of aging, including DNA damage and repair, free radical oxidation, telomeres and telomerase, mitochondrial damage, inflammation, and their role in neurodegenerative diseases to provide a reference for the prevention of aging and its related diseases.
Collapse
Affiliation(s)
- Juanli Zhao
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhenjie Han
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Ding
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiutang He
- Center for Monitoring and Evaluation of Teaching Quality, Jingchu University of Technology, Jingmen, 448000, China
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
4
|
Ohmoto M, Takemoto M, Daikoku T. Butein inhibits corticosterone-induced apoptosis of Neuro2A cells by maintaining MEK-ERK signaling. IBRO Neurosci Rep 2023; 14:447-452. [PMID: 37252631 PMCID: PMC10212788 DOI: 10.1016/j.ibneur.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Stress-induced overactivation of glucocorticoid signaling may contribute to mental illness by inducing neuronal death and dysfunction. We previously reported that pretreatment with the plant flavonoid butein inhibits corticosterone (CORT)-induced apoptosis of Neuro2A (N2A) cells. In the current study, we examined whether MEK-ERK and PI3K-AKT signaling pathways are involved in neuroprotection by butein. N2A cells were pre-incubated with serum-free DMEM containing 0.5 μM butein for 30 min, and then incubated with serum-free DMEM containing 0.5 µM butein, 50 µM CORT, 50 µM LY294002, or 50 µM PD98059 as indicated for 24 h. We subsequently performed the MTT assay and the western blot analysis. As expected, CORT considerably reduced N2A cell viability and increased relative expression of the apoptosis effector cleaved caspase-3, whereas pretreatment with butein blocked these cytotoxic effects. Treatment with CORT alone also decreased both AKT and ERK protein phosphorylation. Butein pretreatment had no effect on AKT phosphorylation, and only partially reversed the reduction in phosphorylated ERK. However, cotreatment with butein and the PI3K inhibitor LY294002 during CORT exposure enhanced ERK phosphorylation, whereas cotreatment with butein and the ERK phosphorylation/activation inhibitor PD98059 enhanced AKT phosphorylation, suggesting that MEK-ERK negatively regulates AKT phosphorylation. Moreover, the protective efficacy of butein was blocked by PD98059 cotreatment but not LY294002 cotreatment. These findings suggest that butein protects neurons against glucocorticoid-induced apoptosis by sustaining ERK phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Masanori Ohmoto
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Masaya Takemoto
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Tohru Daikoku
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
5
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
6
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
7
|
Gao S, Zhang X, Liu J, Ji F, Zhang Z, Meng Q, Zhang Q, Han X, Wu H, Yin Y, Lv Y, Shi W. Icariin Induces Triple-Negative Breast Cancer Cell Apoptosis and Suppresses Invasion by Inhibiting the JNK/c-Jun Signaling Pathway. Drug Des Devel Ther 2023; 17:821-836. [PMID: 36969705 PMCID: PMC10038011 DOI: 10.2147/dddt.s398887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
Background Breast cancer is a common cancer worldwide. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by a poor prognosis. Icariin (ICA) is a flavonoid glycoside purified from the natural product Epimedium, which is reported to exert an inhibitory effect on a variety of cancers. However, molecular mechanisms behind ICA suppressed TNBC remain elusive. Methods The curative effects of ICA on TNBC cells and potential targets were predicted by network pharmacology and molecular biology methods screening, and the mechanism of inhibition was explained through in vitro experiments such as cell function determination, Western blot analysis, molecular docking verification, etc. Results This study showed that ICA inhibits TNBC cell functions such as proliferation, migration, and invasion in a dose-dependent manner. ICA could induce redox-induced apoptosis in TNBC cell, as shown by ROS upregulation. As a result of network pharmacology, ICA was predicted to be able to inhibit the MAPK signaling pathway. ICA treatment inhibited the expression of JNK and c-Jun and downregulated the antiapoptotic gene cIAP-2. Our results suggested that ICA could induce apoptosis by inducing an excessive accumulation of ROS in cells and suppress TNBC cell invasion via the JNK/c-Jun signaling pathway. Conclusion We demonstrated that ICA can effectively inhibit cell proliferation and induced apoptosis of TNBC cells. In addition, ICA could inhibit TNBC cell invasion through the JNK/c-Jun signaling pathway. The above suggests that ICA may become a potential drug for TNBC.
Collapse
Affiliation(s)
- Shenghan Gao
- The College of Life Sciences, Northwest University, Xi’an, 710069People’s Republic of China
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Xinyu Zhang
- The College of Life Sciences, Northwest University, Xi’an, 710069People’s Republic of China
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Jie Liu
- Clinical Medical Center, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Fuqing Ji
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Zhihao Zhang
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Qingjie Meng
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Qi Zhang
- The College of Life Sciences, Northwest University, Xi’an, 710069People’s Republic of China
| | - Xiaogang Han
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - He Wu
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Yulong Yin
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Yonggang Lv
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
- Correspondence: Yonggang Lv, Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China, Email
| | - Wenzhen Shi
- Clinical Medical Center, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
- Wenzhen Shi, Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, People’s Republic of China, Tel +8615037916770, Email
| |
Collapse
|
8
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Khezri MR, Ghasemnejad-Berenji M. Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease. Neurochem Res 2022; 47:2954-2962. [PMID: 35802286 DOI: 10.1007/s11064-022-03667-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Bi Z, Zhang W, Yan X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed Pharmacother 2022; 151:113180. [PMID: 35676785 DOI: 10.1016/j.biopha.2022.113180] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
Inflammation and immunity dysregulation have received widespread attention in recent years due to their occurrence in the pathophysiology of many conditions. In this regard, several pharmacological studies have been conducted aiming to evaluate the potential anti-inflammatory and immunomodulatory effects of phytochemicals. Epimedium, a traditional Chinese medicine, is often used as a tonic, aphrodisiac, and anti-rheumatic agent. Icariin (ICA) is the main active ingredient of Epimedium and is, once ingested, mainly metabolized into Icaritin (ICT). Data from in vitro and in vivo studies suggested that ICA and its metabolite (ICT) regulated the functions and activation of immune cells, modulated the release of inflammatory factors, and restored aberrant signaling pathways. ICA and ICT were also involved in anti-inflammatory and immune responses in several diseases, including multiple sclerosis, asthma, atherosclerosis, lupus nephritis, inflammatory bowel diseases, rheumatoid arthritis, and cancer. Yet, data showed that ICA and ICT exhibited similar but not identical pharmacokinetic properties. Therefore, based on their higher solubility and bioavailability, as well as trends indicating that single-ingredient compounds offer broader and safer therapeutic capabilities, ICA and ICT delivery systems and treatment represent interesting avenues with promising clinical applications. In this study, we reviewed the anti-inflammatory and immunomodulatory mechanisms, as well as the pharmacokinetic properties of ICA and its metabolite ICT.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Yan
- Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Lim DW, Han D, Lee C. Pedicularis resupinata Extract Prevents Depressive-like Behavior in Repeated Corticosterone-Induced Depression in Mice: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113434. [PMID: 35684372 PMCID: PMC9182056 DOI: 10.3390/molecules27113434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022]
Abstract
Excessive corticosterone (CORT), resulting from a dysregulated hypothalamic–pituitary–adrenal (HPA) axis, is associated with cognitive impairment and behavioral changes, including depression. In Korean oriental medicine, Pedicularis resupinata is used for the treatment of inflammatory diseases such as rheumatoid arthritis. However, the antidepressant properties of P. resupinata have not been well characterized. Here, the antidepressant-like effects of P. resupinata extract (PRE) were evaluated in terms of CORT-induced depression using in vivo models. HPLC confirmed that acteoside, a phenylethanoid glycoside, was the main compound from PRE. Male ICR mice (8 weeks old) were injected with CORT (40 mg/kg, i.p.) and orally administered PRE daily (30, 100, and 300 mg/kg) for 21 consecutive days. Depressive-like behaviors were evaluated using the open-field test, sucrose preference test, passive avoidance test, tail suspension test, and forced swim test. Treatment with a high dose of PRE significantly alleviated CORT-induced, depressive-like behaviors in mice. Additionally, repeated CORT injection markedly reduced brain-derived neurotrophic factor levels, whereas total glucocorticoid receptor (GR) and GR phosphorylation at serine 211 were significantly increased in the mice hippocampus but improved by PRE treatment. Thus, our findings suggest that PRE has potential antidepressant-like effects in CORT-induced, depressive-like behavior in mice.
Collapse
Affiliation(s)
| | - Daeseok Han
- Correspondence: (D.H.); (C.L.); Tel.: +82-63-219-9246 (D.H.); +82-63-219-9226 (C.L.)
| | - Changho Lee
- Correspondence: (D.H.); (C.L.); Tel.: +82-63-219-9246 (D.H.); +82-63-219-9226 (C.L.)
| |
Collapse
|
13
|
Hyun SA, Lee YJ, Jang S, Ko MY, Lee CY, Cho YW, Yun YE, Lee BS, Seo JW, Moon KS, Ka M. Adipose stem cell-derived extracellular vesicles ameliorates corticosterone-induced apoptosis in the cortical neurons via inhibition of ER stress. Stem Cell Res Ther 2022; 13:110. [PMID: 35313975 PMCID: PMC8935810 DOI: 10.1186/s13287-022-02785-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Background Corticosterone (CORT) can induce neuronal damage in various brain regions, including the cerebral cortex, the region implicated in depression. However, the underlying mechanisms of these CORT-induced effects remain poorly understood. Recently, many studies have suggested that adipose stem cell-derived extracellular vesicles (A-EVs) protect neurons in the brain.
Methods To investigated neuroprotection effects of A-EVs in the CORT-induced cortical neurons, we cultured cortical neurons from E15 mice for 7 days, and the cultured cortical neurons were pretreated with different numbers (5 × 105–107 per mL) of A-EVs (A-EVs5, A-EVs6, A-EVs7) for 30 min followed by administration of 200 μM CORT for 24 h. Results Here, we show that A-EVs exert antiapoptotic effects by inhibiting endoplasmic reticulum (ER) stress in CORT-induced cortical neurons. We found that A-EVs prevented neuronal cell death induced by CORT in cultured cortical neurons. More importantly, we found that CORT exposure in cortical neurons resulted in increased levels of apoptosis-related proteins such as cleaved caspase-3. However, pretreatment with A-EVs rescued the levels of caspase-3. Intriguingly, CORT-induced apoptosis involved upstream activation of ER stress proteins such as GRP78, CHOP and ATF4. However, pretreatment with A-EVs inhibited ER stress-related protein expression. Conclusion Our findings reveal that A-EVs exert antiapoptotic effects via inhibition of ER stress in CORT-induced cell death.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Young Ju Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Chang Youn Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ye Eun Yun
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Joung-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
14
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
15
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
16
|
Peris MC, Martínez A, Ortíz MP, Sheth CC, Veses V. Icariin in Combination with Amoxycillin-Clavulanate and Ampicillin, but Not Vancomycin, Increases Antibiotic Sensitivity and Growth Inhibition against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11020233. [PMID: 35203835 PMCID: PMC8868454 DOI: 10.3390/antibiotics11020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
The widespread irrational use of antibiotics in recent years has resulted in an increase in the detection of multi-resistant bacterial strains, particularly methicillin-resistant Staphylococcus aureus (MRSA). The use of natural derivatives such as flavonoids is postulated as one of the most promising avenues to solve this emerging public health problem. The objective of the present study is to characterize the antimicrobial activity of icariin, a flavonoid compound isolated from a variety of plants of the Epimedium genus, against human and animal clinical MRSA isolates. Our study found that icariin alone did not have any antimicrobial effect on S. aureus or MRSA clinical isolates. However, icariin enhanced the effect of amoxycillin-clavulanate or ampicillin, whereas no effect was seen when used in combination with vancomycin. Specifically, co-incubation of S. aureus with amoxycillin-clavulanate plus icariin resulted in an increased proportion of dead cells, suggesting that this flavonoid potentially increases antimicrobial activity when used in combination with the beta-lactam antibiotic amoxycillin-clavulanate. Furthermore, we demonstrate that co-incubation of S. aureus with AmoxyClav plus icariin resulted in increased membrane disruption and growth inhibition. This study demonstrates the potential utility of icariin in permitting lower antibiotic therapeutic doses in alignment with strategies to reduce the spread of antibiotic resistance. Further research is required to determine the optimum concentration of icariin and to define clinically relevant combinations of flavonoid and antibiotic.
Collapse
|
17
|
Yang W, Han YH, Wang HC, Lu CT, Yu XC, Zhao YZ. Intradermal injection of icariin-HP-β-cyclodextrin improved traumatic brain injury via the trigeminal epineurium-brain dura pathway. J Drug Target 2022; 30:557-566. [PMID: 35023434 DOI: 10.1080/1061186x.2021.2023159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lower bioavailability after oral administration limited icariin applications in Central Nervous System. Icariin/HP-β-cyclodextrin (HP-β-CD) inclusion complex was prepared for acute severe opening traumatic brain injury (TBI) via facial intradermal(i.d.) in mystacial pad. After fluid percussion-induced TBI, icariin/HP-β-CD at 0.4 mg/kg i.d. preserved more neurons and oligodendrocytes than intranasal injection (i.n.) or intravenous injection via tail vein (i.v.) and decreased microglia and astrocyte activation. Icariin/HP-β-CD i.d. reduced apoptosis in cortical penumbra while i.n. and i.v. showed weak or no effects. Icariin/HP-β-CD i.d. reduced Evans blue leakage and altered CD34, ZO-1, Claudin-5 and beta-catenin expression after TBI. Moreover, icariin/HP-β-CD promoted human umbilical vein endothelial cells proliferation. Thus, Icariin/HP-β-CD i.d. improved TBI, including blood brain barrier opening. Fluorescein 5-isothiocyanate (FITC) and 3,3'-Dioctadecyloxacarbocyanine perchlorate (DiOC18(3)) mimic HP-β-CD and icariin respectively. FITC and DiOC18(3) were similarly delivered to trigeminal epineurium, perineurium and perivascular spaces or tissues, caudal dura mater and scattered in trigeminal fasciculus, indicating that icariin/HP-β-CD was delivered to brain via trigeminal nerve-dura mater-brain pathways. In sum, intradermal injection in mystacial pad might delivered icariin/HP-β-CD to brain and icariin/HP-β-CD improved acute severe opening TBI.
Collapse
Affiliation(s)
- Wei Yang
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Yong-Hui Han
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Heng-Cai Wang
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Cui-Tao Lu
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Xi-Chong Yu
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Ying-Zheng Zhao
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| |
Collapse
|
18
|
Zheng X, Jiang W, Zhang L, Abasubong KP, Zhang D, Li X, Jiang G, Chi C, Liu W. Protective effects of dietary icariin on lipopolysaccharide-induced acute oxidative stress and hepatopancreas injury in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109192. [PMID: 34597777 DOI: 10.1016/j.cbpc.2021.109192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
To investigate the effects of dietary icariin (ICA) supplementation on acute oxidative stress and hepatopancreatic injury induced by lipopolysaccharide (LPS) injection in Eriocheir sinensis, an 8-week feeding trial of crabs was conducted using 4 diets with different supplementation levels of ICA (0, 50, 100, and 200 mg/kg diet weight, respectively), and then challenged with LPS of 400 μg/kg body weight for 6 h. Results showed that 100 mg/kg ICA supplementation increased the antioxidant capacity, reduced the stress-related indicators in haemolymph, strengthen the mitochondrial membrane potential, and reduce apoptosis compared to the single LPS-treated crabs. The expressions of apoptosis-related genes and proteins were also evaluated to further understand the effects of dietary ICA pretreatment on LPS-induced cell apoptosis. As a result, dietary 100 mg/kg diet weight ICA pre-addition significantly down-regulated the expression of HSP60, HSP70, Caspase 3c, Caspase 8, Caspase 3, Caspase 9, P38, and Bax (P < 0.05), and alleviated the suppressed expression of PI3K, AKT, MEK, and Bcl-2 (P < 0.05) in crabs challenged with LPS. Overall, this research reveals that ICA supplementation of 100 mg/kg diet weight could enhance the resistance to oxidative damage and apoptosis in E. sinensis facing LPS challenge.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Kenneth P Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
20
|
Colla ARS, Pazini FL, Lieberknecht V, Camargo A, Rodrigues ALS. Ursolic acid abrogates depressive-like behavior and hippocampal pro-apoptotic imbalance induced by chronic unpredictable stress. Metab Brain Dis 2021; 36:437-446. [PMID: 33394285 DOI: 10.1007/s11011-020-00658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023]
Abstract
Emerging evidence has shown that ursolic acid exerts antidepressant-like effects, however, its ability to elicit an antidepressant-like response in rodents subjected to stress model that mimics behavioral and neurochemical alterations found in depression remains to be determined. Thus, this study investigated the possible antidepressant-like effect of ursolic acid in mice subjected to chronic unpredictable stress (CUS) for 14 days, and whether this effect could be associated with the modulation of serum corticosterone levels and hippocampal Bcl-2/Bax mRNA expression. Our results indicated that CUS induced a depressive-like behavior, as demonstrated by an increase in the immobility time and latency to first grooming in the tail suspension test and splash test, respectively. Conversely, the repeated administration of ursolic acid (0.1 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.) in the last 7 days of CUS completely prevented CUS-induced behavioral alterations, suggesting an antidepressant-like effect. Additionally, CUS significantly increased the mRNA expression of Bax (pro-apoptosis marker), but not Bcl-2 (anti-apoptosis marker) in the hippocampus. Moreover, reduced hippocampal mRNA expression of Bcl-2/Bax ratio was detected in CUS-exposed mice. Ursolic acid, but not fluoxetine, prevented CUS-induced increase in the expression of Bax, but both ursolic acid and fluoxetine prevented CUS-induced reduction on Bcl-2/Bax ratio. Furthermore, neither CUS nor treatments with ursolic acid or fluoxetine altered serum corticosterone levels. Our study unveils the ability of ursolic acid to prevent the depressive-like behavior induced by stress and the modulation of Bcl-2/Bax expression could be associated with this response.
Collapse
Affiliation(s)
- André R S Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
21
|
Zhang M, Zhang Y, Sun H, Ni H, Sun J, Yang X, Chen W, Zhao W, Zhong X, He C, Ao H, He S. Sinisan Protects Primary Hippocampal Neurons Against Corticosterone by Inhibiting Autophagy via the PI3K/Akt/mTOR Pathway. Front Psychiatry 2021; 12:627056. [PMID: 34122166 PMCID: PMC8192823 DOI: 10.3389/fpsyt.2021.627056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Corticosterone causes significant neurotoxicity in primary hippocampal neurons which is associated with depression. Dysfunctional autophagy is implicated in cognitive impairment and depressive-like behavior. The traditional Chinese medicine Sinisan (SNS) is highly effective in clinical treatment of depression. However, the molecular mechanisms underlying therapeutic effects of SNS are unknown. Purpose: The aim of this study was to elucidate the protective effect of SNS and the underlying mechanisms against corticosterone-induced neuronal damage. Study Design: The effects of serum derived from rats containing SNS (or untreated controls) on the expression of autophagy-related molecules in primary rat hippocampal neurons exposed to different concentrations of corticosterone for different intervals were explored. Methods: CCK-8 assay, LDH assay were used to analyze cell viability and LDH activity. Western blot, qRT-PCR, and immunofluorescence assays were used to determine protein and mRNA expression levels of molecules such as LC3, p62, Beclin1, ULK1, PI3K, p-PI3K, Akt p-Akt, mTOR, p-mTOR, p70S6, p-p70S6, 4ebp1 and p-4ebp1. Results: Corticosterone induced a dose- and time-dependent reduction in cellular viability. Moreover, corticosterone (100-400 μM) treatment for 24 h increased LC3-II/LC3-I protein ratio, increased Beclin1 and ULK1 protein expression levels, and decreased p62, PI3K, p-PI3K, p-Akt, p-mTOR, p-p70S6, and p-4ebp1 protein expression levels. Notably, SNS-containing serum reversed corticosterone-induced reduction of neuronal viability, and increased p62, PI3K, p-Akt, p-mTOR, p-p70S6, and p-4ebp1 protein and mRNA expression levels. In addition, SNS-containing serum decreased LC3-II/LC3-I protein ratio, and downregulated Beclin1, and ULK1 protein and mRNA expression in primary hippocampal neurons. Conclusion: SNS protects primary hippocampal neurons against corticosterone-induced neurotoxicity by preventing excessive autophagy through activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Mingjia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Psychology, School of Economics and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Ni
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Jialing Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuemei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiqing Ao
- Department of Psychology, School of Economics and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Martin-Bastida A, Tilley BS, Bansal S, Gentleman SM, Dexter DT, Ward RJ. Iron and inflammation: in vivo and post-mortem studies in Parkinson's disease. J Neural Transm (Vienna) 2020; 128:15-25. [PMID: 33079260 DOI: 10.1007/s00702-020-02271-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
In these present studies, in vivo and and post-mortem studies have investigated the association between iron and inflammation. Early-stage Parkinson's disease (PD) patients, of less than 5 years disease duration, showed associations of plasmatic ferritin concentrations with both proinflammatory cytokine interleukin-6 and hepcidin, a regulator of iron metabolism as well as clinical measures. In addition ratios of plasmatic ferritin and iron accumulation in deep grey matter nuclei assessed with relaxometry T2* inversely correlated with disease severity and duration of PD. On the hand, post-mortem material of the substantia nigra compacta (SNc) divided according to Braak and Braak scores, III-IV and V-VI staging, exhibited comparable microgliosis, with a variety of phenotypes present. There was an association between the intensity of microgliosis and iron accumulation as assayed by Perl's staining in the SNc sections. In conclusion, markers of inflammation and iron metabolism in both systemic and brain systems are closely linked in PD, thus offering a potential biomarker for progression of the disease.
Collapse
Affiliation(s)
- Antonio Martin-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
- Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona-Madrid, Spain.
| | - Bension Shlomo Tilley
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Sukhi Bansal
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Steve M Gentleman
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - David T Dexter
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Roberta J Ward
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
23
|
Zhou F, He K, Guan Y, Yang X, Chen Y, Sun M, Qiu X, Yan F, Huang H, Yao L, Liu B, Huang L. Network pharmacology-based strategy to investigate pharmacological mechanisms of Tinospora sinensis for treatment of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112940. [PMID: 32389853 DOI: 10.1016/j.jep.2020.112940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora sinensis (Lour.) Merr. belongs to the family Menispermaceae. It is called LeZhe and is widely used as a kind of folk medicine especially in the Tibetan Plateau of China. T. sinensis has the functions of clearing away heat and detoxification, dispelling wind and dredging collaterals, calming and soothing the nerves. T. sinensis is an effective medicine for the prevention and treatment of aging diseases such as Alzheimer's disease (AD) in the Tibetan Plateau of China, whereas its material basis and underlying mechanisms are not clear. The aim of this study was to investigate the material basis and potential mechanisms of T. sinensis in the treatment of AD by using network pharmacology and molecular docking. MATERIALS AND METHODS In this study, targets were collected from DrugBank database, Therapeutic Target Database (TTD) and literatures reports for the treatment of AD. Compounds were searched by literatures and systematic separation from T. sinensis. The molecular docking experiment was carried out by using Autodock Vina software to screen the bioactive compounds in T. sinensis and target proteins for AD. Then, the "compound-target network" was constructed by Cytoscape software. The drug-like properties of the active compounds were analyzed by pKCSM performs, and the protein-protein interaction (PPI) network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) target pathway enrichment analysis was carried out by Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protective effect of neurons of two active compounds were verified with the injury cell model of PC12 and primary hippocampus neurons induced by Aβ25-35. Finally, the key proteins of related pathways were quantitatively analyzed with Western blot method. RESULTS In total, 105 compounds and 38 targets have been screened. The main active compounds contained berberine, which belongs to alkaloids, Aurantiamide acetate, N-P-coumaroyltyramine, which belongs to amides, Trans-syringin and 3-demethyl-phillyrin, which belongs to phenylpropanoids. The targets covered inflammation-related proteins, including Protein kinase B (AKT), Phosphoinositide 3-kinase (PI3K), Tyrosine-protein kinase JAK1 (JAK1), mammalian target of rapamycin (mTOR), tumor necrosis factor alpha (TNF-α), Neuronal NOS (NOS1), and cholinergic function-related proteins, including α4-Nicotinic acetylcholine receptor (α4 nAChR), Muscarinic acetylcholine receptor M1 (Muscarnic M1). Inflammation and cholinergic dysfunction were the center of the network and occupy a dominant position. And the results of enrichment analysis shown the pathways mainly contained phosphoinositide-3-kinase/Akt (PI3K/Akt) signal pathway, neurotrophic factors (NTFs) signal pathway, Hypoxia-inducible factor 1 (HIF-1) signal pathway, mechanistic Target of Rapamycin (mTOR) signal pathway, Tumor necrosis factor (TNF) signal pathway, insulin resistance (IR). The results of in vitro assays showed that the tested compounds could significantly improve the survival rate and inhibit the apoptosis of PC12 cells and primary hippocampal neurons injured by Aβ25-35. Western blot results showed that T. sinensis had a significant effect on the expression of protein PI3K and Akt. CONCLUSION Our results revealed that T. sinensis could prevent and treat AD through a multi-compound-multi-target-multi-pathway regulatory network. Our work also expected to provide new ideas and theoretical bases for searching for the active compounds in T. sinensis and potential mechanism in the prevention and treatment of AD by the network pharmacology and molecular docking. The results of in vitro assay and in vivo assay supported the results of molecular docking.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Kun He
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yang Guan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiyang Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yaohui Chen
- Jiang Xi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Mengsheng Sun
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiaopeng Qiu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Feixia Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Lihua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Bo Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| |
Collapse
|
24
|
Lin HM, Lin LF, Sun MY, Liu J, Wu Q. Topical Delivery of Four Neuroprotective Ingredients by Ethosome-Gel: Synergistic Combination for Treatment of Oxaliplatin-Induced Peripheral Neuropathy. Int J Nanomedicine 2020; 15:3251-3266. [PMID: 32440122 PMCID: PMC7213895 DOI: 10.2147/ijn.s233747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral neuropathy is a common and painful side effect that occurs in patients with cancer induced by Oxaliplatin (OXL). The neurotoxicity correlates with the damage of dorsal root ganglion (DRG) neurons and Schwann cells (SCs). Hydroxysafflor yellow A (HSYA), icariin, epimedin B and 3, 4-dihydroxybenzoic acid (DA) are the main neuroprotective ingredients identified in Wen-Luo-Tong (WLT), a traditional Chinese medicinal topical compound. The purpose of this study was to prepare and evaluate the efficacy of an ethosomes gel formulation loaded with a combination of HSYA, icariin, epimedin B and DA. However, the low LogP value, poor solubility and macromolecule are several challenges for topical delivery of these drugs. Methods Ethosomes were prepared by the single-step injection technique. Particle size, entrapment efficiency and in vitro drug deposition studies were determined to select the optimum ethosomes. The optimized ethosomes were further incorporated into carbopol to obtain a gel. The rheological properties, morphology, in vitro drug release, in vitro gel application and skin distribution of the ethosomes gels were studied. A rat model of oxaliplatin-induced neuropathy was established to assess the therapeutic efficacy of the ethosomes gel. Results Seventy percent (v/v) ethanol, cinnamaldehyde and Phospholipon 90G were employed to develop ethosomes a carrier system. This system had a high entrapment efficiency, carried large amounts of HSYA, epimedin B, DA and icarrin, and penetrated deep into the epidermis and dermis. The optimized ethosomes had the maximum deposition of icariin, HSYA, epimedin B and relative higher amount of DA in epidermis (2.00±0.13 µg/cm2, 5.72±0.75 µg/cm2, 1.97±0.27 µg/cm2 and 9.25±1.21 µg/cm2, respectively). 0.5% carbopol 980 was selected to develop the ethosomes gel with desirable viscoelasticity and spreadability, which was suitable for topical application. The mechanical allodynia and hyperalgesia induced by OXL in rats were significantly reduced after the new ethosomes gel was applied to rats compared to model group. Conclusion Based on our findings, the ethosomes gel delivery system provided a new formulation for the topical delivery of HSYA, icariin, epimedin B and DA to counteract OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Hong-Mei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Long-Fei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ming-Yi Sun
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jia Liu
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Wu
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
25
|
Yang D, Wu W, Gan G, Wang D, Gong J, Fang K, Lu F. (-)-Syringaresinol-4-O-β-D-glucopyranoside from Cortex Albizziae inhibits corticosterone-induced PC12 cell apoptosis and relieves the associated dysfunction. Food Chem Toxicol 2020; 141:111394. [PMID: 32360906 DOI: 10.1016/j.fct.2020.111394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
The neuroprotective effects and potential mechanisms of (-)-Syringaresinol-4-O-β-D-glucopyranoside (SRG), a natural lignan glycoside extracted from Cortex Albizziae, were investigated using corticosterone (CORT)-induced PC12 cells as an in vitro anxiety model. PC12 cells were treated with 100 μM CORT and 5, 10, or 20 μM SRG for 48 h. Cell viability and lactate dehydrogenase (LDH) leakage were measured. Apoptosis were detected using FITC-coupled Annexin V (AV) and propidium iodide (PI) staining flow cytometric analyses and TUNEL assays. Rhodamine 123 and Fluo-3-AM staining flow cytometric analyses were used to detect mitochondrial membrane potential (ΔΨm) and intracellular calcium concentration ([Ca2+]i), respectively. Western blot was used to detect brain-derived neurotrophic factor (BDNF), Bax, Bcl-2, cAMP-response element binding protein (CREB), cytosolic cytochrome c (Cyt c), caspase-3, and cleaved caspase-3. Experimental data showed that SRG promoted cell proliferation, reduced LDH release, inhibited apoptosis, improved ΔΨm values, decreased [Ca2+]i, up-regulated CREB, BDNF, and Bcl-2, down-regulated Bax and Cyt c protein expression levels, and reduced caspase-3 activity. This suggests that SRG has neuroprotective and antiapoptotic effects in the pathogenesis of anxiety disorders, and its mechanisms are partly connecte to inhibition of the mitochondrial apoptotic pathway and activation of pathways involving CREB and BDNF.
Collapse
Affiliation(s)
- Desen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China; College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China.
| | - Wanqin Wu
- Hubei Provincial Institute for Food Supervision and Test, 1 Gaoxin Road, Jiangxia District, Wuhan, 430070, Hubei Province, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, 1 Gaoxin Road, Jiangxia District, Wuhan, 430070, Hubei Province, China.
| | - Guoping Gan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China; Chinese Materia Medica Processing Engineering Center of Hubei Province, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China.
| | - Dingkun Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Jing Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Ke Fang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
26
|
Ghazizadeh J, Hamedeyazdan S, Torbati M, Farajdokht F, Fakhari A, Mahmoudi J, Araj-Khodaei M, Sadigh-Eteghad S. Melissa officinalis L. hydro-alcoholic extract inhibits anxiety and depression through prevention of central oxidative stress and apoptosis. Exp Physiol 2020; 105:707-720. [PMID: 32003913 DOI: 10.1113/ep088254] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does an extract of Melissa officinalis L. ameliorate anxiety- and depressive-like behaviour of mice? What is the main finding and its importance? An extract of Melissa officinalis L. possessed anxiolytic and anti-depressant effects, which could mainly be mediated through its antioxidant and anti-apoptotic properties. ABSTRACT This study evaluated the effects of a hydro-alcoholic extract of Melissa officinalis (HAEMO) on anxiety- and depressive-like behaviours, oxidative stress and apoptosis markers in restraint stress-exposed mice. In order to induce a depression-like model, mice were subjected to restraint stress (3 h day-1 for 14 days) and received normal saline or HAEMO (50, 75 and 150 mg kg-1 day-1 ) for 14 days. The administered doses of HAEMO were designated based on the concentration of one of the main phenolic compounds present in the extract, rosmarinic acid (2.55 mg kg-1 at lowest dose); other phytochemical analyses including assays for antioxidant activity, total phenols and flavonoids were also carried out. The behavioural changes in an open field task, elevated plus maze, tail suspension and forced swimming tests were evaluated. Also, malondialdehyde (MDA) levels and enzyme activities of superoxide dismutase and glutathione peroxidase, and total antioxidant capacity were assessed in the prefrontal cortex and hippocampus. Moreover, levels of Bcl-2, Bax and caspase 3 in the brain as well as serum concentration of corticosterone were evaluated. HAEMO (75 and 150 mg kg-1 ) significantly reversed anxiety- and depressive-like behaviours. Also, HAEMO reduced MDA levels, enhanced enzymatic antioxidant activities and restored serum levels of corticosterone. An immunoblotting analysis also demonstrated that HAEMO decreased levels of pro-apoptotic markers and increased anti-apoptotic protein levels in the prefrontal cortex and hippocampus of restraint stress-exposed mice. Our findings suggested that HAEMO reduced inflammation and had anxiolytic and antidepressant effects in mice.
Collapse
Affiliation(s)
- Javid Ghazizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Ohmoto M, Shibuya Y, Taniguchi S, Nakade T, Nomura M, Ikeda-Matsuo Y, Daikoku T. Protective effects of butein on corticosterone-induced cytotoxicity in Neuro2A cells. IBRO Rep 2020; 8:82-90. [PMID: 32181410 PMCID: PMC7066037 DOI: 10.1016/j.ibror.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Butein protected Neuro2A cells from CORT-induced apoptosis via mitochondrial dysfunction, caspase-3 activation, and DNA damage. CORT suppressed retinoic acid-induced neurite outgrowth in Neuro2A cells. Butein inhibited CORT-suppressed neurite outgrowth in Neuro2A cells. High doses of butein induced cytotoxicity in Neuro2A cells.
A functional understanding of the relationship between glucocorticoids and neuronal apoptosis induced by the production of reactive oxygen species (ROS) may lead to a novel strategy for the treatment or prevention of depression. Previous reports suggest that butein, a type of flavonoids, may be a potent candidate against depression-related neuronal cell apoptosis caused by oxidative stress; however, the protective effects of butein on damaged corticosterone (CORT)-treated neuronal cells has not been elucidated. In the present study, we examined the protective effect of butein on CORT-induced cytotoxicity and neurite growth during cell differentiation of mouse neuroblastoma Neuro2A (N2A) cells. Moreover, the effect on cultured cells by high concentrations of butein was confirmed. Our results demonstrate that CORT treatment significantly decreases cell viability and induces cell death. CORT was suggested to induce apoptosis via mitochondrial dysfunction and caspase-3 activation; this apoptosis may be attributed to DNA damage by ROS generation, found in this study to be significantly inhibited by pretreatment with butein. We found that CORT produced significant growth suppression of retinoic acid-induced neurite outgrowth in N2A cells; however, butein significantly increased neurite length and induced dose-dependent apoptotic cytotoxicity in N2A cells. This study suggests that low concentration of butein can prevent CORT-induced cytotoxicity in N2A cells, and provides preliminary results supporting some of the beneficial roles of butein in neuroprotection.
Collapse
Affiliation(s)
- Masanori Ohmoto
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Yukina Shibuya
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Shihori Taniguchi
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Tomoki Nakade
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Masaaki Nomura
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Yuri Ikeda-Matsuo
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Tohru Daikoku
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
28
|
Liu J, Liu L, Sun J, Luo Q, Yan C, Zhang H, Liu F, Wei Y, Dong J. Icariin Protects Hippocampal Neurons From Endoplasmic Reticulum Stress and NF-κB Mediated Apoptosis in Fetal Rat Hippocampal Neurons and Asthma Rats. Front Pharmacol 2020; 10:1660. [PMID: 32082160 PMCID: PMC7005524 DOI: 10.3389/fphar.2019.01660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Icariin is a main component of the Chinese medicinal plant Epimedium brevicornu Maxim, exhibits potent activity against inflammatory diseases. Our previous data demonstrated the valid bioactivity of icariin on mitigating rodent asthma. Endoplasmic reticulum (ER) stress and nuclear factor-κB (NF-κB) pathway were involved in the pathogenesis of asthma. However, it remains poorly defined that whether icariin could inhibit ER stress and NF-κB mediated apoptosis in asthma and further influence the central neural system. Herein, we investigated the effects of icariin on primary cultured fetal rat hippocampal neurons and OVALPS-OVA induced asthma rat model. Asthma rat models were established by ovalbumin (OVA) and lipopolysaccharide (LPS) intraperitoneal injection and OVA inhalational challenge. Airway resistance was analyzed to evaluate lung function after last challenge and pathological changes were detected on lung tissues. Assessment of inflammatory cells counts in bronchoalveolar lavage fluids (BALF) were performed and ELISA was used to determine levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and interferon-γ in serum. Protein expression of BiP and IRE-1α, XBP-1s and phosphorylation-IκBα (p-IκBα), IκBα, and p65 as well as cytochrome c, caspase-3 (cleaved caspase-3), and caspase-9 (cleaved caspase-9) were tested by Western blot. We found that icariin could remarkably improve pulmonary function and reduce inflammatory cells in the lung, levels of inflammatory cytokines, and ER stress related proteins as well as NF-κB were prominently suppressed by icariin. Our results suggested that icariin had an inhibitory effect on airway inflammation and neuroprotective effect on ER stress and NF-κB mediated apoptosis in asthma rats and cultured fetal rat hippocampal neurons, which may provide new mechanistic insights into the asthma prevention and treatment of icariin.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Guo X, Shi Y, Du P, Wang J, Han Y, Sun B, Feng J. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA. Life Sci 2019; 239:117020. [PMID: 31678553 DOI: 10.1016/j.lfs.2019.117020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 12/27/2022]
Abstract
AIMS Obstructive sleep apnea (OSA) combined with type 2 diabetes (T2DM) may lead to cognitive dysfunction. We previously reported that cognitive impairment is exacerbated in KKAy mice exposed to intermittent hypoxia (IH), during which the DNA binding protein HMGB1 mediates hippocampal neuronal apoptosis by maintaining microglia-associated neuroinflammation, but the underlying mechanism remains largely unknown. MATERIALS AND METHODS We performed immunofluorescence, Western blotting, and immunohistochemistry experiments in mouse hippocampal tissues and HT22 cells. KKAy type 2 diabetes model mice and normal C57BL/6J mice were exposed to IH or intermittent normoxia. HT22 cells were cultured in high glucose medium and exposed to IH or intermittent normoxia. We transfected HMGB1 siRNA into HT22 cells and then treated them with high glucose combined with intermittent hypoxia. KEY FINDINGS In conclusion, IH aggravated apoptosis and autophagy defects in T2DM mice, and increased the protein expression of HMGB1 and TLR4. This was also confirmed in HG + IH-treated hippocampal HT22 cells. HMGB1 siRNA can significantly reduce the protein expression of HMGB1 and TLR4, reverse neuronal apoptosis and enhance autophagy. SIGNIFICANCE We believe that HMGB1 is a key factor in the regulation of hippocampal neuronal apoptosis and autophagy defects in T2DM combined with OSA. Targeting HMGB1/TLR4 signaling as a novel approach may delay or prevent the increased apoptosis and decreased autophagy induced by T2DM combined with OSA, and may ultimately improve cognitive dysfunction.
Collapse
Affiliation(s)
- Xiangyu Guo
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Yu Shi
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Ping Du
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Jiahui Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Yelei Han
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China.
| |
Collapse
|
30
|
Gong WX, Zhou YZ, Qin XM, DU GH. Involvement of mitochondrial apoptotic pathway and MAPKs/NF-κ B inflammatory pathway in the neuroprotective effect of atractylenolide III in corticosterone-induced PC12 cells. Chin J Nat Med 2019; 17:264-274. [PMID: 31076130 DOI: 10.1016/s1875-5364(19)30030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Atractylenolide III (ATL-III), a sesquiterpene compound isolated from Rhizoma Atractylodis Macrocephalae, has revealed a number of pharmacological properties including anti-inflammatory, anti-cancer activity, and neuroprotective effect. This study aimed to evaluate the cytoprotective efficiency and potential mechanisms of ATL-III on corticosterone injured rat phaeochromocytoma (PC12) cells. Our results demonstrate that ATL-III increases cell viability and reduces the release of lactate dehydrogenase (LDH). The results suggest that ATL-III protects PC12 cells from corticosterone-induced injury by inhibiting the intracellular Ca2+ overloading, inhibiting the mitochondrial apoptotic pathway and modulating the MAPK/NF-ΚB inflammatory pathways. These findings provide a novel insight into the molecular mechanism by which ATL-III protected the PC12 cells against corticosterone-induced injury for the first time. Our results provide the evidence that ATL-III may serve as a therapeutic agent in the treatment of depression.
Collapse
Affiliation(s)
- Wen-Xia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Guan-Hua DU
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Wang C, Wang X, Xu L, Cheng Y. Neuroprotective Activity of Icariin Against Hypoxic-ischemic Brain Injury in Neonatal Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.829.836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Wang SW, Ren BX, Qian F, Luo XZ, Tang X, Peng XC, Huang JR, Tang FR. Radioprotective effect of epimedium on neurogenesis and cognition after acute radiation exposure. Neurosci Res 2019; 145:46-53. [PMID: 30145270 DOI: 10.1016/j.neures.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023]
Abstract
The radioprotective effect of herb epimedium (or yin yang huo) extract (5 g/kg, oral administration daily for 4 weeks) on neurogenesis and cognition after acute radiation exposure with 5.5 Gy was evaluated in Balb/c mice by behavioral tests and immunohistochemical study. The results indicated that epimedium extract could improve animal weight loss, locomotor activity and spatial learning and memory which are similar to pre-irradiation intraperitoneal injection (100 mg/kg) of amifostine phosphate, a well- known radioprotective drug. Immunohistochemical study showed that epimedium extract prevented the loss of proliferation cells, newly generated neurons, and interneurons in the hilus, in particular, the subgranular zone of the dentate gyrus. It suggests that herb epimedium may be a promising radio-neuro-protective drug to prevent radiation-induced neuropsychological disorders.
Collapse
Affiliation(s)
- Si Wei Wang
- Medical School of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Bo Xu Ren
- Medical School of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Feng Qian
- Medical School of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xue Zhi Luo
- Medical School of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xi Tang
- Oncology Department, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xiao Chun Peng
- Medical School of Yangtze University, Jingzhou, Hubei, 434023, PR China.
| | - Jiang Rong Huang
- Medical School of Yangtze University, Jingzhou, Hubei, 434023, PR China.
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore 138602.
| |
Collapse
|
33
|
Liu Y, Mi B, Lv H, Liu J, Xiong Y, Hu L, Xue H, Panayi AC, Liu G, Zhou W. Shared KEGG pathways of icariin-targeted genes and osteoarthritis. J Cell Biochem 2019; 120:7741-7750. [PMID: 30506715 DOI: 10.1002/jcb.28048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The beneficial effects of icariin in the management of many diseases, such as chronic renal failure and heart failure, are well known. Icariin has also been shown to ameliorate osteoarthritis (OA) symptoms; however, the underlying mechanisms remain unclear. In this study, a bioinformatics analysis was performed to investigate the KEGG pathways of icariin-targeted genes involved in OA. Our study suggests that icariin plays a role in OA by regulating inflammatory cytokine production, insulin resistance, and cell survival through modulation of the NF-κB, MAPK, and Akt signaling pathways. Importantly, IKBKB, NFKBIA, MAPK8, MAPK9, and MAPK10 may be the hub genes affected by icariin when providing its beneficial effects on OA. In addition, we found that icariin decreases proinflammatory factors and inhibits chondrocyte apoptosis through suppression of the NF-κB pathway. Our study highlights a set of KEGG pathways that could explain the molecular mechanism of icariin's action on OA, suggesting that icariin could be considered as a promising therapeutic option for OA.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Huijuan Lv
- Department of Rheumatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Liu L, Zhao Z, Lu L, Liu J, Sun J, Wu X, Dong J. Icariin and icaritin ameliorated hippocampus neuroinflammation via inhibiting HMGB1-related pro-inflammatory signals in lipopolysaccharide-induced inflammation model in C57BL/6 J mice. Int Immunopharmacol 2019; 68:95-105. [PMID: 30616172 DOI: 10.1016/j.intimp.2018.12.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
Inflammation is a defensive response of the body and is at the center of many diseases' process like depression. High mobility group protein box 1 (HMGB1), has been proved to function as a pro-inflammatory cytokine. We aim to explore the role of HMGB1 played in the neuroinflammation here. In this study, we used LPS to induce an acute inflammatory response, and to measure the anti-neuroinflammation effect of icariin (ICA) and icaritin (ICT). We found that LPS could increase the expression of HMGB1 in serum and hippocampus, along with a high expression of HMGB1 in the cytoplasm and a high expression of RAGE, which could be rescued by ICA and ICT, and ethyl pyruvate (EP) pretreatment showed similar effects here. We speculated that the translocation of HMGB1 from the nucleus to the cytoplasm played an important role in neuroinflammatory process, and HMGB1-RAGE signal was involved in this process. Furthermore, we found that ICA and ICT treatment activated TLR4-XBP1s related NF-κB signal, which we thought was relevant with the neuroprotective effect of ICA and ICT. However, EP pretreatment suppressed TLR4-XBP1s- endoplasmic reticulum stress related NF-κB signal to anti-inflammatory response, which was almost absolutely opposite with ICA and ICT treatment. We speculated that it might be caused by the duration of inflammation. We supposed that ICA and ICT could ameliorate neuroinflammation in hippocampus via suppressing HMGB1-RAGE signaling and might show a neuroprotective effect via activating TLR4-XBP1s related NF-κB signal at the same time, making it possible to act as an anti-neuroinflammatory drugs.
Collapse
Affiliation(s)
- Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, PR China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, PR China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, PR China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, PR China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, PR China
| | - Xiao Wu
- The Respiratory Department of the TCM Hospital of Jiangsu, Nanjing 210000, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
35
|
Li H, Zhang X, Qi X, Zhu X, Cheng L. Icariin Inhibits Endoplasmic Reticulum Stress-induced Neuronal Apoptosis after Spinal Cord Injury through Modulating the PI3K/AKT Signaling Pathway. Int J Biol Sci 2019; 15:277-286. [PMID: 30745820 PMCID: PMC6367543 DOI: 10.7150/ijbs.30348] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced neuronal apoptosis is a crucial pathological process of spinal cord injury (SCI). In our previous study, icariin (ICA) showed neuroprotective effects in SCI. However, the relationships between ER stress and ICA in SCI are unclear yet. Therefore, whether ICA could ameliorate SCI via attenuating ER stress was investigated in vitro and in vivo. Adult mice were established SCI model and received vehicle solution or ICA by gavage once per day in vivo. The primary cultured cells were treated with or without thapsigargin (TG), ICA or LY294002 to induce ER stress in vitro. Motor dysfunction, neuronal apoptosis, tissue damage and inhibition of PI3K/AKT pathway were induced by ER stress after SCI. But ICA administration significantly enhanced motor recovery and protected spinal cord tissues against infraction and hemorrhage, etc. post injury. Meanwhile, the expression of ER stress markers ATF6, IRE1α, GRP78, XBP1 and eIF2α was decreased, while the level of p-AKT/AKT was increased by ICA. Furthermore, ICA significantly inhibited the expression of ER stress apoptotic proteins caspase-12, CHOP, Bax/Bcl-2, caspase-9 and caspase-3. Moreover, immunofluorescence double staining indicated that ICA reduced GRP78, CHOP and TUNEL positive neurons following SCI. However, this beneficial effect of ICA was abolished by PI3K/AKT inhibitor LY294002 in vitro. Finally, ICA preserved the ultra-structure of ER by transmission electron microscope histologically. This study suggested that the neuroprotective effect of ICA on motor recovery and neuronal survival was related to attenuating ER stress via PI3K/AKT signaling pathway after SCI.
Collapse
Affiliation(s)
- Haotian Li
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Key Laboratory of spine and spinal cord injury repair and regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Xinran Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Xi Qi
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Key Laboratory of spine and spinal cord injury repair and regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Xu Zhu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Key Laboratory of spine and spinal cord injury repair and regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Key Laboratory of spine and spinal cord injury repair and regeneration (Tongji University), Ministry of Education, Shanghai, China
| |
Collapse
|
36
|
Li H, Zhang X, Zhu X, Qi X, Lin K, Cheng L. The Effects of Icariin on Enhancing Motor Recovery Through Attenuating Pro-inflammatory Factors and Oxidative Stress via Mitochondrial Apoptotic Pathway in the Mice Model of Spinal Cord Injury. Front Physiol 2018; 9:1617. [PMID: 30505282 PMCID: PMC6250845 DOI: 10.3389/fphys.2018.01617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a severe medical problem leading to crucial life change. Icariin (ICA) is a natural flavonoid compound extracted from the Chinese herb Epimedium brevicornum which has neuroprotective effects. But little is known about the relationship between ICA and SCI. We hypothesized ICA may enhance motor recovery through attenuating inflammation, oxidative stress and mitochondrial dysfunction. Mice were randomly assigned to sham, SCI, ICA 20 μmol/kg (low dose) and ICA 50 μmol/kg (high dose) groups. And Behavioral, biochemical, molecular biological, immunofluorescent and histological assays were performed. First, ICA enhanced motor recovery greatly at 14, 28, and 42 days and protected spinal cord tissues especially in the high dose group. Meanwhile, ICA decreased the production of interleukin-1 beta, tumor necrosis factor-alpha and inducible nitric oxide synthase at 24 h and 3 days after SCI. The level of mitochondrial reduced glutathione, superoxide dismutase, adenosine triphosphate (ATP), Na+-K+-ATPase, mitochondrial membrane potential, state III respiration rate and the respiratory control ratio were also significantly increased, while malondialdehyde level and Ca2+ concentration were decreased by ICA. Furthermore, ICA decreased the expression of mitochondrial apoptotic proteins at 3 days after SCI. More importantly, transferase UTP nick end labeling (TUNEL) and Nissl staining implied that ICA at a high dose inhibited the neuronal apoptosis after SCI. Our research indicated that early and continuous treatment of ICA at a high dose significantly enhanced motor recovery after SCI through inhibiting pro-inflammatory factors, oxidative stress and neuronal apoptosis via mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Haotian Li
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| | - Xinran Zhang
- School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Xu Zhu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| | - Xi Qi
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| | - Kaili Lin
- School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 2018; 842:20-32. [PMID: 30342950 DOI: 10.1016/j.ejphar.2018.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Icariin is a major active component of the traditional herb Epimedium, also known as Horny Goat Weed. It has been extensively studied throughout the past several years and is known to exert anti-oxidative, anti-neuroinflammatory, and anti-apoptotic effects. It is now being considered as a potential therapeutic agent for a wide variety of disorders, ranging from neoplasm to cardiovascular disease. More recent studies have shown that icariin exhibits potential preventive and/or therapeutic effects in the nervous system. For example, icariin can prevent the production of amyloid β (1-42) and inhibit the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE-1) in animal models of Alzheimer's disease (AD). Icariin has been shown to mitigate pro-inflammatory responses of microglia in culture and in animal models of cerebral ischemia, depression, Parkinson's disease (PD), and multiple sclerosis (MS). Icariin also prevents the neurotoxicity induced by hydrogen peroxide (H2O2), endoplasmic reticulum (ER) stress, ibotenic acid, and homocysteine. In addition, icariin is implicated in facilitating learning and memory in both normal aging animals and disease models. To date, we still have no consolidated source of knowledge about the pharmacological effects of icariin in the nervous system, though its roles in other tissues have been reviewed in recent years. Here, we summarize the pharmacological development of icariin as well as its possible mechanisms in prevention and/or therapy of disorders afflicting the nervous system in hope of expanding the knowledge about the preventive and/or therapeutic effect of icariin in brain disorders.
Collapse
Affiliation(s)
- Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854 New Jersey, United States
| | - Xiaoying Hua
- Department of Pharmacology, Wuxi Ninth People's Hospital, #999 Liangxi Road, Wu xi, Jiangsu 226001, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China.
| |
Collapse
|
38
|
Woo H, Hong CJ, Jung S, Choe S, Yu SW. Chronic restraint stress induces hippocampal memory deficits by impairing insulin signaling. Mol Brain 2018; 11:37. [PMID: 29970188 PMCID: PMC6029109 DOI: 10.1186/s13041-018-0381-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic stress is a psychologically significant factor that impairs learning and memory in the hippocampus. Insulin signaling is important for the development and cognitive function of the hippocampus. However, the relation between chronic stress and insulin signaling at the molecular level is poorly understood. Here, we show that chronic stress impairs insulin signaling in vitro and in vivo, and thereby induces deficits in hippocampal spatial working memory and neurobehavior. Corticosterone treatment of mouse hippocampal neurons in vitro caused neurotoxicity with an increase in the markers of autophagy but not apoptosis. Corticosterone treatment impaired insulin signaling from early time points. As an in vivo model of stress, mice were subjected to chronic restraint stress. The chronic restraint stress group showed downregulated insulin signaling and suffered deficits in spatial working memory and nesting behavior. Intranasal insulin delivery restored insulin signaling and rescued hippocampal deficits. Our data suggest that psychological stress impairs insulin signaling and results in hippocampal deficits, and these effects can be prevented by intranasal insulin delivery.
Collapse
Affiliation(s)
- Hanwoong Woo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Caroline Jeeyeon Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Seonghee Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Seongwon Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea. .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
39
|
On the Developmental Timing of Stress: Delineating Sex-Specific Effects of Stress across Development on Adult Behavior. Brain Sci 2018; 8:brainsci8070121. [PMID: 29966252 PMCID: PMC6071226 DOI: 10.3390/brainsci8070121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Stress, and the chronic overactivation of major stress hormones, is associated with several neuropsychiatric disorders. However, clinical literature on the exact role of stress either as a causative, triggering, or modulatory factor to mental illness remains unclear. We suggest that the impact of stress on the brain and behavior is heavily dependent on the developmental timing at which the stress has occurred, and as such, this may contribute to the overall variability reported on the association of stress and mental illness. Here, animal models provide a way to comprehensively assess the temporal impact of stress on behavior in a controlled manner. This review particularly focuses on the long-term impact of stress on behavior in various rodent stress models at three major developmental time points: early life, adolescence, and adulthood. We characterize the various stressor paradigms into physical, social, and pharmacological, and discuss commonalities and differences observed across these various stress-inducing methods. In addition, we discuss here how sex can influence the impact of stress at various developmental time points. We conclude here that early postnatal life and adolescence represent particular periods of vulnerability, but that stress exposure during early life can sometimes lead to resilience, particularly to fear-potentiated memories. In the adult brain, while shorter periods of stress tended to enhance spatial memory, longer periods caused impairments. Overall, males tended to be more vulnerable to the long-term effects of early life and adolescent stress, albeit very few studies incorporate both sexes, and further well-powered sex comparisons are needed.
Collapse
|
40
|
Guo XQ, Cao YL, Zhao L, Zhang X, Yan ZR, Chen WM. p38 mitogen-activated protein kinase gene silencing rescues rat hippocampal neurons from ketamine-induced apoptosis: An in vitro study. Int J Mol Med 2018; 42:1401-1410. [PMID: 30035800 PMCID: PMC6089762 DOI: 10.3892/ijmm.2018.3750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/26/2018] [Indexed: 01/25/2023] Open
Abstract
Ketamine (KTM) is an anesthetic drug with several advantages, including the elevation of cardiac output and blood pressure. However, KTM may also induce the apoptosis of hippocampal neurons. Notably, p38 mitogen-activated protein kinase (p38MAPK) has previously been studied for its role in neuronal injury. Therefore, the present study evaluated the effect of lentivirus-mediated p38MAPK gene silencing on KTM-induced apoptosis of rat hippocampal neurons. Hippocampal neurons were extracted from neonatal Sprague-Dawley rats, and then treated with KTM, p38MAPK-short hairpin RNA or SB203580 (an inhibitor of p38MAPK). Next, the expression levels of p38MAPK and apoptosis-associated genes, including caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), were detected. In addition, cell viability and apoptosis were determined using an MTT assay and flow cytometry, respectively. Finally, telomerase activity of hippocampal neurons was detected by ELISA. The results revealed that silencing of p38MAPK in KTM-treated cells decreased the expression levels of p38MAPK, caspase-3 and Bax, and the extent of p38MAPK phosphorylation, while it increased the expression of Bcl-2. Furthermore, silencing p38MAPK promoted cell viability, cell cycle progression and the telomerase activity of hippocampal neurons, and inhibited the apoptosis of hippocampal neurons. Taken together, the results suggested an inhibitory role of lentivirus-mediated p38MAPK gene silencing on KTM-induced apoptosis of rat hippocampal neurons. Thus, p38MAPK gene silencing may serve as a potential target for preventing the KTM-induced apoptosis of hippocampal neurons.
Collapse
Affiliation(s)
- Xiao-Qian Guo
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yu-Ling Cao
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Li Zhao
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xuan Zhang
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zhong-Rui Yan
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Wei-Mei Chen
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
41
|
Han J, Yin QH, Fang Y, Shou WQ, Zhang CC, Guo FQ. Atorvastatin protects BV‑2 mouse microglia and hippocampal neurons against oxygen‑glucose deprivation‑induced neuronal inflammatory injury by suppressing the TLR4/TRAF6/NF‑κB pathway. Mol Med Rep 2018; 18:1058-1066. [PMID: 29845194 DOI: 10.3892/mmr.2018.9055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
Atorvastatin is a member of the statin class of drugs, which competitively inhibit the activity of 5‑hydroxy‑3‑methylglutaryl‑coenzyme A reductase. The aim of the present study was to assess whether atorvastatin may protect BV‑2 microglia and hippocampal neurons against oxygen‑glucose deprivation (OGD)‑induced neuronal inflammatory injury and to determine the underlying mechanisms by which its effects are produced. Cell viability and apoptotic ability were assessed using an MTT assay and annexin V‑fluorescein isothiocyanate/propidium iodide double staining followed by flow cytometry, respectively. The expression of inflammation and apoptosis‑associated mRNAs and proteins were assessed using reverse transcription‑quantitative polymerase chain reaction and western blotting, and the expression of inflammatory factors was determined using ELISA. The results of the current study revealed that atorvastatin treatment suppressed the viability of OGD BV‑2 microglia and hippocampal neurons. Furthermore, atorvastatin treatment reduced the expression of proinflammatory factors in OGD BV‑2 microglia. Additionally, it was demonstrated to downregulate the toll‑like receptor 4 (TLR4)/tumor necrosis factor receptor‑associated factor 6 (TRAF6)/nuclear factor‑κB (NF‑κB) pathway in OGD BV‑2 microglia. Atorvastatin also inhibited the apoptosis of OGD hippocampal neurons by regulating the expression of apoptosis‑associated proteins. It was concluded that atorvastatin treatment may protect BV‑2 microglia and hippocampal neurons from OGD‑induced neuronal inflammatory injury by suppressing the TLR4/TRAF6/NF‑κB pathway. This may provide a potential strategy for the treatment of neuronal injury.
Collapse
Affiliation(s)
- Jian Han
- Department of Neurology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Qi-Hua Yin
- Department of Neurology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Yang Fang
- Department of Neurology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Wei-Qing Shou
- Department of Neurology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Cong-Cong Zhang
- Department of Neurology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Fu-Qiang Guo
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
42
|
Zhang L, Chen ZW, Yang SF, Shaer M, Wang Y, Dong JJ, Jiapaer B. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway. CNS Neurosci Ther 2018; 25:69-77. [PMID: 29804319 DOI: 10.1111/cns.12981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a complex polygenic disease that causes hyperglycemia and accounts for 90%-95% of all diabetes mellitus cases. Hence, this study aimed to examine the effects of microRNA-219 (miR-219) on inhibition of long-term potentiation (LTP) and apoptosis of hippocampal neuronal cells in T2DM mice through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway regulation. METHODS The T2DM mouse models were established, after which LTP in vivo was recorded by means of electrical biology, and the fasting blood glucose of mice was measured. Next, the density of pyramidal neurons in each group was calculated. Additionally, the expression levels of miR-219, the NMDAR signaling pathway [NMDAR1 (NR) 1, NR2A, and NR2B), downstream target proteins [calmodulin-dependent protein kinase-II (CaMK-II) and cAMP response element binding protein (CREB)], and apoptosis-related factors [Bcl2-associated X protein (Bax), c-caspase-9 and c-caspase-3] in the hippocampal tissues were determined. Finally, immunohistochemistry was applied to detect and measure the positive expression of Bax, caspase-9, and caspase-3 proteins. RESULTS The results showed that upregulation of miR-219 increases LTP and density of pyramidal neurons in the hippocampal tissues of mice, while it decreases blood glucose of db/db mice. In addition, miR-219 upregulation also leads to decreased mRNA levels of NR1, NR2A, NR2B, CaMK-II, and CREB and protein levels of NR1, NR2A, NR2B, CaMK-II, CREB, p-CREB, Bax, c-caspase-9, and c-caspase-3. Furthermore, upregulation of miR-219 inhibits positive expression of Bax, caspase-9, and caspase-3 proteins, leading to the suppression of hippocampal neuronal cell apoptosis. CONCLUSION The findings from this study indicated that the upregulation of miR-219 decreases LTP inhibition and hippocampal neuronal cell apoptosis in T2DM mice by downregulating the NMDAR signaling pathway, therefore suggesting that MiR-219 might be a future therapeutic strategy for T2DM.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Zheng-Wen Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Shu-Fen Yang
- Department of Nephrology, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Muyasi Shaer
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Ying Wang
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Jun-Jie Dong
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Beili Jiapaer
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| |
Collapse
|
43
|
Latt HM, Matsushita H, Morino M, Koga Y, Michiue H, Nishiki T, Tomizawa K, Matsui H. Oxytocin Inhibits Corticosterone-induced Apoptosis in Primary Hippocampal Neurons. Neuroscience 2018; 379:383-389. [DOI: 10.1016/j.neuroscience.2018.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
|
44
|
Epigallocatechin-3-gallate confers protection against corticosterone-induced neuron injuries via restoring extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3 kinase/protein kinase B signaling pathways. PLoS One 2018; 13:e0192083. [PMID: 29373584 PMCID: PMC5786317 DOI: 10.1371/journal.pone.0192083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Extensive studies suggested epigallocatechin-3-gallate (EGCG) has significant neuroprotection against multiple central neural injuries, but the underlying mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase/ protein kinase B (PI3K/AKT) pathways in EGCG-mediated protection against corticosterone-induced neuron injuries. As an essential stress hormone, corticosterone could induce obvious neurotoxicity in primary hippocampal neurons. Pre-treatment with EGCG ameliorated the corticosterone-induced neuronal injuries; however, it was blocked by pharmacological inhibitors for ERK1/2 (U0126) and PI3K/AKT (LY294002). Furthermore, the results confirmed that EGCG restored the corticosterone-induced decrease of ERK1/2 and PI3K/AKT phosphorylation, and attenuated the corticosterone-induced reduction of peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α) expression and ATP production. Taken together, these findings indicated that EGCG has significant neuroprotection against corticosterone-induced neuron injuries partly via restoring the ERK1/2 and PI3K/AKT signaling pathways as well as the PGC-1α-mediated ATP production.
Collapse
|
45
|
Tang XF, Li XX, Chen YH, Gao YY, Yu P, Xu LP, Liu RH. Combination of icariin and oleanolic acid attenuates in vivo and in vitro glucocorticoid resistance through protecting dexamethasone-induced glucocorticoid receptor impairment. RSC Adv 2018. [DOI: 10.1039/c7ra12092c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid resistance (GCR) remains a significant problem and is the most important reason for treatment failure of glucocorticoids (GCs).
Collapse
Affiliation(s)
- Xiu-Feng Tang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Xiao-Xi Li
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Yu-Heng Chen
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Ying-Ying Gao
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Ping Yu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Li-Ping Xu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Ren-Hui Liu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Lab of TCM Collateral Disease Theory Research
| |
Collapse
|
46
|
Lin HM, Lin LF, Xia ZZ, Mao Y, Liu J, Xu LY, Wu Q. Neuroprotective effects and UPLC-Q-TOF/MS-based active components identification of external applied a novel Wen-Luo-Tong microemulsion. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1981-1991. [PMID: 29130769 DOI: 10.1080/21691401.2017.1397002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemotherapy induced neuropathy causes excruciating pain to cancer patients. Wen-Luo-Tong (WLT), a traditional Chinese medicinal compound, has been used to alleviate anti-cancer drug such as oxaliplatin-induced neuropathic pain for many years. However, the current route of administration of WLT is inconvenient and the active ingredients and mechanism of action of WLT are still unclear. To address these issues, we developed a novel formulation of WLT (W/O microemulsion) for the ease of application. New ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) methods were employed for analysis of the ingredients. We identified seven ingredients that penetrated through the skin into the Franz cell receptor solution and four of those ingredients were retained in skin tissue when WLT microemulsion was applied. We tested the microemulsion formulation on an oxaliplatin-induced neuropathy rat model and showed that this formulation significantly decreased oxaliplatin-induced mechanical hyperalgesia responses. Schwann cells (SCs) viability experiment in vitro was studied to test the protective effect of the identified seven ingredients. The result showed that Hydroxysafflor Yellow A, icariin, epimedin B and 4-dihydroxybenzoic acid significantly increased the viability of SCs after injured by Oxaliplatin. Our report presents the first novel formulation of WLT with neuroprotective effect and ease of use, which has potential for clinical applications.
Collapse
Affiliation(s)
- Hong-Mei Lin
- a Department of TCM Pharmaceutics, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Long-Fei Lin
- b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Zhen-Zhen Xia
- a Department of TCM Pharmaceutics, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yong Mao
- c New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey , Piscataway , NJ , USA
| | - Jia Liu
- a Department of TCM Pharmaceutics, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Ling-Yan Xu
- a Department of TCM Pharmaceutics, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Qing Wu
- a Department of TCM Pharmaceutics, School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
47
|
Yin L, Wang K, Lv X, Sun R, Yang S, Yang Y, Liu Y, Liu J, Zhou J, Yu Z. The fabrication of an ICA-SF/PLCL nanofibrous membrane by coaxial electrospinning and its effect on bone regeneration in vitro and in vivo. Sci Rep 2017; 7:8616. [PMID: 28819219 PMCID: PMC5561113 DOI: 10.1038/s41598-017-07759-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
GBR is currently accepted as one of the most effective approaches for bone defect regeneration relating to dental implant. Icariin is the main active ingredient in the extraction of total flavonoids from the Chinese traditional herb Epimediumbrevicornum Maxim. In this study, ICA was successfully incorporated into the nanofibers barrier membrane (ICA-SF/PLCL) as osteoinduction factor by coaxial electrospinning and was released in a sustained and controlled manner. The entire release period included two stages: an initial burst stage (47.54 ± 0.06% on 5 d) and a decreasing and constant stage (82.09 ± 1.86% on 30 d). The membrane has good biocompatibility with BMMSCs anchored and significantly promoted its osteogenic activity. Moreover, in vivo experiment, bone defect covered by ICA-SF/PLCL membrane in rat cranium were statistically repaired compare to other groups. 12 weeks after implantation, in the test group, the new bone formation spread to cover most of the defect region with volume and density of approximately 15.95 ± 3.58 mm3 and 14.02 ± 0.93%. These results demonstrated that ICA-SF/PLCL nanofibrous membrane could be a promising barrier applicated for GBR.
Collapse
Affiliation(s)
- Lihua Yin
- Department of Oral Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, China, 730000.
| | - Kaijuan Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoqin Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Rui Sun
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shaohua Yang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yujie Yang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yanyun Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jiatao Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jing Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Zhanhai Yu
- Department of Oral Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, China, 730000
| |
Collapse
|
48
|
Jiang W, Zeng M, Cao Z, Liu Z, Hao J, Zhang P, Tian Y, Zhang P, Ma J. Icariin, a Novel Blocker of Sodium and Calcium Channels, Eliminates Early and Delayed Afterdepolarizations, As Well As Triggered Activity, in Rabbit Cardiomyocytes. Front Physiol 2017; 8:342. [PMID: 28611679 PMCID: PMC5447092 DOI: 10.3389/fphys.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
Icariin, a flavonoid monomer from Herba Epimedii, has confirmed pharmacological and biological effects. However, its effects on arrhythmias and cardiac electrophysiology remain unclear. Here we investigate the effects of icariin on ion currents and action potentials (APs) in the rabbit myocardium. Furthermore, the effects of icariin on aconitine-induced arrhythmias were assessed in whole rabbits. Ion currents and APs were recorded in voltage-clamp and current-clamp mode in rabbit left ventricular myocytes (LVMs) and left atrial myocytes (LAMs), respectively. Icariin significantly shortened action potential durations (APDs) at 50 and 90% repolarization (APD50 and APD90) and reduced AP amplitude (APA) and the maximum upstroke velocity (Vmax) of APs in LAMs and LVMs; however, icariin had no effect on resting membrane potential (RMP) in these cells. Icariin decreased the rate-dependence of the APD and completely abolished anemonia toxin II (ATX-II)-induced early afterdepolarizations (EADs). Moreover, icariin significantly suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs) elicited by isoproterenol (ISO, 1 μM) and high extracellular calcium concentrations ([Ca2+]o, 3.6 mM) in LVMs. Icariin also decreased INaT in a concentration-dependent manner in LAMs and LVMs, with IC50 values of 12.28 ± 0.29 μM (n = 8 cells/4 rabbits) and 11.83 ± 0.92 μM (n = 10 cells/6 rabbits; p > 0.05 vs. LAMs), respectively, and reversed ATX-II-induced INaL in a concentration-dependent manner in LVMs. Furthermore, icariin attenuated ICaL in a dose-dependent manner in LVMs. The corresponding IC50 value was 4.78 ± 0.89 μM (n = 8 cells/4 rabbits), indicating that the aforementioned current in LVMs was 2.8-fold more sensitive to icariin than ICaL in LAMs (13.43 ± 2.73 μM; n = 9 cells/5 rabbits). Icariin induced leftward shifts in the steady-state inactivation curves of INaT and ICaL in LAMs and LVMs but did not have a significant effect on their activation processes. Moreover, icariin had no effects on IK1 and IKr in LVMs or Ito and IKur in LAMs. These results revealed for the first time that icariin is a multichannel blocker that affects INaT, INaL and ICaL in the myocardium and that the drug had significant inhibitory effects on aconitine-induced arrhythmias in whole rabbits. Therefore, icariin has potential as a class I and IV antiarrhythmic drug.
Collapse
Affiliation(s)
- Wanzhen Jiang
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Mengliu Zeng
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Zhipei Liu
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Jie Hao
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Peipei Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Youjia Tian
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| |
Collapse
|
49
|
Yi JH, Brown C, Whitehead G, Piers T, Lee YS, Perez CM, Regan P, Whitcomb DJ, Cho K. Glucocorticoids activate a synapse weakening pathway culminating in tau phosphorylation in the hippocampus. Pharmacol Res 2017; 121:42-51. [PMID: 28416463 DOI: 10.1016/j.phrs.2017.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Evidence suggests that the stress hormones glucocorticoids (GCs) can cause cognitive deficits and neurodegeneration. Previous studies have found GCs facilitate physiological synapse weakening, termed long-term depression (LTD), though the precise mechanisms underlying this are poorly understood. Here we show that GCs activate glycogen synthase kinase-3 (GSK-3), a kinase crucial to synapse weakening signals. Critically, this ultimately leads to phosphorylation of the microtubule associated protein tau, specifically at the serine 396 residue, and this is a causal factor in the GC-mediated impairment of synaptic function. These findings reveal the link between GCs and synapse weakening signals, and the potential for stress-induced priming of neurodegeneration. This could have important implications for our understanding of how stress can lead to neurodegenerative disease.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Christopher Brown
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom; Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Garry Whitehead
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Thomas Piers
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom; Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 501-757, South Korea; Centre for Synaptic Plasticity, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Young Seok Lee
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom; Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Celia Martinez Perez
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom; Centre for Synaptic Plasticity, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom; Centre for Synaptic Plasticity, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom; Centre for Synaptic Plasticity, University of Bristol, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
50
|
Abstract
Myocardial infarction is a leading cause of mortality and morbidity worldwide. Although essential for successful recovery, myocardium reperfusion is associated with reperfusion injury. Icariin, a major flavonoid of Epimedium koreanum Nakai, has been proven to exert efficacy for improving cardiovascular function. We investigated the molecular effect and signal pathway of icariin on cardiac ischemia/reperfusion injury. In an in vivo model of infarct in rats, icariin (10 mg/kg) significantly attenuated myocardial infarct size induced by ischemia/reperfusion (I/R). From the TUNEL assay, icariin reduced the apoptotic cell induced by I/R and decreased blood indicators of creatine kinase, ischemia-modified albumin, and lactate dehydrogenase. All this effect was antagonized by the PI3K inhibitor LY294002. Meanwhile, icariin activated the PI3K/Akt/eNOS pathway. The PI3K inhibitor LY294002 suppressed icariin-mediated protective effect. These results suggest that icariin protects against myocardial ischemia reperfusion injury in rats by activating the PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy.
Collapse
|