1
|
Bratsch-Prince JX, Jones GC, Warren JW, Mott DD. Synaptic acetylcholine induces sharp wave ripples in the basolateral amygdala through nicotinic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626291. [PMID: 39677685 PMCID: PMC11642747 DOI: 10.1101/2024.12.01.626291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone. While high frequency cholinergic stimulation can inhibit SWRs through muscarinic acetylcholine receptors, it is unclear how nicotinic acetylcholine receptors or different cholinergic firing patterns may influence SWR generation. SWRs are also present in BLA in vivo. Interestingly, the BLA receives extremely dense cholinergic inputs, yet the relationship between acetylcholine (ACh) and BLA SWRs is unexplored. Here, using brain slice electrophysiology in male and female mice, we show that brief stimulation of ACh inputs to BLA reliably induces SWRs that resemble those that occur in the BLA in vivo. Repeated ACh-SWRs are induced with single pulse stimulation at low, but not higher frequencies. ACh-SWRs are driven by nicotinic receptors which recruit different classes of local interneurons and trigger glutamate release from external inputs. In total, our findings establish a previously undefined mechanism for SWR induction in the brain. They also challenge the previous notion of neuromodulators as purely modulatory agents gating these events but instead reveal these systems can directly instruct SWR induction with temporal precision. Further, these results intriguingly suggest a new role for the nicotinic system in emotional memory consolidation.
Collapse
Affiliation(s)
| | - Grace C. Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - James W. Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - David D. Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| |
Collapse
|
2
|
Puhger K, Crestani AP, Diniz CRF, Wiltgen BJ. The hippocampus contributes to retroactive stimulus associations during trace fear conditioning. iScience 2024; 27:109035. [PMID: 38375237 PMCID: PMC10875141 DOI: 10.1016/j.isci.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Binding events that occur at different times are essential for memory formation. In trace fear conditioning, animals associate a tone and footshock despite no temporal overlap. The hippocampus is thought to mediate this learning by maintaining a memory of the tone until shock occurrence, however, evidence for sustained hippocampal tone representations is lacking. Here, we demonstrate a retrospective role for the hippocampus in trace fear conditioning. Bulk calcium imaging revealed sustained increases in CA1 activity after footshock that were not observed after tone termination. Optogenetic silencing of CA1 immediately after footshock impaired subsequent memory. Additionally, footshock increased the number of sharp-wave ripples compared to baseline during conditioning. Therefore, post-shock hippocampal activity likely supports learning by reactivating and linking latent tone and shock representations. These findings highlight an underappreciated function of post-trial hippocampal activity in enabling retroactive temporal associations during new learning, as opposed to persistent maintenance of stimulus representations.
Collapse
Affiliation(s)
- Kyle Puhger
- Department of Psychology, University of California, Davis, 135 Young Hall, 1 Shields Avenue, Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Ana P. Crestani
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Cassiano R.A. F. Diniz
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Brian J. Wiltgen
- Department of Psychology, University of California, Davis, 135 Young Hall, 1 Shields Avenue, Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| |
Collapse
|
3
|
Király B, Domonkos A, Jelitai M, Lopes-Dos-Santos V, Martínez-Bellver S, Kocsis B, Schlingloff D, Joshi A, Salib M, Fiáth R, Barthó P, Ulbert I, Freund TF, Viney TJ, Dupret D, Varga V, Hangya B. The medial septum controls hippocampal supra-theta oscillations. Nat Commun 2023; 14:6159. [PMID: 37816713 PMCID: PMC10564782 DOI: 10.1038/s41467-023-41746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Andor Domonkos
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Márta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Barnabás Kocsis
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Richárd Fiáth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
4
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
5
|
Zhou Z, Norimoto H. Sleep sharp wave ripple and its functions in memory and synaptic plasticity. Neurosci Res 2023; 189:20-28. [PMID: 37045494 DOI: 10.1016/j.neures.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 04/14/2023]
Abstract
Memory is one of the fundamental cognitive functions of brain. The formation and consolidation of memory depend on the hippocampus and sleep. Sharp wave ripple (SWR) is an electrophysiological event which is most frequently observed in the hippocampus during sleep. It represents a highly synchronized neuronal activity pattern which modulates numerous brain regions including the neocortex, subcortical areas, and the hippocampus itself. In this review, we discuss how SWRs link experiences to memories and what happens in the hippocampus and other brain regions during sleep by focusing on synaptic plasticity.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, West 7 North 15 Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
6
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Dahlmanns M, Dahlmanns JK, Schmidt CC, Valero-Aracama MJ, Zheng F, Alzheimer C. Environmental enrichment recruits activin A to recalibrate neural activity in mouse hippocampus. Cereb Cortex 2023; 33:663-675. [PMID: 35257169 DOI: 10.1093/cercor/bhac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
The TGF-β family member activin A modulates neural underpinnings of cognitive and affective functions in an activity-dependent fashion. We have previously shown that exploration of a novel and enriched environment (EE) strongly enhanced activin signaling. Whereas the many beneficial effects of EE are amply documented, the underlying mechanisms remain largely elusive. Here, we examined the hypothesis that EE recruits activin to regulate synaptic plasticity in a coordinated, cognition-promoting manner. Elevated activin levels after EE enhanced CA1 pyramidal cell excitability, facilitated synaptic transmission, and promoted long-term potentiation. These EE-induced changes were largely absent in mice expressing a dominant-negative mutant of activin receptor IB. We then interrogated the impact of activin on network oscillations and functional connectivity, using high-speed Ca 2+ imaging to study spike routing within networks formed by dissociated primary hippocampal cultures. Activin facilitated Ca2+ signaling, enhanced the network strength, and shortened the weighted characteristic path length. In the slice preparation, activin promoted theta oscillations during cholinergic stimulation. Thus, we advance activin as an activity-dependent and very early molecular effector that translates behavioral stimuli experienced during EE exposure into a set of synchronized changes in neuronal excitability, synaptic plasticity, and network activity that are all tuned to improve cognitive functions.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jana Katharina Dahlmanns
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Carla C Schmidt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria Jesus Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Mushtaq M, Haq RU, Anwar W, Marshall L, Bazhenov M, Zia K, Alam H, Hertel L, Awan AA, Martinetz T. A computational study of suppression of sharp wave ripple complexes by controlling calcium and gap junctions in pyramidal cells. Bioengineered 2021; 12:2603-2615. [PMID: 34115572 PMCID: PMC8806748 DOI: 10.1080/21655979.2021.1936894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
The hippocampus plays a key role in memory formation and learning. According to the concept of active systems memory consolidation, transiently stored memory traces are transferred from the hippocampus into the neocortex for permanent storage. This phenomenon relies on hippocampal network oscillations, particularly sharp wave ripples [SPW-Rs). In this process prior saved data in the hippocampus may be reactivated. Recent investigations reveal that several neurotransmitters and neuromodulators including norepinephrine, acetylcholine, serotonin, etc., suppress SPW-Rs activity in rodents' hippocampal slices. This suppression of SPW-Rs may depend on various presynaptic and postsynaptic parameters including decrease in calcium influx, hyperpolarization/depolarization and alteration in gap junctions' function in pyramidal cells. In this study, we demonstrate the impact of calcium influx and gap junctions on pyramidal cells for the modulation of SPW-Rs in a computational model of CA1.We used,SPW-Rs model with some modifications. SPW-Rs are simulated with gradual reduction of calcium and with decreasing conductance through gap junctions in PCs. Both, with calcium reduction as well as with conductance reduction through gap junctions, SPW-Rs are suppressed. Both effects add up synergistically in combination.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, Germany
| | - Rizwan ul Haq
- Department of Pharmaceutical Sciences, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Waqas Anwar
- Department of Information Technologies, Comsats University, Lahore Campus, Pakistan
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kashif Zia
- Faculty of Computing and Information Technology, Sohar University, Al Sohar, Oman
| | - Hina Alam
- Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Lars Hertel
- Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, Germany
| | - Abdul Aleem Awan
- Department of Pharmaceutical Sciences, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
11
|
Santos RM, Sirota A. Phasic oxygen dynamics confounds fast choline-sensitive biosensor signals in the brain of behaving rodents. eLife 2021; 10:61940. [PMID: 33587035 PMCID: PMC7932690 DOI: 10.7554/elife.61940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O2-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O2. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O2 give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.
Collapse
Affiliation(s)
- Ricardo M Santos
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors. J Neurosci 2020; 40:3591-3603. [PMID: 32265261 DOI: 10.1523/jneurosci.1568-19.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/16/2023] Open
Abstract
The septo-hippocampal cholinergic system is critical for hippocampal learning and memory. However, a quantitative description of the in vivo firing patterns and physiological function of medial septal (MS) cholinergic neurons is still missing. In this study, we combined optogenetics with multichannel in vivo recording and recorded MS cholinergic neuron firings in freely behaving male mice for 5.5-72 h. We found that their firing activities were highly correlated with hippocampal theta states. MS cholinergic neurons were highly active during theta-dominant epochs, such as active exploration and rapid eye movement sleep, but almost silent during non-theta epochs, such as slow-wave sleep (SWS). Interestingly, optogenetic activation of these MS cholinergic neurons during SWS suppressed CA1 ripple oscillations. This suppression could be rescued by muscarinic M2 or M4 receptor antagonists. These results suggest the following important physiological function of MS cholinergic neurons: maintaining high hippocampal acetylcholine level by persistent firing during theta epochs, consequently suppressing ripples and allowing theta oscillations to dominate.SIGNIFICANCE STATEMENT The major source of acetylcholine in the hippocampus comes from the medial septum. Early experiments found that lesions to the MS result in the disappearance of hippocampal theta oscillation, which leads to speculation that the septo-hippocampal cholinergic projection contributing to theta oscillation. In this article, by long-term recording of MS cholinergic neurons, we found that they show a theta state-related firing pattern. However, optogenetically activating these neurons shows little effect on theta rhythm in the hippocampus. Instead, we found that activating MS cholinergic neurons during slow-wave sleep could suppress hippocampal ripple oscillations. This suppression is mediated by muscarinic M2 and M4 receptors.
Collapse
|
13
|
Mamelak M. Nightmares and the Cannabinoids. Curr Neuropharmacol 2020; 18:754-768. [PMID: 31934840 PMCID: PMC7536831 DOI: 10.2174/1570159x18666200114142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 01/11/2020] [Indexed: 11/22/2022] Open
Abstract
The cannabinoids, Δ9 tetrahydrocannabinol and its analogue, nabilone, have been found to reliably attenuate the intensity and frequency of post-traumatic nightmares. This essay examines how a traumatic event is captured in the mind, after just a single exposure, and repeatedly replicated during the nights that follow. The adaptive neurophysiological, endocrine and inflammatory changes that are triggered by the trauma and that alter personality and behavior are surveyed. These adaptive changes, once established, can be difficult to reverse. But cannabinoids, uniquely, have been shown to interfere with all of these post-traumatic somatic adaptations. While cannabinoids can suppress nightmares and other symptoms of post-traumatic stress disorder, they are not a cure. There may be no cure. The cannabinoids may best be employed, alone, but more likely in conjunction with other agents, in the immediate aftermath of a trauma to mitigate or even abort the metabolic changes which are set in motion by the trauma and which may permanently alter the reactivity of the nervous system. Steps in this direction have already been taken.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, University of Toronto, Baycrest Hospital, Permanent Address: 19 Tumbleweed Road, Toronto, OntarioM2J 2N2, Canada
| |
Collapse
|
14
|
Li P, Geng X, Jiang H, Caccavano A, Vicini S, Wu JY. Measuring Sharp Waves and Oscillatory Population Activity With the Genetically Encoded Calcium Indicator GCaMP6f. Front Cell Neurosci 2019; 13:274. [PMID: 31275115 PMCID: PMC6593119 DOI: 10.3389/fncel.2019.00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
GCaMP6f is among the most widely used genetically encoded calcium indicators for monitoring neuronal activity. Applications are at both the cellular and population levels. Here, we explore two important and under-explored issues. First, we have tested if GCaMP6f is sensitive enough for the detection of population activity with sparse firing, similar to the sensitivity of the local field potential (LFP). Second, we have tested if GCaMP6f is fast enough for the detection of fast network oscillations critical for the encoding and consolidation of memory. We have focused this study on the activity of the hippocampal network including sharp waves (SWs), carbachol-induced theta oscillations, and interictal-like spikes. We compare simultaneous LFP and optical GCaMP6f fluorescent recordings in Thy1-GCaMP6f mouse hippocampal slices. We observe that SWs produce a clear population GCaMP6f signal above noise with an average magnitude of 0.3% ΔF/F. This population signal is highly correlated with the LFP, albeit with a delay of 40.3 ms (SD 10.8 ms). The population GCaMP6f signal follows the LFP evoked by 20 Hz stimulation with high fidelity, while electrically evoked oscillations up to 40 Hz were detectable with reduced amplitude. GCaMP6f and LFP signals showed a large amplitude discrepancy. The amplitude of GCaMP6f fluorescence increased by a factor of 28.9 (SD 13.5) between spontaneous SWs and carbachol-induced theta bursts, while the LFP amplitude increased by a factor of 2.4 (SD 1.0). Our results suggest that GCaMP6f is a useful tool for applications commonly considered beyond the scope of genetically encoded calcium indicators. In particular, population GCaMP6f signals are sensitive enough for detecting synchronous network events with sparse firing and sub-threshold activity, as well as asynchronous events with only a nominal LFP. In addition, population GCaMP6f signals are fast enough for monitoring theta and beta oscillations (<25 Hz). Faster calcium indicators (e.g., GCaMP7) will further improve the frequency response for the detection of gamma band oscillations. The advantage of population optical over LFP recordings are that they are non-contact and free from stimulation artifacts. These features may be particularly useful for high-throughput recordings and applications sensitive to stimulus artifact, such as monitoring responses during continuous stimulation.
Collapse
Affiliation(s)
- Pinggan Li
- Department of Pediatric Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Xinling Geng
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huiyi Jiang
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Adam Caccavano
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Jian-young Wu
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
15
|
Zhou H, Neville KR, Goldstein N, Kabu S, Kausar N, Ye R, Nguyen TT, Gelwan N, Hyman BT, Gomperts SN. Cholinergic modulation of hippocampal calcium activity across the sleep-wake cycle. eLife 2019; 8:39777. [PMID: 30843520 PMCID: PMC6435325 DOI: 10.7554/elife.39777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium is a critical second messenger in neurons that contributes to learning and memory, but how the coordination of action potentials of neuronal ensembles with the hippocampal local field potential (LFP) is reflected in dynamic calcium activity remains unclear. Here, we recorded hippocampal calcium activity with endoscopic imaging of the genetically encoded fluorophore GCaMP6 with concomitant LFP in freely behaving mice. Dynamic calcium activity was greater in exploratory behavior and REM sleep than in quiet wakefulness and slow wave sleep, behavioral states that differ with respect to theta and septal cholinergic activity, and modulated at sharp wave ripples (SWRs). Chemogenetic activation of septal cholinergic neurons expressing the excitatory hM3Dq DREADD increased calcium activity and reduced SWRs. Furthermore, inhibition of muscarinic acetylcholine receptors (mAChRs) reduced calcium activity while increasing SWRs. These results demonstrate that hippocampal dynamic calcium activity depends on behavioral and theta state as well as endogenous mAChR activation.
Collapse
Affiliation(s)
- Heng Zhou
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Kevin R Neville
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Nitsan Goldstein
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Shushi Kabu
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Naila Kausar
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Rong Ye
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Thuan Tinh Nguyen
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Noah Gelwan
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Bradley T Hyman
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Stephen N Gomperts
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| |
Collapse
|
16
|
A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nat Neurosci 2018; 21:985-995. [PMID: 29915194 DOI: 10.1038/s41593-018-0172-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
To support cognitive function, the CA3 region of the hippocampus performs computations involving attractor dynamics. Understanding how cellular and ensemble activities of CA3 neurons enable computation is critical for elucidating the neural correlates of cognition. Here we show that CA3 comprises not only classically described pyramid cells with thorny excrescences, but also includes previously unidentified 'athorny' pyramid cells that lack mossy-fiber input. Moreover, the two neuron types have distinct morphological and physiological phenotypes and are differentially modulated by acetylcholine. To understand the contribution of these athorny pyramid neurons to circuit function, we measured cell-type-specific firing patterns during sharp-wave synchronization events in vivo and recapitulated these dynamics with an attractor network model comprising two principal cell types. Our data and simulations reveal a key role for athorny cell bursting in the initiation of sharp waves: transient network attractor states that signify the execution of pattern completion computations vital to cognitive function.
Collapse
|
17
|
Çalışkan G, Stork O. Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. Neurobiol Learn Mem 2018; 154:37-53. [PMID: 29476822 DOI: 10.1016/j.nlm.2018.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 01/15/2023]
Abstract
Behavioural metaplasticity is evident in experience-dependent changes of network activity patterns in neuronal circuits that connect the hippocampus, amygdala and medial prefrontal cortex. These limbic regions are key structures of a brain-wide neural network that translates emotionally salient events into persistent and vivid memories. Communication in this network by-and-large depends on behavioural state-dependent rhythmic network activity patterns that are typically generated and/or relayed via the hippocampus. In fact, specific hippocampal network oscillations have been implicated to the acquisition, consolidation and retrieval, as well as the reconsolidation and extinction of emotional memories. The hippocampal circuits that contribute to these network activities, at the same time, are subject to both Hebbian and non-Hebbian forms of plasticity during memory formation. Further, it has become evident that adaptive changes in the hippocampus-dependent network activity patterns provide an important means of adjusting synaptic plasticity. We here summarise our current knowledge on how these processes in the hippocampus in interaction with amygdala and medial prefrontal cortex mediate the formation and persistence of emotional memories.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
18
|
Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, Sasaki T, Hioki H, Fujisawa S, Ikegaya Y. Hippocampal ripples down-regulate synapses. Science 2018; 359:1524-1527. [PMID: 29439023 DOI: 10.1126/science.aao0702] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N-methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples.
Collapse
Affiliation(s)
- Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Neurophysiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, Japan
| | - Kenichi Makino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mengxuan Gao
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Shikano
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeyoshi Fujisawa
- Laboratory for Systems Neurophysiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. .,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| |
Collapse
|
19
|
Abstract
Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A1 receptor antagonist, but not by an A2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A1 receptors in the hippocampal CA3 region or the dentate gyrus.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Center for Information and Neural Networks, National Institute of Information and Communications Technology
| |
Collapse
|
20
|
Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology 2016; 101:188-203. [DOI: 10.1016/j.neuropharm.2015.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
21
|
Accurate detection of low signal-to-noise ratio neuronal calcium transient waves using a matched filter. J Neurosci Methods 2015; 259:1-12. [PMID: 26561771 DOI: 10.1016/j.jneumeth.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Calcium imaging has become a fundamental modality for studying neuronal circuit dynamics both in vitro and in vivo. However, identifying calcium events (CEs) from spectral data remains laborious and difficult, especially since the signal-to-noise ratio (SNR) often falls below 2. Existing automated signal detection methods are generally applied at high SNRs, leaving a large need for an automated algorithm that can accurately extract CEs from fluorescence intensity data of SNR 2 and below. NEW METHOD In this work we develop a Matched filter for Multi-unit Calcium Event (MMiCE) detection to extract CEs from fluorescence intensity traces of simulated and experimentally recorded neuronal calcium imaging data. RESULTS MMiCE reached perfect performance on simulated data with SNR ≥ 2 and a true positive (TP) rate of 98.27% (± 1.38% with a 95% confidence interval), and a false positive(FP) rate of 6.59% (± 2.56%) on simulated data with SNR 0.2. On real data, verified by patch-clamp recording, MMiCE performed with a TP rate of 100.00% (± 0.00) and a FP rate of 2.04% (± 4.10). COMPARISON WITH EXISTING METHOD(S) This high level of performance exceeds existing methods at SNRs as low as 0.2, which are well below those used in previous studies (SNR ≃ 5-10). CONCLUSION Overall, the MMiCE detector performed exceptionally well on both simulated data, and experimentally recorded neuronal calcium imaging data. The MMiCE detector is accurate, reliable, well suited for wide-spread use, and freely available at sites.uci.edu/aggies or from the corresponding author.
Collapse
|
22
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1044] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
23
|
Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 2015; 38:560-70. [PMID: 26275935 PMCID: PMC4712256 DOI: 10.1016/j.tins.2015.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 01/24/2023]
Abstract
The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed.
Collapse
|
24
|
Saravanan V, Arabali D, Jochems A, Cui AX, Gootjes-Dreesbach L, Cutsuridis V, Yoshida M. Transition between encoding and consolidation/replay dynamics via cholinergic modulation of CAN current: A modeling study. Hippocampus 2015; 25:1052-70. [PMID: 25678405 DOI: 10.1002/hipo.22429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/07/2022]
Abstract
Hippocampal place cells that are activated sequentially during active waking get reactivated in a temporally compressed (5-20 times) manner during slow-wave-sleep and quiet waking. The two-stage model of the hippocampus suggests that neural activity during awaking supports encoding function while temporally compressed reactivation (replay) supports consolidation. However, the mechanisms supporting different neural activity with different temporal scales during encoding and consolidation remain unclear. Based on the idea that acetylcholine modulates functional transition between encoding and consolidation, we tested whether the cholinergic modulation may adjust intrinsic network dynamics to support different temporal scales for these two modes of operation. Simulations demonstrate that cholinergic modulation of the calcium activated non-specific cationic (CAN) current and the synaptic transmission may be sufficient to switch the network dynamics between encoding and consolidation modes. When the CAN current is active and the synaptic transmission is suppressed, mimicking the high acetylcholine condition during active waking, a slow propagation of multiple spikes is evident. This activity resembles the firing pattern of place cells and time cells during active waking. On the other hand, when CAN current is suppressed and the synaptic transmission is intact, mimicking the low acetylcholine condition during slow-wave-sleep, a time compressed fast (∼10 times) activity propagation of the same set of cells is evident. This activity resembles the time compressed firing pattern of place cells during replay and pre-play, achieving a temporal compression factor in the range observed in vivo (5-20 times). These observations suggest that cholinergic system could adjust intrinsic network dynamics suitable for encoding and consolidation through the modulation of the CAN current and synaptic conductance in the hippocampus.
Collapse
Affiliation(s)
- Varun Saravanan
- Neural Dynamics Laboratory, Faculty of psychology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Danial Arabali
- Neural Dynamics Laboratory, Faculty of psychology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Arthur Jochems
- Neural Dynamics Laboratory, Faculty of psychology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Anja-Xiaoxing Cui
- Neural Dynamics Laboratory, Faculty of psychology, Ruhr-Universitat Bochum, Bochum, Germany
| | | | - Vassilis Cutsuridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Heracklion, Crete, Greece
| | - Motoharu Yoshida
- Neural Dynamics Laboratory, Faculty of psychology, Ruhr-Universitat Bochum, Bochum, Germany
| |
Collapse
|
25
|
Prakash A, Kalra J, Mani V, Ramasamy K, Majeed ABA. Pharmacological approaches for Alzheimer’s disease: neurotransmitter as drug targets. Expert Rev Neurother 2014; 15:53-71. [DOI: 10.1586/14737175.2015.988709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A 2014; 111:13535-40. [PMID: 25197052 DOI: 10.1073/pnas.1411233111] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.
Collapse
|
27
|
Miyawaki T, Norimoto H, Ishikawa T, Watanabe Y, Matsuki N, Ikegaya Y. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro. PLoS One 2014; 9:e104438. [PMID: 25089705 PMCID: PMC4121245 DOI: 10.1371/journal.pone.0104438] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Hippocampal sharp wave (SW)/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min) treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.
Collapse
Affiliation(s)
- Takeyuki Miyawaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Watanabe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Centre for Information and Neural Networks, Suita City, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Norimoto H, Matsumoto N, Miyawaki T, Matsuki N, Ikegaya Y. Subicular activation preceding hippocampal ripples in vitro. Sci Rep 2014; 3:2696. [PMID: 24045268 PMCID: PMC3776195 DOI: 10.1038/srep02696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/30/2013] [Indexed: 11/09/2022] Open
Abstract
Sharp wave-ripple complexes (SW-Rs), a transient form of high-frequency field oscillations observed in the hippocampus, are thought to mediate memory consolidation. They are initiated mainly in hippocampal CA3 area and propagate to the entorhinal cortex through the subiculum; however, little is known about how SW-Rs are initiated and propagate. Here, we used functional multineuronal calcium imaging to monitor SW-R-relevant neuronal activity from the subiculum at single-cell resolution. An unexpected finding was that a subset of subicular neurons was activated immediately before hippocampal SW-Rs. The SW-R-preceding activity was not abolished by surgical lesion of the CA1-to-subiculum projection, and thus, it probably arose from entorhinal inputs. Therefore, SW-Rs are likely to be triggered by entorhinal-to-CA3/CA1 inputs. Moreover, the subiculum is not merely a passive intermediate region that SW-Rs pass through, but rather, it seems to contribute to an active modification of neural information related to SW-Rs.
Collapse
Affiliation(s)
- Hiroaki Norimoto
- 1] Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan [2]
| | | | | | | | | |
Collapse
|
29
|
Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations. J Neurosci 2014; 34:2989-3004. [PMID: 24553939 DOI: 10.1523/jneurosci.2826-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.
Collapse
|
30
|
Fischer V, Both M, Draguhn A, Egorov AV. Choline-mediated modulation of hippocampal sharp wave-ripple complexesin vitro. J Neurochem 2014; 129:792-805. [DOI: 10.1111/jnc.12693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoria Fischer
- Institute of Physiology and Pathophysiology; Heidelberg University; Heidelberg Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology; Heidelberg University; Heidelberg Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology; Heidelberg University; Heidelberg Germany
- Bernstein Center for Computational Neuroscience (BCCN) Heidelberg/Mannheim; Heidelberg Germany
| | - Alexei V. Egorov
- Institute of Physiology and Pathophysiology; Heidelberg University; Heidelberg Germany
- Bernstein Center for Computational Neuroscience (BCCN) Heidelberg/Mannheim; Heidelberg Germany
| |
Collapse
|
31
|
Sasaki T, Matsuki N, Ikegaya Y. Interneuron firing precedes sequential activation of neuronal ensembles in hippocampal slices. Eur J Neurosci 2014; 39:2027-36. [PMID: 24645643 DOI: 10.1111/ejn.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 12/28/2022]
Abstract
Neuronal firing sequences that occur during behavioral tasks are precisely reactivated in the neocortex and the hippocampus during rest and sleep. These precise firing sequences are likely to reflect latent memory traces, and their reactivation is believed to be essential for memory consolidation and working memory maintenance. However, how the organized repeating patterns emerge through the coordinated interplay of distinct types of neurons remains unclear. In this study, we monitored ongoing spatiotemporal firing patterns using a multi-neuron calcium imaging technique and examined how the activity of individual neurons is associated with repeated ensembles in hippocampal slice cultures. To determine the cell types of the imaged neurons, we applied an optical synapse mapping method that identifies network connectivity among dozens of neurons. We observed that inhibitory interneurons exhibited an increase in their firing rates prior to the onset of repeating sequences, while the overall activity level of excitatory neurons remained unchanged. A specific repeating sequence emerged preferentially after the firing of a specific interneuron that was located close to the neuron first activated in the sequence. The times of repeating sequences could be more precisely predicted based on the activity patterns of inhibitory cells than excitatory cells. In line with these observations, stimulation of a single interneuron could trigger the emergence of repeating sequences. These findings provide a conceptual framework that interneurons serve as a key regulator of initiating sequential spike activity.
Collapse
Affiliation(s)
- Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nat Neurosci 2014; 17:503-5. [PMID: 24633127 DOI: 10.1038/nn.3674] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/06/2014] [Indexed: 01/13/2023]
Abstract
Hippocampal sharp waves (SWs)/ripples represent the reactivation of neurons involved in recently acquired memory and are crucial for memory consolidation. By labeling active cells with fluorescent protein under the control of an immediate-early gene promoter, we found that neurons that had been activated while mice explored a novel environment were preferentially reactivated during spontaneous SWs in hippocampal slices in vitro. During SWs, the reactivated neurons received strong excitatory synaptic inputs as opposed to a globally tuned network balance between excitation and inhibition.
Collapse
|
33
|
Matsumoto K, Ishikawa T, Matsuki N, Ikegaya Y. Multineuronal spike sequences repeat with millisecond precision. Front Neural Circuits 2013; 7:112. [PMID: 23801942 PMCID: PMC3689151 DOI: 10.3389/fncir.2013.00112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging (fMCI) technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and non-spiking neurons. Multineuronal spike sequences (MSSs) were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.
Collapse
Affiliation(s)
- Koki Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo Tokyo, Japan
| | | | | | | |
Collapse
|