1
|
Chen J, Liu Q, Fu Y, Xiang J. DNA Nanocage-Assisted Size-Selective Recognition and Quantification toward Low-Mass Soluble β-Amyloid Oligomers. Anal Chem 2024; 96:11397-11403. [PMID: 38940533 DOI: 10.1021/acs.analchem.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Low-mass soluble β-amyloid peptide oligomers (LSAβOs) play a crucial role in the pathogenesis of Alzheimer's disease. However, these oligomers exhibit heterogeneity in terms of structure, stability, and stoichiometry, and their abundance in biofluids is low, making accurate identification challenging. In this study, we developed a DNA nanocage-assisted method for selective sizing and sensitive quantification of LSAβOs in serum. Using LSAβO less than 10 kDa (LSAβO10kD) and less than 30 kDa (LSAβO30kD) as models, the size-matching rules between DNA nanocages and LSAβOs were investigated, and two appropriate nanocages were selected for the detection of two LSAβOs, respectively. Both nanocages were functionalized by encapsulating oligomer's aptamer and a complementary sequence within their cavities. Once the LSAβO entered the corresponding nanocage cavity, the complementary sequence was released, triggering a hybridization chain reaction on an electrochemical sensing platform. The system achieved size-selective discrimination of LSAβO10kD with a linear range of 10-150 pM and LSAβO30kD with a linear range of 15-150 pM. Real sample testing confirmed the applicability of the method for blood-based diagnosis. The DNA nanocage-assisted electrochemical analysis platform provides an accurate, highly selective, and sensitive approach for oligomer analysis, which is significant for amyloid protein research and related disease diagnosis.
Collapse
Affiliation(s)
- Jia Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yongchun Fu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Abutarboush R, Reed E, Chen Y, Gu M, Watson C, Kawoos U, Statz JK, Tschiffely AE, Ciarlone S, Perez-Garcia G, Gama Sosa MA, de Gasperi R, Stone JR, Elder GA, Ahlers ST. Exposure to Low-Intensity Blast Increases Clearance of Brain Amyloid Beta. J Neurotrauma 2024; 41:685-704. [PMID: 38183627 DOI: 10.1089/neu.2023.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
The long-term effects of exposure to blast overpressure are an important health concern in military personnel. Increase in amyloid beta (Aβ) has been documented after non-blast traumatic brain injury (TBI) and may contribute to neuropathology and an increased risk for Alzheimer's disease. We have shown that Aβ levels decrease following exposure to a low-intensity blast overpressure event. To further explore this observation, we examined the effects of a single 37 kPa (5.4 psi) blast exposure on brain Aβ levels, production, and clearance mechanisms in the acute (24 h) and delayed (28 days) phases post-blast exposure in an experimental rat model. Aβ and, notably, the highly neurotoxic detergent soluble Aβ42 form, was reduced at 24 h but not 28 days after blast exposure. This reduction was not associated with changes in the levels of Aβ oligomers, expression levels of amyloid precursor protein (APP), or increase in enzymes involved in the amyloidogenic cleavage of APP, the β- and ϒ-secretases BACE1 and presenilin-1, respectively. The levels of ADAM17 α-secretase (also known as tumor necrosis factor α-converting enzyme) decreased, concomitant with the reduction in brain Aβ. Additionally, significant increases in brain levels of the endothelial transporter, low-density related protein 1 (LRP1), and enhancement in co-localization of aquaporin-4 (AQP4) to perivascular astrocytic end-feet were observed 24 h after blast exposure. These findings suggest that exposure to low-intensity blast may enhance endothelial clearance of Aβ by LRP1-mediated transcytosis and alter AQP4-aided glymphatic clearance. Collectively, the data demonstrate that low-intensity blast alters enzymatic, transvascular, and perivascular clearance of Aβ.
Collapse
Affiliation(s)
- Rania Abutarboush
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eileen Reed
- Parsons Corporation, Centreville, Virginia, USA
| | - Ye Chen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ming Gu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Usmah Kawoos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jonathan K Statz
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Anna E Tschiffely
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Stephanie Ciarlone
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita de Gasperi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Ondrejcak T, Klyubin I, Hu NW, O'Malley TT, Corbett GT, Winters R, Perkinton MS, Billinton A, Prenderville JA, Walsh DM, Rowan MJ. Tau and Amyloid β Protein in Patient-Derived Aqueous Brain Extracts Act Concomitantly to Disrupt Long-Term Potentiation in Vivo. J Neurosci 2023; 43:5870-5879. [PMID: 37491315 PMCID: PMC10423043 DOI: 10.1523/jneurosci.0082-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Amyloid β protein (Aβ) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aβ aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aβ and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aβ and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aβ to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aβ-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid β protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Róisín Winters
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael S Perkinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Andy Billinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Jack A Prenderville
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin 2, Ireland
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
4
|
Wang Z, Jin M, Hong W, Liu W, Reczek D, Lagomarsino VN, Hu Y, Weeden T, Frosch MP, Young-Pearse TL, Pradier L, Selkoe D, Walsh DM. Learnings about Aβ from human brain recommend the use of a live-neuron bioassay for the discovery of next generation Alzheimer's disease immunotherapeutics. Acta Neuropathol Commun 2023; 11:39. [PMID: 36899414 PMCID: PMC10007750 DOI: 10.1186/s40478-023-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 03/12/2023] Open
Abstract
Despite ongoing debate, the amyloid β-protein (Aβ) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aβ. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aβ-oligomeric assemblies (oAβ) extracted from AD brain. Of ten brains studied, extracts from nine caused neuritotoxicity, and in eight cases this was abrogated by Aβ immunodepletion. Here we show that activity in this bioassay agrees relatively well with disruption of hippocampal long-term potentiation, a correlate of learning and memory, and that measurement of neurotoxic oAβ can be obscured by more abundant non-toxic forms of Aβ. These findings indicate that the development of novel Aβ targeting therapeutics may benefit from unbiased activity-based discovery. To test this principle, we directly compared 5 clinical antibodies (aducanumab, bapineuzumab, BAN2401, gantenerumab, and SAR228810) together with an in-house aggregate-preferring antibody (1C22) and established relative EC50s in protecting human neurons from human Aβ. The results yielded objective numerical data on the potency of each antibody in neutralizing human oAβ neuritotoxicity. Their relative efficacies in this morphological assay were paralleled by their functional ability to rescue oAβ-induced inhibition of hippocampal synaptic plasticity. This novel paradigm provides an unbiased, all-human system for selecting candidate antibodies for advancement to human immunotherapy.
Collapse
Affiliation(s)
- Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - David Reczek
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tim Weeden
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Corrigan RR, Labrador L, Grizzanti J, Mey M, Piontkivska H, Casadesús G. Neuroprotective Mechanisms of Amylin Receptor Activation, Not Antagonism, in the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1495-1514. [PMID: 36641678 DOI: 10.3233/jad-221057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Amylin, a pancreatic amyloid peptide involved in energy homeostasis, is increasingly studied in the context of Alzheimer's disease (AD) etiology. To date, conflicting pathogenic and neuroprotective roles for this peptide and its analogs for AD pathogenesis have been described. OBJECTIVE Whether the benefits of amylin are associated with peripheral improvement of metabolic tone/function or directly through the activation of central amylin receptors is also unknown and downstream signaling mechanisms of amylin receptors are major objectives of this study. METHODS To address these questions more directly we delivered the amylin analog pramlintide systemically (IP), at previously identified therapeutic doses, while centrally (ICV) inhibiting the receptor using an amylin receptor antagonist (AC187), at doses known to impact CNS function. RESULTS Here we show that pramlintide improved cognitive function independently of CNS receptor activation and provide transcriptomic data that highlights potential mechanisms. Furthermore, we show than inhibition of the amylin receptor increased amyloid-beta pathology in female APP/PS1 mice, an effect than was mitigated by peripheral delivery of pramlintide. Through transcriptomic analysis of pramlintide therapy in AD-modeled mice we found sexual dimorphic modulation of neuroprotective mechanisms: oxidative stress protection in females and membrane stability and reduced neuronal excitability markers in males. CONCLUSION These data suggest an uncoupling of functional and pathology-related events and highlighting a more complex receptor system and pharmacological relationship that must be carefully studied to clarify the role of amylin in CNS function and AD.
Collapse
Affiliation(s)
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesús
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Elbert DL, Patterson BW, Lucey BP, Benzinger TLS, Bateman RJ. Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Commun Biol 2022; 5:98. [PMID: 35087179 PMCID: PMC8795390 DOI: 10.1038/s42003-022-03037-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
The kinetics of amyloid beta turnover within human brain is still poorly understood. We previously found a dramatic decline in the turnover of Aβ peptides in normal aging. It was not known if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) fluid exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques. Here, we describe a non-steady state physiological model developed to decouple CSF fluid transport from other processes. Kinetic parameters were estimated using: (1) MRI-derived brain volumes, (2) stable isotope labeling kinetics (SILK) of amyloid-β peptide (Aβ), and (3) lumbar CSF Aβ concentration during SILK. Here we show that changes in blood-brain barrier transport and/or proteolysis were largely responsible for the age-related decline in Aβ turnover rates. CSF-based clearance declined modestly in normal aging but became increasingly important due to the slowing of other processes. The magnitude of CSF-based clearance was also lower than that due to blood-brain barrier function plus proteolysis. These results suggest important roles for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer’s Disease in humans. To understand if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques, Elbert et al. develop a non-steady state physiological model using MRI-derived brain volumes, stable isotope labeling kinetics of Aβ, and lumbar CSF Aβ concentration. Their model suggests an important role for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer’s Disease in humans.
Collapse
Affiliation(s)
- Donald L Elbert
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Bruce W Patterson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Tammie L S Benzinger
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
7
|
Dvir-Szternfeld R, Castellani G, Arad M, Cahalon L, Colaiuta SP, Keren-Shaul H, Croese T, Burgaletto C, Baruch K, Ulland T, Colonna M, Weiner A, Amit I, Schwartz M. Alzheimer's disease modification mediated by bone marrow-derived macrophages via a TREM2-independent pathway in mouse model of amyloidosis. NATURE AGING 2022; 2:60-73. [PMID: 37118355 DOI: 10.1038/s43587-021-00149-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Microglia and monocyte-derived macrophages (MDM) are key players in dealing with Alzheimer's disease. In amyloidosis mouse models, activation of microglia was found to be TREM2 dependent. Here, using Trem2-/-5xFAD mice, we assessed whether MDM act via a TREM2-dependent pathway. We adopted a treatment protocol targeting the programmed cell death ligand-1 (PD-L1) immune checkpoint, previously shown to modify Alzheimer's disease via MDM involvement. Blockade of PD-L1 in Trem2-/-5xFAD mice resulted in cognitive improvement and reduced levels of water-soluble amyloid beta1-42 with no effect on amyloid plaque burden. Single-cell RNA sequencing revealed that MDM, derived from both Trem2-/- and Trem2+/+5xFAD mouse brains, express a unique set of genes encoding scavenger receptors (for example, Mrc1, Msr1). Blockade of monocyte trafficking using anti-CCR2 antibody completely abrogated the cognitive improvement induced by anti-PD-L1 treatment in Trem2-/-5xFAD mice and similarly, but to a lesser extent, in Trem2+/+5xFAD mice. These results highlight a TREM2-independent, disease-modifying activity of MDM in an amyloidosis mouse model.
Collapse
Affiliation(s)
- Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Castellani
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Arad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Liora Cahalon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Chiara Burgaletto
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd, Ness Ziona, Israel
| | - Tyler Ulland
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Izzo NJ, Yuede CM, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, Waybright L, Look G, Rishton G, Safferstein H, Hamby ME, Williams C, Sadlek K, Edwards HM, Davis CS, Grundman M, Schneider LS, DeKosky ST, Chelsky D, Pike I, Henstridge C, Blennow K, Zetterberg H, LeVine H, Spires-Jones TL, Cirrito JR, Catalano SM. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification. Alzheimers Dement 2021; 17:1365-1382. [PMID: 33559354 PMCID: PMC8349378 DOI: 10.1002/alz.12302] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812's effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812's impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APPSwe /PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPPSwe/Lnd+ and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18-26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | - Kelsey Sadlek
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Michael Grundman
- Global R&D Partners, San Diego, California, USA.,University of California San Diego, San Diego, California, USA
| | - Lon S Schneider
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Steven T DeKosky
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Kaj Blennow
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, London, UK
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
9
|
Hendrix RD, Ou Y, Davis JE, Odle AK, Groves TR, Allen AR, Childs GV, Barger SW. Alzheimer amyloid-β- peptide disrupts membrane localization of glucose transporter 1 in astrocytes: implications for glucose levels in brain and blood. Neurobiol Aging 2020; 97:73-88. [PMID: 33161213 PMCID: PMC7736209 DOI: 10.1016/j.neurobiolaging.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is associated with disturbances in blood glucose regulation, and type-2 diabetes elevates the risk for dementia. A role for amyloid-β peptide (Aβ) in linking these age-related conditions has been proposed, tested primarily in transgenic mouse lines that overexpress mutated amyloid precursor protein (APP). Because APP has its own impacts on glucose regulation, we examined the BRI-Aβ42 line (“Aβ42-tg”), which produces extracellular Aβ1–42 in the CNS without elevation of APP. We also looked for interactions with diet-induced obesity (DIO) resulting from a high-fat, high-sucrose (“western”) diet. Aβ42-tg mice were impaired in both spatial memory and glucose tolerance. Although DIO induced insulin resistance, Aβ1–42 accumulation did not, and the impacts of DIO and Aβ on glucose tolerance were merely additive. Aβ42-tg mice exhibited no significant differences from wild-type in insulin production, body weight, lipidemia, appetite, physical activity, respiratory quotient, an-/orexigenic factors, or inflammatory factors. These negative findings suggested that the phenotype in these mice arose from perturbation of glucose excursion in an insulin-independent tissue. To wit, cerebral cortex of Aβ42-tg mice had reduced glucose utilization, similar to human patients with AD. This was associated with insufficient trafficking of glucose transporter 1 to the plasma membrane in parenchymal brain cells, a finding also documented in human AD tissue. Together, the lower cerebral metabolic rate of glucose and diminished function of parenchymal glucose transporter 1 indicate that aberrant regulation of blood glucose in AD likely reflects a central phenomenon, resulting from the effects of Aβ on cerebral parenchyma, rather than a generalized disruption of hypothalamic or peripheral endocrinology. The involvement of a specific glucose transporter in this deficit provides a new target for the design of AD therapies.
Collapse
Affiliation(s)
- Rachel D Hendrix
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Yang Ou
- Department of Geriatrics, Little Rock, AR, USA
| | - Jakeira E Davis
- Graduate Program in Interdisciplinary Biomedical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Thomas R Groves
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gwen V Childs
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA
| | - Steven W Barger
- Department of Neurobiology & Developmental Sciences, Little Rock, AR, USA; Department of Geriatrics, Little Rock, AR, USA; Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
10
|
Johnson ECB, Ho K, Yu GQ, Das M, Sanchez PE, Djukic B, Lopez I, Yu X, Gill M, Zhang W, Paz JT, Palop JJ, Mucke L. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1. Mol Neurodegener 2020; 15:53. [PMID: 32921309 PMCID: PMC7489007 DOI: 10.1186/s13024-020-00393-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-β peptide (Aβ), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aβ sequence. RESULTS Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aβ, Aβ oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aβ, Aβ oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aβ treatments.
Collapse
Affiliation(s)
- Erik C. B. Johnson
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Melanie Das
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Pascal E. Sanchez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Isabel Lopez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Weiping Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
11
|
Nimmo J, Johnston DA, Dodart JC, MacGregor-Sharp MT, Weller RO, Nicoll JAR, Verma A, Carare RO. Peri-arterial pathways for clearance of α-Synuclein and tau from the brain: Implications for the pathogenesis of dementias and for immunotherapy. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2020; 12:e12070. [PMID: 32782922 PMCID: PMC7409108 DOI: 10.1002/dad2.12070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Introduction Accumulation of amyloid beta (Aβ), α-synuclein (αSyn), and tau in dementias indicates their age-related failure of elimination from the brain. Aβ is eliminated along basement membranes in walls of cerebral arterioles and leptomeningeal arteries (intramural peri-arterial drainage [IPAD]); IPAD is impaired with age. We test the hypothesis that αSyn and tau are also eliminated from the normal brain along IPAD pathways. Methods Soluble αSyn or tau was injected into mouse hippocampus. Animals were perfused 5 minutes to 7 days post-injection. Blood vessels were identified by ROX-SE for light-sheet and immunolabeling for confocal microscopy. IPAD was quantified by measuring the proportion of arterioles with αSyn/tau. Results αSyn and tau are eliminated from the brain by IPAD but with different dynamics. Discussion Age-related failure of IPAD may play a role in the pathogenesis of synucleinopathies and tauopathies. αSyn persists within IPAD at 24 hours, which may affect immunotherapy for αSyn.
Collapse
Affiliation(s)
- Jacqui Nimmo
- Faculty of Medicine University of Southampton Southampton UK
| | | | - J C Dodart
- United Neuroscience Dublin Republic of Ireland
| | | | - Roy O Weller
- Faculty of Medicine University of Southampton Southampton UK
| | | | - Ajay Verma
- United Neuroscience Dublin Republic of Ireland
| | - Roxana O Carare
- Faculty of Medicine University of Southampton Southampton UK
| |
Collapse
|
12
|
Ciudad S, Puig E, Botzanowski T, Meigooni M, Arango AS, Do J, Mayzel M, Bayoumi M, Chaignepain S, Maglia G, Cianferani S, Orekhov V, Tajkhorshid E, Bardiaux B, Carulla N. Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nat Commun 2020; 11:3014. [PMID: 32541820 PMCID: PMC7296003 DOI: 10.1038/s41467-020-16566-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Formation of amyloid-beta (Aβ) oligomer pores in the membrane of neurons has been proposed to explain neurotoxicity in Alzheimer's disease (AD). Here, we present the three-dimensional structure of an Aβ oligomer formed in a membrane mimicking environment, namely an Aβ(1-42) tetramer, which comprises a six stranded β-sheet core. The two faces of the β-sheet core are hydrophobic and surrounded by the membrane-mimicking environment while the edges are hydrophilic and solvent-exposed. By increasing the concentration of Aβ(1-42) in the sample, Aβ(1-42) octamers are also formed, made by two Aβ(1-42) tetramers facing each other forming a β-sandwich structure. Notably, Aβ(1-42) tetramers and octamers inserted into lipid bilayers as well-defined pores. To establish oligomer structure-membrane activity relationships, molecular dynamics simulations were carried out. These studies revealed a mechanism of membrane disruption in which water permeation occurred through lipid-stabilized pores mediated by the hydrophilic residues located on the core β-sheets edges of the oligomers.
Collapse
Affiliation(s)
- Sonia Ciudad
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Eduard Puig
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, Strasbourg, France
| | - Moeen Meigooni
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres S Arango
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jimmy Do
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxim Mayzel
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30, Gothenburg, Sweden
| | - Mariam Bayoumi
- Biochemistry, Molecular and Structural Biology Section, University of Leuven, Celestijnenlaan 200G, 3001, Leuven, Belgium
| | - Stéphane Chaignepain
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, Strasbourg, France
| | - Vladislav Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 405 30, Gothenburg, Sweden
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Natàlia Carulla
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
13
|
Brinkmalm G, Hong W, Wang Z, Liu W, O'Malley TT, Sun X, Frosch MP, Selkoe DJ, Portelius E, Zetterberg H, Blennow K, Walsh DM. Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer's brain. Brain 2020; 142:1441-1457. [PMID: 31032851 DOI: 10.1093/brain/awz066] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 11/13/2022] Open
Abstract
The primary structure of canonical amyloid-β-protein was elucidated more than 30 years ago, yet the forms of amyloid-β that play a role in Alzheimer's disease pathogenesis remain poorly defined. Studies of Alzheimer's disease brain extracts suggest that amyloid-β, which migrates on sodium dodecyl sulphate polyacrylamide gel electrophoresis with a molecular weight of ∼7 kDa (7kDa-Aβ), is particularly toxic; however, the nature of this species has been controversial. Using sophisticated mass spectrometry and sensitive assays of disease-relevant toxicity we show that brain-derived bioactive 7kDa-Aβ contains a heterogeneous mixture of covalently cross-linked dimers in the absence of any other detectable proteins. The identification of amyloid-β dimers may open a new phase of Alzheimer's research and allow a better understanding of Alzheimer's disease, and how to monitor and treat this devastating disorder. Future studies investigating the bioactivity of individual dimers cross-linked at known sites will be critical to this effort.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xin Sun
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment. NEUROIMAGE-CLINICAL 2019; 25:102153. [PMID: 31901792 PMCID: PMC6948365 DOI: 10.1016/j.nicl.2019.102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Amide proton transfer-weighted (APTw) MRI is a novel molecular imaging technique that can noninvasively detect endogenous cellular proteins and peptides in tissue. Here, we demonstrate the feasibility of protein-based APTw MRI in characterizing amnestic mild cognitive impairment (aMCI). Eighteen patients with confirmed aMCI and 18 matched normal controls were scanned at 3 Tesla. The APTw, as well as conventional magnetization transfer ratio (MTR), signal differences between aMCI and normal groups were assessed by the independent samples t-test, and the receiver-operator-characteristic analysis was used to assess the diagnostic performance of APTw. When comparing the normal control group, aMCI brains typically had relatively higher APTw signals. Quantitatively, APTw intensity values were significantly higher in nine of 12 regions of interest in aMCI patients than in normal controls. The largest areas under the receiver-operator-characteristic curves were 0.88 (gray matter in occipital lobe) and 0.82 (gray matter in temporal lobe, white matter in occipital lobe) in diagnosing aMCI patients. On the contrary, MTR intensity values were significantly higher in only three of 12 regions of interest in the aMCI group. Additionally, the age dependency analyses revealed that these cross-sectional APTw/MTR signals had an increasing trend with age in most brain regions for normal controls, but a decreasing trend with age in most brain regions for aMCI patients. Our early results show the potential of the APTw signal as a new imaging biomarker for the noninvasive molecular diagnosis of aMCI.
Collapse
|
15
|
Cellular Prion Protein Mediates the Disruption of Hippocampal Synaptic Plasticity by Soluble Tau In Vivo. J Neurosci 2018; 38:10595-10606. [PMID: 30355631 DOI: 10.1523/jneurosci.1700-18.2018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Intracellular neurofibrillary tangles (NFTs) composed of tau protein are a neuropathological hallmark of several neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). For some time NFTs were considered the primary cause of synaptic dysfunction and neuronal death, however, more recent evidence suggests that soluble aggregates of tau are key drivers of disease. Here we investigated the effect of different tau species on synaptic plasticity in the male rat hippocampus in vivo Intracerebroventricular injection of soluble aggregates formed from either wild-type or P301S human recombinant tau potently inhibited hippocampal long-term potentiation (LTP) at CA3-to-CA1 synapses. In contrast, tau monomers and fibrils appeared inactive. Neither baseline synaptic transmission, paired-pulse facilitation nor burst response during high-frequency conditioning stimulation was affected by the soluble tau aggregates. Similarly, certain AD brain soluble extracts inhibited LTP in a tau-dependent manner that was abrogated by either immunodepletion with, or coinjection of, a mid-region anti-tau monoclonal antibody (mAb), Tau5. Importantly, this tau-mediated block of LTP was prevented by administration of mAbs selective for the prion protein (PrP). Specifically, mAbs to both the mid-region (6D11) and N-terminus (MI-0131) of PrP prevented inhibition of LTP by both recombinant and brain-derived tau. These findings indicate that PrP is a mediator of tau-induced synaptic dysfunction.SIGNIFICANCE STATEMENT Here we report that certain soluble forms of tau selectively disrupt synaptic plasticity in the live rat hippocampus. Further, we show that monoclonal antibodies to cellular prion protein abrogate the impairment of long-term potentiation caused both by recombinant and Alzheimer's disease brain-derived soluble tau. These findings support a critical role for cellular prion protein in the deleterious synaptic actions of extracellular soluble tau in tauopathies, including Alzheimer's disease. Thus, approaches targeting cellular prion protein, or downstream pathways, might provide an effective strategy for developing therapeutics.
Collapse
|
16
|
Jin M, O'Nuallain B, Hong W, Boyd J, Lagomarsino VN, O'Malley TT, Liu W, Vanderburg CR, Frosch MP, Young-Pearse T, Selkoe DJ, Walsh DM. An in vitro paradigm to assess potential anti-Aβ antibodies for Alzheimer's disease. Nat Commun 2018; 9:2676. [PMID: 29992960 PMCID: PMC6041266 DOI: 10.1038/s41467-018-05068-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Although the amyloid β-protein (Aβ) is believed to play an initiating role in Alzheimer's disease (AD), the molecular characteristics of the key pathogenic Aβ forms are not well understood. As a result, it has proved difficult to identify optimal agents that target disease-relevant forms of Aβ. Here, we combined the use of Aβ-rich aqueous extracts of brain samples from AD patients as a source of human Aβ and live-cell imaging of iPSC-derived human neurons to develop a bioassay capable of quantifying the relative protective effects of multiple anti-Aβ antibodies. We report the characterization of 1C22, an aggregate-preferring murine anti-Aβ antibody, which better protects against forms of Aβ oligomers that are toxic to neurites than do the murine precursors of the clinical immunotherapeutics, bapineuzumab and solanezumab. These results suggest further examination of 1C22 is warranted, and that this bioassay maybe useful as a primary screen to identify yet more potent anti-Aβ therapeutics.
Collapse
Affiliation(s)
- Ming Jin
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Boyd
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Valentina N Lagomarsino
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charles R Vanderburg
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy Young-Pearse
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Hong W, Wang Z, Liu W, O'Malley TT, Jin M, Willem M, Haass C, Frosch MP, Walsh DM. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer's disease brain. Acta Neuropathol 2018; 136:19-40. [PMID: 29687257 PMCID: PMC6647843 DOI: 10.1007/s00401-018-1846-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 01/02/2023]
Abstract
Significant data suggest that soluble Aβ oligomers play an important role in Alzheimer's disease (AD), but there is great confusion over what exactly constitutes an Aβ oligomer and which oligomers are toxic. Most studies have utilized synthetic Aβ peptides, but the relevance of these test tube experiments to the conditions that prevail in AD is uncertain. A few groups have studied Aβ extracted from human brain, but they employed vigorous tissue homogenization which is likely to release insoluble Aβ that was sequestered in plaques during life. Several studies have found such extracts to possess disease-relevant activity and considerable efforts are being made to purify and better understand the forms of Aβ therein. Here, we compared the abundance of Aβ in AD extracts prepared by traditional homogenization versus using a far gentler extraction, and assessed their bioactivity via real-time imaging of iPSC-derived human neurons plus the sensitive functional assay of long-term potentiation. Surprisingly, the amount of Aβ retrieved by gentle extraction constituted only a small portion of that released by traditional homogenization, but this readily diffusible fraction retained all of the Aβ-dependent neurotoxic activity. Thus, the bulk of Aβ extractable from AD brain was innocuous, and only the small portion that was aqueously diffusible caused toxicity. This unexpected finding predicts that generic anti-oligomer therapies, including Aβ antibodies now in trials, may be bound up by the large pool of inactive oligomers, whereas agents that specifically target the small pool of diffusible, bioactive Aβ would be more useful. Furthermore, our results indicate that efforts to purify and target toxic Aβ must employ assays of disease-relevant activity. The approaches described here should enable these efforts, and may assist the study of other disease-associated aggregation-prone proteins.
Collapse
Affiliation(s)
- Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ming Jin
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Michael Willem
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Wang X, Kastanenka KV, Arbel-Ornath M, Commins C, Kuzuya A, Lariviere AJ, Krafft GA, Hefti F, Jerecic J, Bacskai BJ. An acute functional screen identifies an effective antibody targeting amyloid-β oligomers based on calcium imaging. Sci Rep 2018; 8:4634. [PMID: 29545579 PMCID: PMC5854710 DOI: 10.1038/s41598-018-22979-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Soluble amyloid β oligomers (AβOs) are widely recognized neurotoxins that trigger aberrant signaling in specific subsets of neurons, leading to accumulated neuronal damage and memory disorders in Alzheimer's disease (AD). One of the profound downstream consequences of AβO-triggered events is dysregulation of cytosolic calcium concentration ([Ca2+]i), which has been implicated in synaptic failure, cytoskeletal abnormalities, and eventually neuronal death. We have developed an in vitro/in vivo drug screening assay to evaluate putative AβO-blocking candidates by measuring AβO-induced real-time changes in [Ca2+]i. Our screening assay demonstrated that the anti-AβO monoclonal antibody ACU3B3 exhibits potent blocking capability against a broad size range of AβOs. We showed that picomolar concentrations of AβOs were capable of increasing [Ca2+]i in primary neuronal cultures, an effect prevented by ACU3B3. Topical application of 5 nM AβOs onto exposed cortical surfaces also elicited significant calcium elevations in vivo, which was completely abolished by pre-treatment of the brain with 1 ng/mL (6.67 pM) ACU3B3. Our results provide strong support for the utility of this functional screening assay in identifying and confirming the efficacy of AβO-blocking drug candidates such as the human homolog of ACU3B3, which may emerge as the first experimental AD therapeutic to validate the amyloid oligomer hypothesis.
Collapse
Affiliation(s)
- Xueying Wang
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Harvard University, Center for Brain Science, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Ksenia V Kastanenka
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Michal Arbel-Ornath
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Caitlin Commins
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Akira Kuzuya
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Amanda J Lariviere
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Grant A Krafft
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA
| | - Franz Hefti
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA.
| | - Brian J Bacskai
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Vázquez de la Torre A, Gay M, Vilaprinyó-Pascual S, Mazzucato R, Serra-Batiste M, Vilaseca M, Carulla N. Direct Evidence of the Presence of Cross-Linked Aβ Dimers in the Brains of Alzheimer’s Disease Patients. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04936] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Aurelio Vázquez de la Torre
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marina Gay
- Mass Spectrometry and Proteomics Core Facility, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Sílvia Vilaprinyó-Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Roberta Mazzucato
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Montserrat Serra-Batiste
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Mass Spectrometry and Proteomics Core Facility, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Natàlia Carulla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- CBMN (UMR 5248), University of Bordeaux − CNRS − IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600 Pessac, France
| |
Collapse
|
20
|
Pickett EK, Koffie RM, Wegmann S, Henstridge CM, Herrmann AG, Colom-Cadena M, Lleo A, Kay KR, Vaught M, Soberman R, Walsh DM, Hyman BT, Spires-Jones TL. Non-Fibrillar Oligomeric Amyloid-β within Synapses. J Alzheimers Dis 2018; 53:787-800. [PMID: 27258414 DOI: 10.3233/jad-160007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss, insidious cognitive decline, profound neurodegeneration, and the extracellular accumulation of amyloid-β (Aβ) peptide in senile plaques and intracellular accumulation of tau in neurofibrillary tangles. Loss and dysfunction of synapses are believed to underlie the devastating cognitive decline in AD. A large amount of evidence suggests that oligomeric forms of Aβ associated with senile plaques are toxic to synapses, but the precise sub-synaptic localization of Aβ and which forms are synaptotoxic remain unknown. Here, we characterize the sub-synaptic localization of Aβ oligomers using three high-resolution imaging techniques, stochastic optical reconstruction microscopy, immunogold electron microscopy, and Förster resonance energy transfer in a plaque-bearing mouse model of AD. With all three techniques, we observe oligomeric Aβ inside synaptic terminals. Further, we tested a panel of Aβ antibodies using the relatively high-throughput array tomography technique to determine which forms are present in synapses. Our results show that different oligomeric Aβ species are present in synapses and highlight the potential of array tomography for rapid testing of aggregation state specific Aβ antibodies in brain tissue.
Collapse
Affiliation(s)
- Eleanor K Pickett
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Robert M Koffie
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Susanne Wegmann
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christopher M Henstridge
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Abigail G Herrmann
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Marti Colom-Cadena
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Alberto Lleo
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Kevin R Kay
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Melissa Vaught
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Roy Soberman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Bradley T Hyman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| |
Collapse
|
21
|
Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, Gaudin A, Mura S, Forloni G, Ordoñez-Gutierrez L, Wandosell F, Masserini M, Couvreur P, Nicolas J, Andrieux K. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:609-618. [PMID: 29248676 DOI: 10.1016/j.nano.2017.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder related, in part, to the accumulation of amyloid-β peptide (Aβ) and especially the Aβ peptide 1-42 (Aβ1-42). The aim of this study was to design nanocarriers able to: (i) interact with the Aβ1-42 in the blood and promote its elimination through the "sink effect" and (ii) correct the memory defect observed in AD-like transgenic mice. To do so, biodegradable, PEGylated nanoparticles were surface-functionalized with an antibody directed against Aβ1-42. Treatment of AD-like transgenic mice with anti-Aβ1-42-functionalized nanoparticles led to: (i) complete correction of the memory defect; (ii) significant reduction of the Aβ soluble peptide and its oligomer level in the brain and (iii) significant increase of the Aβ levels in plasma. This study represents the first example of Aβ1-42 monoclonal antibody-decorated nanoparticle-based therapy against AD leading to complete correction of the memory defect in an experimental model of AD.
Collapse
Affiliation(s)
- Dario Carradori
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | | | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Davide Brambilla
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | - Benjamin Le Droumaguet
- Université Paris-Est, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320, Thiais, France
| | - Orfeu Flores
- Stab Vida, Madan Parque, Rua dos Inventores, Caparica, Portugal
| | - Alice Gaudin
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | - Simona Mura
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | | | | | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa CSIC-UAM & CIBERNED, Madrid, Spain
| | - Massimo Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Patrick Couvreur
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien Paris Sud, CNRS UMR 8612, Univ Paris-Sud, Univ. Paris Saclay, Châtenay-Malabry, France.
| | - Karine Andrieux
- Faculté de Pharmacie de Paris, UTCBS, CNRS UMR 8258, Inserm U1022, Univ. Paris Descartes, Univ. Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability. Stem Cell Reports 2017; 9:1868-1884. [PMID: 29153990 PMCID: PMC5785690 DOI: 10.1016/j.stemcr.2017.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) induces memory and cognitive impairment in the absence of motor and sensory deficits during its early and middle course. A major unresolved question is the basis for this selective neuronal vulnerability. Aβ, which plays a central role in AD pathogenesis, is generated throughout the brain, yet some regions outside of the limbic and cerebral cortices are relatively spared from Aβ plaque deposition and synapse loss. Here, we examine neurons derived from iPSCs of patients harboring an amyloid precursor protein mutation to quantify AD-relevant phenotypes following directed differentiation to rostral fates of the brain (vulnerable) and caudal fates (relatively spared) in AD. We find that both the generation of Aβ and the responsiveness of TAU to Aβ are affected by neuronal cell type, with rostral neurons being more sensitive than caudal neurons. Thus, cell-autonomous factors may in part dictate the pattern of selective regional vulnerability in human neurons in AD. γ-Secretase activity differs between neuronal fates, affecting Aβ production Single-cell detection of Aβ supports differential release between neuronal types Neuronal fates respond differentially to an fAD mutation to affect Tau homeostasis Rostral and caudal cultures respond differentially to LOAD brain extract
Collapse
|
23
|
Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. J Neurosci 2017; 37:11947-11966. [PMID: 29101243 DOI: 10.1523/jneurosci.2009-17.2017] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD.SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid β-protein (Aβ) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aβ-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aβ localizing to synapses and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation.
Collapse
|
24
|
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG. APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 2017; 110:1-13. [PMID: 28811267 PMCID: PMC5688956 DOI: 10.1016/j.neuint.2017.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) proposes amyloid- β (Aβ) is a chief pathological element of dementia. AD therapies have targeted monomeric and oligomeric Aβ 1-40 and 1-42 peptides. However, alternative APP proteolytic processing produces a complex roster of Aβ species. In addition, Aβ peptides are subject to extensive posttranslational modification (PTM). We propose that amplified production of some APP/Aβ species, perhaps exacerbated by differential gene expression and reduced peptide degradation, creates a diverse spectrum of modified species which disrupt brain homeostasis and accelerate AD neurodegeneration. We surveyed the literature to catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We speculate that accumulation of these alterations induce changes in secondary and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in sporadic AD. Additionally, amyloid-β peptides with a pyroglutamate modification at position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid deposits. The intrinsic physical properties of these species, including resistance to degradation, an enhanced aggregation rate, increased neurotoxicity, and association with behavioral deficits, suggest their emergence is linked to dementia. The generation of specific 3D-molecular conformations of Aβ impart unique biophysical properties and a capacity to seed the prion-like global transmission of amyloid through the brain. The accumulation of rogue Aβ ultimately contributes to the destruction of vascular walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ PTM and the analysis of the toxicity that they induced may help create essential biomarkers to more precisely stage AD pathology, design countermeasures and gauge the impacts of interventions.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Division of Clinical Education, Midwestern University, Glendale, AZ 85308, USA.
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University, Glendale, AZ 85308, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles CA 90095-1569, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marwan S Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
25
|
Ford L, Crossley M, Vadukul DM, Kemenes G, Serpell LC. Structure-dependent effects of amyloid-β on long-term memory in Lymnaea stagnalis. FEBS Lett 2017; 591:1236-1246. [PMID: 28337747 PMCID: PMC5435943 DOI: 10.1002/1873-3468.12633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 03/20/2017] [Indexed: 12/03/2022]
Abstract
Amyloid‐β (Aβ) peptides are implicated in the causation of memory loss, neuronal impairment, and neurodegeneration in Alzheimer's disease. Our recent work revealed that Aβ 1–42 and Aβ 25–35 inhibit long‐term memory (LTM) recall in Lymnaea stagnalis (pond snail) in the absence of cell death. Here, we report the characterization of the active species prepared under different conditions, describe which Aβ species is present in brain tissue during the behavioral recall time point and relate the sequence and structure of the oligomeric species to the resulting neuronal properties and effect on LTM. Our results suggest that oligomers are the key toxic Aβ1–42 structures, which likely affect LTM through synaptic plasticity pathways, and that Aβ 1–42 and Aβ 25–35 cannot be used as interchangeable peptides.
Collapse
Affiliation(s)
- Lenzie Ford
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
- Present address: Department of NeuroscienceColumbia UniversityNew YorkNY10032USA
- Present address: Howard Hughes Medical InstituteColumbia UniversityNew YorkNY10032USA
| | - Michael Crossley
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Devkee M. Vadukul
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - György Kemenes
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Louise C. Serpell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
26
|
De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D'Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol 2017; 242:24-38. [PMID: 28035683 DOI: 10.1002/path.4872] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Frederik De Smet
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA
| | - Mirian Saiz Rubio
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Daphne Hompes
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Evelyne Naus
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Greet De Baets
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Tobias Langenberg
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bert Houben
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Filip Claes
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Sarah Charbonneau
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Javier Delgado Blanco
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Stephane Plaisance
- Nucleomics Core, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Shakti Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Colinda Simons
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Piet van den Brandt
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Manon Van England
- Department of Pathology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Centre for Gynaecological Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Keith L Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Xavier Sagaert
- Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Frederic Rousseau
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
27
|
Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome? J Alzheimers Dis 2016; 47:815-43. [PMID: 26401762 DOI: 10.3233/jad-150136] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Dheeraj Khurana
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, 318C Parran Hall, Pittsburgh, PA, USA
| | - Amritpal Mudher
- Southampton Neurosciences Group, University of Southampton, Southampton, UK
| | - Ante L Padjen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Elizabeta Mukaetova-Ladinska
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sudhir Srivastava
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - M V Padma Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Royal Parade, The VIC, Australia
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Chronic cerebral hypoperfusion enhances Tau hyperphosphorylation and reduces autophagy in Alzheimer's disease mice. Sci Rep 2016; 6:23964. [PMID: 27050297 PMCID: PMC4822118 DOI: 10.1038/srep23964] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
Cerebral hypoperfusion and impaired autophagy are two etiological factors that have been identified as being associated with the development of Alzheimer’s disease (AD). Nevertheless, the exact relationships among these pathological processes remain unknown. To elucidate the impact of cerebral hypoperfusion in AD, we created a unilateral common carotid artery occlusion (UCCAO) model by occluding the left common carotid artery in both young and old 3xTg-AD mice. Two months after occlusion, we found that ligation increases phospho-Tau (p-Tau) at Serine 199/202 in the hippocampus of 3-month-old AD mice, compared to sham-operated AD mice; whereas, there is no change in the wild type (WT) mice after ligation. Moreover, cerebral hypoperfusion led to significant increase of p-Tau in both the hippocampus and cortex of 16-month-old AD mice and WT mice. Notably, we did not detect any change in Aβ42 level in either young or old AD and WT mice after ligation. Interestingly, we observed a downregulation of LC3-II in the cortex of aged AD mice and WT mice after ligation. Our results suggest that elevated p-Tau and reduced autophagy are major cellular changes that are associated with hypoperfusion in AD. Therefore, targeting p-Tau and autophagy pathways may ameliorate hypoperfusion-induced brain damage in AD.
Collapse
|
29
|
Jana MK, Cappai R, Pham CLL, Ciccotosto GD. Membrane-bound tetramer and trimer Aβ oligomeric species correlate with toxicity towards cultured neurons. J Neurochem 2016; 136:594-608. [DOI: 10.1111/jnc.13443] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Metta K. Jana
- Department of Pathology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Parkville Vic. Australia
| | - Roberto Cappai
- Department of Pathology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Parkville Vic. Australia
| | - Chi L. L. Pham
- Department of Pathology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Parkville Vic. Australia
| | - Giuseppe D. Ciccotosto
- Department of Pathology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
30
|
Mc Donald JM, O'Malley TT, Liu W, Mably AJ, Brinkmalm G, Portelius E, Wittbold WM, Frosch MP, Walsh DM. The aqueous phase of Alzheimer's disease brain contains assemblies built from ∼4 and ∼7 kDa Aβ species. Alzheimers Dement 2015; 11:1286-305. [PMID: 25846299 PMCID: PMC4592782 DOI: 10.1016/j.jalz.2015.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Much knowledge about amyloid β (Aβ) aggregation and toxicity has been acquired using synthetic peptides and mouse models, whereas less is known about soluble Aβ in human brain. METHODS We analyzed aqueous extracts from multiple AD brains using an array of techniques. RESULTS Brains can contain at least four different Aβ assembly forms including: (i) monomers, (ii) a ∼7 kDa Aβ species, and larger species (iii) from ∼30-150 kDa, and (iv) >160 kDa. High molecular weight species are by far the most prevalent and appear to be built from ∼7 kDa Aβ species. The ∼7 kDa Aβ species resist denaturation by chaotropic agents and have a higher Aβ42/Aβ40 ratio than monomers, and are unreactive with antibodies to Asp1 of Ab or APP residues N-terminal of Asp1. DISCUSSION Further analysis of brain-derived ∼7 kDa Aβ species, the mechanism by which they assemble and the structures they form should reveal therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Republic of Ireland
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Alexandra J Mably
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Gunnar Brinkmalm
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Göteborg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Göteborg, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Matthew P Frosch
- Massachusetts General Hospital and Harvard Medical School, Massachusetts General Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA.
| |
Collapse
|
31
|
Walsh KP, Kuhn TB, Bamburg JR. Cellular prion protein: A co-receptor mediating neuronal cofilin-actin rod formation induced by β-amyloid and proinflammatory cytokines. Prion 2015; 8:375-80. [PMID: 25426519 DOI: 10.4161/pri.35504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that proteins exhibiting "prion-like" behavior cause distinct neurodegenerative diseases, including inherited, sporadic and acquired types. The conversion of cellular prion protein (PrP(C)) to its infectious protease resistant counterpart (PrP(Res)) is the essential feature of prion diseases. However, PrP(C) also performs important functions in transmembrane signaling, especially in neurodegenerative processes. Beta-amyloid (Aβ) synaptotoxicity and cognitive dysfunction in mouse models of Alzheimer disease are mediated by a PrP(C)-dependent pathway. Here we review how this pathway converges with proinflammatory cytokine signaling to activate membrane NADPH oxidase (NOX) and generate reactive oxygen species (ROS) leading to dynamic remodeling of the actin cytoskeleton. The NOX signaling pathway may also be integrated with those of other transmembrane receptors clustered in PrP(C)-enriched membrane domains. Such a signal convergence along the PrP(C)-NOX axis could explain the relevance of PrP(C) in a broad spectrum of neurodegenerative disorders, including neuroinflammatory-mediated alterations in synaptic function following traumatic brain injury. PrP(C) overexpression alone activates NOX and generates a local increase in ROS that initiates cofilin activation and formation of cofilin-saturated actin bundles (rods). Rods sequester cofilin from synaptic regions where it is required for plasticity associated with learning and memory. Rods can also interrupt vesicular transport by occluding the neurite within which they form. Through either or both mechanisms, rods may directly mediate the synaptic dysfunction that accompanies various neurodegenerative disorders.
Collapse
Affiliation(s)
- Keifer P Walsh
- a Department of Biochemistry and Molecular Biology ; Colorado State University ; Fort Collins , CO USA
| | | | | |
Collapse
|
32
|
Keaney J, Walsh DM, O’Malley T, Hudson N, Crosbie DE, Loftus T, Sheehan F, McDaid J, Humphries MM, Callanan JJ, Brett FM, Farrell MA, Humphries P, Campbell M. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. SCIENCE ADVANCES 2015; 1:e1500472. [PMID: 26491725 PMCID: PMC4610013 DOI: 10.1126/sciadv.1500472] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/01/2015] [Indexed: 05/15/2023]
Abstract
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and protecting neural tissue from damaging blood-borne agents. The barrier is characterized by endothelial tight junctions that limit passive paracellular diffusion of polar solutes and macromolecules from blood to brain. Decreased brain clearance of the neurotoxic amyloid-β (Aβ) peptide is a central event in the pathogenesis of Alzheimer's disease (AD). Whereas transport of Aβ across the BBB can occur via transcellular endothelial receptors, the paracellular movement of Aβ has not been described. We show that soluble human Aβ(1-40) monomers can diffuse across the paracellular pathway of the BBB in tandem with a decrease in the tight junction proteins claudin-5 and occludin in the cerebral vascular endothelium. In a murine model of AD (Tg2576), plasma Aβ(1-40) levels were significantly increased, brain Aβ(1-40) levels were decreased, and cognitive function was enhanced when both claudin-5 and occludin were suppressed. Furthermore, Aβ can cause a transient down-regulation of claudin-5 and occludin, allowing for its own paracellular clearance across the BBB. Our results show, for the first time, the involvement of the paracellular pathway in autoregulated Aβ movement across the BBB and identify both claudin-5 and occludin as potential therapeutic targets for AD. These findings also indicate that controlled modulation of tight junction components at the BBB can enhance the clearance of Aβ from the brain.
Collapse
Affiliation(s)
- James Keaney
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Center for Neurological Diseases, Brigham and Women’s Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tiernan O’Malley
- Laboratory for Neurodegenerative Research, Center for Neurological Diseases, Brigham and Women’s Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Natalie Hudson
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Darragh E. Crosbie
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Teresa Loftus
- Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland
| | - Florike Sheehan
- Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland
| | - Jacqueline McDaid
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Marian M. Humphries
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - John J. Callanan
- UCD School of Veterinary Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Ross University School of Veterinary Medicine, P. O. Box 334, Basseterre, St. Kitts, West Indies
| | | | | | - Peter Humphries
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
33
|
Mably AJ, Liu W, Mc Donald JM, Dodart JC, Bard F, Lemere CA, O'Nuallain B, Walsh DM. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol Dis 2015. [PMID: 26215784 DOI: 10.1016/j.nbd.2015.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD). A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble assemblies loosely referred to as "oligomers" and that these are primary mediators of synaptic dysfunction. As such, Aβ, and specifically Aβ oligomers, are targets for disease modifying therapies. Currently, the most advanced experimental treatment for AD relies on the use of anti-Aβ antibodies. In this study, we tested the ability of the monomer-preferring antibody, m266 and a novel aggregate-preferring antibody, 1C22, to attenuate spatial reference memory impairments in J20 mice. Chronic treatment with m266 resulted in a ~70-fold increase in Aβ detected in the bloodstream, and a ~50% increase in water-soluble brain Aβ--and in both cases Aβ was bound to m266. In contrast, 1C22 increased the levels of free Aβ in the bloodstream, and bound to amyloid deposits in J20 brain. However, neither 1C22 nor m266 attenuated the cognitive deficits evident in 12month old J20 mice. Moreover, both antibodies failed to alter the levels of soluble Aβ oligomers in J20 brain. These results suggest that Aβ oligomers may mediate the behavioral deficits seen in J20 mice and highlight the need for the development of aggregate-preferring antibodies that can reach the brain in sufficient levels to neutralize bioactive Aβ oligomers. Aside from the lack of positive effect of m266 and 1C22 on cognition, a substantial number of deaths occurred in m266- and 1C22-immunized J20 mice. These fatalities were specific to anti-Aβ antibodies and to the J20 mouse line since treatment of wild type or PDAPP mice with these antibodies did not cause any deaths. These and other recent results indicate that J20 mice are particularly susceptible to targeting of the APP/Aβ/tau axis. Notwithstanding the specificity of fatalities for J20 mice, it is worrying that the murine precursor (m266) of a lead experimental therapeutic, Solanezumab, did not engage with putatively pathogenic Aβ oligomers.
Collapse
Affiliation(s)
- Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jean-Cosme Dodart
- NeuroBehaviour Laboratory Core, Harvard NeuroDiscovery Center, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Frédérique Bard
- Janssen Alzheimer Immunotherapy Research & Development 700 Gateway Boulevard, South San Francisco, CA 94080, United States
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
34
|
Ford L, Crossley M, Williams T, Thorpe JR, Serpell LC, Kemenes G. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network. Sci Rep 2015; 5:10614. [PMID: 26024049 PMCID: PMC4448550 DOI: 10.1038/srep10614] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/21/2015] [Indexed: 12/02/2022] Open
Abstract
Amyloid beta (Aβ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer’s disease (AD). Although Aβ-induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ-induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment.
Collapse
Affiliation(s)
- Lenzie Ford
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Thomas Williams
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Julian R Thorpe
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG
| |
Collapse
|
35
|
Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 2015; 9:191. [PMID: 26074767 PMCID: PMC4443025 DOI: 10.3389/fncel.2015.00191] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly, and affects millions of people worldwide. As the number of AD cases continues to increase in both developed and developing countries, finding therapies that effectively halt or reverse disease progression constitutes a major research and public health challenge. Since the identification of the amyloid-β peptide (Aβ) as the major component of the amyloid plaques that are characteristically found in AD brains, a major effort has aimed to determine whether and how Aβ leads to memory loss and cognitive impairment. A large body of evidence accumulated in the past 15 years supports a pivotal role of soluble Aβ oligomers (AβOs) in synapse failure and neuronal dysfunction in AD. Nonetheless, a number of basic questions, including the exact molecular composition of the synaptotoxic oligomers, the identity of the receptor(s) to which they bind, and the signaling pathways that ultimately lead to synapse failure, remain to be definitively answered. Here, we discuss recent advances that have illuminated our understanding of the chemical nature of the toxic species and the deleterious impact they have on synapses, and have culminated in the proposal of an Aβ oligomer hypothesis for Alzheimer’s pathogenesis. We also highlight outstanding questions and challenges in AD research that should be addressed to allow translation of research findings into effective AD therapies.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil ; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mauricio M Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Mably AJ, Kanmert D, Mc Donald JM, Liu W, Caldarone BJ, Lemere CA, O'Nuallain B, Kosik KS, Walsh DM. Tau immunization: a cautionary tale? Neurobiol Aging 2014; 36:1316-32. [PMID: 25619661 DOI: 10.1016/j.neurobiolaging.2014.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/29/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
The amyloid β (Aβ)-protein and microtubule-associated protein, tau, are the major components of the amyloid plaques and neurofibrillary tangles that typify Alzheimer's disease (AD) pathology. As such both Aβ and tau have long been proposed as therapeutic targets. Immunotherapy, particularly targeting Aβ, is currently the most advanced clinical strategy for treating AD. However, several Aβ-directed clinical trials have failed, and there is concern that targeting this protein may not be useful. In contrast, there is a growing optimism that tau immunotherapy may prove more efficacious. Here, for the first time, we studied the effects of chronic administration of an anti-tau monoclonal antibody (5E2) in amyloid precursor protein transgenic mice. For our animal model, we chose the J20 mouse line because prior studies had shown that the cognitive deficits in these mice require expression of tau. Despite the fact that 5E2 was present and active in the brains of immunized mice and that this antibody appeared to engage with extracellular tau, 5E2-treatment did not recover age-dependent spatial reference memory deficits. These results indicate that the memory impairment evident in J20 mice is unlikely to be mediated by a form of extracellular tau recognized by 5E2. In addition to the lack of positive effect of anti-tau immunotherapy, we also documented a significant increase in mortality among J20 mice that received 5E2. Because both the J20 mice used here and tau transgenic mice used in prior tau immunotherapy trials are imperfect models of AD our results recommend extensive preclinical testing of anti-tau antibody-based therapies using multiple mouse models and a variety of different anti-tau antibodies.
Collapse
Affiliation(s)
- Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Daniel Kanmert
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Barbara J Caldarone
- Neurobehaviour Laboratory Core, Harvard NeuroDiscovery Center, Boston, MA, USA
| | - Cynthia A Lemere
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Kenneth S Kosik
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA.
| |
Collapse
|
37
|
Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, Ovod V, Munsell LY, Mawuenyega KG, Miller-Thomas MM, Moran CJ, Cross DT, Derdeyn CP, Bateman RJ. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol 2014; 76:837-44. [PMID: 25205593 PMCID: PMC4355962 DOI: 10.1002/ana.24270] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The aim of this study was to measure the flux of amyloid-β (Aβ) across the human cerebral capillary bed to determine whether transport into the blood is a significant mechanism of clearance for Aβ produced in the central nervous system (CNS). METHODS Time-matched blood samples were simultaneously collected from a cerebral vein (including the sigmoid sinus, inferior petrosal sinus, and the internal jugular vein), femoral vein, and radial artery of patients undergoing inferior petrosal sinus sampling. For each plasma sample, Aβ concentration was assessed by 3 assays, and the venous to arterial Aβ concentration ratios were determined. RESULTS Aβ concentration was increased by ∼7.5% in venous blood leaving the CNS capillary bed compared to arterial blood, indicating efflux from the CNS into the peripheral blood (p < 0.0001). There was no difference in peripheral venous Aβ concentration compared to arterial blood concentration. INTERPRETATION Our results are consistent with clearance of CNS-derived Aβ into the venous blood supply with no increase from a peripheral capillary bed. Modeling these results suggests that direct transport of Aβ across the blood-brain barrier accounts for ∼25% of Aβ clearance, and reabsorption of cerebrospinal fluid Aβ accounts for ∼25% of the total CNS Aβ clearance in humans. Ann Neurol 2014;76:837-844.
Collapse
Affiliation(s)
- Kaleigh Filisa Roberts
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald L. Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tom P. Kasten
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wendy C. Sigurdson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rose E. Connors
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vitaliy Ovod
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ling Y. Munsell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kwasi G. Mawuenyega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Christopher J. Moran
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dewitte T. Cross
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin P. Derdeyn
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
Izzo NJ, Xu J, Zeng C, Kirk MJ, Mozzoni K, Silky C, Rehak C, Yurko R, Look G, Rishton G, Safferstein H, Cruchaga C, Goate A, Cahill MA, Arancio O, Mach RH, Craven R, Head E, LeVine H, Spires-Jones TL, Catalano SM. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS One 2014; 9:e111899. [PMID: 25390692 PMCID: PMC4229119 DOI: 10.1371/journal.pone.0111899] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/02/2014] [Indexed: 12/18/2022] Open
Abstract
Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Izzo
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Jinbin Xu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Chenbo Zeng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Molly J. Kirk
- Departments of Neurology and Neuroscience, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kelsie Mozzoni
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Colleen Silky
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gilbert Rishton
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Hank Safferstein
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Alison Goate
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Michael A. Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga New South Wales, Australia
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York, United States of America
| | - Robert H. Mach
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Rolf Craven
- Department of Molecular and Biological Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Elizabeth Head
- Department of Molecular and Biological Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Tara L. Spires-Jones
- Departments of Neurology and Neuroscience, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The University of Edinburgh, Center for Cognitive and Neural Systems and Euan MacDonald Centre for Motorneurone Disease, Edinburgh, Scotland
| | - Susan M. Catalano
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
39
|
Abstract
A decade following the paradigm-shifting concept that endogenous forms of soluble, non-fibrillar amyloid-β (Aβ) might constitute the major bioactive entity causing synaptic loss and cognitive decline in Alzheimer's disease (AD), our understanding of these oligomeric species still remains conspicuously superficial. The current lack of direct evaluation tools for each endogenous Aβ oligomer hampers our ability to readily address crucial question such as: (i) where they form and accumulate?; (ii) when they first appear in human brains and body fluids?; (iii) what is the longitudinal expression of these putative toxins during the course of the disease?; (iv) and how do these soluble Aβ assemblies alter synaptic and neuronal function in the brain? Despite these limitations, indirect ex vivo measurement and isolation from biological specimens has been possible and have allowed parsing out intrinsic differences between putative endogenous Aβ oligomers. In this review, I integrated recent findings and extrapolated emerging hypotheses derived from these studies with the hope to provide a clarified view on the putative role of endogenous Aβ oligomers in AD, with a particular emphasis on the timing at which these soluble species might act in the aging and diseased brain.
Collapse
Affiliation(s)
- Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55414
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414
| |
Collapse
|
40
|
Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer's disease immunotherapeutics. ALZHEIMERS RESEARCH & THERAPY 2014; 6:42. [PMID: 25045405 PMCID: PMC4100318 DOI: 10.1186/alzrt272] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Levels of amyloid-beta monomer and deposited amyloid-beta in the Alzheimer’s
disease brain are orders of magnitude greater than soluble amyloid-beta oligomer
levels. Monomeric amyloid-beta has no known direct toxicity. Insoluble fibrillar
amyloid-beta has been proposed to be an in vivo mechanism for removal of
soluble amyloid-beta and exhibits relatively low toxicity. In contrast, soluble
amyloid-beta oligomers are widely reported to be the most toxic amyloid-beta form,
both causing acute synaptotoxicity and inducing neurodegenerative processes. None of
the amyloid-beta immunotherapies currently in clinical development selectively target
soluble amyloid-beta oligomers, and their lack of efficacy is not unexpected
considering their selectivity for monomeric or fibrillar amyloid-beta (or both)
rather than soluble amyloid-beta oligomers. Because they exhibit acute,
memory-compromising synaptic toxicity and induce chronic neurodegenerative toxicity
and because they exist at very low in vivo levels in the Alzheimer’s
disease brain, soluble amyloid-beta oligomers constitute an optimal immunotherapeutic
target that should be pursued more aggressively.
Collapse
Affiliation(s)
- William F Goure
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Grant A Krafft
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Franz Hefti
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| |
Collapse
|
41
|
Pooler AM, Polydoro M, Wegmann SK, Pitstick R, Kay KR, Sanchez L, Carlson GA, Gomez-Isla T, Albers MW, Spires-Jones TL, Hyman BT. Tau-amyloid interactions in the rTgTauEC model of early Alzheimer's disease suggest amyloid-induced disruption of axonal projections and exacerbated axonal pathology. J Comp Neurol 2014; 521:4236-48. [PMID: 23839581 DOI: 10.1002/cne.23411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
Early observations of the patterns of neurofibrillary tangles and amyloid plaques in Alzheimer's disease suggested a hierarchical vulnerability of neurons for tangles, and a widespread nonspecific pattern of plaques that nonetheless seemed to correlate with the terminal zone of tangle-bearing neurons in some instances. The first neurofibrillary cortical lesions in Alzheimer's disease occur in the entorhinal cortex, thereby disrupting the origin of the perforant pathway projection to the hippocampus, and amyloid deposits are often found in the molecular layer of the dentate gyrus, which is the terminal zone of the entorhinal cortex. We modeled these anatomical changes in a transgenic mouse model that overexpresses both P301L tau (uniquely in the medial entorhinal cortex) and mutant APP/PS1 (in a widespread distribution) to examine the anatomical consequences of early tangles, plaques, or the combination. We find that tau uniformly occupies the terminal zone of the perforant pathway in tau-expressing mice. By contrast, the addition of amyloid deposits in this area leads to disruption of the perforant pathway terminal zone and apparent aberrant distribution of tau-containing axons. Moreover, human P301L tau-containing axons appear to increase the extent of dystrophic axons around plaques. Thus, the presence of amyloid deposits in the axonal terminal zone of pathological tau-containing neurons profoundly impacts their normal connectivity.
Collapse
Affiliation(s)
- Amy M Pooler
- King's College London, Institute of Psychiatry, Department of Neuroscience, London, SE5 8AF, UK; Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Walsh KP, Minamide LS, Kane SJ, Shaw AE, Brown DR, Pulford B, Zabel MD, Lambeth JD, Kuhn TB, Bamburg JR. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One 2014; 9:e95995. [PMID: 24760020 PMCID: PMC3997518 DOI: 10.1371/journal.pone.0095995] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Neurites of neurons under acute or chronic stress form bundles of filaments (rods) containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min) in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors). In contrast, slow rod formation (50% of maximum response in ∼6 h) occurs in a subpopulation (∼20%) of hippocampal neurons upon exposure to soluble human amyloid-β dimer/trimer (Aβd/t) at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1β, IL-6) also induce rods at the same rate and within the same neuronal population as Aβd/t. Neurons from prion (PrP(C))-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aβd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX) activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C) is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C)-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C)-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aβ-binding membrane proteins induce synaptic dysfunction.
Collapse
Affiliation(s)
- Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Bruce Pulford
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - J. David Lambeth
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
43
|
Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LNP, Walsh DM, Selkoe DJ, Young-Pearse TL. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 2014; 23:3523-36. [PMID: 24524897 DOI: 10.1093/hmg/ddu064] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular plaques containing amyloid β (Aβ)-protein and intracellular tangles containing hyperphosphorylated Tau protein. Here, we describe the generation of inducible pluripotent stem cell lines from patients harboring the London familial AD (fAD) amyloid precursor protein (APP) mutation (V717I). We examine AD-relevant phenotypes following directed differentiation to forebrain neuronal fates vulnerable in AD. We observe that over differentiation time to mature neuronal fates, APP expression and levels of Aβ increase dramatically. In both immature and mature neuronal fates, the APPV717I mutation affects both β- and γ-secretase cleavage of APP. Although the mutation lies near the γ-secretase cleavage site in the transmembrane domain of APP, we find that β-secretase cleavage of APP is elevated leading to generation of increased levels of both APPsβ and Aβ. Furthermore, we find that this mutation alters the initial cleavage site of γ-secretase, resulting in an increased generation of both Aβ42 and Aβ38. In addition to altered APP processing, an increase in levels of total and phosphorylated Tau is observed in neurons with the APPV717I mutation. We show that treatment with Aβ-specific antibodies early in culture reverses the phenotype of increased total Tau levels, implicating altered Aβ production in fAD neurons in this phenotype. These studies use human neurons to reveal previously unrecognized effects of the most common fAD APP mutation and provide a model system for testing therapeutic strategies in the cell types most relevant to disease processes.
Collapse
Affiliation(s)
- Christina R Muratore
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heather C Rice
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Priya Srikanth
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dana G Callahan
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Taehwan Shin
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lawrence N P Benjamin
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dominic M Walsh
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J Selkoe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tracy L Young-Pearse
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
An K, Klyubin I, Kim Y, Jung JH, Mably AJ, O'Dowd ST, Lynch T, Kanmert D, Lemere CA, Finan GM, Park JW, Kim TW, Walsh DM, Rowan MJ, Kim JH. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol Brain 2013; 6:47. [PMID: 24284042 PMCID: PMC4222117 DOI: 10.1186/1756-6606-6-47] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/31/2013] [Indexed: 12/28/2022] Open
Abstract
Background Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer’s disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aβ, the role of exosomes in regulating synaptic dysfunction induced by Aβ has not been explored. Results We here provide in vivo evidence that exosomes derived from N2a cells or human cerebrospinal fluid can abrogate the synaptic-plasticity-disrupting activity of both synthetic and AD brain-derived Aβ. Mechanistically, this effect involves sequestration of synaptotoxic Aβ assemblies by exosomal surface proteins such as PrPC rather than Aβ proteolysis. Conclusions These data suggest that exosomes can counteract the inhibitory action of Aβ, which contributes to perpetual capability for synaptic plasticity.
Collapse
Affiliation(s)
- Kyongman An
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lithner CU, Lacor PN, Zhao WQ, Mustafiz T, Klein WL, Sweatt JD, Hernandez CM. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer's disease. Neurobiol Aging 2013; 34:2081-90. [PMID: 23582659 DOI: 10.1016/j.neurobiolaging.2012.12.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/28/2012] [Indexed: 01/08/2023]
Abstract
Amyloid-β peptide (Aβ) fragment misfolding may play a crucial role in the progression of Alzheimer's disease (AD) pathophysiology as well as epigenetic mechanisms at the DNA and histone level. We hypothesized that histone H3 homeostasis is disrupted in association with the appearance of soluble Aβ at an early stage in AD progression. We identified, localized, and compared histone H3 modifications in multiple model systems (neural-like SH-SY5Y, primary neurons, Tg2576 mice, and AD neocortex), and narrowed our focus to investigate 3 key motifs associated with regulating transcriptional activation and inhibition: acetylated lysine 14, phosphorylated serine 10 and dimethylated lysine 9. Our results in vitro and in vivo indicate that multimeric soluble Aβ may be a potent signaling molecule indirectly modulating the transcriptional activity of DNA by modulating histone H3 homeostasis. These findings reveal potential loci of transcriptional disruption relevant to AD. Identifying genes that undergo significant epigenetic alterations in response to Aβ could aid in the understanding of the pathogenesis of AD, as well as suggesting possible new treatment strategies.
Collapse
Affiliation(s)
- Christina Unger Lithner
- Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
APP mutations in the Aβ coding region are associated with abundant cerebral deposition of Aβ38. Acta Neuropathol 2012; 124:809-21. [PMID: 23143229 DOI: 10.1007/s00401-012-1061-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 12/19/2022]
Abstract
Aβ is the main component of amyloid deposits in Alzheimer disease (AD) and its aggregation into oligomers, protofibrils and fibrils is considered a seminal event in the pathogenesis of AD. Aβ with C-terminus at residue 42 is the most abundant species in parenchymal deposits, whereas Aβ with C-terminus at residue 40 predominates in the amyloid of the walls of large vessels. Aβ peptides with other C-termini have not yet been thoroughly investigated. We analysed Aβ38 in the brains of patients with Aβ deposition linked to sporadic and familial AD, hereditary cerebral haemorrhage with amyloidosis, or Down syndrome. Immunohistochemistry, confocal microscopy, immunoelectron microscopy, immunoprecipitation and the electrophoresis separation of low molecular weight aggregates revealed that Aβ38 accumulates consistently in the brains of patients carrying APP mutations in the Aβ coding region, but was not detected in the patients with APP mutations outside the Aβ domain, in the patients with presenilin mutations or in subjects with Down syndrome. In the patients with sporadic AD, Aβ38 was absent in the senile plaques, but it was detected only in the vessel walls of a small subset of patients with severe cerebral amyloid angiopathy. Our results suggest that APP mutations in the Aβ coding region favour Aβ38 accumulation in the brain and that the molecular mechanisms of Aβ deposition in these patients may be different from those active in patients with familial AD associated with other genetic defects and sporadic AD.
Collapse
|
47
|
Borlikova GG, Trejo M, Mably AJ, Mc Donald JM, Sala Frigerio C, Regan CM, Murphy KJ, Masliah E, Walsh DM. Alzheimer brain-derived amyloid β-protein impairs synaptic remodeling and memory consolidation. Neurobiol Aging 2012. [PMID: 23182244 DOI: 10.1016/j.neurobiolaging.2012.10.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of the amyloid β-protein (Aβ) is believed to play a central role in initiating the molecular cascade that culminates in Alzheimer-type dementia (AD), a disease which in its early stage is characterized by synaptic loss and impairment of episodic memory. Here we show that intracerebroventricular injection of Aβ-containing water-soluble extracts of AD brain inhibits consolidation of the memory of avoidance learning in the rat and that this effect is highly dependent on the interval between learning and administration. When injected at 1 hour post training extracts from 2 different AD brains significantly impaired recall tested at 48 hours. Ultrastructural examination of hippocampi from animals perfused after 48 hours revealed that Aβ-mediated impairment of avoidance memory was associated with lower density of synapses and altered synaptic structure in the dentate gyrus and CA1 fields. These behavioral and ultrastructural data suggest that human brain-derived Aβ impairs formation of long-term memory by compromising the structural plasticity essential for consolidation and that Aβ targets processes initiated very early in the consolidation pathway.
Collapse
Affiliation(s)
- Gilyana G Borlikova
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Republic of Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|