1
|
Zhao A, Zhang G, Wei H, Yan X, Gan J, Jiang X. Heat shock proteins in cerebral ischemia-reperfusion injury: Mechanisms and therapeutic implications. Exp Neurol 2025; 390:115284. [PMID: 40318821 DOI: 10.1016/j.expneurol.2025.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) remains a significant challenge in ischemic stroke treatment. Heat shock proteins (HSPs), a cadre of molecular chaperones, have emerged as pivotal regulators in this pathological cascade. This review synthesizes the latest research on HSPs in CIRI from 2013 to 2024 focusing on their multifaceted roles and therapeutic potential. We explore the diverse cellular functions of HSPs, including regulation of oxidative stress, apoptosis, necroptosis, ferroptosis, autophagy, neuroinflammation, and blood-brain barrier integrity. Key HSPs, such as HSP90, HSP70, HSP32, HSP60, HSP47, and small HSPs, are investigated for their specific mechanisms of action in CIRI. Potential therapeutic strategies targeting HSPs, including HSP inhibitors, traditional Chinese medicine components, and gene therapy, are discussed. This review provides a comprehensive understanding of HSPs in CIRI and offers insights into the development of innovative neuroprotective treatments.
Collapse
Affiliation(s)
- Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Chung MC, Su LJ, Chen CL, Wu LC. Revealing the antimicrobial potential of traditional Chinese medicine through text mining and molecular computation. Brief Bioinform 2024; 26:bbaf077. [PMID: 40007160 PMCID: PMC11859959 DOI: 10.1093/bib/bbaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Traditional Chinese Medicine (TCM), with its extensive knowledge base documented in ancient texts, offers a unique resource for contemporary drug discovery, particularly in combatting microbial infections. The success of antimalarial drugs like artemisinin and artesunate, derived from the TCM herb Artemisia annua L., exemplifies the potential of TCM-derived small molecules. This rich repository of natural products and intricate molecular structures could reveal novel compounds with unexplored mechanisms of action. Our study employs a multifaceted approach that combines text mining, detailed textual analysis, and modern antibacterial molecular prediction methodologies to unlock the potential of ancient TCM remedies. We use external knowledge maps, which include databases of known bioactive compounds and their targets, to identify promising TCM candidates. This approach leverages both historical texts and contemporary scientific data to explore the therapeutic potential of TCM. We discovered that herb patterns DiYu→ZeXie and Kushen→ShengJiang potentially combat both Grams-positive and Grams-negative bacteria. We utilized the AntiBac-Pred online tool to identify and analyze the chemical components of herbs, integrating data from ancient texts and TCMDB@Taiwan external knowledge graph. The DiYu→ZeXie groups showed antimicrobial potential against resistant Staphylococcus simulans, while the Kushen→ShengJiang groups exhibited dual antimicrobial effects against Bacillus subtilis. Exploring TCM's extensive repository offers numerous opportunities for discovering therapeutically active compounds. Our synergistic approach, which combines ancient wisdom with modern science, holds significant promise for enhancing our ability to combat infectious diseases. This method could pave the way for a new era of personalized medicine, addressing the urgent need for innovative treatments against multidrug-resistant bacteria and viruses.
Collapse
Affiliation(s)
- Meng-Chi Chung
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
| | - Li-Jen Su
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, NCU, Taoyuan, Taiwan, (ROC)
- Core Facilities for High Throughput Experimental Analysis, Department of Biomedical Sciences and Engineering, NCU, Taoyuan, Taiwan, (ROC)
- IIHMED Reproductive Center, Taipei, Taiwan, (ROC)
- Tian Medicine Phamaceutical Company Ltd., Taipei, Taiwan, (ROC)
| | - Chien-Lin Chen
- IIHMED Reproductive Center, Taipei, Taiwan, (ROC)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, (ROC)
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan (ROC)
| | - Li-Ching Wu
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, NCU, Taoyuan, Taiwan, (ROC)
| |
Collapse
|
3
|
Zhou X, Zhu Y, Gao D, Li M, Lin L, Wang Z, Du H, Xu Y, Liu J, He Y, Guo Y, Wang S, Qiao S, Bao Y, Liu Y, Zhang H. Matrilin-3 supports neuroprotection in ischemic stroke by suppressing astrocyte-mediated neuroinflammation. Cell Rep 2024; 43:113980. [PMID: 38520693 DOI: 10.1016/j.celrep.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
In the brain, the role of matrilin-3, an extracellular matrix component in cartilage, is unknown. Here, we identify that matrilin-3 decreased in reactive astrocytes but was unchanged in neurons after ischemic stroke in animals. Importantly, it declined in serum of patients with acute ischemic stroke. Genetic or pharmacological inhibition or supplementation of matrilin-3 aggravates or reduces brain injury, astrocytic cell death, and glial scar, respectively, but has no direct effect on neuronal cell death. RNA sequencing demonstrates that Matn3-/- mice display an increased inflammatory response profile in the ischemic brain, including the nuclear factor κB (NF-κB) signaling pathway. Both endogenous and exogenous matrilin-3 reduce inflammatory mediators. Mechanistically, extracellular matrilin-3 enters astrocytes via caveolin-1-mediated endocytosis. Cytoplasmic matrilin-3 translocates into the nucleus by binding to NF-κB p65, suppressing inflammatory cytokine transcription. Extracellular matrilin-3 binds to BMP-2, blocking the BMP-2/Smads pathway. Thus, matrilin-3 is required for astrocytes to exert neuroprotection, at least partially, by suppressing astrocyte-mediated neuroinflammation.
Collapse
Affiliation(s)
- Xianyong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yongming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Defei Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liang Lin
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Zhanxiang Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Huaping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shigang Qiao
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Suzhou, Jiangsu 215301, China; Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu 215163, China
| | - Yingshi Bao
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215200, China.
| | - Huiling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Shabani M, Erfani S, Abdolmaleki A, Afzali FE, Khoshnazar SM. Alpha-pinene modulates inflammatory response and protects against brain ischemia via inducible nitric oxide synthase-nuclear factor-kappa B-cyclooxygenase-2 pathway. Mol Biol Rep 2023; 50:6505-6516. [PMID: 37329479 DOI: 10.1007/s11033-023-08480-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUNDS Cerebral ischemia-reperfusion leads to brain tissue injury. Inflammation and apoptosis play pivotal roles in the pathology. OBJECTIVE α-Pinene is an organic compound of many aromatic plants and is known as a potent agent to possess antioxidant, and anti-inflammatory properties. Here, we sought to identify the anti-inflammatory and anti-apoptosis mechanism by which α-Pinene improves brain ischemia injury. RESULTS Male Wistar rats underwent MCAO surgery for 1 h and different doses of alpha-pinene (25, 50, and 100 mg/kg) were intraperitoneally injected immediately after reperfusion to test this hypothesis. IV, NDS, gene and protein expression of inducible nitric oxide synthase (iNOS), cyclogenase-2 (COX-2), nuclear factor kappa B (NF-κB) p65, and caspase-3 were assessed 24 h after reperfusion. Results demonstrated that NF-κB p65, iNOS, and COX-2 gene and protein expression increased in the hippocampus, cortex, and striatum after 24 h of reperfusion, and alpha-pinene significantly inhibited NF-kB p65, iNOS, and COX-2 expression. Also, alpha-pinene significantly reduced the ischemia/reperfusion-induced caspase-3 activation in CA1 area of hippocampus. CONCLUSION Results showed that alpha-pinene protects the cerebral against ischemic damage caused by MCAO, and this effect may be through the regulating iNOS -NF-kappa B- COX-2 and caspase-3 inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sohaila Erfani
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Fatemeh Ephtekhar Afzali
- Department of Animal Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
6
|
Han EJ, Zhang C, Kim HS, Kim JY, Park SM, Jung WK, Ahn G, Cha SH. Sargachromenol Isolated from Sargassum horneri Attenuates Glutamate-Induced Neuronal Cell Death and Oxidative Stress through Inhibition of MAPK/NF-κB and Activation of Nrf2/HO-1 Signaling Pathway. Mar Drugs 2022; 20:710. [PMID: 36421988 PMCID: PMC9695719 DOI: 10.3390/md20110710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress-induced neuronal cell loss is considered to be the major mechanism underlying the pathogenesis of neurodegenerative diseases, which could be induced by a high concentration of glutamate. In this study, sargachromenol (SC) was isolated from a marine brown seaweed Sargassum horneri (S. horneri) and its neuroprotective effects against glutamate-induced oxidative stress in HT22 cells were investigated. An MTT assay was applied to assess the cytotoxicity of the SC, and the efficacies of SC were determined by flow cytometry, an analysis of ROS production, quantitative Real-Time PCR, and the Western blot assay. Our results showed that the pretreatment of SC reduced glutamate-induced apoptosis in HT22 cells via inhibiting the sub-G1 population, DNA fragmentation, and nuclear condensation, as well as up-regulating anti-apoptotic protein (Bcl-2) and down-regulating apoptotic proteins (Bax, p53, cleaved-PARP, caspase-3, caspase-9, and cytochrome c). Additionally, SC attenuated glutamate-induced oxidative stress by suppressing mitogen-activated protein kinases (MAPKs;ERK, JNK, and p38) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling (IκBα and NF-κB p65), while activating nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling (Nrf2; HO-1, and NQO-1). Our results suggest that SC could be used as a pharmacological candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Chunying Zhang
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Sang-Muyn Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, New Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| |
Collapse
|
7
|
Lin Y, He F, Wu L, Xu Y, Du Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2022; 16:533-569. [PMID: 35256842 PMCID: PMC8898013 DOI: 10.2147/dddt.s349678] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
As The main effective monomer of the traditional Chinese medicine Sophora flavescens Ait, matrine has a broad scope of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, anti-fibrotic, anti-viral, anti-arrhythmia, and improving immune function. These actions explain its therapeutic effects in various types of tumors, cardiopathy, encephalomyelitis, allergic asthma, rheumatoid arthritis (RA), osteoporosis, and central nervous system (CNS) inflammation. Evidence has shown that the mechanism responsible for the pharmacological actions of matrine may be via the activation or inhibition of certain key molecules in several cellular signaling pathways including the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), transforming growth factor-β/mothers against decapentaplegic homolog (TGF-β/Smad), nuclear factor kappa B (NF-κB), Wnt (wingless/ integration 1)/β-catenin, mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. This review comprehensively summarizes recent studies on the pharmacological mechanisms of matrine to provide a theoretical basis for molecular targeted therapies and further development and utilization of matrine.
Collapse
Affiliation(s)
- Yingda Lin
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Fuming He
- Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ling Wu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| |
Collapse
|
8
|
Modulation of the HMGB1/TLR4/NF-κB signaling pathway in the CNS by matrine in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 352:577480. [PMID: 33493985 DOI: 10.1016/j.jneuroim.2021.577480] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
The inflammatory mediator high-mobility group box 1 (HMGB1)-induced signaling pathway has been shown to play an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Matrine (MAT), a quinolizidine alkaloid component derived from the root of Sophorae flavescens, has the capacity to effectively suppress EAE. However, the impact of MAT treatment on HMGB1-induced signaling is not known. In the present study, we show that MAT treatment alleviated disease severity of ongoing EAE, reduced inflammatory infiltration and demyelination, and reduced the production of inflammatory factors including TNF-α, IL-6, and IL-1β in the CNS. Moreover, MAT administration significantly reduced the protein and RNA expression of HMGB1 and TLR4 in the spinal cord, particularly in astrocytes and microglia/infiltrating macrophages. The expression of MyD88 and TRAF6, and the phosphorylation of NF-κB p65, was also down-regulated after MAT treatment. In contrast, the level of IκB-α, an inhibitory molecule for NF-κB activation, was significantly increased. Furthermore, the direct inhibitory effect of MAT on HMGB1/TLR4/NF-κB signaling in macrophages was further confirmed in vitro. Taken together, these findings demonstrate that MAT treatment alleviated CNS inflammatory demyelination and activation of astrocytes and microglia/macrophages in EAE rats, and that the mechanism underlying these effects may be closely related to modulation of HMGB1/TLR4/NF-κB signaling pathway.
Collapse
|
9
|
Zhu J, Yang LK, Wang QH, Lin W, Feng Y, Xu YP, Chen WL, Xiong K, Wang YH. NDRG2 attenuates ischemia-induced astrocyte necroptosis via the repression of RIPK1. Mol Med Rep 2020; 22:3103-3110. [PMID: 32945444 PMCID: PMC7453600 DOI: 10.3892/mmr.2020.11421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia results in severe brain damage, and is a leading cause of death and long-term disability. Previous studies have investigated methods to activate astrocytes in order to promote repair in injured brain tissue and inhibit cell death. It has previously been shown that N-myc downstream-regulated gene 2 (NDRG2) was highly expressed in astrocytes and associated with cell activity, but the underlying mechanism is largely unknown. The present study generated NDRG2 conditional knockout (Ndrg2-/-) mice to investigate whether NDRG2 can block ischemia-induced astrocyte necroptosis by suppressing receptor interacting protein kinase 1 (RIPK1) expression. This study investigated astrocyte activity in cerebral ischemia, and identified that ischemic brain injuries could trigger RIP-dependent astrocyte necroptosis. The depletion of NDRG2 was found to accelerate permanent middle cerebral artery occlusion-induced necroptosis in the brain tissue of Ndrg2-/- mice, indicating that NDRG2 may act as a neuroprotector during cerebral ischemic injury. The present study suggested that NDRG2 attenuated astrocytic cell death via the suppression of RIPK1. The pharmacological inhibition of astrocyte necroptosis by necrostatin-1 provided neuroprotection against ischemic brain injuries after NDRG2 knockdown. Therefore, NDRG2 could be considered as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Li-Kun Yang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Hong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Wei Lin
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yi Feng
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ye-Ping Xu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei-Liang Chen
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
10
|
Matrine alleviates neurobehavioral alterations via modulation of JNK-mediated caspase-3 and BDNF/VEGF signaling in a mouse model of burn injury. Psychopharmacology (Berl) 2020; 237:2327-2343. [PMID: 32399631 DOI: 10.1007/s00213-020-05537-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE The c-Jun N-terminal kinase (JNK) pathway and neurotrophic factor dysregulation play a critical role in the pathogenesis of neurobehavioral disorders (anxiety and depression). Targeting the JNK pathway and BDNF/VEGF signaling may signify a new avenue for the treatment of neurobehavioral disorders. OBJECTIVES The present study investigated the effect of matrine (Mat) against anxiety- and depressive-like emotional status in an acute mouse model of burn injury and explores its underlying mechanism. METHODS In the mouse model of thermal injury, anxiety- and depression-related behaviors were evaluated using the elevated plus-maze test, the light-dark box test, the open-field test, the forced swimming test, and the tail suspension test. The JNK/caspase-3 and BDNF/VEGF proteins were determined by immunohistochemistry. Additionally, proinflammatory cytokine, antioxidant, nitric oxide, and corticosterone levels were also measured. RESULTS The results showed that treatment with Mat significantly improves anxiety- and depressive-like behaviors. It remarkably reduced the levels of proinflammatory cytokines, malondialdehyde, and nitric oxide in the hippocampus and prefrontal cortex of a mouse brain. It considerably improved burn-induced alteration in the antioxidant status, corticosterone, and BDNF/VEGF. It also inhibited burn-induced apoptotic signaling by downregulating the expression of JNK/caspase-3. Similarly, it prevented DNA damage and histopathological changes in the dentate gyrus of the hippocampus. Furthermore, molecular docking results showed that Mat possess better binding affinity for JNK/caspase-3 and BDNF/VEGF proteins. CONCLUSIONS These findings provide convincing evidence that Mat improves anxiety- and depressive-like emotional status through modulation of JNK-mediated inflammatory, oxidative stress, apoptotic, and BDNF/VEGF signaling in an acute mouse model of burn injury.
Collapse
|
11
|
Yang B, Li H, Zhang T, Wang Z, Li H, Zhang Y. Nonlinear and mixed inhibitory effect of matrine on the cytotoxicity of oligomeric amyloid-β protein. Neurochem Int 2020; 137:104746. [PMID: 32325190 DOI: 10.1016/j.neuint.2020.104746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
The formation of amyloid β-protein (1-42) (Aβ42) oligomers and Aβ42 oligomer cytotoxicity are two defining characteristics of the etiology of Alzheimer's disease (AD). In this study, we found that matrine (Mat) could maintain or even enhance the cytotrophic effect of Aβ42 monomers by inhibiting their aggregation and by working in a manner similar to synergy with Aβ42 monomers. Moreover, Mat could also exert a cytoprotective effect by actively promoting the disaggregation of immature Aβ42 oligomers in a concentration-dependent manner. Although Mat at intermediate concentrations (1-50 μM) exhibited both cytotrophic and cytoprotective effects on SH-SY5Y cells, Mat at higher concentrations (100 μM) only exhibited a cytoprotective effect. Molecular docking studies reveal that these differences are a result of the different interactions between Mat and Aβ42 oligomers that occur at different molecular ratios. Our results support the hypothesis that there may be a Mat-like metabolite in the human brain that acts as a molecular chaperone for Aβ42 monomers. A deficiency in this chaperone would result in the gradual aggregation of Aβ42 monomers, and eventually, formation of toxic Aβ42 oligomers. In addition, reduction or clearance of Aβ42 aggregates or deposits and inhibition or elimination of the toxicity of oligomeric Aβ42, were not always directly correlated. Finally, the site(s) responsible for cytotoxicity in Aβ42 oligomers may be located in the integrated region of the N-terminal fragments of Aβ42 chains. This study provides valuable insights into the mechanisms involved in the development of natural drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Hongli Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Zhenxing Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China; China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China; School of Life Science, Jilin University, Changchun 130012, China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
12
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
13
|
Khan A, Shal B, Naveed M, Shah FA, Atiq A, Khan NU, Kim YS, Khan S. Matrine ameliorates anxiety and depression-like behaviour by targeting hyperammonemia-induced neuroinflammation and oxidative stress in CCl4 model of liver injury. Neurotoxicology 2019; 72:38-50. [DOI: 10.1016/j.neuro.2019.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/26/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
14
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
15
|
Wang H, Xiao D, Li W, Zhang X, Gao X, Yong J, Zhao J, Koike K. A simple and fast quantitative analysis of quinolizidine alkaloids and their biosynthetic precursor, lysine, in Sophora alopecuroides by hydrophilic interaction chromatography coupled with triple-quadrupole tandem mass spectroscopy. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:500-506. [PMID: 29573297 DOI: 10.1002/pca.2757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Different parts of Sophora alopecuroides L. (Fabaceae) have historically been used in traditional Chinese medicine for the treatment of dysentery and enteritis. This plant is also utilised as an important resource for industrial preparation of quinolizidine alkaloidal pharmaceuticals. OBJECTIVE Establish a reliable, simple and fast analytical method for the quantitative determination of the quinolizidine-type alkaloids and extend understanding of the metabolism of quinolizidine-type alkaloids in S. alopecuroides. METHODS Hydrophilic interaction chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode were used to determine seven quinolizidine-type alkaloids and their biosynthetic precursor, lysine, in S. alopecuroides. RESULTS A good separation was obtained on an ultra high-performance liquid chromatography (UHPLC) amide column within 7 min. The overall limits of detection (LODs) were between 1.13 and 2.81 ng/ml, and limits of quantitation (LOQs) were between 3.80 and 8.48 ng/ml. The developed method was successfully applied to 21 samples of S. alopecuroides. The seeds had the highest concentration of alkaloids among the different plant parts. Oxymatrine and oxysophocarpine were the two most abundant alkaloids in all of the different parts and at different phenological growth stages. The contents of quinolizidine alkaloids showed correlations with lysine. CONCLUSION A rapid and sensitive analytical method was established for the simultaneous determination of seven quinolizidine-type alkaloids and their biosynthetic precursor, lysine, in S. alopecuroides; the content of lysine may be used as a marker to predict alkaloid production.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, P. R. China
- Ningxia Research Centre of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan, P. R. China
- Key Laboratory of Hui Ethnic Medicine Modernisation, Ministry of Education, Ningxia Medical University, Yinchuan, P. R. China
| | - Dong Xiao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, P. R. China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, P. R. China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, P. R. China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, P. R. China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, P. R. China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
16
|
Li W, Liu J, Chen JR, Zhu YM, Gao X, Ni Y, Lin B, Li H, Qiao SG, Wang C, Zhang HL, Ao GZ. Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke. Neuroscience 2018; 390:12-29. [PMID: 30076999 DOI: 10.1016/j.neuroscience.2018.07.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023]
Abstract
Receptor-interacting protein 1 kinase (RIP1K) plays a key role in necroptosis. Necrostatin-1 (Nec-1), a specific inhibitor of RIP1K, provides neuroprotection against ischemic brain injury, associating with inhibition of inflammation. Recently, our group synthesized a novel analog of Nec-1, 5-(3',5'-dimethoxybenzal)-2-thio-imidazole-4-ketone (DTIO). The present study investigated the effect of DTIO on ischemic stroke-induced brain injury in both acute and chronic phase and its underlying mechanism. In vivo, DTIO treatment reduced infarct volume and improved neurological deficits in the acute phase after permanent middle cerebral artery occlusion (pMCAO) and it also attenuated brain atrophy and promoted brain functional recovery in the chronic phase post-cerebral ischemia/reperfusion (I/R). In vitro, DTIO treatment decreased lactate dehydrogenase (LDH) leakage and necrotic cell death in the oxygen and glucose deprivation (OGD) or oxygen and glucose deprivation and reoxygenation (OGD/R)-induced neuronal or astrocytic cell injury. Simultaneously, DTIO suppressed the production and release of inflammatory cytokines, and reduced the formation of glial scar. Homology modeling analysis illustrated that DTIO had an ability of binding to RIP1K. Furthermore, immunoprecipitation analysis showed that DTIO inhibited the phosphorylation of RIP1K and decreased the interaction between the RIP1K and RIP3K. In addition, knockdown of RIP1K had neuroprotective effects and inhibited the release of proinflammatory cytokines, but didn't have a significant effect on DTIO-mediated neuroprotection. In conclusion, DTIO has protective effects on acute ischemic stroke and promotes functional recovery during chronic phase, associating with protecting ischemic neurons and astrocytes, inhibiting inflammation, and lessening the glial scar formation via inhibiting of the RIP1K.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie-Ru Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huanqiu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Chen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
18
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [PMID: 28842356 PMCID: PMC11884751 DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Stroke is the number one cause of neurological dysfunction in adults and has a heavy socioeconomic burden worldwide. The etiological origins of ischemic stroke and resulting pathological processes are mediated by a multifaceted cascade of molecular mechanisms that are in part modulated by posttranscriptional activity. Accumulating evidence has revealed a role for microRNAs (miRNAs) as essential mediators of posttranscriptional gene silencing in both the physiology of brain development and pathology of ischemic stroke. In this review, we compile miRNAs that have been reported to regulate various stroke risk factors and pre-disease mechanisms, including hypertension, atherosclerosis, and diabetes, followed by an in-depth analysis of miRNAs in ischemic stroke pathogenesis, such as excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis and neurogenesis. Since promoting or suppressing expression of miRNAs by specific pharmaceutical and non-pharmaceutical therapies may be beneficial to post-stroke recovery, we also highlight the potential therapeutic value of miRNAs in clinical settings.
Collapse
Affiliation(s)
- Guangwen Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | | | - Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China; Beijing Institute for Brain Disorders and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 10053, China.
| |
Collapse
|
19
|
Abstract
Inflammation plays a pivotal role in the development of ischemic brain damage. Astrocyte activation promotes the production of several proinflammatory mediators, such as TNF-α and iNOS. Eventually, neuronal death occurs, leading to the development of motor and memory deficits in patients. Boldine is the main alkaloid in the leaves and bark of the Peumus boldus Molina, and has anti-inflammatory and antioxidant properties. The aim of this work was to investigate the neuroprotective effect of boldine on neuroinflammation and memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) in mice. Thirty minutes before pMCAO and during the next 5 days, animals received vehicle (0.025 µmol/l HCl) or boldine (8, 16 and 25 mg/kg, intraperitoneally). The extension of the infarct area, neurological scores, and myeloperoxidase activity were evaluated 24 h after pMCAO. Locomotor activity, working, and aversive memory were evaluated 72 h after pMCAO, object recognition memory was tested 96 h after pMCAO, and spatial memory was tested 120 h after pMCAO. Cresyl violet, Fluoro-Jade C staining, and immunohistochemical for GFAP, TNF-α, and iNOS were also carried out. The treatment with boldine significantly decreased the infarct area, improved the neurological scores, and increased cell viability. The vertical exploratory activity and aversive, spatial, object recognition, and working memory deficits induced by pMCAO were prevented by boldine. Moreover, myeloperoxidase activity and GFAP, TNF-α, and iNOS immunoreactivity were decreased significantly by boldine. Although various mechanisms such as its antioxidant activity should be considered, these results suggest that the neuroprotective effect of boldine might be related in part to its anti-inflammatory properties.
Collapse
|
20
|
Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L, Huang Z, Pang T. A Dual AMPK/Nrf2 Activator Reduces Brain Inflammation After Stroke by Enhancing Microglia M2 Polarization. Antioxid Redox Signal 2018; 28:141-163. [PMID: 28747068 DOI: 10.1089/ars.2017.7003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Microglia-mediated neuroinflammation plays an important role in focal ischemic stroke, a disorder with no effective therapeutic agents. Since microglial polarization to the M2 phenotype and reduction of oxidative stress are mediated through AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) activation, we assessed the dual therapeutic effect of AMPK and Nrf2 activation by a novel neuroprotectant HP-1c in the treatment of ischemic stroke. RESULTS We developed a novel class of hybrids (HP-1a-HP-1f) of telmisartan and 2-(1-hydroxypentyl)-benzoate (HPBA) as a ring-opening derivative of NBP. The most promising hybrid, HP-1c, exhibited more potent anti-inflammatory and neuroprotective effects in vitro and reduced brain infarct volume and improved neurological deficits in a rat model of transient focal cerebral ischemia when compared with telmisartan alone, NBP alone, or a combination of telmisartan and NBP. HP-1c had a therapeutic window of up to 24 h, ameliorated ischemic cerebral injury in permanent focal cerebral ischemia, and improved motor function. The beneficial effects of HP-1c in ischemic stroke were associated with microglial polarization to the M2 phenotype and reduced oxidative stress. HP-1c also shifted the M1/M2 polarization in a mouse neuroinflammatory model. The anti-inflammatory and anti-oxidative effects of HP-1c were associated with AMPK-Nrf2 pathway activation for neuroprotection. We showed that HP-1c penetrates the brain, has a plasma half-life of around 3.93 h, and has no toxicity in mice. Innovation and Conclusion: Our study results suggest that HP-1c, with dual AMPK- and Nrf2-activating properties, may have potential in further studies as a novel therapy for ischemic stroke. Antioxid. Redox Signal. 28, 141-163.
Collapse
Affiliation(s)
- Yunjie Wang
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China
| | - Yun Huang
- 2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing, P.R. China
| | - Yazhou Xu
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China
| | - Wenchen Ruan
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China
| | - Haojie Wang
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China
| | - Yihua Zhang
- 2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing, P.R. China
| | - Juan M Saavedra
- 3 Department of Pharmacology and Physiology, Georgetown University Medical Center , Washington, District of Columbia
| | - Luyong Zhang
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China
| | - Zhangjian Huang
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China .,2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing, P.R. China
| | - Tao Pang
- 1 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University , Nanjing, P.R. China .,2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing, P.R. China .,3 Department of Pharmacology and Physiology, Georgetown University Medical Center , Washington, District of Columbia
| |
Collapse
|
21
|
Wang CM, Yang XL, Liu MH, Cheng BH, Chen J, Bai B. High-throughput sequencing analysis of differentially expressed miRNAs and target genes in ischemia/reperfusion injury and apelin-13 neuroprotection. Neural Regen Res 2018; 13:265-271. [PMID: 29557376 PMCID: PMC5879898 DOI: 10.4103/1673-5374.226397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
miRNAs regulate a variety of biological processes through pairing-based regulation of gene expression at the 3′ end of the noncoding region of the target miRNA. miRNAs were found to be abnormally expressed in ischemia/reperfusion injury models. High-throughput sequencing is a recently developed method for sequencing miRNAs and has been widely used in the analysis of miRNAs. In this study, ischemia/reperfusion injury models were intracerebroventricularly injected with 50 μg/kg apelin-13. High-throughput sequencing showed that 357 known miRNAs were differentially expressed among rat models, among which 78 changed to > 2-fold or < 0.5-fold. Quantitative real-time polymerase chain reaction was selected to confirm the expression levels of four miRNAs that were differentially expressed, the results of which were consistent with the results of high-throughput sequencing. Gene Ontology analysis revealed that the predicted targets of the different miRNAs are particularly associated with cellular process, metabolic process, single-organism process, cell, and binding. Kyoto Encyclopedia of Gene and Genome analysis showed that the target genes are involved in metabolic pathways, mitogen-activated protein kinase signaling pathway, calcium signaling pathway, and nuclear factor-κB signaling pathway. Our findings suggest that differentially expressed miRNAs and their target genes play an important role in ischemia/reperfusion injury and neuroprotection by apelin-13.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Xue-Lu Yang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Ming-Hui Liu
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bao-Hua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
22
|
RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway. Neuroscience 2017; 371:60-74. [PMID: 29102662 DOI: 10.1016/j.neuroscience.2017.10.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
Abstract
Although the receptor-interacting protein 1 kinase (RIP1K)-regulated necroptosis can be evoked by cerebral ischemia, the effects of RIP1K in mediating neuronal and astrocytic cell death and the underlying mechanisms remain poorly understood. This study evaluates the contribution of RIP1K to ischemic stroke-induced neuronal and astrocytic cell death, and the activation of autophagic-lysosomal pathway. Using an in vitro oxygen and glucose deprivation (OGD) in primary cultured neurons or astrocytes and a permanent middle cerebral artery occlusion (pMCAO) model in rats or mice, we observed the role of RIP1K in the ischemic neuronal and astrocytic cell death and the underlying mechanisms by pharmacological or genetic inhibition of RIP1K. pMCAO or OGD condition led to an increase in RIP1K, RIP3K and RIP1K-RIP3K complex. RIP1K knockdown or necrostatin-1 (Nec-1, a specific inhibitor of RIP1K) treatment reduced infarct volume, improved neurological deficits, increased microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) levels, and attenuated neuronal or astrocytic necrotic cell death in the ischemic cortex. RIP1K knockdown decreased RIP1K-RIP3K complex formation, light chain 3 II (LC3II) and active cathepsin B levels and lysosomal membrane permeability (LMP). Furthermore, a combination of Nec-1 and an inhibitor of autophagy or cathepsin B produced an enhancement of protective effect on neuronal or astrocytic cell death. RIP1K-mediated necroptosis may play important roles in ischemia-induced neuronal and astrocytic cell death through the activation of autophagic-lysosomal pathway.
Collapse
|
23
|
Wang SL, Duan L, Xia B, Liu Z, Wang Y, Wang GM. Dexmedetomidine preconditioning plays a neuroprotective role and suppresses TLR4/NF-κB pathways model of cerebral ischemia reperfusion. Biomed Pharmacother 2017; 93:1337-1342. [PMID: 28753906 DOI: 10.1016/j.biopha.2017.06.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dexmedetomidine has been reported to play an efficient role on multi-organ protection. Our study aims to investigate the neuroprotective of dexmedetomidine preconditioning on cerebral ischemic reperfusion (I/R) injury and investigate the underlining signaling mechanisms. METHODS Cerebral I/R models were established with SD rats through middle cerebral artery occlusion (MCAO). After 2h of ischemia followed by 7days of reperfusion, the degree of cerebral tissue injury was detected by HE, Nissl and TUNEL staining. Glial fibrillary acidic protein (GFAP) positive and TNF-α positive cells were stained by immunohistochemistry and counted under microscope. TLR4, NF-κB and TIR-domain containing adapter-inducing interferon-β (TRIF) expression were detected by real time PCR and western blot. RESULTS Dexmedetomidine preconditioning markedly prevented the ischemia-induced cellular damage observed from HE and Nissl staining in hippocampus and cortex. Dexmedetomidine observably decreased the number of apoptotic cells in TUNEL staining. Besides, yohimbine could specifically suppress the protective effect of dexmedetomidine. GFAP expression was distinctly inhibited by dexmedetomidine preconditioning (10μg/kg, 20μg/kg) in cerebral ischemia area. Dexmedetomidine preconditioning inhibited the expression of TLR4 and NF-κB and increased that of TRIF. CONCLUSION The results of this study suggest that dexmedetomidine preconditioning plays a neuroprotective role against I/R injury. Dexmedetomidine might suppress TLR4/NF-??B pathway and drive TLR4/TRIF signaling pathway to reduce the inflammatory injury.
Collapse
Affiliation(s)
- Shou-Liang Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lian Duan
- Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Bin Xia
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhifei Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yu Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Gong-Ming Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
24
|
Chen X, Zhi X, Pan P, Cui J, Cao L, Weng W, Zhou Q, Wang L, Zhai X, Zhao Q, Hu H, Huang B, Su J. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. FASEB J 2017; 31:4855-4865. [PMID: 28739641 PMCID: PMC5636701 DOI: 10.1096/fj.201700316r] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023]
Abstract
Osteoporosis is a metabolic bone disease characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content. The imbalance between osteogenesis by osteoblasts and osteoclastogenesis by osteoclasts contributes to the pathogenesis of postmenopausal osteoporosis. Estrogen withdrawal leads to increased levels of proinflammatory cytokines. Overactivated osteoclasts by inflammation play a vital role in the imbalance. Matrine is an alkaloid found in plants from the Sophora genus with various pharmacological effects, including anti-inflammatory activity. Here we demonstrate that matrine significantly prevented ovariectomy-induced bone loss and inhibited osteoclastogenesis in vivo with decreased serum levels of TRAcp5b, TNF-α, and IL-6. In vitro matrine significantly inhibited osteoclast differentiation induced by receptor activator for NF-κB ligand (RANKL) and M-CSF in bone marrow monocytes and RAW264.7 cells as demonstrated by tartrate-resistant acid phosphatase (TRAP) staining and actin-ring formation as well as bone resorption through pit formation assays. For molecular mechanisms, matrine abrogated RANKL-induced activation of NF-κB, AKT, and MAPK pathways and suppressed osteoclastogenesis-related marker expression, including matrix metalloproteinase 9, NFATc1, TRAP, C-Src, and cathepsin K. Our study demonstrates that matrine inhibits osteoclastogenesis through modulation of multiple pathways and that matrine is a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.-Chen, X., Zhi, X., Pan, P., Cui, J., Cao, L., Weng, W., Zhou, Q., Wang, L., Zhai, X. Zhao, Q., Hu, H., Huang, B., Su, J. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Xin Zhi
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Panpan Pan
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Jin Cui
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Liehu Cao
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Lin Wang
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Xiao Zhai
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qingiie Zhao
- China-South Korea Bioengineering Center, Shanghai, China.,School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Honggang Hu
- China-South Korea Bioengineering Center, Shanghai, China.,School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Biaotong Huang
- China-South Korea Bioengineering Center, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics Trauma and Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China; .,China-South Korea Bioengineering Center, Shanghai, China
| |
Collapse
|
25
|
Matrine Treatment Blocks NogoA-Induced Neural Inhibitory Signaling Pathway in Ongoing Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2016; 54:8404-8418. [PMID: 27933584 DOI: 10.1007/s12035-016-0333-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
Myelin-associated inhibitors, such as NogoA, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp), play a pivotal role in the lack of neuroregeneration in multiple sclerosis, an inflammatory demyelinating disease of the central nervous system (CNS). Matrine (MAT), a monomer that is used in traditional Chinese medicine as an anti-inflammatory agent, has shown beneficial effects in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, the underlying mechanisms of MAT-induced EAE amelioration are not fully understood. In the present study, we show that MAT treatment suppressed ongoing EAE, and this effect correlated with an increased expression of growth-associated protein 43, an established marker for axonal regeneration. MAT treatment significantly reduced the levels of NogoA, its receptor complex NgR/p75NTR/LINGO-1, and their downstream RhoA/ROCK signaling pathway in the CNS. In contrast, intracellular cyclic AMP (cAMP) levels and its protein kinase (protein kinase A (PKA)), which can promote axonal regrowth by inactivating the RhoA, were upregulated. Importantly, adding MAT in primary astrocytes in vitro largely induced cAMP/PKA expression, and blockade of cAMP significantly diminished MAT-induced expression of PKA and production of BDNF, a potent neurotrophic factor for neuroregeneration. Taken together, our findings demonstrate that the beneficial effects of MAT on EAE can be attributed not only to its capacity for immunomodulation, but also to its directly promoting regeneration of the injured CNS.
Collapse
|
26
|
Xu Y, Lin H, Zheng W, Ye X, Yu L, Zhuang J, Yang Q, Wang D. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance. Eur J Pharmacol 2016; 791:491-501. [PMID: 27640745 DOI: 10.1016/j.ejphar.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Yixiao Xu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongzhou Lin
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjie Zheng
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohua Ye
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lingfang Yu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jieqiu Zhuang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing Yang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dexuan Wang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
27
|
Gong SS, Li YX, Zhang MT, Du J, Ma PS, Yao WX, Zhou R, Niu Y, Sun T, Yu JQ. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain. Neurochem Res 2016; 41:3147-3159. [PMID: 27561290 DOI: 10.1007/s11064-016-2040-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/17/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapy drugs such as vincristine (VCR) can cause neuropathic pain, and there is still lack of ideal strategy to treat it. The current study was designed to investigate effect of matrine (MT) on VCR-induced neuropathic pain in animal model. VCR (75 μg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy model in mice. MT (15, 30 and 60 mg/kg, i.p.) and pregabalin (10 mg/kg, i.p.) were administered for 11 consecutive days. Various tests were performed to assess the degree of pain at different days (1, 6, 11, 16, and 21). Von Frey hair, hot plate, cold-plate and paw pressure tests were conducted to assess the degree of mechanical allodynia, thermal hyperalgesia, cold allodynia and mechanical hyperalgesia in the hind paw respectively. The electrophysiological and histopathological changes were also analyzed. Furthermore, tissue malondialdehyde (MDA), total antioxidant capacity (T-AOC),superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total calcium (TCA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) were measured to investigate possible involvement of MT in inflammation and oxidative stress. Administration of MT attenuated the VCR-induced behavioral alterations as well as electrophysiological and histopathological changes in a dose dependent manner. Further, MT also attenuated the VCR-induced oxidative stress (MDA, T-AOC, GSH-Px, SOD and TCA) and inflammation (MPO, TNF-α, IL-6 and IL-10). Taken together, MT ameliorated VCR-induced painful neuropathy, which might be attributed to neuroprotective effects by subsequent reduction in oxidative stress and anti-inflammatory actions.
Collapse
Affiliation(s)
- Shuai-Shuai Gong
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Meng-Ting Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Peng-Sheng Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Wan-Xia Yao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
28
|
Li Z, Hua C, Pan X, Fu X, Wu W. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats. Inflammation 2016; 39:1566-72. [DOI: 10.1007/s10753-016-0392-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Lu ML, Xiang XH, Xia SH. Potential Signaling Pathways Involved in the Clinical Application of Oxymatrine. Phytother Res 2016; 30:1104-12. [PMID: 27165263 DOI: 10.1002/ptr.5632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/29/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Oxymatrine, an alkaloid component extracted from the roots of Sophora species, has been shown to have antiinflammatory, antifibrosis, and antitumor effects and the ability to protect against myocardial damage, etc. The potential signaling pathways involved in the clinical application of oxymatrine might include the TGF-β/Smad, toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor9/TRAF6, Janus kinase/signal transduction and activator of transcription, phosphatidylinositol-3 kinase/Akt, delta-opioid receptor-arrestinl-Bcl-2, CD40, epidermal growth factor receptor, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathways, and dimethylarginine dimethylaminohydrolase/asymmetric dimethylarginine metabolism pathway. In this review, we summarize the recent investigations of the signaling pathways related to oxymatrine to provide clues and references for further studies on its clinical application. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Li Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| | - Xiao-Hui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| | - Shi-Hai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| |
Collapse
|
30
|
Gao S, Mo J, Chen L, Wang Y, Mao X, Shi Y, Zhang X, Yu R, Zhou X. Astrocyte GGTI-mediated Rac1 prenylation upregulates NF-κB expression and promotes neuronal apoptosis following hypoxia/ischemia. Neuropharmacology 2016; 103:44-56. [DOI: 10.1016/j.neuropharm.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
|
31
|
Matrine improves cognitive impairment and modulates the balance of Th17/Treg cytokines in a rat model of Aβ1-42-induced Alzheimer's disease. Cent Eur J Immunol 2016; 40:411-9. [PMID: 26862304 PMCID: PMC4737738 DOI: 10.5114/ceji.2015.56961] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Matrine (MAT) has been reported for its anti-inflammatory and neuroprotective effects. However, little is known about its effects on Th17/Treg cytokines and cognitive impairment in Alzheimer's disease (AD). In the present study, we injected Aβ1-42 to the hippocampus of the rat to induce AD. Three groups of the AD rats were treated with MAT (25, 100 or 200 mg/kg/day, respectively) by intraperitoneal injection for 5 weeks. Levels of Th17 cell cytokines [interleukin (IL)-17A and IL-23] and regulatory T (Treg) cell cytokines [transforming growth factor β (TGF-β) and IL-35] in homogenates of the brain cortex and hippocampus were measured using enzyme-linked immunosorbent assay (ELISA) kits. The mRNA expressions of Th17 cell specific transcription factor RORγt and Treg cell specific transcription factor Foxp3 in the brain cortex and hippocampus were quantified by real-time RT-PCR. Learning and memory ability of the rats were evaluated by Morris water maze test and novel object recognition test. ELISA detections showed the AD rats had increased levels of IL-17A and IL-23 as well as decreased levels of TGF-β and IL-35. Matrine (100 and 200 mg/kg/day) significantly reversed the alternations of Th17/Treg cytokines induced by Aβ1-42 injection, decreased RORγt mRNA expression, increased Foxp3 mRNA expression and improved the learning and memory ability in the AD rats. The findings demonstrated that the AD rats had imbalance of Th17/Treg cytokines in the brain. MAT could dose-dependently restore the balance of Th17/Treg cytokines and attenuate the cognitive impairment in AD rats.
Collapse
|
32
|
Tanabe N, Kuboyama T, Kazuma K, Konno K, Tohda C. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury. Front Pharmacol 2016; 6:326. [PMID: 26834638 PMCID: PMC4712302 DOI: 10.3389/fphar.2015.00326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022] Open
Abstract
Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.
Collapse
Affiliation(s)
- Norio Tanabe
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama Toyama, Japan
| | - Tomoharu Kuboyama
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama Toyama, Japan
| | - Kohei Kazuma
- Division of Kampo-Pharmaceutics, Department of Medical Resources, Institute of Natural Medicine, University of Toyama Toyama, Japan
| | - Katsuhiro Konno
- Division of Kampo-Pharmaceutics, Department of Medical Resources, Institute of Natural Medicine, University of Toyama Toyama, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama Toyama, Japan
| |
Collapse
|
33
|
Gu WW, Lu SQ, Ni Y, Liu ZH, Zhou XY, Zhu YM, Luo Y, Li X, Li LS, Sun WZ, Zhang HL, Ao GZ. 2-(3',5'-Dimethoxybenzylidene) cyclopentanone, a novel synthetic small-molecule compound, provides neuroprotective effects against ischemic stroke. Neuroscience 2015; 316:26-40. [PMID: 26656221 DOI: 10.1016/j.neuroscience.2015.11.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 11/22/2015] [Indexed: 11/25/2022]
Abstract
2-(3',5'-Dimethoxybenzylidene) cyclopentanone (DMBC) is a novel small-molecule compound synthesized by our group. Here, we found that in rat models of permanent middle cerebral artery occlusion (pMCAO), intraperitoneal injection (ip) of DMBC at 1h after ischemia reduced infarct volume, improved neurological deficits and increased the protein levels of microtubule-associated protein 2 (MAP 2) and glial fibrillary acid protein (GFAP) in the ischemic cortex. Post-treatment of DMBC still produced neuroprotective effects even when administered at 6h after ischemia. In the oxygen-glucose deprivation (OGD)-induced astrocytes or HT22 cell injury, DMBC treatment decreased the OGD-induced lactate dehydrogenase (LDH) leakage and increased the GFAP levels in astrocytes. In addition, Annexin-V-Fluos staining analysis revealed that DMBC treatment attenuated both OGD-induced apoptosis and necrosis in astrocytes. Western blotting analysis showed DMBC treatment inhibited the ischemia or OGD-induced increases in active cathepsin B in the ischemic cortex or in astrocytes or HT22 cells. Immunofluorescence analysis demonstrated that DMBC treatment blocked the ischemia or OGD-induced release of cathepsin B from the lysosomes into the cytoplasm in the ischemic cortex or in astrocytes or HT22 cells. Taken together, our results indicate that DMBC can offer neuroprotective effects against cerebral ischemia with an extended therapeutic window and its mechanism might be associated with inhibition of the cathepsin B activation.
Collapse
Affiliation(s)
- W W Gu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - S Q Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Y Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Z H Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China
| | - X Y Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Y M Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Y Luo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - X Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - L S Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - W Z Sun
- The Second High School Attached to Beijing Normal University, Beijing 100091, China
| | - H L Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| | - G Z Ao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| |
Collapse
|
34
|
Zhao P, Zhou R, Zhu XY, Hao YJ, Li N, Wang J, Niu Y, Sun T, Li YX, Yu JQ. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int J Mol Med 2015; 36:633-44. [PMID: 26135032 PMCID: PMC4533779 DOI: 10.3892/ijmm.2015.2260] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/19/2015] [Indexed: 12/13/2022] Open
Abstract
Matrine, an active constituent of the Chinese herb, Sophora flavescens Ait., and it is known for its antioxidant, anti-inflammatory and antitumor activities. It has been demonstrated that matrine exerts protective effects against heart failure by decreasing the expression of caspase-3 and Bax, and increasing Bcl-2 levels. In this study, we aimed to determine whether these protective effects of matrine can be applied to cerebral ischemia. Following 7 successive days of treatment with matrine (7.5, 15 and 30 mg/kg) and nimodipine (1 mg/kg) by intraperitoneal injection, male Institute of Cancer Research (ICR) mice were subjected to middle cerebral artery occlusion (MCAO). Following reperfusion, the neurobehavioral score and brain infarct volume were estimated, and morphological changes were analyzed by hematoxylin and eosin (H&E) staining and electron microscopy. The percentage of apoptotic neurons was determined by flow cytometry. The levels of oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and the total antioxidant capacity (T-AOC). Western blot analysis and immunofluorescence staining were used to examine the expression of the apoptosis-related proteins, caspase-3, Bax and Bcl-2. Our results revealed that pre-treatment with matrine significantly decreased the infarct volume and improved the neurological scores. Matrine also reduced the percentage of apoptotic neurons and relieved neuronal morphological damage. Furthermore, matrine markedly decreased the MDA levels, and increased SOD, GSH-Px and CAT activity, and T-AOC. Western blot analysis and immunofluorescence staining revealed a marked decrease in caspase-3 expression and an increase in the Bcl-2/Bax ratio in the group pre-treated with matrine (30 mg/kg) as compared with the vehicle-treated group. The findings of the present study demonstrate that matrine exerts neuroprotective effects against cerebral ischemic injury and that these effects are associated with its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiao-Yun Zhu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yin-Ju Hao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Nan Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jie Wang
- Medical Sci-tech Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
35
|
Simultaneous extraction and purification of alkaloids from Sophora flavescens Ait. by microwave-assisted aqueous two-phase extraction with ethanol/ammonia sulfate system. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Sun B, Xu M. Matrine inhibits the migratory and invasive properties of nasopharyngeal carcinoma cells. Mol Med Rep 2015; 11:4158-64. [PMID: 25633440 PMCID: PMC4394955 DOI: 10.3892/mmr.2015.3276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/03/2014] [Indexed: 12/15/2022] Open
Abstract
Matrine is a widely used Chinese herbal medicine that has historically been used in the treatment of inflammation and cancer. However, the antimetastatic effects and associated molecular mechanisms of matrine on nasopharyngeal carcinoma (NPC) remain to be elucidated. Therefore, the aims of the present study were to assess the antimetastatic effects of matrine on NPC, and identify the underlying mechanisms. Matrine inhibited the proliferation of NPC cells in vitro and in vivo. Furthermore, matrine inhibited the migration and invasion of NPC tumor cells at doses below the toxic range. Following treatment with matrine for 24 h, there was a decrease in the protein expression levels and activities of matrix metalloproteinase (MMP)‑2 and MMP‑9 in NPC‑039 cells. In addition, matrine markedly reduced the expression levels of p65 and p50 in the nuclei. Combined treatment of matrine with helenalin, a nuclear factor‑κB (NF‑κB) inhibitor resulted in a synergistic reduction in MMP‑2 and MMP‑9 expression levels, and the invasive capabilities of the NPC‑039 cells were also reduced. In conclusion, matrine inhibits NPC cell migration and invasion by suppressing the NF‑κB pathway. These results suggest that matrine may be a potential therapeutic agent for NPC.
Collapse
Affiliation(s)
- Bin Sun
- Department of Otolaryngology-Head and Neck Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Min Xu
- Department of Otolaryngology-Head and Neck Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
37
|
Wen JB, Zhu FQ, Chen WG, Jiang LP, Chen J, Hu ZP, Huang YJ, Zhou ZW, Wang GL, Lin H, Zhou SF. Oxymatrine improves intestinal epithelial barrier function involving NF-κB-mediated signaling pathway in CCl4-induced cirrhotic rats. PLoS One 2014; 9:e106082. [PMID: 25171482 PMCID: PMC4149463 DOI: 10.1371/journal.pone.0106082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/31/2014] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that intestinal epithelial barrier dysfunction plays an important role in the pathogenesis of hepatic cirrhosis and its complications such as gastrointestinal injury and hepatic encephalopathy. To date, there is no cure for cirrhosis-associated intestinal mucosal lesion and ulcer. This study aimed to investigate the effect of oxymatrine on intestinal epithelial barrier function and the underlying mechanism in carbon tetrachloride (CCl4)-induced cirrhotic rats. Thirty CCl4-induced cirrhotic rats were randomly divided into treatment group, which received oxymatrine treatment (63 mg/kg), and non-treatment group, which received the same dose of 5% glucose solution (vehicle). The blank group (n = 10 healthy rats) received no treatment. Terminal ileal samples were collected for histopathological examination. The expression level of nuclear factor-κB (NF-κB) p65 in ileal tissue was evaluated by immunohistochemistry. The gene and protein expression levels of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in ileal tissues were analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Additionally, plasma endotoxin level was determined. In comparison to the blank group, a significant alteration in the morphology of intestinal mucosal villi in the non-treatment group was observed. The intestinal mucosal villi were atrophic, shorter, and fractured, and inflammatory cells were infiltrated into the lamina propria and muscular layer. Besides, serious swell of villi and loose structure of mucous membrane were observed. Oxymatrine reversed the CCl4-induced histological changes and restored intestinal barrier integrity. Moreover, oxymatrine reduced the protein expression level of NF-κB p65, TNF-α, and IL-6, which were elevated in the vehicle-treated group. In addition, the serum endotoxin level was significantly decreased after oxymatrine treatment in CCl4-induced cirrhotic rats. The results indicate that oxymatrine improves intestinal barrier function via NF-κB-mediated signaling pathway and may be used as a new protecting agent for cirrhosis-associated intestinal mucosal damage.
Collapse
Affiliation(s)
- Jian-Bo Wen
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
- * E-mail: (JBW); (SFZ)
| | - Fang-Qing Zhu
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Wei-Guo Chen
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Li-Ping Jiang
- Animal Laboratory, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Jie Chen
- Department of Pharmacology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Zhao-Peng Hu
- Department of Pathology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Yong-Jian Huang
- Department of Clinical Laboratory, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | - Gui-Liang Wang
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Hao Lin
- Department of Gastroenterology, the Affiliated Pingxiang Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JBW); (SFZ)
| |
Collapse
|
38
|
Oxymatrine prevents NF-κB nuclear translocation and ameliorates acute intestinal inflammation. Sci Rep 2014; 3:1629. [PMID: 23568217 PMCID: PMC3620667 DOI: 10.1038/srep01629] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/25/2013] [Indexed: 12/11/2022] Open
Abstract
Oxymatrine is a traditional Chinese herbal product that exhibits anti-inflammatory effects in models of heart, brain and liver injury. We investigated the impact of oxymatrine in an acute model of intestinal injury and inflammation. Oxymatrine significantly decreased LPS-induced NF-κB-driven luciferase activity, correlating with diminished induction of Cxcl2, Tnfα and Il6 mRNA expression in rat IEC-6 and murine BMDC. Although oxymatrine decreased LPS-induced p65 nuclear translocation and binding to the Cxcl2 gene promoter, this effect was independent of IκBα degradation/phosphorylation. DSS-induced weight loss and histological damage were ameliorated in oxymatrine-treated C57BL/6-WT-mice. While this effect correlated with reduced colonic Il6 and Il1β mRNA accumulation, global NF-κB activity as measured in NF-κBEGFP mice was unaffected. Our data demonstrate that oxymatrine reduces LPS-induced NF-κB nuclear translocation and activity independently of IκBα status, prevents intestinal inflammation through blockade of inflammatory signaling and ameliorates overall intestinal inflammation in vivo.
Collapse
|
39
|
Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P. Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation. PLoS One 2014; 9:e96734. [PMID: 24800741 PMCID: PMC4011781 DOI: 10.1371/journal.pone.0096734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear. Methods Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa. Results Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6%±5.8% to 23.5%±4.3%, and apoptosis rate reduce significantly from 46.5%±6.2 to 29.6%±5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons. Conclusions We demonstrated in this study that the protection of ischemic postconditioning on neuronal apoptosis caused by transient focal ischemia is associated with attenuation of the activation of NF-κB/p65 in neurons.
Collapse
Affiliation(s)
- Jianmin Liang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Yongxin Luan
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Bin Lu
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
| | - Yi-nan Luo
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
40
|
Shi SS, Yang WZ, Chen Y, Chen JP, Tu XK. Propofol reduces inflammatory reaction and ischemic brain damage in cerebral ischemia in rats. Neurochem Res 2014; 39:793-9. [PMID: 24610527 DOI: 10.1007/s11064-014-1272-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Our previous studies demonstrated that inflammatory reaction and neuronal apoptosis are the most important pathological mechanisms in ischemia-induced brain damage. Propofol has been shown to attenuate ischemic brain damage via inhibiting neuronal apoptosis. The present study was performed to evaluate the effect of propofol on brain damage and inflammatory reaction in rats of focal cerebral ischemia. Sprague-Dawley rats underwent permanent middle cerebral artery occlusion, then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 h of ischemia. Neurological deficit scores, cerebral infarct size and morphological characteristic were measured 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was assessed 24 h after cerebral ischemia. Nuclear factor-kappa B (NF-κB) p65 expression in ischemic rat brain was detected by western blot. Cyclooxygenase-2 (COX-2) expression in ischemic rat brain was determined by immunohistochemistry. ELISA was performed to detect the serum concentration of tumor necrosis factor-α (TNF-α). Neurological deficit scores, cerebral infarct size and MPO activity were significantly reduced by propofol administration. Furthermore, expression of NF-κB, COX-2 and TNF-α were attenuated by propofol administration. Our results demonstrated that propofol (10 and 50 mg/kg) reduces inflammatory reaction and brain damage in focal cerebral ischemia in rats. Propofol exerts neuroprotection against ischemic brain damage, which might be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory genes.
Collapse
Affiliation(s)
- Song-sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | | | | | | | | |
Collapse
|
41
|
Wang H, Zhang K, Zhao L, Tang J, Gao L, Wei Z. Anti-inflammatory effects of vinpocetine on the functional expression of nuclear factor-kappa B and tumor necrosis factor-alpha in a rat model of cerebral ischemia-reperfusion injury. Neurosci Lett 2014; 566:247-51. [PMID: 24598438 DOI: 10.1016/j.neulet.2014.02.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/09/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The restoration of blood flow to the brain after ischemic stroke prevents further, extensive damage but can result in reperfusion injury. The inflammation response is one of many factors involved in cerebral ischemia-reperfusion injury. This study investigated the use of vinpocetine, a drug used to treat cognitive impairment, to explore its effects on inflammation in a rat model of cerebral ischemia-reperfusion. METHODS Wistar rats were randomly assigned to a control group, (n=40) a cerebral ischemia-reperfusion group (n=52) and a vinpocetine cerebral ischemia-reperfusion group (n=52). A model of middle cerebral artery occlusion was induced for 2h followed by reperfusion and the infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining 6h, 24h, 3 days, and 7 days after reperfusion. The dry-wet weight method was used to measure brain water content and evaluate the extent of brain edema. Immunohistochemistry and in-situ hybridization were used to detect the expression of NF-κB and TNF-α. RESULTS The NF-κB levels in ischemic brain tissue increased 6h after reperfusion and the TNF-α levels increased at 24h, both reached their peaks at day 3 then decreased gradually, but remained above the controls at day 7. Vinpocetine decreased the levels of NF-κB and TNF-α 24h and 3 days after reperfusion. CONCLUSION NF-κB and TNF-α is associated with changes in brain edema and infarct volume. Vinpocetine decreases the expression of NF-κB and TNF-α and inhibits the inflammatory response after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Neurology, Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China.
| | - Kan Zhang
- Department of Neurology, Binzhou Medical University Hospitalbed, No. 661, Yellow-River Second Street, bed Shandong 256603, China
| | - Lan Zhao
- Department of Neurology, Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
| | - Jiangwei Tang
- Department of Neurology, Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
| | - Luyan Gao
- Department of Neurology, Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
| | - Zhongping Wei
- Department of Neurology, Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
| |
Collapse
|
42
|
Korenić A, Boltze J, Deten A, Peters M, Andjus P, Radenović L. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation. PLoS One 2014; 9:e90697. [PMID: 24587410 PMCID: PMC3938803 DOI: 10.1371/journal.pone.0090697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 11/23/2022] Open
Abstract
Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψm) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψm, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψm during reperfusion, whereas GD caused a robust Δψm negativation. In case no Δψm negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψm hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψm during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.
Collapse
Affiliation(s)
- Andrej Korenić
- Centre for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany ; Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander Deten
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Myriam Peters
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Pavle Andjus
- Centre for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Lidija Radenović
- Centre for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y, Ishidoh K, Katunuma N, Li ZS, Zhang HL. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia 2014; 62:855-80. [PMID: 24616078 DOI: 10.1002/glia.22645] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 11/08/2022]
Abstract
The roles of cathepsins in the ischemic astrocytic injury remain unclear. Here, we test the hypothesis that activation of cathepsin B and L contributes to the ischemic astrocyte injury via the tBid-mitochondrial apoptotic signaling pathways. In the rat models of pMCAO, CA-074Me or Clik148, a selective inhibitor of cathepsin B or cathepsin L, reduced the infarct volume, improved the neurological deficits and increased the MAP2 and GFAP levels. In OGD-induced astrocyte injury, CA-074Me or Clik148 decreased the LDH leakage and increased the GFAP levels. In the ischemic cortex or OGD-induced astrocytes injury, Clik148 or CA-074Me reversed pMCAO or OGD-induced increase in active cathepsin L or cathepsin B at 3 h or 6 h, increase in tBid, reduction in mitochondrial cytochrome-c (Cyt-c) and increase in cytoplastic Cyt-c and active caspase-3 at 12-24 h of the late stage of pMCAO or OGD. CA-074Me or Clik148 also reduced cytosolic and mitochondrial tBid, increased mitochondrial Cyt-c and decreased cytoplastic Cyt-c and active caspase-3 at 6 h of the early stage of Bid activation. CA-074Me or Clik148 blocked the pMCAO-induced release of cathepsin B or L from the lysosomes into the cytoplasm and activation of caspase-3 in ischemic astrocytes at 12 h after ischemia. Concurrent inhibition of cathepsin B and cathepsin L provided better protection on the OGD-induced astrocytic apoptosis than obtained with separate use of each inhibitor. These results suggest that inhibition of the cysteine cathepsin B and cathepsin L activation in ischemic astrocytes contributes to neuroprotection via blocking the tBid-mitochondrial apoptotic signaling pathway.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Antiepileptic potential of matrine via regulation the levels of gamma-aminobutyric acid and glutamic acid in the brain. Int J Mol Sci 2013; 14:23751-61. [PMID: 24317434 PMCID: PMC3876075 DOI: 10.3390/ijms141223751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/17/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022] Open
Abstract
Our present study aimed to determine the antiepileptic activity of matrine, and explore the possible molecular mechanism. To evaluate the antiepileptic activity of matrine, seizures in mice induced by PTZ and MES were established, then the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests in mice were also carried out. For the molecular mechanism investigations, contents of aspartic acid (Asp), gamma-aminobutyric acid (GABA), glutamic acid (Glu), glycine (Gly) in seizures mice were determined; then, the chronic seizures rats induced by PTZ were prepared, and western blotting was used to determine the expressions of GAD 65, GABAA and GABAB in the brains. In the results, matrine showed significant antiepileptic effects on seizures mice induced by MES and PTZ. Moreover, the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests were also demonstrated that matrine had obvious antiepileptic effects. Additionally, our results revealed that after treatment with matrine, contents of GABA can be elevated, and the contents of Glu were obviously decreased. Furthermore, western blotting revealed that the mechanism regarding the antiepileptic effect of may be related to the up-regulations of GAD 65 and GABAA in the brain. Collectively, we suggested that matrine can be developed as an effective antiseptic drug.
Collapse
|
45
|
Shao H, Yang B, Hu R, Wang Y. Matrine effectively inhibits the proliferation of breast cancer cells through a mechanism related to the NF-κB signaling pathway. Oncol Lett 2013; 6:517-520. [PMID: 24137358 PMCID: PMC3789031 DOI: 10.3892/ol.2013.1399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/17/2013] [Indexed: 11/05/2022] Open
Abstract
Matrine is an alkaloid isolated from Sophora flavescens. The present study aimed to determine whether matrine effectively inhibits the proliferation of breast cancer cells, and the underlying mechanism(s) of its antitumor function. The effects of matrine on the cell viability of ER-positive MCF7 cells, HER2-positive BT-474 cells and highly metastatic MDA-MB-231 cells were measured using MTT and apoptosis assays. Western blot analysis was performed to investigate the expression levels of the inhibitor of κB (IκB) kinase β (IKKβ) in cells treated with or without matrine. It was observed that the matrine treatment resulted in the death of the three types of cancer cells, but significantly less toxicity was observed in the control cancer cells. The experimental results also suggested that the antitumor effects of matrine on breast cancer cells may be associated with the downregulation of IKKβ expression by matrine, as indicated by the western blot analysis results. The present results suggested that matrine may be used as an effective drug candidate for treating breast cancers in the future, following further research.
Collapse
Affiliation(s)
- Hongmin Shao
- Department of Oncology, Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | | | | | | |
Collapse
|