1
|
Budniok S, Callaerts-Vegh Z, Bakermans-Kranenburg M, Bosmans G, D'Hooge R. Oxytocin enhances acquisition in a social trust task in mice, whereas both oxytocin and its antagonist block trust violation learning. Neuropharmacology 2025; 271:110389. [PMID: 40021083 DOI: 10.1016/j.neuropharm.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The complex effects of the neurohormone oxytocin (OT) on socio-cognitive phenomena have recently been proposed to be complementary with safety learning, where a stimulus acquires safety-predicting properties when it predicts non-occurrence of an aversive event. OT may enhance salience of safety stimuli and promote positive social behavior, such as trust, by reducing anxiety and stress. Complementary, OT may reduce the ability to modulate previously learned behaviors based on new, contradicting information. This occurs through its attenuation of prediction error (PE)-the discrepancy between expectations and actual outcomes. In the current study, we modulated OT receptor (OTR) activity by administering an agonist (OT) and antagonist (cligosiban, CL), and subjected male and female mice to our social transmission of food preference (STFP) protocol to assess social safety learning. STFP is based on the observation that food neophobia of rodents is attenuated when a conspecific signals the safety of the food. We used safe food preference as putative murine homologue of human trust acquisition, and modeled trust violation (PE) using lithium chloride (LiCl)-induced food aversion after social interaction. In males, results revealed that OT enhanced trust acquisition, whereas both OT and its antagonist CL similarly blocked trust violation learning. None of the manipulations affected female behavior. Our findings highlight the complexities of OT's role in social behavior, emphasizing caution in therapeutic manipulations of this system.
Collapse
Affiliation(s)
- Samuel Budniok
- Laboratory of Biological Psychology, University of Leuven, Tiensestraat 102, Leuven, Belgium; Learn2Trust Research Group, University of Leuven, Tiensestraat 102, Leuven, Belgium.
| | | | - Marian Bakermans-Kranenburg
- William James Center for Research, ISPA - University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal; Facultad de Psicología y Humanidades, Universidad San Sebastián, Chile
| | - Guy Bosmans
- Learn2Trust Research Group, University of Leuven, Tiensestraat 102, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Tiensestraat 102, Leuven, Belgium
| |
Collapse
|
2
|
Zimmerman CA, Bolkan SS, Pan-Vazquez A, Wu B, Keppler EF, Meares-Garcia JB, Guthman EM, Fetcho RN, McMannon B, Lee J, Hoag AT, Lynch LA, Janarthanan SR, López Luna JF, Bondy AG, Falkner AL, Wang SSH, Witten IB. A neural mechanism for learning from delayed postingestive feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561214. [PMID: 37873112 PMCID: PMC10592633 DOI: 10.1101/2023.10.06.561214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Animals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic1-6 and preferences to those that are nutritious7-14. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process. To begin, we leverage the fact that mice learn to associate novel15-18, but not familiar, flavors with delayed gastric malaise signals to investigate how the brain represents flavors that support aversive postingestive learning. Surveying cellular resolution brainwide activation patterns reveals that a network of amygdala regions is unique in being preferentially activated by novel flavors across every stage of the learning process: the initial meal, delayed malaise, and memory retrieval. By combining high-density recordings in the amygdala with optogenetic stimulation of genetically defined hindbrain malaise cells, we find that postingestive malaise signals potently and specifically reactivate amygdalar novel flavor representations from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts strengthening of flavor responses upon memory retrieval, leading to stabilization of the population-level representation of the recently consumed flavor. In contrast, meals without postingestive consequences degrade neural flavor representations as flavors become familiar and safe. Thus, our findings demonstrate that interoceptive reactivation of amygdalar flavor representations provides a neural mechanism to resolve the temporal credit assignment problem inherent to postingestive learning.
Collapse
Affiliation(s)
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Emma F Keppler
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Eartha Mae Guthman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robert N Fetcho
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Hoag
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Juan F López Luna
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Adrian G Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Greiner EM, Witt ME, Moran SJ, Petrovich GD. Activation patterns in male and female forebrain circuitries during food consumption under novelty. Brain Struct Funct 2024; 229:403-429. [PMID: 38193917 PMCID: PMC10932916 DOI: 10.1007/s00429-023-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or familiar food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.
Collapse
Affiliation(s)
- Eliza M Greiner
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Mary E Witt
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Stephanie J Moran
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
4
|
Chen Y, Knorr E, Boisvert A, Xiao T, Kimbrough A. Prior experience with flavored alcohol increases preference for flavored alcohol but flavor does not influence binge-like drinking behavior in mice. Physiol Behav 2023; 269:114275. [PMID: 37336280 PMCID: PMC10527159 DOI: 10.1016/j.physbeh.2023.114275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Binge drinking can lead to various negative consequences and in non-experimental settings, alcohol usually contains flavoring, which may promote increased binge drinking. Preclinical models of binge-like drinking have been well established, however, the influence of flavor on alcohol preference and binge-like drinking has not been fully explored. METHODS Male and female C57BL/6 J mice were tested via two-bottle choice with alcohol flavored with different concentrations of unsweetened Cherry flavor Kool-Aid and water. Next, mice were tested for preference for flavored alcohol over plain alcohol. Consumption of flavored alcohol versus water was examined over 48 h. Binge-like drinking with flavored alcohol was validated via drinking in the dark (DID). A separate cohort of mice underwent chronic DID for 6 weeks with either flavored or plain alcohol. After chronic DID, mice were then tested for preference for flavored versus plain alcohol and then alcohol consumption despite adverse effects was examined using the quinine adulteration test. RESULTS The 0.1% Kool-Aid concentration was chosen to use for further testing based on intake. Mice preferred Kool-Aid flavored alcohol over plain alcohol after the concentration test, but mice with no prior exposure to plain or flavored alcohol preferred plain over flavored alcohol. Throughout all initial testing, female mice showed increased alcohol intake compared to male mice. Both male and female mice showed binge-like drinking of flavored alcohol, with females having higher intake and blood alcohol levels. Kool-Aid flavor did not increase alcohol intake during chronic binge-like drinking. Previous exposure to flavored alcohol during DID increased the preference for flavored alcohol over plain alcohol but did not influence alcohol consumption despite adverse effects. CONCLUSION The present study indicates that prior experience with flavored alcohol increases preference and intake, suggesting an effect of learned safety from neophobia. However, flavor does not impact binge-like alcohol consumption or alcohol drinking despite negative consequences. Additionally, the current study shows that female mice will consume more flavored alcohol than males, similar to findings from other alcohol studies.
Collapse
Affiliation(s)
- Yueyi Chen
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Emily Knorr
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Alyssa Boisvert
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Tiange Xiao
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America
| | - Adam Kimbrough
- Purdue University, Department of Basic Medical Sciences, College of Veterinary Medicine, United States of America; Purdue Institute for Integrative Neuroscience, United States of America; Purdue University, Weldon School of Biomedical Engineering, United States of America; Purdue Institute of Inflammation, Immunology, and Infectious Disease, United States of America.
| |
Collapse
|
5
|
Greiner EM, Witt ME, Moran SJ, Petrovich GD. Activation patterns in male and female forebrain circuitries during food consumption under novelty. RESEARCH SQUARE 2023:rs.3.rs-3328570. [PMID: 37790415 PMCID: PMC10543437 DOI: 10.21203/rs.3.rs-3328570/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or family food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.
Collapse
|
6
|
Menchén-Márquez S, Banqueri M, Gómez-Chacón B, Arias JL, Gallo M. Increased basolateral amygdala metabolic activity during flavor familiarization: an experimental study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:2. [PMID: 36737767 PMCID: PMC9896748 DOI: 10.1186/s12993-023-00206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Novel flavors elicit a cautious neophobic response which is attenuated as the flavor becomes familiar and safe. The attenuation of neophobia reveals the formation of a safe memory. Previous lesion studies in rats have reported that basolateral amygdala integrity is required for taste neophobia, but not neophobia to flavor, i.e., taste linked to an odorous component. Accordingly, immunohistochemical analyses show that novel tastes induced higher basolateral amygdala activity when compared to familiar ones. However, a different role of basolateral amygdala in flavor attenuation of neophobia is suggested by lesion studies using a vinegar solution. Studies assessing basolateral amygdala activity during flavor attenuation of neophobia are lacking. Thus, we quantified cytochrome oxidase as an index of basolateral amygdala activity along the first and second vinegar exposures in order to assess flavor neophobia and attenuation of neophobia. METHODS We exposed adult male Wistar rats either once or twice to a 3% cider vinegar solution or water, and compared the basolateral amygdala, piriform cortex and caudate putamen brain metabolic activity using cytochrome c-oxidase histochemistry. RESULTS We found increased flavor intake and cytochrome c-oxidase histochemistry activity during the second exposure in basolateral amygdala, but not in the piriform cortex and caudate/putamen. CONCLUSIONS The main finding of the study is that BLA metabolic activity was higher in the group exposed to a familiar vinegar solution than in the groups exposed to either water or a novel vinegar solution.
Collapse
Affiliation(s)
- Sergio Menchén-Márquez
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Parque Tecnológico de la Salud (PTS), Avda del Conocimiento, s/n, Armilla, 18016, Granada, Spain.
| | - María Banqueri
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh, UK
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Beatriz Gómez-Chacón
- Department of Didactics, Area of Didactics of Experimental Sciences, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Parque Tecnológico de la Salud (PTS), Avda del Conocimiento, s/n, Armilla, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), Granada, Spain
| |
Collapse
|
7
|
Wiaderkiewicz J, Reilly S. Expression of c-Fos following voluntary ingestion of a novel or familiar taste in rats. Brain Res 2023; 1799:148177. [PMID: 36503889 PMCID: PMC9795852 DOI: 10.1016/j.brainres.2022.148177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022]
Abstract
Taste neophobia, the rejection of novel tastes or foods, involves an interplay of various brain regions encompassing areas within the central gustatory system, as well as nuclei serving other functions. Previous findings, utilising c-Fos imaging, identified several brain regions which displayed higher activity after ingestion of a novel taste as compared to a familiar taste. The present study extends this analysis to include additional regions suspected of contributing to the neurocircuitry involved in evoking taste neophobia. Our data show increased c-Fos expression in the basolateral amygdala, central nucleus of the amygdala, gustatory portion of the thalamus, gustatory portion of the insular cortex and the medial and lateral regions of the parabrachial nucleus. These results confirm the contribution of areas previously identified as active during ingestion of novel tastes and expose additional areas that express elevated levels of c-Fos under these conditions, thus adding to the neural network involved in the detection and initial processing of taste novelty.
Collapse
Affiliation(s)
- Jan Wiaderkiewicz
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| | - Steve Reilly
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| |
Collapse
|
8
|
Yu YH, Tsai AC, Ou CY, Cheng CN, Chang FC, Shyu BC, Huang ACW. Optogenetic stimulation in the medial prefrontal cortex modulates stimulus valence from rewarding and aversive to neutral states. Front Psychiatry 2023; 14:1119803. [PMID: 37113545 PMCID: PMC10126430 DOI: 10.3389/fpsyt.2023.1119803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Understanding the modulations of the medial prefrontal cortex (mPFC) in the valence of the stimulus from rewarding and aversive status to neutral status is crucial for the development of novel treatments for drug addiction. This study addressed this issue and examined whether optogenetic ChR2 photostimulation in the cingulate, prelimbic, and infralimbic cortices of the mPFC regulated the valence of saccharin solution consumption from the rewarding property, the aversive property induced by morphine's conditioning, and the neutral states via saccharin extinction processes after morphine's conditioning. Methods All rats received virus infection, buried optical fiber, optical stimulation, water deprivation, and saccharin solution consumption phases. In Experiment 1, rats were given ChR2 virus infection into the cingulate cortex (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL) to influence the rewarding saccharin solution consumption under photostimulation. In Experiment 2, rats were given ChR2 or EYFP virus infection into the Cg1, PrL, and IL to alter the saccharin solution consumption in the morphine-induced aversively conditioned taste aversion (CTA) and the saccharin solution consumption in the neutral state following the extinction process under photostimulation. Later, the immunohistochemical staining with c-Fos protein was performed for the Cg1, IL, PrL, nucleus accumbens core, nucleus accumbens shell, central amygdala, basolateral amygdala, ventral tegmental area, and dentate gyrus. Results The results showed that optogenetic PrL stimulation decreased the rewarding valence of saccharin solution consumption and increased the morphine-induced, aversive valence of saccharin solution consumption. PrL stimulation decreased the neutral valence of saccharin solution consumption via the extinction process. Cg1 optogenetic stimulation increased the rewarding valence of saccharin solution consumption and the aversive valence of saccharin solution consumption induced by morphine in conditioning. Optogenetic IL stimulation increased the aversive valence of saccharin solution consumption induced by morphine via conditioning. Conclusion Altogether, optogenetic stimulation in the subareas of the mPFC modulated the reward, aversion, and neutral valences of the stimulus and altered neuronal activity in the mPFC, amygdala, nucleus accumbens, and hippocampus. Notably, the change of valence was temporary alternation during light-on related to the light-off periods. However, the findings may provide insights in the development of novel treatments for addictive symptoms.
Collapse
Affiliation(s)
- Ying Hao Yu
- Department of Psychology, Fo Guang University, Yilan, Taiwan
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Arthur C. Tsai
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chen Yin Ou
- Department of Psychology, Fo Guang University, Yilan, Taiwan
| | - Cai-N Cheng
- Department of Psychology, Fo Guang University, Yilan, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Fang Chih Chang
- Department of Psychology, Fo Guang University, Yilan, Taiwan
| | - Bai Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Bai Chuang Shyu, , orcid.org/0000-0001-5619-2281
| | - Andrew Chih Wei Huang
- Department of Psychology, Fo Guang University, Yilan, Taiwan
- *Correspondence: Andrew Chih Wei Huang, , orcid.org/0000-0001-9794-7302
| |
Collapse
|
9
|
Staszko SM, Boughter JD, Fletcher ML. The impact of familiarity on cortical taste coding. Curr Biol 2022; 32:4914-4924.e4. [PMID: 36261035 PMCID: PMC9691541 DOI: 10.1016/j.cub.2022.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
The role of the gustatory region of the insular cortex in mediating associative taste learning, such as conditioned taste aversion, has been well studied. However, while associative learning plays a role in some taste behaviors, such as avoiding toxins, animals often encounter taste stimuli in their natural environment without explicit consequences. This type of inconsequential experience with sensory stimuli has been studied in other sensory systems, generally with the finding that neuronal responses habituate with repeated sensory exposure. This study sought to determine the effect of taste familiarity on population taste coding in the mouse gustatory cortex (GC). Using microendoscope calcium imaging, we studied the taste responses of visually identifiable neurons over 5 days of taste experience, during which animals could freely choose to consume taste stimuli. We found that the number of active cells in the insular cortex, as well as the number of cells characterized as taste-responsive, significantly decreased as animals became familiar with taste stimuli. Moreover, the magnitude of taste-evoked excited responses increased while inhibited responses decreased with experience. By tracking individual neurons over time, we identified a subpopulation of stable neurons present on all days of the taste familiarity paradigm and further characterized their taste coding properties. The population-level response across these stable cells was distinct for each taste quality when taste stimuli were novel, but population responses for readily consumed stimuli became more correlated as the stimuli became familiar. Overall, these results highlight the effects of familiarity on both taste-specific and non-taste responses in the gustatory cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Ramos R, Wu CH, Turrigiano GG. Strong Aversive Conditioning Triggers a Long-Lasting Generalized Aversion. Front Cell Neurosci 2022; 16:854315. [PMID: 35295904 PMCID: PMC8918528 DOI: 10.3389/fncel.2022.854315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Generalization is an adaptive mnemonic process in which an animal can leverage past learning experiences to navigate future scenarios, but overgeneralization is a hallmark feature of anxiety disorders. Therefore, understanding the synaptic plasticity mechanisms that govern memory generalization and its persistence is an important goal. Here, we demonstrate that strong CTA conditioning results in a long-lasting generalized aversion that persists for at least 2 weeks. Using brain slice electrophysiology and activity-dependent labeling of the conditioning-active neuronal ensemble within the gustatory cortex, we find that strong CTA conditioning induces a long-lasting increase in synaptic strengths that occurs uniformly across superficial and deep layers of GC. Repeated exposure to salt, the generalized tastant, causes a rapid attenuation of the generalized aversion that correlates with a reversal of the CTA-induced increases in synaptic strength. Unlike the uniform strengthening that happens across layers, reversal of the generalized aversion results in a more pronounced depression of synaptic strengths in superficial layers. Finally, the generalized aversion and its reversal do not impact the acquisition and maintenance of the aversion to the conditioned tastant (saccharin). The strong correlation between the generalized aversion and synaptic strengthening, and the reversal of both in superficial layers by repeated salt exposure, strongly suggests that the synaptic changes in superficial layers contribute to the formation and reversal of the generalized aversion. In contrast, the persistence of synaptic strengthening in deep layers correlates with the persistence of CTA. Taken together, our data suggest that layer-specific synaptic plasticity mechanisms separately govern the persistence and generalization of CTA memory.
Collapse
|
11
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
12
|
Grau-Perales AB, Gámiz F, Gallo M. Effect of hippocampal 6-OHDA lesions on the contextual modulation of taste recognition memory. Behav Brain Res 2021; 409:113320. [PMID: 33901433 DOI: 10.1016/j.bbr.2021.113320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
Taste recognition memory is evident in rodents because the initial neophobia to novel tastes attenuates across exposures as the taste becomes familiar and safe. This attenuation of taste neophobia (AN) is context-dependent and an auditory background change could induce the recovery of the neophobic response. The AN auditory context-dependency requires the hippocampal integrity but the neurochemical mechanisms underlying the interaction with the taste memory circuit remain unexplored. We have applied pharmacological intervention by 6-hidroxydopamine (6-OHDA) hippocampal lesion for assessing the role of catecholamines in the hippocampal system to Wistar rats that drank a novel 3% vinegar solution for several consecutive days. Additionally, we manipulated the auditory background as a context that could either change or remain constant across all the drinking sessions. We found that a disruption of the context-dependent AN was induced by intracerebral administration of 6-OHDA targeted to the ventral CA1 hippocampus (vCA1). We conclude that the ability of the auditory context to modulate taste recognition memory involves the catecholaminergic activity in the ventral hippocampal circuit for the proper acquisition of safe taste memory.
Collapse
Affiliation(s)
- Alejandro Borja Grau-Perales
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain.
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| |
Collapse
|
13
|
Osorio-Gómez D, Bermúdez-Rattoni F, Guzmán-Ramos KR. Cortical neurochemical signaling of gustatory stimuli and their visceral consequences during the acquisition and consolidation of taste aversion memory. Neurobiol Learn Mem 2021; 181:107437. [PMID: 33831511 DOI: 10.1016/j.nlm.2021.107437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
The insular cortex (IC) has a crucial role in taste recognition memory, including conditioned taste aversion (CTA). CTA is a learning paradigm in which a novel taste stimulus (CS) is associated with gastric malaise (US), inducing aversion to the CS in future encounters. The role of the IC in CTA memory formation has been extensively studied. However, the functional significance of neurotransmitter release during the presentation of taste stimuli and gastric malaise-inducing agents remains unclear. Using microdialysis in free-moving animals, we evaluated simultaneous changes in glutamate, norepinephrine and dopamine release in response to the presentation of an innate appetitive or aversive gustatory novel stimulus, as well as after i.p. administration of isotonic or hypertonic gastric malaise-inducing solutions. Our results demonstrate that the presentation of novel stimuli, regardless of their innate valence, induces an elevation of norepinephrine and dopamine. Administration of a gastric malaise inducing agent (LiCl) promotes an elevation of glutamate regardless of its concentration. In comparison, norepinephrine release is related to the LiCl concentration and its equimolar NaCl control. Additionally, we evaluated their functional role on short and long-term taste aversion memory. Results indicate that the blockade of noradrenergic β1,2 receptors in the IC spares CTA acquisition and memory consolidation. In contrast, blockade of dopamine D1/D5 receptors impaired CTA consolidation, whereas the NMDA receptor blockade impedes both acquisition and consolidation of CTA. These results suggest that dopaminergic and noradrenergic release are related to the salience of conditioned taste stimuli. However, only cortical D1/D5 dopaminergic activity, but not the noradrenergic β1,2 activity, is involved in the acquisition and consolidation of taste memory formation. Additionally, glutamatergic activity signals visceral distress caused by LiCl administration and activates NMDA receptors necessary for the acquisition and consolidation of long-lasting taste aversion memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Kioko R Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México C.P. 52005, Mexico.
| |
Collapse
|
14
|
Haley MS, Bruno S, Fontanini A, Maffei A. LTD at amygdalocortical synapses as a novel mechanism for hedonic learning. eLife 2020; 9:e55175. [PMID: 33169666 PMCID: PMC7655100 DOI: 10.7554/elife.55175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/23/2020] [Indexed: 01/28/2023] Open
Abstract
A novel, pleasant taste stimulus becomes aversive if associated with gastric malaise, a form of learning known as conditioned taste aversion (CTA). CTA is common to vertebrates and invertebrates and is an important survival response: eating the wrong food may be deadly. CTA depends on the gustatory portion of the insular cortex (GC) and the basolateral nucleus of the amygdala (BLA) however, its synaptic underpinnings are unknown. Here we report that CTA was associated with decreased expression of immediate early genes in rat GC of both sexes, and with reduced amplitude of BLA-GC synaptic responses, pointing to long-term depression (LTD) as a mechanism for learning. Indeed, association of a novel tastant with induction of LTD at the BLA-GC input in vivo was sufficient to change the hedonic value of a taste stimulus. Our results demonstrate a direct role for amygdalocortical LTD in taste aversion learning.
Collapse
Affiliation(s)
- Melissa S Haley
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Stephen Bruno
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| |
Collapse
|
15
|
Disconnection of the perirhinal and insular cortices severely disrupts taste neophobia. Neurobiol Learn Mem 2020; 175:107324. [DOI: 10.1016/j.nlm.2020.107324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
|
16
|
Arieli E, Gerbi R, Shein‐Idelson M, Moran A. Temporally‐precise basolateral amygdala activation is required for the formation of taste memories in gustatory cortex. J Physiol 2020; 598:5505-5522. [DOI: 10.1113/jp280213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Elor Arieli
- Department of Neurobiology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Ron Gerbi
- Department of Neurobiology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Mark Shein‐Idelson
- Department of Neurobiology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Anan Moran
- Department of Neurobiology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
17
|
Ramos JM. Perirhinal cortex supports both taste neophobia and its attenuation. Neurobiol Learn Mem 2020; 173:107264. [DOI: 10.1016/j.nlm.2020.107264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/04/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
|
18
|
Alejandro Borja GP, Alejandro Navarro E, Beatriz GC, Ignacio M, Milagros G. Accumbens and amygdala in taste recognition memory: The role of d1 dopamine receptors. Neurobiol Learn Mem 2020; 174:107277. [PMID: 32707274 DOI: 10.1016/j.nlm.2020.107277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
The attenuation of taste neophobia (AN) is a good model for studying the structural and neurochemical mechanisms of the emotional component of memory because taste recognition memory exhibits the unique feature of being necessarily linked to hedonic properties. Whilst novel tastes elicit cautious neophobic responses, taste exposures which are not followed by aversive consequences attenuate neophobia as the taste becomes safe and palatable. Given the involvement of the nucleus accumbens in reward and of the amygdala in emotional memories, we applied c-Fos immunohistochemistry as an index of neural activity in Wistar rats that were exposed to a vinegar solution for one, two or six days. An inverse pattern of accumbens nucleus vs amygdala activity was found on the second exposure day on which AN occurred. The number of c-Fos positive cells in the nucleus accumbens shell increased whilst the number of c-Fos positive cells in the basolateral amygdala decreased. Further analyses revealed a positive correlation between AN and the number of c-Fos positive cells in the accumbens shell but a negative correlation in the basolateral amygdala. Furthermore the accumbens-amygdala interplay relevant for AN seems to be mediated by dopamine D1 receptors (D1DR). The injection of SCH23390 (D1DR antagonist) in both the accumbens shell and the basolateral amygdala on the second taste exposure resulted in selectively impaired AN but had opposite long term effects. This finding supports the relevance of a dopaminergic network mediated by D1DRs in the nucleus accumbens shell and basolateral amygdala which is critical for adding the emotional component during the formation of taste memory.
Collapse
Affiliation(s)
- Grau-Perales Alejandro Borja
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain.
| | - Expósito Alejandro Navarro
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Gómez-Chacón Beatriz
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Morón Ignacio
- Department of Psychobiology, Centre of Investigation of Mind and Behaviour (CIMCYC), University of Granada, Spain
| | - Gallo Milagros
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| |
Collapse
|
19
|
Perez EC, Meurisse M, Hervé L, Georgelin M, Constantin P, Cornilleau F, Love SA, Lévy F, Calandreau L, Bertin A. Object and food novelty induce distinct patterns of c-fos immunoreactivity in amygdala and striatum in domestic male chicks (Gallus gallus domesticus). Behav Brain Res 2020; 381:112453. [DOI: 10.1016/j.bbr.2019.112453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
20
|
Fredericksen KE, McQueen KA, Samuelsen CL. Experience-Dependent c-Fos Expression in the Mediodorsal Thalamus Varies With Chemosensory Modality. Chem Senses 2019; 44:41-49. [PMID: 30388214 DOI: 10.1093/chemse/bjy070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mediodorsal thalamus is a higher order thalamic nucleus critical for many cognitive behaviors. Defined by its reciprocal connections with the prefrontal cortex, the mediodorsal thalamus receives strong projections from chemosensory cortical areas for taste and smell, gustatory cortex and piriform cortex. Recent studies indicate the mediodorsal thalamus is involved in experience-dependent chemosensory processes, including olfactory attention and discrimination and the hedonic perception of odor-taste mixtures. How novel and familiar chemosensory stimuli are represented within this structure remains unclear. Here, we compared the expression of c-Fos in the mediodorsal thalami of rats familiar with an odor, a taste, or an odor-taste mixture with those that sampled the stimuli for the first time. We found that familiar tastes or odor-taste mixtures induced significantly greater c-Fos expression in the mediodorsal thalamus than novel tastes or odor-taste mixtures, whereas novel odors induced greater c-Fos expression than familiar odors. These experience-dependent and modality-specific differences in c-Fos expression may relate to the behavioral relevance of the chemosensory stimulus, including odor neophobia. In a two-bottle brief-access preference task, rats preferred water to isoamyl acetate-odorized water over multiple days. However, after experience with isoamyl acetate mixed with sucrose (odor-taste mixture), the preference for water was eliminated. These findings demonstrate that experience with chemosensory stimuli modulates responses in the mediodorsal thalamus, suggesting this structure plays an integral role in communicating behaviorally relevant chemosensory information to higher order areas to guide food-related behaviors.
Collapse
Affiliation(s)
- Kelly E Fredericksen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| | - Kelsey A McQueen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| |
Collapse
|
21
|
Grau-Perales A, Gómez-Chacón B, Gallo M. Differential activity pattern of c-Fos in the nucleus accumbens between adult and aged rats during flavor recognition memory. Behav Brain Res 2019; 371:111935. [DOI: 10.1016/j.bbr.2019.111935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
|
22
|
Bamji-Stocke S, Biggs BT, Samuelsen CL. Experience-dependent c-Fos expression in the primary chemosensory cortices of the rat. Brain Res 2018; 1701:189-195. [PMID: 30244018 PMCID: PMC6289795 DOI: 10.1016/j.brainres.2018.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Eating a new food is a unique event that guides future food choices. A key element for these choices is the perception of flavor (odor-taste associations), a multisensory process dependent upon taste and smell. The two primary cortical areas for taste and smell, gustatory cortex and piriform cortex, are thought to be crucial regions for processing and responding to odor-taste mixtures. To determine how previous experience impacts the primary chemosensory cortices, we compared the expression of the immediate early gene, c-Fos, between rats presented with a taste, an odor, or an odor-taste mixture for the first-time with rats that had many days of prior experience. Compared to rats with prior experience, we found that first-time sampling of all three chemosensory stimuli led to significantly greater c-Fos expression in gustatory cortex. In piriform cortex, only the novel chemosensory stimuli containing odors showed greater c-Fos expression. These results indicate that prior experience with taste, odor, or odor-taste stimuli habituates responses in the primary chemosensory cortices and adds further evidence supporting gustatory cortex as a fundamental node for the integration of gustatory and olfactory signals.
Collapse
Affiliation(s)
- Sanaya Bamji-Stocke
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States.
| | - Bradley T Biggs
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States.
| |
Collapse
|
23
|
Grau-Perales A, Gómez-Chacón B, Morillas E, Gallo M. Flavor recognition memory related activity of the posterior piriform cortex in adult and aged rats. Behav Brain Res 2018; 360:196-201. [PMID: 30529404 DOI: 10.1016/j.bbr.2018.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
The relationship between the piriform cortex and flavor recognition memory was investigated in adult and aged rats. By using c-Fos immunohistochemistry, we assessed the piriform cortex activity induced by flavor familiarity. The results indicated increased activity in the rostral region of the posterior piriform cortex elicited by the most familiar cider vinegar solution after six exposures. Aged rats exhibited overall increased activity in the posterior, but not the anterior piriform cortex, which was not related to flavor familiarity. This suggests that the posterior piriform cortex is related to flavor recognition memory and that aging modifies its activity pattern which might underlie their slower attenuation of flavor neophobia.
Collapse
Affiliation(s)
- A Grau-Perales
- Departamento de Psicobiología, Instituto de Neurociencias, Centro de Investigación Biomédica, Universidad de Granada, Spain.
| | - B Gómez-Chacón
- Departamento de Psicobiología, Instituto de Neurociencias, Centro de Investigación Biomédica, Universidad de Granada, Spain
| | - E Morillas
- Departamento de Psicobiología, Instituto de Neurociencias, Centro de Investigación Biomédica, Universidad de Granada, Spain
| | - M Gallo
- Departamento de Psicobiología, Instituto de Neurociencias, Centro de Investigación Biomédica, Universidad de Granada, Spain
| |
Collapse
|
24
|
Arthurs J, Lin JY, Reilly S. Inhibiting gustatory thalamus or medial amygdala has opposing effects on taste neophobia. Neurobiol Learn Mem 2018; 156:24-32. [PMID: 30336209 PMCID: PMC6309437 DOI: 10.1016/j.nlm.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 11/22/2022]
Abstract
Taste neophobia is a feeding system defense mechanism that limits consumption of an unknown, and therefore potentially dangerous, edible until the post-ingestive consequences are experienced. We found that transient pharmacological inhibition (induced with the GABA agonists baclofen and muscimol) of the gustatory thalamus (GT; Experiment 1), but not medial amygdala (MeA; Experiment 2), during exposure to a novel saccharin solution attenuated taste neophobia. In Experiment 3 we found that inhibition of MeA neurons (induced with the chemogenetic receptor hM4DGi) enhanced the expression of taste neophobia whereas excitation of MeA neurons (with hM3DGq) had no influence of taste neophobia. Overall, these results refine the temporal involvement of the GT in the occurrence of taste neophobia and support the hypothesis that neuronal excitation in the GT is necessary for taste neophobia. Conversely, we show that chemogenetically, but not pharmacologically, inhibiting MeA neurons is sufficient to exaggerate the expression of taste neophobia.
Collapse
Affiliation(s)
- Joe Arthurs
- University of Illinois at Chicago, Department of Psychology, United States.
| | - Jian-You Lin
- University of Illinois at Chicago, Department of Psychology, United States
| | - Steve Reilly
- University of Illinois at Chicago, Department of Psychology, United States.
| |
Collapse
|
25
|
Flores VL, Parmet T, Mukherjee N, Nelson S, Katz DB, Levitan D. The role of the gustatory cortex in incidental experience-evoked enhancement of later taste learning. Learn Mem 2018; 25:587-600. [PMID: 30322892 PMCID: PMC6191014 DOI: 10.1101/lm.048181.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022]
Abstract
The strength of learned associations between pairs of stimuli is affected by multiple factors, the most extensively studied of which is prior experience with the stimuli themselves. In contrast, little data is available regarding how experience with "incidental" stimuli (independent of any conditioning situation) impacts later learning. This lack of research is striking given the importance of incidental experience to survival. We have recently begun to fill this void using conditioned taste aversion (CTA), wherein an animal learns to avoid a taste that has been associated with malaise. We previously demonstrated that incidental exposure to salty and sour tastes (taste preexposure-TPE) enhances aversions learned later to sucrose. Here, we investigate the neurobiology underlying this phenomenon. First, we use immediate early gene (c-Fos) expression to identify gustatory cortex (GC) as a site at which TPE specifically increases the neural activation caused by taste-malaise pairing (i.e., TPE did not change c-Fos induced by either stimulus in isolation). Next, we use site-specific infection with the optical silencer Archaerhodopsin-T to show that GC inactivation during TPE inhibits the expected enhancements of both learning and CTA-related c-Fos expression, a full day later. Thus, we conclude that GC is almost certainly a vital part of the circuit that integrates incidental experience into later associative learning.
Collapse
Affiliation(s)
- Veronica L Flores
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Tamar Parmet
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Narendra Mukherjee
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sacha Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02454, USA
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David Levitan
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
26
|
King MS. Distribution of Fos-immunoreactive neurons in the gustatory cortex elicited by intra-oral infusion of taste solutions in conscious rats. Brain Res 2018; 1683:67-77. [PMID: 29371098 PMCID: PMC5818300 DOI: 10.1016/j.brainres.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
The location of neurons in the gustatory cortex (GC) activated by intra-oral infusion of solutions in conscious rats was mapped using Fos immunohistochemistry. Groups of adult male Wistar rats (N's = 5) received an infusion of one of the following: dH2O, 0.1 or 1.0 M NaCl, 0.1 or 1.0 M sucrose, 0.32 M MSG (with 100 µM amiloride and 2.5 M inosine 5'-monophosphate), 0.03 M HCl, or 0.003 M QHCl delivered via an intra-oral cannula (0.233 ml/min for 5 min). Unstimulated control rats received no infusion. Taste reactivity (TR) behaviors were videotaped and scored. The number of Fos-immunoreactive (Fos-IR) neurons was counted in eight sections throughout the anterior-posterior extent of the GC in the medial and lateral halves of the granular (GI), dysgranular (DI), and dorsal (AID) and ventral (AIV) agranular insular cortices. Intra-oral infusion of dH2O, NaCl, or sucrose altered the number of Fos-IR neurons in only specific subareas of the GC and the effects of these tastants were concentration-dependent. For example, 1.0 M NaCl increased Fos-IR neurons in the posterior lateral AID and DI and elicited more aversive TR responses than 0.1 M NaCl. Compared to dH2O, infusions of HCl or QHCl increased the total number of Fos-IR neurons in many subareas of the GC throughout its anterior-posterior extent and increased aversive TR behaviors. Linear regression analyses suggested that neurons in the medial AID of the posterior GC may influence aversive behavioral responses to HCl and QHCl while neurons in the posterior lateral AID and DI may play a role in aversive TR responses to 1.0 M NaCl.
Collapse
Affiliation(s)
- Michael S King
- Biology Department, Stetson University, 421 N. Woodland Blvd., DeLand, FL 32723, United States.
| |
Collapse
|
27
|
Plasticity in the Interoceptive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:59-74. [DOI: 10.1007/978-3-319-62817-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
28
|
Sarowar T, Grabrucker S, Boeckers TM, Grabrucker AM. Object Phobia and Altered RhoA Signaling in Amygdala of Mice Lacking RICH2. Front Mol Neurosci 2017. [PMID: 28642683 PMCID: PMC5462907 DOI: 10.3389/fnmol.2017.00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RICH2 knockout (RICH2 KO) mice exhibit neophobia in the novel object test. To gain further insight into their anxiety-related phenotype, we subjected these mice to additional behavioral tests to elucidate whether the behavioral abnormality in these mice is a consequence of reduced exploratory motivation, and whether the neophobia is linked specifically to objects or also present for other modalities. RICH2 KO mice engage in normal exploration in a novel environment, suggesting that the anxiety-related phenotype is not due to reduced exploratory drive. Increased fear response was not observed using novel olfactory cues, but restricted to objects. Given that the amygdala is an important brain region mediating anxiety-related behaviors and a prime target for anxiety-related therapeutics, and RICH2 is a Rho-GTPase activating protein (GAP) regulating synaptic spine plasticity via small GTPases, we analyzed spine formation, morphology and receptor composition in amygdala. We found disinhibition of RhoA in the amygdala of RICH2 KO mice, along with a decreased ability for actin polymerization and a reduction in mature spines. However, we detected increased neuronal activation in the amygdala evidenced by c-fos labeling. Thus, we conclude that despite unaltered baseline activity, RICH2 KO mice show heightened amygdala response after exposure to objects, which, however, does not result in homeostatic strengthening of excitatory synapses.
Collapse
Affiliation(s)
- Tasnuva Sarowar
- WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm UniversityUlm, Germany
| | | | | | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of LimerickLimerick, Ireland.,Bernal Institute, University of LimerickLimerick, Ireland
| |
Collapse
|
29
|
Sharp WG, Allen AG, Stubbs KH, Criado KK, Sanders R, McCracken CE, Parsons RG, Scahill L, Gourley SL. Successful pharmacotherapy for the treatment of severe feeding aversion with mechanistic insights from cross-species neuronal remodeling. Transl Psychiatry 2017; 7. [PMID: 28632204 PMCID: PMC5537647 DOI: 10.1038/tp.2017.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pediatric feeding disorders affect up to 5% of children, causing severe food intake problems that can result in serious medical and developmental outcomes. Behavioral intervention (BI) is effective in extinguishing feeding aversions, and also expert-dependent, time/labor-intensive and not well understood at a neurobiological level. Here we first conducted a double-blind, placebo-controlled trial comparing BI with BI plus d-cycloserine (DCS). DCS is a partial N-methyl-d-aspartate (NMDA) receptor agonist shown to augment extinction therapies in multiple anxiety disorders. We examined whether DCS enhanced extinction of feeding aversion in 15 children with avoidant/restrictive food intake disorder (ages 20-58 months). After five treatment days, BI improved feeding by 37%. By contrast, BI+DCS improved feeding by 76%. To gain insight into possible mechanisms of successful intervention, we next tested the neurobiological consequences of DCS in a murine model of feeding aversion and avoidance. In mice with conditioned food aversion, DCS enhanced avoidance extinction across a broad dose range. Confocal fluorescence microscopy and three-dimensional neuronal reconstruction indicated that DCS enlarged dendritic spine heads-the primary sites of excitatory plasticity in the brain-within the orbitofrontal prefrontal cortex, a sensory-cognition integration hub. DCS also increased phosphorylation of the plasticity-associated extracellular signal-regulated kinase 1/2. In summary, DCS successfully augments the extinction of food aversion in children and mice, an effect that may involve plasticity in the orbitofrontal cortex. These results warrant a larger-scale efficacy study of DCS for the treatment of pediatric feeding disorders and further investigations of neural mechanisms.
Collapse
Affiliation(s)
- W G Sharp
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, 1920 Briarcliff Road, Atlanta, GA 30329, USA. E-mail:
| | - A G Allen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Yerkes National Primate Research Center, Atlanta, GA, USA
| | - K H Stubbs
- Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA
| | - K K Criado
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA
| | - R Sanders
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - C E McCracken
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - R G Parsons
- Graduate Program in Integrative Neuroscience and Program in Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - L Scahill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA
| | - S L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA,Yerkes National Primate Research Center, Atlanta, GA, USA,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Kiyokawa Y, Tanaka KD, Ishii A, Mikami K, Katayama M, Koizumi R, Minami S, Tanikawa T, Takeuchi Y. Two strains of roof rats as effective models for assessing new-object reaction. J Vet Med Sci 2017; 79:702-708. [PMID: 28202879 PMCID: PMC5402190 DOI: 10.1292/jvms.17-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wild animals generally avoid even small and harmless novel objects and/or familiar
objects moved to a novel position, which is termed “new-object reaction”. Although
new-object reaction appears to be a biologically important characteristic for animals,
little progress has been made in understanding the neural mechanisms underlying new-object
reaction. One reason might be the lack of effective experimental animals. Two strains of
roof rats (Sj and Og strains) were established from wild roof rats caught in Shinjuku,
Tokyo and one of the Ogasawara Islands, respectively, by a Japanese pest control company.
Based on the rat caregivers’ informal observations, we conducted behavioral and anatomical
tests to assess the validity of Sj and Og strains for the analyses of new-object reaction.
In Experiment 1, the Sj strain showed reduced food consumption compared with the Og strain
when food was provided in a novel way, suggesting that the Sj strain had a stronger
avoidance of novel objects compared with the Og strain. Experiment 2 demonstrated that the
basolateral complex of the amygdala and bed nucleus of the stria terminalis in
experimental Sj rats had a larger percentage area compared with that of experimental Og
rats, indicating these nuclei might be involved in the difference observed in avoidance of
novel objects between the strains. Taken together, the present study suggests that Sj and
Og strains are effective experimental animals for assessing new-object reaction.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shandilya J, Gao Y, Nayak TK, Roberts SGE, Medler KF. AP1 transcription factors are required to maintain the peripheral taste system. Cell Death Dis 2016; 7:e2433. [PMID: 27787515 PMCID: PMC5133999 DOI: 10.1038/cddis.2016.343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023]
Abstract
The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.
Collapse
Affiliation(s)
- Jayasha Shandilya
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Yankun Gao
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Tapan K Nayak
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY 14214, USA
| | - Stefan G E Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
32
|
Stratford JM, Thompson JA. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters. Chem Senses 2016; 41:211-20. [PMID: 26762887 DOI: 10.1093/chemse/bjv082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 01/20/2023] Open
Abstract
The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow.
Collapse
Affiliation(s)
- Jennifer M Stratford
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA and
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Increased N-Ethylmaleimide-Sensitive Factor Expression in Amygdala and Perirhinal Cortex during Habituation of Taste Neophobia. Neural Plast 2015; 2016:2726745. [PMID: 26839712 PMCID: PMC4709763 DOI: 10.1155/2016/2726745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Interactions between GluR2 and N-ethylmaleimide-sensitive factor (NSF) mediate AMPA receptors trafficking. This might be linked with molecular mechanisms related with memory formation. Previous research has shown basolateral amygdala (BLA) dependent activity changes in the perirhinal cortex (PRh) during the formation of taste memory. In the present experiments we investigate both the behavioral performance and the expression profile of NSF and GluR2 genes in several brain areas, including PRh, BLA, and hippocampus. Twenty-one naïve male Wistar rats were exposed to a saccharin solution (0.4%) during the first (novel), the second (Familiar I), and the sixth presentation (Familiar II). Total RNA was extracted and gene expression was measured by quantitative PCR (qPCR) using TaqMan gene expression assays. In addition the expression of the synaptic plasticity related immediate early genes, Homer 1 and Narp, was also assessed. We have found increased expression of NSF gene in BLA and PRh in Group Familiar I in comparison with Familiar II. No changes in the expression of GluR2, Homer 1, and Narp genes were found. The results suggest the relevance of a potential network in the temporal lobe for taste recognition memory and open new possibilities for understanding the molecular mechanisms mediating the impact of sensory experience on brain circuit function.
Collapse
|
34
|
Ramos JM. Differential contribution of perirhinal cortex and hippocampus to taste neophobia: Effect of neurotoxic lesions. Behav Brain Res 2015; 284:94-102. [DOI: 10.1016/j.bbr.2015.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/10/2023]
|
35
|
Conditioned taste aversion, drugs of abuse and palatability. Neurosci Biobehav Rev 2014; 45:28-45. [PMID: 24813806 DOI: 10.1016/j.neubiorev.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 04/15/2014] [Accepted: 05/01/2014] [Indexed: 11/23/2022]
Abstract
We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning.
Collapse
|
36
|
Neuroendocrine changes upon exposure to predator odors. Physiol Behav 2014; 131:149-55. [DOI: 10.1016/j.physbeh.2014.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
|
37
|
Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS One 2014; 9:e87478. [PMID: 24466352 PMCID: PMC3900715 DOI: 10.1371/journal.pone.0087478] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/24/2013] [Indexed: 12/03/2022] Open
Abstract
Overconsumption of palatable energy-dense foods has negative health implications and it is associated with obesity and several eating disorders. Currently, little is known about the neuronal circuitries activated by the acute ingestion of a rewarding stimulus. Here, we used a combination of immunohistochemistry, pharmacology and neuronal tracing analyses to examine the role of the mesolimbic system in general, and the orexin neurons in particular, in a simple experimental test in which naïve mice are allowed to spontaneously eat a pellet of a high fat diet (HFD) for 2 h. We found that acute HFD activates c-Fos expression in several reward-related brain areas, including the ventral tegmental area (VTA), nucleus accumbens, central amygdala and lateral hypothalamic area. We also found that: i- HFD-mediated orosensory stimulation was required for the mesolimbic pathway activation, ii- acute HFD differentially activates dopamine neurons of the paranigral, parabrachial pigmented and interfascicular sub-regions of the VTA, and iii- orexin neurons of the lateral hypothalamic area are responsive to acute HFD. Moreover, orexin signaling blockade, with the orexin 1 receptor antagonist SB-334867, reduces acute HFD consumption and c-Fos induction in the VTA but not in the other mesolimbic nuclei under study. Finally, we found that most orexin neurons responsive to acute HFD innervate the VTA. Our results show that acute HFD consumption recruits the mesolimbic system and that the full manifestation of this eating behavior requires the activation of orexin signaling.
Collapse
|
38
|
Moraga-Amaro R, Cortés-Rojas A, Simon F, Stehberg J. Role of the insular cortex in taste familiarity. Neurobiol Learn Mem 2013; 109:37-45. [PMID: 24296461 DOI: 10.1016/j.nlm.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022]
Abstract
Determining the role of the main gustatory cortical area within the insular cortex (IC), in conditioned taste aversion (CTA) has been elusive due to effective compensatory mechanisms that allow animals to learn in spite of lacking IC. IC lesions performed before CTA training induces mild if any memory impairments, while IC lesions done weeks after CTA produce amnesia. IC lesions before taste presentation have also been shown not to affect taste familiarity learning (attenuation of neophobia). This lack of effect could be either explained by compensation from other brain areas or by a lack of involvement of the IC in taste familiarity. To assess this issue, rats were bilaterally IC lesioned with ibotenic acid (200-300 nl.; 15 mg/ml) one week before or after taste familiarity, using either a preferred (0.1%) or a non-preferred (0.5%) saccharin solution. Rats lesioned before familiarity showed a decrease in neophobia to both solutions but no difference in their familiarity curve or their slope. When animals were familiarized and then IC lesioned, both IC lesioned groups treated the solutions as familiar, showing no differences from sham animals in their retention of familiarity. However, both lesioned groups showed increased latent inhibition (or impaired CTA) when CTA trained after repeated pre-exposures. The role of the IC in familiarity was also assessed using temporary inactivation of the IC, using bilateral micro-infusions of sodium channel blocker bupivacaine before each of 3 saccharin daily presentations. Intra-insular bupivacaine had no effects on familiarity acquisition, but did impair CTA learning in a different group of rats micro-infused before saccharin presentation in a CTA training protocol. Our data indicate that the IC is not essentially involved in acquisition or retention of taste familiarity, suggesting regional dissociation of areas involved in CTA and taste familiarity.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile
| | - Andrés Cortés-Rojas
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile
| | - Felipe Simon
- Laboratorio de Fisiopatologia Integrativa, Departaemento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile.
| |
Collapse
|
39
|
Arthurs J, Reilly S. Role of the gustatory thalamus in taste learning. Behav Brain Res 2013; 250:9-17. [PMID: 23644184 PMCID: PMC3699963 DOI: 10.1016/j.bbr.2013.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 11/24/2022]
Abstract
The present study re-examined the involvement of the gustatory thalamus (GT) in the acquisition of drug- and toxin-induced conditioned taste aversions (CTAs) using a standardized procedure involving 15-min taste trials in rats injected with morphine (Experiment 1), lithium chloride (Experiment 2) or amphetamine (Experiment 3). Contrary to previous results, GT lesions did not eliminate drug-induced CTAs. Rather, GT-lesioned rats acquired aversions of comparable magnitude to non-lesioned subjects but from an elevated intake on the first conditioning trial. A similar pattern of lesion effects was found in the acquisition of an illness-induced CTA. Thus, we conclude that GT lesions do not differentially influence CTAs conditioned with drugs or toxins. The lesion-induced elevated intake of a novel tastant confirms an unappreciated role for the GT in taste neophobia.
Collapse
Affiliation(s)
- Joe Arthurs
- University of Illinois at Chicago, IL 60607,United States
| | | |
Collapse
|
40
|
Lin JY, Reilly S. Amygdala-gustatory insular cortex connections and taste neophobia. Behav Brain Res 2012; 235:182-8. [PMID: 22884404 PMCID: PMC3445782 DOI: 10.1016/j.bbr.2012.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022]
Abstract
To examine whether communication between the amygdala and gustatory insular cortex (GC) is required for normal performance of taste neophobia, three experiments were conducted. In Experiment 1, rats with asymmetric unilateral lesions of the basolateral amygdala (BLA) and the GC displayed elevated intake of a novel saccharin solution relative to control subjects. However, an attenuation of neophobia was not found following asymmetric unilateral lesions of the GC and medial amygdala (MeA; Experiment 2) or of the MeA and BLA (Experiment 3). This pattern of results indicates that the BLA and GC functionally interact during expression of taste neophobia and that the MeA functionally interacts with neither the BLA nor the GC. Research is needed to further characterize the nature of the involvement of the MeA in taste neophobia and to determine the function of the BLA-GC interaction during exposure to a new taste.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA.
| | | |
Collapse
|
41
|
Lin JY, Amodeo LR, Arthurs J, Reilly S. Taste neophobia and palatability: the pleasure of drinking. Physiol Behav 2012; 106:515-9. [PMID: 22484563 DOI: 10.1016/j.physbeh.2012.03.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Taste neophobia is manifested behaviorally as lower intake of a novel, potentially dangerous tastant relative to the same tastant when it is perceived as safe and familiar. To further characterize this phenomenon, microstructural analysis of lick patterns was used to track the transition from novel to familiar for three tastants: saccharin, quinine and Polycose. The results revealed that in addition to an increase in the amount consumed (for saccharin and quinine but not Polycose), cluster size (an index of palatability) became larger as familiarity with the benign tastants increased. The current finding suggests that the pleasure of drinking increases as the novel, potentially dangerous tastant becomes accepted as safe.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|