1
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
2
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557564. [PMID: 37745451 PMCID: PMC10515916 DOI: 10.1101/2023.09.13.557564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM). Results Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
|
3
|
Cooper BL, Posnack NG. Characteristics of Bisphenol Cardiotoxicity: Impaired Excitability, Contractility, and Relaxation. Cardiovasc Toxicol 2022; 22:273-280. [PMID: 35143014 PMCID: PMC9204785 DOI: 10.1007/s12012-022-09719-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol a (BPA) is a high production volume chemical that is frequently used to manufacture epoxy resins and polycarbonate plastics. BPA-containing products are now pervasive, and as a result, biomonitoring studies report widespread exposure in > 90% of adults, adolescents, and children. Both epidemiological and experimental studies have reported associations between BPA exposure and adverse cardiovascular health outcomes. With increasing concerns regarding BPA exposure, a few structurally similar bisphenol chemicals have been introduced as replacements, including bisphenol s (BPS) and bisphenol f (BPF). In accordance with the recently established "Key characteristics of cardiovascular toxicants", we reviewed the literature to highlight the immediate effects of bisphenol chemicals on (1) cardiac excitability, and (2) contractility and relaxation. BPA inhibits key cardiac ion channels, impairs cardiac excitability, and acts as a more potent inhibitor as compared to BPF and BPS. Through the inhibition of calcium current, some studies report that bisphenol chemicals can act as negative inotropic agents. Yet, others suggest that low dose exposures may increase contractility and precipitate triggered arrhythmias via the phosphorylation of key calcium handling proteins. Accordingly, we propose additional considerations for future work to comprehensively address the cardiac safety profile of BPA, as compared to replacement chemicals.
Collapse
Affiliation(s)
- Blake L. Cooper
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA,Department of Pharmacology & Physiology, George Washington University, Washington, DC 20037, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, 20010, USA. .,Department of Pediatrics, George Washington University, Washington, DC, 20037, USA. .,Department of Pharmacology & Physiology, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
4
|
Hyun SA, Lee CY, Ko MY, Chon SH, Kim YJ, Seo JW, Kim KK, Ka M. Cardiac toxicity from bisphenol A exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2021; 428:115696. [PMID: 34419494 DOI: 10.1016/j.taap.2021.115696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that is widely used in a variety of products, including plastics, medical equipment and receipts. Hence, most people are exposed to BPA through the skin, via inhalation and via the digestive system, and such exposure has been linked to cardiovascular diseases including coronary artery disease, hypertension, atherosclerosis, and myocardial infarction. However, the underlying mechanisms of cardiac dysfunction caused by BPA remain poorly understood. In this study, we found that BPA exposure altered cardiac function in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Acute BPA exposure in hiPSC-CMs resulted in reduced field potential, as measured by multielectrode array (MEA). Furthermore, we observed that BPA dose-dependently inhibited ICa, INa or IKr channels. In addition, BPA exposure dose-dependently inhibited calcium transients and contraction in hiPSC-CMs. Our findings suggest that BPA exposure leads to cardiac dysfunction and cardiac risk factors such as arrhythmia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang Youn Lee
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Moon Yi Ko
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sun-Hwa Chon
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Ye-Ji Kim
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jeong-Wook Seo
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minhan Ka
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
5
|
Klose E, Kuhrt H, Kohen L, Wiedemann P, Bringmann A, Hollborn M. Hypoxic and osmotic expression of Kir2.1 potassium channels in retinal pigment epithelial cells: Contribution to vascular endothelial growth factor expression. Exp Eye Res 2021; 211:108741. [PMID: 34425102 DOI: 10.1016/j.exer.2021.108741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Retinal pigment epithelial (RPE) cells express different subtypes of inwardly rectifying potassium (Kir) channels. We investigated whether human and rat RPE cells express genes of strongly rectifying Kir2 channels. We also determined the hypoxic and hyperosmotic regulation of Kir2.1 gene expression in cultured human RPE cells and the effects of siRNA-mediated knockdown of Kir2.1 on VEGFA expression, VEGF secretion, proliferation, and viability of the cells. Extracellular hyperosmolarity was induced by addition of NaCl or sucrose. Hypoxia and chemical hypoxia were produced by cell culture in 0.25% O2 and addition of CoCl2, respectively. Gene expression levels were evaluated by real-time RT-PCR. Rat RPE cells contained Kir2.1, Kir2.2, Kir2.3, and Kir2.4 gene transcripts while human RPE cells contained Kir2.1, Kir2.2, and Kir2.4 transcripts. Immunocytochemical data may suggest that Kir2.1 protein in cultured human cells is expressed in both perinuclear and plasma membranes. Kir2.1 gene expression and Kir2.1 protein level in human cells increased under hypoxic and hyperosmotic conditions. The expression of the Kir2.1 gene was mediated in part by diverse intracellular signal transduction pathways and transcription factor activities under both conditions; the hyperosmotic, but not the CoCl2-induced Kir2.1 gene expression was dependent on intracellular calcium signaling. Autocrine/paracrine activation of purinergic receptors contributed to Kir2.1 gene expression under hyperosmotic (P2Y1, P2Y2, P2X7) and CoCl2-induced conditions (P2Y2, P2X7). Exogenous VEGF, TGF-β1, and blood serum decreased Kir2.1 gene expression. Inhibition of VEGF receptor-2 increased the Kir2.1 gene expression under control conditions and in CoCl2-simulated hypoxia, and decreased it under high NaCl conditions. Knockdown of Kir2.1 by siRNA inhibited the CoCl2-induced and hyperosmotic transcription of the VEGFA gene and caused a delayed decrease of the constitutive VEGFA gene expression while VEGF protein secretion was not altered. Kir2.1 knockdown stimulated RPE cell proliferation under control and hyperosmotic conditions without affecting cell viability. The data indicate that Kir2.1 channel activity is required for the expression of the VEGFA gene and inhibits the proliferation of RPE cells. Under control and hypoxic conditions, the extracellular VEGF level may regulate the production of VEGF via its inhibitory effect on the Kir2.1 gene transcription; this feedback loop may prevent overproduction of VEGF.
Collapse
Affiliation(s)
- Eva Klose
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, University of Leipzig, Germany
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany; Helios Klinikum Aue, Aue, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Prudencio TM, Swift LM, Guerrelli D, Cooper B, Reilly M, Ciccarelli N, Sheng J, Jaimes R, Posnack NG. Bisphenol S and bisphenol F are less disruptive to cardiac electrophysiology, as compared to bisphenol A. Toxicol Sci 2021; 183:214-226. [PMID: 34240201 DOI: 10.1093/toxsci/kfab083] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bisphenol A (BPA) is a high-production volume chemical used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA. This study aimed to examine the direct effects of BPA on cardiac electrophysiology compared with recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F). Whole-cell voltage-clamp recordings were performed on cell lines transfected to express the voltage-gated sodium channel (Nav1.5), L-type voltage-gated calcium channel (Cav1.2), or the rapidly activating delayed rectifier potassium channel (hERG). Cardiac electrophysiology parameters were measured using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole rat heart preparations. BPA was the most potent inhibitor of fast/peak (INa-P) and late (INa-L) sodium channel (IC50= 55.3, 23.6 µM, respectively), L-type calcium channel (IC50= 30.8 µM) and hERG channel current (IC50= 127 µM). Inhibitory effects on L-type calcium channels were supported by microelectrode array recordings, which revealed a shortening of the extracellular field potential (akin to QT interval). BPA and BPF exposures slowed atrioventricular (AV) conduction and increased AV node refractoriness in isolated rat heart preparations, in a dose-dependent manner (BPA: +9.2% 0.001 µM, +95.7% 100 µM; BPF: +20.7% 100 µM). BPS did not alter any of the cardiac electrophysiology parameters tested. Results of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, while BPS is markedly less potent. Additional studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.
Collapse
Affiliation(s)
- Tomas M Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Biomedical Engineering, George Washington University, Washington DC, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | | | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA.,Department of Pediatrics, George Washington University, Washington DC, USA
| |
Collapse
|
7
|
Park H, Jeong SS, Chung HT, Lee EJ. Treatment Planning Factors Associated with Long-Term Outcomes of Gamma Knife Surgery in Patients with Trigeminal Neuralgia. World Neurosurg 2021; 151:e899-e910. [PMID: 33989823 DOI: 10.1016/j.wneu.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Gamma Knife surgery (GKS) is an established treatment option for trigeminal neuralgia (TN). However, the long-term efficacy of GKS for patients with TN has not been well studied. The aim of the study is to evaluate the sequential course of pain control after GKS and analyze the factors associated with the long-term analgesic effect, focusing on radiation dosimetry and neurovascular conflict (NVC) factors. METHODS We analyzed 83 patients undergoing GKS for TN in our institution between 2005 and 2013 with a follow-up duration >7 years. Tolerable pain with increased medication, persistent-intractable pain, and recurrence were classified as poor outcomes, and any other outcome was classified as a favorable outcome. The dosimetry factors and locational relationship between NVC and the target were analyzed in terms of their correlation with a favorable outcome. RESULTS Adequate pain relief was achieved in 93% of patients a month and a half after GKS, but the pain recurred in 41.5% of patients on average 36 months after treatment. A larger V40Gy (P = 0.002) and higher homogeneity index (P = 0.027) were significantly associated with the long-term favorable outcomes. About 40% of patients had multiple NVC sites, and insufficient inclusion of the NVC in the target was significantly correlated with long-term poor outcomes (P = 0.002). CONCLUSIONS Targeting the center of the trigeminal nerve in the area of NVC with GKS is associated with favorable long-term pain control.
Collapse
Affiliation(s)
- Hangeul Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Soon Jeong
- GammaKnife Radiosurgery Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Tai Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea; GammaKnife Radiosurgery Center, Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea; GammaKnife Radiosurgery Center, Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
9
|
Szymańska K, Makowska K, Całka J, Gonkowski S. The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine. Int J Mol Sci 2020; 21:E8743. [PMID: 33228092 PMCID: PMC7699376 DOI: 10.3390/ijms21228743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract, is characterized by complex organization and a high degree of neurochemical diversity of neurons. One of the less known active neuronal substances found in the enteric neurons is neuregulin 1 (NRG1), a factor known to be involved in the assurance of normal development of the nervous system. During the study, made up using the double immunofluorescence technique, the presence of NRG1 in the ENS of the selected segment of porcine large intestine (caecum, ascending and descending colon) was observed in physiological conditions, as well as under the impact of low and high doses of bisphenol A (BPA) which is commonly used in the production of plastics. In control animals in all types of the enteric plexuses, the percentage of NRG1-positive neurons oscillated around 20% of all neurons. The administration of BPA caused an increase in the number of NRG1-positive neurons in all types of the enteric plexuses and in all segments of the large intestine studied. The most visible changes were noted in the inner submucous plexus of the ascending colon, where in animals treated with high doses of BPA, the percentage of NRG1-positive neurons amounted to above 45% of all neuronal cells. The mechanisms of observed changes are not entirely clear, but probably result from neurotoxic, neurodegenerative and/or proinflammatory activity of BPA and are protective and adaptive in nature.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str. 30, 10-082 Olsztyn, Poland
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland;
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland; (J.C.); (S.G.)
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland; (J.C.); (S.G.)
| |
Collapse
|
10
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
11
|
Nguyen HTT, Jang SH, Park SJ, Cho DH, Han SK. Potentiation of the Glycine Response by Bisphenol A, an Endocrine Disrupter, on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice. Chem Res Toxicol 2020; 33:782-788. [PMID: 31997638 DOI: 10.1021/acs.chemrestox.9b00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamina II, also called the substantia gelatinosa (SG) of the medullary dorsal horn (the trigeminal subnucleus caudalis, Vc), is thought to play an essential role in the control of orofacial nociception because it receives the nociceptive signals from primary afferents, including thin myelinated Aδ- and unmyelinated C-fibers. Glycine, the main inhibitory neurotransmitter in the central nervous system, plays an essential role in the transference of nociceptive messages from the periphery to higher brain regions. Bisphenol A (BPA) is reported to alter the morphological and functional characteristics of neuronal cells and to be an effector of a great number of ion channels in the central nervous system. However, the electrophysiological effects of BPA on the glycine receptors of SG neurons in the Vc have not been well studied. Therefore, in this study, we used the whole-cell patch-clamp technique to determine the effect of BPA on the glycine response in SG neurons of the Vc in male mice. We demonstrated that in early neonatal mice (0-3 postnatal day mice), BPA did not affect the glycine-induced inward current. However, in the juvenile and adult groups, BPA enhanced the glycine-mediated responses. Heteromeric glycine receptors were involved in the modulation by BPA. The interaction between BPA and glycine appears to have a significant role in regulating transmission in the nociceptive pathway.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
12
|
Bisphenol A Regulates Sodium Ramp Currents in Mouse Dorsal Root Ganglion Neurons and Increases Nociception. Sci Rep 2019; 9:10306. [PMID: 31312012 PMCID: PMC6635372 DOI: 10.1038/s41598-019-46769-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/02/2022] Open
Abstract
17β-Estradiol mediates the sensitivity to pain and is involved in sex differences in nociception. The widespread environmental disrupting chemical bisphenol A (BPA) has estrogenic activity, but its implications in pain are mostly unknown. Here we show that treatment of male mice with BPA (50 µg/kg/day) during 8 days, decreases the latency to pain behavior in response to heat, suggesting increased pain sensitivity. We demonstrate that incubation of dissociated dorsal root ganglia (DRG) nociceptors with 1 nM BPA increases the frequency of action potential firing. SCN9A encodes the voltage-gated sodium channel Nav1.7, which is present in DRG nociceptors and is essential in pain signaling. Nav1.7 and other voltage-gated sodium channels in mouse DRG are considered threshold channels because they produce ramp currents, amplifying small depolarizations and enhancing electrical activity. BPA increased Nav-mediated ramp currents elicited with slow depolarizations. Experiments using pharmacological tools as well as DRG from ERβ−/− mice indicate that this BPA effect involves ERα and phosphoinositide 3-kinase. The mRNA expression and biophysical properties other than ramp currents of Nav channels, were unchanged by BPA. Our data suggest that BPA at environmentally relevant doses affects the ability to detect noxious stimuli and therefore should be considered when studying the etiology of pain conditions.
Collapse
|
13
|
Ramadan M, Sherman M, Jaimes R, Chaluvadi A, Swift L, Posnack NG. Disruption of neonatal cardiomyocyte physiology following exposure to bisphenol-a. Sci Rep 2018; 8:7356. [PMID: 29743542 PMCID: PMC5943481 DOI: 10.1038/s41598-018-25719-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Bisphenol chemicals are commonly used in the manufacturing of polycarbonate plastics, polyvinyl chloride plastics, resins, and thermal printing applications. Humans are inadvertently exposed to bisphenols through contact with consumer products and/or medical devices. Recent reports have shown a link between bisphenol-a (BPA) exposure and adverse cardiovascular outcomes; although these studies have been limited to adult subjects and models. Since cardiac physiology differs significantly between the developing and adult heart, we aimed to assess the impact of BPA exposure on cardiac function, using a neonatal cardiomyocyte model. Neonatal rat ventricular myocytes were monitored to assess cell viability, spontaneous beating rate, beat rate variability, and calcium-handling parameters in the presence of control or bisphenol-supplemented media. A range of doses were tested to mimic environmental exposure (10-9-10-8M), maximum clinical exposure (10-5M), and supraphysiological exposure levels (10-4M). Acute BPA exposure altered cardiomyocyte functionality, resulting in a slowed spontaneous beating rate and increased beat rate variability. BPA exposure also impaired intracellular calcium handling, resulting in diminished calcium transient amplitudes, prolonged calcium transient upstroke and duration time. Alterations in calcium handling also increased the propensity for alternans and skipped beats. Notably, the effect of BPA-treatment on calcium handling was partially reversible. Our data suggest that acute BPA exposure could precipitate secondary adverse effects on contractile performance and/or electrical alternans, both of which are dependent on intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
- Children's National Heart Institute, Children's National Health System, Washington, USA
| | - Meredith Sherman
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
- Children's National Heart Institute, Children's National Health System, Washington, USA
| | - Ashika Chaluvadi
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
| | - Luther Swift
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
- Children's National Heart Institute, Children's National Health System, Washington, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA.
- Children's National Heart Institute, Children's National Health System, Washington, USA.
- Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences, George Washington University, Washington, USA.
| |
Collapse
|
14
|
Zhang R, Pessah IN. Divergent Mechanisms Leading to Signaling Dysfunction in Embryonic Muscle by Bisphenol A and Tetrabromobisphenol A. Mol Pharmacol 2017; 91:428-436. [PMID: 28143888 PMCID: PMC5363716 DOI: 10.1124/mol.116.107342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
Bisphenol A (BPA) and its brominated derivative tetrabromobisphenol A (TBBPA) are high production volume chemicals used in the manufacture of various consumer products. Although regarded as endocrine disruptors, these chemicals are suspected to exert nongenomic actions on muscle function that are not well understood. Using skeletal muscle microsomes, we examined the effects of BPA and TBBPA on ryanodine receptor type 1 (RyR1), dihydropyridine receptor (DHPR), and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We assessed the impact of these chemicals on Ca2+ dynamics and signaling in embryonic skeletal myotubes through fluorescent Ca2+ imaging and measurement of resting membrane potential (Vm). TBBPA activated RyR1 and inhibited DHPR and SERCA, inducing a net efflux of Ca2+ from loaded microsomes, whereas BPA exhibited little or no activity at these targets. Regardless, both compounds disrupted the function of intact myotubes. TBBPA diminished and eventually abrogated Ca2+ transients, altered intracellular Ca2+ equilibrium, and caused Vm depolarization. For some cells, BPA caused rapid Ca2+ transient loss without marked changes in cytosolic and sarcoplasmic reticulum Ca2+ levels, likely owing to altered cellular excitability as a result of BPA-induced Vm hyperpolarization. BPA and TBBPA both interfere with skeletal muscle function through divergent mechanisms that impair excitation-contraction coupling and may be exemplary of their adverse outcomes in other muscle types.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis (R.Z., I.N.P.), and The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento (I.N.P.), California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis (R.Z., I.N.P.), and The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento (I.N.P.), California
| |
Collapse
|
15
|
Bisphenol A inhibits compound action potentials in the frog sciatic nerve in a manner independent of estrogen receptors. Biochem Biophys Rep 2017; 10:145-151. [PMID: 28955742 PMCID: PMC5614631 DOI: 10.1016/j.bbrep.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023] Open
Abstract
Although the endocrine disruptor bisphenol A (BPA) is reported to inhibit nerve conduction, the underlying mechanisms are unclear. Therefore, in the present study, we examined the effect of BPA on compound action potentials (CAPs) recorded from the frog sciatic nerve using the air-gap method. Treatment of the sciatic nerve with BPA (0.5 mM) for 20 min reduced the peak amplitude of the CAP by approximately 60% in a partially reversible manner. The reduction in the CAP peak amplitude was concentration-dependent, with a half-maximal inhibitory concentration (IC50) value of 0.31 mM. This effect of BPA was unaffected by an estrogen-receptor antagonist, 4-hydroxytamoxifen, which by itself reduced CAP peak amplitude, with an IC50 value of 0.26 mM (comparable to that of BPA). The natural estrogen 17β-estradiol, at the highest dissolvable concentration (0.05 mM), had an effect similar to that of BPA. The IC50 value of BPA was comparable to those of some local anesthetics in inhibiting frog CAPs. Our findings suggest that BPA inhibits nerve conduction in a manner independent of estrogen receptors. This action of BPA may underlie, at least in part, the neurotoxicity of the compound. Bisphenol A acutely inhibits compound action potentials in nerve fibers. The effect of bisphenol A is not mediated by estrogen receptors. The effect of bisphenol A is comparable to those of local anesthetics.
Collapse
Key Words
- 17β-Estradiol
- 4-OHT, 4-hydroxytamoxifen
- BPA, bisphenol A
- Bisphenol A
- CAP, compound action potential
- DMSO, dimethyl sulfoxide
- DRG, dorsal root ganglion
- ERRγ, estrogen-related receptor γ
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- Frog
- IC50, half-maximal inhibitory concentration
- LA, local anesthetic
- Local anesthetic
- Nerve conduction inhibition
- Sciatic nerve
- TTX, tetrodotoxin
- nH, Hill coefficient
Collapse
|
16
|
Kow LM, Pfaff DW. Rapid estrogen actions on ion channels: A survey in search for mechanisms. Steroids 2016; 111:46-53. [PMID: 26939826 PMCID: PMC4929851 DOI: 10.1016/j.steroids.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
A survey of nearly two hundred reports shows that rapid estrogenic actions can be detected across a range of kinds of estrogens, a range of doses, on a wide range of tissue, cell and ion channel types. Striking is the fact that preparations of estrogenic agents that do not permeate the cell membrane almost always mimic the actions of the estrogenic agents that do permeate the membrane. All kinds of estrogens, ranging from natural ones, through receptor modulators, endocrine disruptors, phytoestrogens, agonists, and antagonists to novel G-1 and STX, have been reported to be effective. For actions on specific types of ion channels, the possibility of opposing actions, in different cases, is the rule, not the exception. With this variety there is no single, specific action mechanism for estrogens per se, although in some cases estrogens can act directly or via some signaling pathways to affect ion channels. We infer that estrogens can bind a large number of substrates/receptors at the membrane surface. As against the variety of subsequent routes of action, this initial step of the estrogen's binding action is the key.
Collapse
Affiliation(s)
- Lee-Ming Kow
- The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
17
|
Soriano S, Ripoll C, Alonso-Magdalena P, Fuentes E, Quesada I, Nadal A, Martinez-Pinna J. Effects of Bisphenol A on ion channels: Experimental evidence and molecular mechanisms. Steroids 2016; 111:12-20. [PMID: 26930576 DOI: 10.1016/j.steroids.2016.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/21/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) produced in huge quantities in the manufacture of polycarbonate plastics and epoxy resins. It is present in most humans in developed countries, acting as a xenoestrogen and it is considered an environmental risk factor associated to several diseases. Among the whole array of identified mechanisms by which BPA can interfere with physiological processes in living organisms, changes on ion channel activity is one of the most poorly understood. There is still little evidence about BPA regulation of ion channel expression and function. However, this information is key to understand how BPA disrupts excitable and non-excitable cells, including neurons, endocrine cells and muscle cells. This report is the result of a comprehensive literature review on the effects of BPA on ion channels. We conclude that there is evidence to say that these important molecules may be key end-points for EDCs acting as xenoestrogens. However, more research on channel-mediated BPA effects is needed. Particularly, mechanistic studies to unravel the pathophysiological actions of BPA on ion channels at environmentally relevant doses.
Collapse
Affiliation(s)
- Sergi Soriano
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Cristina Ripoll
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Paloma Alonso-Magdalena
- Departamento de Biología Aplicada and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Esther Fuentes
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Ivan Quesada
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Angel Nadal
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain.
| | - Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain.
| |
Collapse
|
18
|
Abstract
Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section (U.K., S.C., S.W.), National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Stephanie Constantin
- Cellular and Developmental Neurobiology Section (U.K., S.C., S.W.), National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Susan Wray
- Cellular and Developmental Neurobiology Section (U.K., S.C., S.W.), National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| |
Collapse
|
19
|
Upregulation of Nav1.8 in demyelinated facial nerves might be relevant to the generation of hemifacial spasm. J Craniofac Surg 2015; 25:1334-6. [PMID: 24892416 DOI: 10.1097/scs.0000000000000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Our previous studies demonstrated that the abnormal muscle response could vanish when the ipsilateral superior cervical ganglion was removed and reappear when norepinephrine was dripped at the neurovascular conflict site. Evidentially, we believed that the mechanism of hemifacial spasm should involve emersion of ectopical action potential in the compressed facial nerve fibers. As the action potential is ignited by ion channel opening, we focused on Nav1.8 that has been found overexpressed in peripheral nerve while damaged. In this study, Moller model was adopted, 20 Sprague-Dawley rats underwent drip of norepinephrine, and the abnormal muscle response wave was monitored in 14 rats. Antibodies against unique epitopes of the α subunit of sodium channel isoforms were used to detect the Nav1.8 neuronal isoforms, and the immunohistochemistry showed strong staining in 13 rats, which were all in the abnormal muscle response positive group (P < 0.05). Accordingly, we concluded that the substance of hemifacial spasm is an ectopic action potential that emerged on the damaged facial nerve, which might be coupled by Nav1.8.
Collapse
|
20
|
Rottgen TS, Fancher IS, Asano S, Widlanski TS, Dick GM. Bisphenol A activates BK channels through effects on α and β1 subunits. Channels (Austin) 2015; 8:249-57. [PMID: 24476761 PMCID: PMC4203754 DOI: 10.4161/chan.27709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We demonstrated previously that BK (K(Ca)1.1) channel activity (NP(o)) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory β1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BPA binding site has been demonstrated. We tested the hypothesis that an extracellular binding site is responsible for activation of BK channels by BPA. We synthesized membrane-impermeant BPA-monosulfate (BPA-MS) and used patch clamp electrophysiology to study channels composed of α or α + β1 subunits in cell-attached (C-A), whole-cell (W-C), and inside-out (I-O) patches. In C-A patches, bath application of BPA-MS (100 μM) had no effect on the NP(o) of BK channels, regardless of their subunit composition. Importantly, however, subsequent addition of membrane-permeant BPA (100 μM) increased the NP(o) of both α and α + β1 channels in C-A patches. The C-A data indicate that in order to alter BK channel NP(o), BPA must interact with the channel itself (or some closely associated partner) and diffusible messengers are not involved. In W-C patches, 100 μM BPA-MS activated current in cells expressingα subunits, whereas cells expressing α + β1 subunits responded similarly to a log-order lower concentration (10 μM). The W-C data suggest that an extracellular activation site exists, but do not eliminate the possibility that an intracellular site may also be present. In I-O patches, where the cytoplasmic face was exposed to the bath, BPA-MS had no effect on the NP(o) of BK α subunits, but BPA increased it. BPA-MS increased the NP(o) of α + β1 channels in I-O patches, but not as much as BPA. We conclude that BPA activates BK α via an extracellular site and that BPA-sensitivity is increased by the β1 subunit, which may also constitute part of an intracellular binding site.
Collapse
|
21
|
Delayed relief of hemifacial spasm after microvascular decompression: can it be avoided? Acta Neurochir (Wien) 2015; 157:93-8; discussion 98-9. [PMID: 25298013 DOI: 10.1007/s00701-014-2247-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although microvascular decompression (MVD) surgery has been widely accepted as an effective treatment for hemifacial spasm (HFS), delayed relief cases have been frequently reported. Therefore, the value of an immediate redo MVD should be discussed. METHODS This study included 1,435 HFS patients who underwent MVD with intraoperative abnormal muscle response (AMR) monitoring from 2011 through 2013 at XinHua Hospital. These cases were analyzed retrospectively with emphasis on the postoperative outcomes and introaperative findings. RESULTS After MVD, 1,384 HFS patients obtained relief immediately. The 51 unrelieved patients underwent AMR monitoring again the next day; this was positive in 48 and negative in 3 patients. These three patients with negative AMR obtained relief spontaneously within a week. Among the 48 positive patients, 31 and 11 were underwent redo MVD within a week and 5-22 months, respectively, and all achieved relief after the second operation. Of the six remainig patients, two obtained relief within 2 months and 4 remained unchanged in the up-to-3-year's follow-up period. In redo MVDs, insufficient decompression of the facial nerve accounted for the failure. Finally, in this database, the immediate postoperative cure rate was 96.4 %; with earlier redo MVD, the final cure rate could be increased to 99.9 %. CONCLUSIONS Despite being a reasonable remedy for HFS in the hands of an experienced neurosurgeon, sometimes small vessels can be missed while managing the main offending arteries during MVDs, which might account for the delayed relief. Therefore, reexamination of the AMR is necessary for unimproved patients; if a positive result is recorded, an immediate redo MVD is suggested.
Collapse
|
22
|
Salleh N, Giribabu N, Feng AOM, Myint K. Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways. Int J Med Sci 2015; 12:914-25. [PMID: 26640411 PMCID: PMC4643082 DOI: 10.7150/ijms.11957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 09/02/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Bisphenol-A (BPA), dichrolodiphenyltrichloroethane (DDT) and vinclozolin were found able to induce abnormal uterine contraction. The mechanisms involved remains unclear. We hypothesized that the effect of these compounds were mediated via the uterotonin pathways. Therefore, in this study, effects of BPA, vinclozolin and DDT-only and in combination with uterotonins (PGF-2α, acetylcholine and oxytocin) on the force and pattern of uterine contraction were observed. METHODS Uteri were harvested from intact adult female rats 24 hours after a single injection (1 mg/kg/b.w) of estrogen to synchronize their oestrous cycle. The uterine horns were subjected for ex-vivo contraction studies in an organ bath connected to Powerlab data acquisition system. Different doses of BPA, vinclozolin and DDT were added into the bathing solution and changes in the pattern and strength of uterine contraction were recorded. Further, increasing doses of uterotonins were concomitantly administered with these compounds and changes in the force and pattern of contraction were observed. RESULTS In the absence of uterotonins, uterine contractile force decreased with increasing doses of BPA and DDT. However, vinclozolin induced sharp increase in the contractile forces which then gradually decrease. Administration of BPA, DDT and vinclozolin alone reduced the force of uterine contraction following stimulation of contraction by uterotonins. However, BPA, vinclozolin or DDT effects were relieved upon co-administration with uterotonins at increasing doses. CONCLUSIONS The antagonizing effect of uterotonins on BPA, vinclozolin and DDT actions could explain the mechanism underlying the adverse effect of these compounds on uterine contraction.
Collapse
Affiliation(s)
- Naguib Salleh
- 1. Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- 1. Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia; ; 2. Department of Biomedical Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, 40100 Selangor Darul Ehsan, Malaysia
| | - Angeline Oh Mei Feng
- 1. Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kyaimon Myint
- 1. Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Hyde J, MacNicol M, Odle A, Garcia-Rill E. The use of three-dimensional printing to produce in vitro slice chambers. J Neurosci Methods 2014; 238:82-7. [PMID: 25251556 PMCID: PMC4253646 DOI: 10.1016/j.jneumeth.2014.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND In recent years, 3D printing technology has become inexpensive and simple enough that any lab can own and use one of these printers. NEW METHOD We explored the potential use of 3D printers for quickly and easily producing in vitro slice chambers for patch clamp electrophysiology. Slice chambers were produced using five available plastics: ABS, PLA, Nylon 618, Nylon 680, and T-glase. These "lab-made" chambers were also made using stereolithography through a professional printing service (Shapeways). This study measured intrinsic membrane properties of neurons in the brain stem pedunculopontine nucleus (PPN) and layer V pyramidal neurons in retrosplenial cortex. RESULTS Nylon 680 and T-glase significantly hyperpolarized PPN neurons. ABS increased input resistance, decreased action potential amplitude, and increased firing frequency in pyramidal cortical neurons. To test long term exposure to each plastic, human neuroblastoma SHSY5Y cell cultures were exposed to each plastic for 1 week. ABS decreased cell counts while Nylon 618 and Shapeways plastics eliminated cells. Primary mouse pituitary cultures were also tested for 24-h exposure. ABS decreased cell counts while Nylon 618 and Shapeways plastics dramatically decreased cell counts. COMPARISON TO EXISTING METHODS Chambers can be quickly and inexpensively printed in the lab. ABS, PLA, Nylon 680, and T-glase plastics would suffice for many experiments instead of commercially produced slice chambers. CONCLUSIONS While these technologies are still in their infancy, they represent a powerful addition to the lab environment. With careful selection of print material, slice chambers can be quickly and inexpensively manufactured in the lab.
Collapse
Affiliation(s)
- James Hyde
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Melanie MacNicol
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela Odle
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
24
|
Dou NN, Zhong J, Zhou QM, Zhu J, Wang YN, Xia L, Yang XS, Ying TT, Zheng XS, Li ST. The mechanism of hemifacial spasm: a new understanding of the offending artery. Neurol Res 2014; 37:184-8. [DOI: 10.1179/1743132814y.0000000424] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Effects of estradiol on voltage-gated potassium channels in mouse dorsal root ganglion neurons. J Membr Biol 2014; 247:541-8. [PMID: 24838692 DOI: 10.1007/s00232-014-9670-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/29/2014] [Indexed: 01/22/2023]
Abstract
Voltage-gated potassium channels are regulators of membrane potentials, action potential shape, firing adaptation, and neuronal excitability in excitable tissues including in the primary sensory neurons of dorsal root ganglion (DRG). In this study, using the whole-cell patch-clamp technique, the effect of estradiol (E2) on voltage-gated total outward potassium currents, the component currents transient "A-type" current (I A) currents, and "delayed rectifier type" (I KDR) currents in isolated mouse DRG neurons was examined. We found that the extracellularly applied 17β-E2 inhibited voltage-gated total outward potassium currents; the effects were rapid, reversible, and concentration-dependent. Moreover, the membrane impermeable E2-BSA was as efficacious as 17β-E2, whereas 17α-E2 had no effect. 17β-E2-stimulated decrease in the potassium current was unaffected by treatment with ICI 182780 (classic estrogen receptor antagonist), actinomycin D (RNA synthesis inhibitor), or cycloheximide (protein synthesis inhibitor). We also found that I A and I KDR were decreased after 17β-E2 application. 17β-E2 significantly shifted the activation curve for I A and I KDR channels in the hyperpolarizing direction. In conclusion, our results demonstrate that E2 inhibited voltage-gated K(+) channels in mouse DRG neurons through a membrane ER-activated non-genomic pathway.
Collapse
|
26
|
Michaela P, Mária K, Silvia H, L'ubica L. Bisphenol A differently inhibits CaV3.1, Ca V3.2 and Ca V3.3 calcium channels. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:153-63. [PMID: 24170242 DOI: 10.1007/s00210-013-0932-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/16/2013] [Indexed: 01/26/2023]
Abstract
Bisphenol A (BPA) is a widespread environmental contaminant detected in urine of 93 % of investigated US population. Recent epidemiological studies found correlation between BPA exposure and diseases including cardiovascular and neuronal disorders. BPA targets include hormone receptors and voltage-dependent ion channels. T-type calcium channels are important regulatory elements in both cardiovascular and neuronal system. Therefore, we investigated effects of BPA on T-type calcium channels. Calcium current flowing through recombinant T-type calcium channels expressed in HEK 293 cells was measured using whole-cell patch clamp. BPA inhibited the current through individual T-type calcium channel subtypes in a concentration-dependent manner with two distinguishable components in these concentration-dependencies. Nanomolar concentrations of BPA inhibited calcium current through T-type calcium channels in the order of efficiency CaV3.2 ≥ CaV3.1 > CaV3.3 without affecting voltage dependence and kinetics of channel gating. Micromolar concentrations of BPA accelerated kinetics of current decay, shifted voltage dependence of steady-state inactivation towards more negative values and inhibited current amplitudes. We suggest that BPA acts as a modifier of channel gating and directly plugs conductive channel pore at high concentration. Concentration range in which inhibition was observed corresponds to concentrations detected in human fluids and therefore may be relevant for evaluation of health effects of BPA.
Collapse
Affiliation(s)
- Pavlovičová Michaela
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
27
|
Wang W, Wang J, Wang Q, Wu W, Huan F, Xiao H. Bisphenol A Modulates Calcium Currents and Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons. J Membr Biol 2013; 246:391-7. [DOI: 10.1007/s00232-013-9545-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/29/2013] [Indexed: 12/01/2022]
|
28
|
Wang Q, Cao J, Hu F, Lu R, Wang J, Ding H, Gao R, Xiao H. Effects of estradiol on voltage-gated sodium channels in mouse dorsal root ganglion neurons. Brain Res 2013; 1512:1-8. [PMID: 23473841 DOI: 10.1016/j.brainres.2013.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Estrogen has multiple actions in the brain to modulate homeostasis, synaptic plasticity, neuroprotection and pain sensitivity. Previous studies have demonstrated that estradiol may affect the ion channel function. The role of voltage-gated sodium channels in the transmission of nociceptive and neuropathic pain messages is well-established. Herein, we report the effects of estradiol (E2) on TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na(+) currents, using a conventional whole-cell patch clamp technique from acutely isolated mouse dorsal root ganglion neurons. We found that the extracellularly 17β-E2 inhibited TTX-S Na(+) currents and TTX-R Na(+) currents; the effects were rapid, reversible and in a concentration-dependent manner. Moreover, 17β-E2 did not significantly affect the activation curve for Na(+) channel, and shifted the steady-state inactivation curve for TTX-S and TTX-R Na(+) channels in the hyperpolarizing direction. We also found that the membrane impermeable E2-BSA was as efficacious as 17β-E2, whereas 17α-E2 had no effect. Blockers of PKC (GÖ-6983) and PKA (H-89) abrogated these acute effects of 17β-E2. In conclusion, E2 inhibited voltage-gated Na(+) channels in mouse DRG neurons through a membrane ER-activated PKC-PKA signaling pathway. Through the modulation of voltage-gated sodium currents, estradiol could affect cell excitability, firing properties.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Preventive Medicine, School of Medical Science and Laboratory Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Deutschmann A, Hans M, Meyer R, Häberlein H, Swandulla D. Bisphenol A inhibits voltage-activated Ca(2+) channels in vitro: mechanisms and structural requirements. Mol Pharmacol 2013; 83:501-11. [PMID: 23197648 DOI: 10.1124/mol.112.081372] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bisphenol A (BPA), a high volume production chemical compound attracts growing attention as a health-relevant xenobiotic in humans. It can directly bind to hormone receptors, enzymes, and ion channels to become biologically active. In this study we show that BPA acts as a potent blocker of voltage-activated Ca(2+) channels. We determined the mechanisms of block and the structural elements of BPA essential for its action. Macroscopic Ba(2+) / Ca(2+) currents through native L-, N-, P/Q-, T-type Ca(2+) channels in rat endocrine GH(3) cells, mouse dorsal root ganglion neurons or cardiac myocytes, and recombinant human R-type Ca(2+) channels expressed in human embryonic kidney (HEK) 293 cells were rapidly and reversibly inhibited by BPA with similar potency (EC(50) values: 26-35 μM). Pharmacological and biophysical analysis of R-type Ca(2+) channels revealed that BPA interacts with the extracellular part of the channel protein. Its action does not require intracellular signaling pathways, is neither voltage- nor use-dependent, and does not affect channel gating. This indicates that BPA interacts with the channel in its resting state by directly binding to an external site outside the pore-forming region. Structure-effect analyses of various phenolic and bisphenolic compounds revealed that 1) a double-alkylated (R-C(CH(3))(2)-R, R-C(CH(3))(CH(2)CH(3))-R), or double-trifluoromethylated sp(3)-hybridized carbon atom between the two aromatic rings and 2) the two aromatic moieties in angulated orientation are optimal for BPA's effectiveness. Since BPA highly pollutes the environment and is incorporated into the human organism, our data may provide a basis for future studies relevant for human health and development.
Collapse
|
30
|
O’Reilly AO, Eberhardt E, Weidner C, Alzheimer C, Wallace BA, Lampert A. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel. PLoS One 2012; 7:e41667. [PMID: 22848561 PMCID: PMC3407203 DOI: 10.1371/journal.pone.0041667] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/23/2012] [Indexed: 12/24/2022] Open
Abstract
Bisphenol A (BPA) has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a Kd of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII–IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII–IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.
Collapse
Affiliation(s)
- Andrias O. O’Reilly
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bavaria, Germany
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Esther Eberhardt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bavaria, Germany
| | - Christian Weidner
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bavaria, Germany
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bavaria, Germany
| | - B. A. Wallace
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bavaria, Germany
- * E-mail:
| |
Collapse
|
31
|
Hu F, Wang Q, Wang P, Wang W, Qian W, Xiao H, Wang L. 17β-Estradiol regulates the gene expression of voltage-gated sodium channels: role of estrogen receptor α and estrogen receptor β. Endocrine 2012; 41:274-80. [PMID: 22169964 DOI: 10.1007/s12020-011-9573-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
Estradiol (E2) plays a key role in pain modulation, and the biological effects of E2 are transduced by binding estrogen receptors (ERs). Voltage-gated sodium (Nav) channels are responsible for the generation and propagation of action potentials in the membranes of most neurons and excitable cells. Adult dorsal root ganglion (DRG) neurons can express the ERs (ERα and ERβ), and Nav channels (TTX-S: Nav1.1, Nav1.6, and Nav1.7; and TTX-R: Nav1.8, and Nav1.9). Although E2 modulates Nav channel currents, little is known about the molecular mechanisms involved. In this study, we investigate the mRNA expressions of Nav channel subtypes mediated differentially by the ERs in the DRGs of wild-type (WT) and estrogen receptor knockout (αERKO and βERKO) mice. By means of quantitative real-time PCR, we found that the expressions of Nav1.1, Nav1.7, Nav1.8, and Nav1.9 subtypes were elevated in αERKO and βERKO mice, whereas Nav1.6 mRNA decreased in αERKO, but not in βERKO mice. The mRNA expressions of Nav subtypes were increased in E2-treated WT ovariectomized animals. We also found that E2-regulation of Nav1.1 and Nav1.9 mRNA expressions is dependent on ERα, ERβ, and another ER, whereas E2-regulation of Nav1.8 appears to be in an ERβ-dependent manner.
Collapse
Affiliation(s)
- Fang Hu
- Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|