1
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
2
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
3
|
Rajizadeh MA, Khaksari M, Bejeshk MA, Amirkhosravi L, Jafari E, Jamalpoor Z, Nezhadi A. The Role of Inhaled Estradiol and Myrtenol, Alone and in Combination, in Modulating Behavioral and Functional Outcomes Following Traumatic Experimental Brain Injury: Hemodynamic, Molecular, Histological and Behavioral Study. Neurocrit Care 2023; 39:478-498. [PMID: 37100976 DOI: 10.1007/s12028-023-01720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important and growing cause of disability worldwide, and its cognitive consequences may be particularly significant. This study assessed the neuroprotective impacts of estradiol (E2), myrtenol (Myr), and the combination of the two on the neurological outcome, hemodynamic parameters, learning and memory, brain-derived neurotrophic factor (BDNF) level, phosphoinositide 3-kinases (PI3K/AKT) signaling, and inflammatory and oxidative factors in the hippocampus after TBI. METHODS Eighty-four adult male Wistar rats were randomly divided into 12 groups with seven rats in each (six groups to measure intracranial pressure, cerebral perfusion pressure, brain water content, and veterinary coma scale, and six groups for behavioral and molecular studies): sham, TBI, TBI/vehicle, TBI/Myr, TBI/E2, and TBI/Myr + E2 (Myr 50 mg/kg and E2 33.3 μg/kg via inhalation for 30 min after TBI induction). Brain injury was induced by using Marmarou's method. Briefly, a 300-g weight was dropped down from a 2-m height through a free-falling tube onto the head of the anesthetized animals. RESULTS Veterinary coma scale, learning and memory, brain water content, intracranial pressure, and cerebral perfusion pressure were impaired following TBI, and inflammation and oxidative stress were raised in the hippocampus after TBI. The BDNF level and PI3K/AKT signaling were impaired due to TBI. Inhalation of Myr and E2 had protective effects against all negative consequences of TBI by decreasing brain edema and the hippocampal content of inflammatory and oxidant factors and also by improving BDNF and PI3K/AKT in the hippocampus. Based on these data, there were no differences between alone and combination administrations. CONCLUSIONS Our results propose that Myr and E2 have neuroprotective effects on cognition impairments due to TBI.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Pathology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Krämer TJ, Pickart F, Pöttker B, Gölz C, Neulen A, Pantel T, Goetz H, Ritter K, Schäfer MKE, Thal SC. Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice. Sci Rep 2023; 13:4348. [PMID: 36928073 PMCID: PMC10018640 DOI: 10.1038/s41598-023-30421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Florian Pickart
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Cell Biology Unit, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
5
|
Nasre-Nasser RG, Severo MMR, Pires GN, Hort MA, Arbo BD. Effects of Progesterone on Preclinical Animal Models of Traumatic Brain Injury: Systematic Review and Meta-analysis. Mol Neurobiol 2022; 59:6341-6362. [PMID: 35922729 DOI: 10.1007/s12035-022-02970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022]
Abstract
Since the publication of two phase III clinical trials not supporting the use of progesterone in patients with traumatic brain injury (TBI), several possible explanations have been postulated, including limitations in the analysis of results from preclinical evidence. Therefore, to address this question, a systematic review and meta-analysis was performed to evaluate the effects of progesterone as a neuroprotective agent in preclinical animal models of TBI. A total of 48 studies were included for review: 29 evaluated brain edema, 21 evaluated lesion size, and 0 studies reported the survival rate. In the meta-analysis, it was found that progesterone reduced brain edema (effect size - 1.73 [- 2.02, - 1.44], p < 0.0001) and lesion volume (effect size - 0.40 [- 0.65, - 0.14], p = 0.002). Lack of details in the studies hindered the assessment of risk of bias (through the SYRCLE tool). A funnel plot asymmetry was detected, suggesting a possible publication bias. In conclusion, preclinical studies show that progesterone has an anti-edema effect in animal models of TBI, decreasing lesion volume or increasing remaining tissue. However, more studies are needed using assessing methods with lower risk of histological artifacts.
Collapse
Affiliation(s)
- Raif Gregorio Nasre-Nasser
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Manoela Rezende Severo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA), Rio de Janeiro, Brazil
| | - Mariana Appel Hort
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil.
| |
Collapse
|
6
|
Gu Y, Dong Y, Wan J, Ren H, Koehler RC, Wang J. Interleukin-10 deficiency aggravates traumatic brain injury in male but not female mice. Exp Neurol 2022; 355:114125. [PMID: 35644427 DOI: 10.1016/j.expneurol.2022.114125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 11/19/2022]
Abstract
The goal of this study was to determine whether deficiency of anti-inflammatory cytokine interleukin-10 (IL-10) affects traumatic brain injury (TBI) outcomes in a sex-dependent manner. Moderate TBI was induced by controlled cortical impact in 8-10 week-old wild-type and IL-10-deficient mice. In wild-type mice, serum IL-10 was significantly increased after TBI in males but not in females. At 4-5 weeks after TBI, sensorimotor function, cognitive function (Y-maze and novel object recognition tests), anxiety-related behavior (light-dark box and open field test), and depression-like behavior (forced swim test) were assessed. IL-10-deficient male mice had larger lesion volumes than did wild-type mice in the early recovery phase and worse performance on sensorimotor tasks, cognitive tests, and anxiety- and depression-related tests in the late recovery phase, whereas female IL-10-deficient mice had lesion volume equivalent to that of wild-type females and worse performance only on sensorimotor tasks. At 3 days after TBI, the number of GFAP- and Iba1-positive cells were augmented in areas in proximity to the injury (cerebral cortex and hippocampus) and in remote functional regions (striatum and amygdala) of IL-10-deficient male, but not female, mice. Moreover, on day 35, significantly fewer NeuN-positive cells were present in cortex, striatum, and amygdala of IL-10-deficient male mice than in wild-type males. This difference was not evident in females. We conclude that IL-10 deficiency aggravates cognitive and emotional recovery from TBI in association with enhanced gliosis and neuronal loss selectively in males, suggesting that recruitment of this cytokine limits damage in a sex-dependent manner.
Collapse
Affiliation(s)
- Yanting Gu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yinfeng Dong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Minchew HM, Ferren SL, Christian SK, Hu J, Keselman P, Brooks WM, Andrews BT, Harris JL. Comparing Imaging Biomarkers of Cerebral Edema after TBI in Young Adult Male and Female Rats. Brain Res 2022; 1789:147945. [PMID: 35595066 DOI: 10.1016/j.brainres.2022.147945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/16/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Cerebral edema following TBI is known to play a critical role in injury severity and prognosis. In the current study we used multimodal magnetic resonance imaging (MRI) to assess cerebral edema 24 hours after unilateral contusive TBI in male and female rats. We then directly quantified brain water content in the same subjectsex vivo.We found that both males and females had similarly elevated T2 values after TBI compared with sham controls. Apparent diffusion coefficient (ADC) was more variable than T2 and did not show significant injury effects in males or females. Brain water was elevated in male TBI rats compared with sham controls, but there was no difference between female TBI and sham groups. Notably, MRI biomarkers of edema were more closely correlated with brain water in male rats; female rats did not show any relationship between brain water and T2 or ADC. These observations raise questions about the interpretation of radiological findings traditionally interpreted as edema in female TBI patients. A better understanding of sex differences and similarities in the pathophysiology of post-traumatic edema is needed to help improve patient management and the development of effective treatment strategies for men and women.
Collapse
Affiliation(s)
- Heather M Minchew
- University of Kansas School of Medicine, Kansas City, KS, United States
| | - Sadie L Ferren
- Department of Anatomy and Cell Biology, KUMC, Kansas City, KS, United States
| | - Sarah K Christian
- Department of Anatomy and Cell Biology, KUMC, Kansas City, KS, United States
| | - Jinxiang Hu
- Department of Biostatistics, KUMC, Kansas City, KS, United States
| | - Paul Keselman
- Hoglund Biomedical Imaging Center, KUMC, Kansas City, KS, United States
| | - William M Brooks
- Hoglund Biomedical Imaging Center, KUMC, Kansas City, KS, United States; Depatment of Neurology, KUMC, Kansas City, KS, United States
| | - Brian T Andrews
- Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Janna L Harris
- Department of Anatomy and Cell Biology, KUMC, Kansas City, KS, United States; Hoglund Biomedical Imaging Center, KUMC, Kansas City, KS, United States.
| |
Collapse
|
8
|
Frozandeh F, Shahrokhi N, Khaksari M, Amiresmaili S, AsadiKaram G, Shahrokhi N, Iranpour M. Evaluation of the protective effect of curcumin on encephalopathy caused by intrahepatic and extrahepatic damage in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:760-766. [PMID: 34630953 PMCID: PMC8487601 DOI: 10.22038/ijbms.2021.53171.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/08/2021] [Indexed: 11/21/2022]
Abstract
Objective(s): Along with increased intracranial pressure (ICP) and brain damage, brain edema is the most common cause of death in patients with hepatic encephalopathy. Curcumin can pass the blood-brain barrier and possesses anti-inflammatory and anti-oxidant properties. This study focuses on the curcumin protective effect on intrahepatic and extrahepatic damage in the brain. Materials and Methods: One hundred and forty-four male Albino N-Mary rats were randomly divided into 2 main groups: intrahepatic injury group and extrahepatic cholestasis group. In intra-hepatic injury group intrahepatic damage was induced by intraperitoneal (IP) injection of acetaminophen (500 mg/kg) [19] and included four subgroups: 1. Sham, 2. Acetaminophen (APAP), 3. Normal saline (Veh) which was used as curcumin solvent, and 4. Curcumin (CMN). In extrahepatic cholestasis group intrahepatic damage was caused by common bile duct litigation (BDL) and included four subgroups: 1. Sham, 2. BDL, 3. Vehicle (Veh), and 4. Curcumin (CMN). In both groups, 72 hr after induction of cholestasis, brain water content, blood-brain barrier permeability, serum ammonia, and histopathological indicators were examined and ICP was measured every 24 hr for three days. Results: The results showed that curcumin reduced brain edema, ICP, serum ammonia, and blood-brain barrier permeability after extrahepatic and intrahepatic damage. The maximum effect of curcumin on ICP was observed 72 hr after the injection. Conclusion: According to our findings, it seems that curcumin is an effective therapeutic intervention for treating encephalopathy caused by extrahepatic and intrahepatic damage.
Collapse
Affiliation(s)
- Forouzan Frozandeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Gholamreza AsadiKaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Tata S, Zusman BE, Kochanek PM, Gerzanich V, Kwon MS, Woo SK, Clark RS, Janesko-Feldman K, Vagni VA, Simard JM, Jha RM. Abcc8 (Sulfonylurea Receptor-1) Impact on Brain Atrophy after Traumatic Brain Injury Varies by Sex. J Neurotrauma 2021; 38:2473-2485. [PMID: 33940936 PMCID: PMC8403186 DOI: 10.1089/neu.2021.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Females have been understudied in pre-clinical and clinical traumatic brain injury (TBI), despite distinct biology and worse clinical outcomes versus males. Sulfonylurea receptor 1 (SUR1) inhibition has shown promising results in predominantly male TBI. A phase II trial is ongoing. We investigated whether SUR1 inhibition effects on contusional TBI differ by sex given that this may inform clinical trial design and/or interpretation. We studied the moderating effects of sex on post-injury brain tissue loss in 142 male and female ATP-binding cassette transporter subfamily C member 8 (Abcc8) wild-type, heterozygote, and knockout mice (12-15 weeks). Monkey fibroblast-like cells and mouse brain endothelium-derived cells were used for in vitro studies. Mice were injured with controlled cortical impact and euthanized 21 days post-injury to assess contusion, brain, and hemisphere volumes (vs. genotype- and sex-matched naïves). Abcc8 knockout mice had smaller contusion volumes (p = 0.012) and larger normalized contralateral (right) hemisphere volumes (nRHV; p = 0.03) after injury versus wild type. This was moderated by sex: Contusions were smaller (p = 0.020), nRHV was higher (p = 0.001), and there was less global atrophy (p = 0.003) in male, but not female, knockout versus wild-type mice after TBI. Less atrophy occurred in males for each copy of Abcc8 lost (p = 0.023-0.002, all outcomes). In vitro, sex-determining region Y (SRY) stimulated Abcc8 promoter activity and increased Abcc8 expression. Loss of Abcc8 strongly protected against post-traumatic cerebral atrophy in male, but not female, mice. This may partly be mediated by SRY on the Y-chromosome. Sex differences may have important implications for ongoing and future trials of SUR1 blockade.
Collapse
Affiliation(s)
- Swathi Tata
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin E. Zusman
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Min Seong Kwon
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent A. Vagni
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurobiology and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
10
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Tucker LB, Fu AH, McCabe JT. Hippocampal-Dependent Cognitive Dysfunction following Repeated Diffuse Rotational Brain Injury in Male and Female Mice. J Neurotrauma 2021; 38:1585-1606. [PMID: 33622092 PMCID: PMC8126427 DOI: 10.1089/neu.2021.0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive dysfunction is a common, often long-term complaint following acquired traumatic brain injury (TBI). Cognitive deficits suggest dysfunction in hippocampal circuits. The goal of the studies described here is to phenotype in both male and female mice the hippocampal-dependent learning and memory deficits resulting from TBI sustained by the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) device—a model that delivers both a contact–concussion injury as well as unrestrained rotational head movement. Mice sustained either sham procedures or four injuries (0.7 J, 24-h intervals). Spatial learning and memory skills assessed in the Morris water maze (MWM) approximately 3 weeks following injuries were significantly impaired by brain injuries; however, slower swimming speeds and poor performance on visible platform trials suggest that measurement of cognitive impairment with this test is confounded by injury-induced motor and/or visual impairments. A separate experiment confirmed hippocampal-dependent cognitive deficits with trace fear conditioning (TFC), a behavioral test less dependent on motor and visual function. Male mice had greater injury-induced deficits on both the MWM and TFC tests than female mice. Pathologically, the injury was characterized by white matter damage as observed by silver staining and glial fibrillary acidic protein (astrogliosis) in the optic tracts, with milder damage seen in the corpus callosum, and fimbria and brainstem (cerebral peduncles) of some animals. No changes in the density of GABAergic parvalbumin-expressing cells in the hippocampus, amygdala, or parietal cortex were found. This experiment confirmed significant sexually dimorphic cognitive impairments following a repeated, diffuse brain injury.
Collapse
Affiliation(s)
- Laura B Tucker
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda H Fu
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Center for Neuroscience and Regenerative Medicine, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Amirkhosravi L, Khaksari M, Sheibani V, Shahrokhi N, Ebrahimi MN, Amiresmaili S, Salmani N. Improved spatial memory, neurobehavioral outcomes, and neuroprotective effect after progesterone administration in ovariectomized rats with traumatic brain injury: Role of RU486 progesterone receptor antagonist. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:349-359. [PMID: 33995946 PMCID: PMC8087858 DOI: 10.22038/ijbms.2021.50973.11591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The contribution of classic progesterone receptors (PR) in interceding the neuroprotective efficacy of progesterone (P4) on the prevention of brain edema and long-time behavioral disturbances was assessed in traumatic brain injury (TBI). MATERIALS AND METHODS Female Wistar rats were ovariectomized and apportioned into 6 groups: sham, TBI, oil, P4, vehicle, and RU486. P4 or oil was injected following TBI. The antagonist of PR (RU486) or DMSO was administered before TBI. The brain edema and destruction of the blood-brain barrier (BBB) were determined. Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and beam walk (BW) task were evaluated previously and at various times post-trauma. Long-time locomotor and cognitive consequences were measured one day before and on days 3, 7, 14, and 21 after the trauma. RESULTS RU486 eliminated the inhibitory effects of P4 on brain edema and BBB leakage (P<0.05, P<0.001, respectively). RU486 inhibited the decremental effect of P4 on ICP as well as the increasing effect of P4 on CPP (P<0.001) after TBI. Also, RU486 inhibited the effect of P4 on the increase in traversal time and reduction in vestibulomotor score in the BW task (P<0.001). TBI induced motor, cognitive, and anxiety-like disorders, which lasted for 3 weeks after TBI; but, P4 prevented these cognitive and behavioral abnormalities (P<0.05), and RU486 opposed this P4 effect (P<0.001). CONCLUSION The classic progesterone receptors have neuroprotective effects and prevent long-time behavioral and memory deficiency after brain trauma.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Centers, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Salmani
- Department of Psychology, Genetic Institute, Islamic Azad University- Zarand Branch, Kerman, Iran
| |
Collapse
|
13
|
Kawa L, Arborelius UP, Hökfelt T, Risling M. Sex-Specific Differences in Rodents Following a Single Primary Blast Exposure: Focus on the Monoamine and Galanin Systems. Front Neurol 2020; 11:540144. [PMID: 33178100 PMCID: PMC7593658 DOI: 10.3389/fneur.2020.540144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Most blast-induced traumatic brain injuries (bTBI) are mild in severity and culpable for the lingering and persistent neuropsychological complaints in affected individuals. There is evidence that the prevalence of symptoms post-exposure may be sex-specific. Our laboratory has focused on changes in the monoamine and the neuropeptide, galanin, systems in male rodents following primary bTBI. In this study, we aimed to replicate these findings in female rodents. Brainstem sections from the locus coeruleus (LC) and dorsal raphe nuclei (DRN) were processed for in situ hybridisation at 1 and 7 days post-bTBI. We investigated changes in the transcripts for tyrosine hydroxylase (TH), tryptophan hydroxylase two (TPH2) and galanin. Like in males, we found a transient increase in TH transcript levels bilaterally in the female LC. Changes in TPH2 mRNA were more pronounced and extensive in the DRN of females compared to males. Galanin mRNA was increased bilaterally in the LC and DRN, although this increase was not apparent until day 7 in the LC. Serum analysis revealed an increase in corticosterone, but only in exposed females. These changes occurred without any visible signs of white matter injury, cell death, or blood–brain barrier breakdown. Taken together, in the apparent absence of visible structural damage to the brain, the monoamine and galanin systems, two key players in emotional regulation, are activated deferentially in males and females following primary blast exposure. These similarities and differences should be considered when developing and evaluating diagnostic and therapeutic interventions for bTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Amirkhosravi L, Khaksari M, Soltani Z, Esmaeili-Mahani S, Asadi Karam G, Hoseini M. E2-BSA and G1 exert neuroprotective effects and improve behavioral abnormalities following traumatic brain injury: The role of classic and non-classic estrogen receptors. Brain Res 2020; 1750:147168. [PMID: 33096091 DOI: 10.1016/j.brainres.2020.147168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
The role of classical and non-classical estrogen receptors (ERs) in mediating the neuroprotective effects of this hormone on brain edema and long-term behavioral disorders was evaluated after traumatic brain injury (TBI). Ovariectomized rats were divided as follows: E2 (17 β-estradiol), E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicle were injected before the induction of TBI and the injection of E2 and E2-BSA. Brain water (BWC) and Evans blue (EB) contents were measured 24 h and 5 h after TBI, respectively. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were measured before and at different times after TBI. Locomotor activity, anxiety-like behavior, and spatial memory were assessed on days 3, 7, 14, and 21 after injury. E2, E2-BSA, and G1 prevented the increase of BWC and EB content after TBI, and these effects were inhibited by ICI and G15. ICI and G15 also inhibited the beneficial effects of E2, E2-BSA on ICP, as well as CPP, after trauma. E2, E2-BSA, and G1 prevented the cognitive deficiency and behavioral abnormalities induced by TBI. Similar to the above parameters, ICI and G15 also reversed this E2 and E2-BSA effects on days 3, 7, 14, and 21. Our findings indicated that the beneficial effects of E2-BSA and E2 were inhibited by both ICI and G15, suggesting that GPER and classic ERs were involved in mediating the long-term effects of E2.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman, Iran
| | - Mohammad Khaksari
- Neuroscience and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholamreza Asadi Karam
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Hoseini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
16
|
Schizodimos T, Soulountsi V, Iasonidou C, Kapravelos N. An overview of management of intracranial hypertension in the intensive care unit. J Anesth 2020; 34:741-757. [PMID: 32440802 PMCID: PMC7241587 DOI: 10.1007/s00540-020-02795-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/09/2020] [Indexed: 12/29/2022]
Abstract
Intracranial hypertension (IH) is a clinical condition commonly encountered in the intensive care unit, which requires immediate treatment. The maintenance of normal intracranial pressure (ICP) and cerebral perfusion pressure in order to prevent secondary brain injury (SBI) is the central focus of management. SBI can be detected through clinical examination and invasive and non-invasive ICP monitoring. Progress in monitoring and understanding the pathophysiological mechanisms of IH allows the implementation of targeted interventions in order to improve the outcome of these patients. Initially, general prophylactic measures such as patient's head elevation, fever control, adequate analgesia and sedation depth should be applied immediately to all patients with suspected IH. Based on specific indications and conditions, surgical resection of mass lesions and cerebrospinal fluid drainage should be considered as an initial treatment for lowering ICP. Hyperosmolar therapy (mannitol or hypertonic saline) represents the cornerstone of medical treatment of acute IH while hyperventilation should be limited to emergency management of life-threatening raised ICP. Therapeutic hypothermia could have a possible benefit on outcome. To control elevated ICP refractory to maximum standard medical and surgical treatment, at first, high-dose barbiturate administration and then decompressive craniectomy as a last step are recommended with unclear and probable benefit on outcomes, respectively. The therapeutic strategy should be based on a staircase approach and be individualized for each patient. Since most therapeutic interventions have an uncertain effect on neurological outcome and mortality, future research should focus on both studying the long-term benefits of current strategies and developing new ones.
Collapse
Affiliation(s)
- Theodoros Schizodimos
- 2nd Department of Intensive Care Medicine, George Papanikolaou General Hospital, G. Papanikolaou Avenue, 57010, Exochi, Thessaloniki, Greece.
| | - Vasiliki Soulountsi
- 1st Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece
| | - Christina Iasonidou
- 2nd Department of Intensive Care Medicine, George Papanikolaou General Hospital, G. Papanikolaou Avenue, 57010, Exochi, Thessaloniki, Greece
| | - Nikos Kapravelos
- 2nd Department of Intensive Care Medicine, George Papanikolaou General Hospital, G. Papanikolaou Avenue, 57010, Exochi, Thessaloniki, Greece
| |
Collapse
|
17
|
Zhang Y, Chopp M, Zhang Y, Gang Zhang Z, Lu M, Zhang T, Wu KHH, Zhang L, Mahmood A, Xiong Y. Randomized controlled trial of Cerebrolysin's effects on long-term histological outcomes and functional recovery in rats with moderate closed head injury. J Neurosurg 2020; 133:1072-1082. [PMID: 31491768 DOI: 10.3171/2019.6.jns191027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The authors previously demonstrated that Cerebrolysin is effective for treatment of mild closed head injury (CHI) when administered 4 hours after injury. The aim of this study was to determine Cerebrolysin's effects on functional and histological outcomes in rats subjected to moderate CHI. METHODS In this randomized, blinded, and vehicle-controlled preclinical trial, male adult Wistar rats subjected to moderate CHI received either Cerebrolysin treatment at a dose of 2.5 ml/kg (n = 13) or vehicle (saline, n = 13) intraperitoneally administered daily for 10 days, starting at 4 hours after injury. Animals were subjected to cognitive and sensorimotor functional tests at multiple time points, and they were killed 3 months after injury. The brains were processed for analyses of neuronal cell loss, amyloid precursor protein, axonal damage, and neurogenesis. RESULTS Compared with rats treated with vehicle (saline), rats treated with Cerebrolysin had significantly increased numbers of neuroblasts and newborn mature neurons in the dentate gyrus (DG) and attenuated amyloid precursor protein accumulation and axonal damage in various brain regions, as well as decreased neuronal loss in the DG and cornu ammonis 3 (CA3) region of the hippocampus (p < 0.05). Global testing using generalized estimating equations showed a significant beneficial effect of Cerebrolysin treatment on sensorimotor functional outcomes from 1 day to 3 months after injury compared to that of saline treatment (p < 0.05). Compared with vehicle-treated rats, Cerebrolysin-treated rats showed significantly and robustly improved long-term (up to 3 months) cognitive functional recovery, as measured by social interaction, Morris water maze, novel object recognition, and odor recognition tests. In the Cerebrolysin-treated rats there were significant correlations between multiple histological outcomes and functional recovery evident 3 months after moderate CHI, as indicated by Pearson partial correlation analyses. CONCLUSIONS The authors' findings demonstrate that Cerebrolysin treatment significantly improves long-term functional and histological outcomes in rats with moderate CHI, with functional outcomes significantly correlated with histological indices of neuroplasticity and neuroprotection. These data indicate that Cerebrolysin may be useful for the treatment of moderate CHI.
Collapse
Affiliation(s)
| | - Michael Chopp
- 2Neurology, and
- 3Department of Physics, Oakland University, Rochester, Michigan
| | | | | | - Mei Lu
- 4Public Health Sciences, Henry Ford Hospital, Detroit; and
| | - Talan Zhang
- 4Public Health Sciences, Henry Ford Hospital, Detroit; and
| | - Kuan-Han H Wu
- 4Public Health Sciences, Henry Ford Hospital, Detroit; and
| | | | | | | |
Collapse
|
18
|
McCabe JT, Tucker LB. Sex as a Biological Variable in Preclinical Modeling of Blast-Related Traumatic Brain Injury. Front Neurol 2020; 11:541050. [PMID: 33101170 PMCID: PMC7554632 DOI: 10.3389/fneur.2020.541050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Approaches to furthering our understanding of the bioeffects, behavioral changes, and treatment options following exposure to blast are a worldwide priority. Of particular need is a more concerted effort to employ animal models to determine possible sex differences, which have been reported in the clinical literature. In this review, clinical and preclinical reports concerning blast injury effects are summarized in relation to sex as a biological variable (SABV). The review outlines approaches that explore the pertinent role of sex chromosomes and gonadal steroids for delineating sex as a biological independent variable. Next, underlying biological factors that need exploration for blast effects in light of SABV are outlined, including pituitary, autonomic, vascular, and inflammation factors that all have evidence as having important SABV relevance. A major second consideration for the study of SABV and preclinical blast effects is the notable lack of consistent model design—a wide range of devices have been employed with questionable relevance to real-life scenarios—as well as poor standardization for reporting of blast parameters. Hence, the review also provides current views regarding optimal design of shock tubes for approaching the problem of primary blast effects and sex differences and outlines a plan for the regularization of reporting. Standardization and clear description of blast parameters will provide greater comparability across models, as well as unify consensus for important sex difference bioeffects.
Collapse
Affiliation(s)
- Joseph T McCabe
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B Tucker
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
19
|
Stielper ZF, Fucich EA, Middleton JW, Hillard CJ, Edwards S, Molina PE, Gilpin NW. Traumatic Brain Injury and Alcohol Drinking Alter Basolateral Amygdala Endocannabinoids in Female Rats. J Neurotrauma 2020; 38:422-434. [PMID: 32838651 DOI: 10.1089/neu.2020.7175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) affects approximately 3 million Americans yearly and increases vulnerability to developing psychiatric comorbidities. Alcohol use disorder (AUD) is the most prevalent psychiatric diagnosis preceding injury and TBI may increase subsequent alcohol use. The basolateral amygdala (BLA) is a limbic structure commonly affected by TBI that is implicated in anxiety and AUD. Endocannabinoids (eCBs) regulate synaptic activity in the BLA, and BLA eCB modulation alters anxiety-like behavior and stress reactivity. Previous work from our laboratories showed that systemic eCB degradation inhibition ameliorates TBI-induced increases in anxiety-like behavior and motivation to respond for alcohol in male rats. Here, we used a lateral fluid percussion model to test moderate TBI effects on anxiety-like behavior, alcohol drinking, and eCB levels and cell signaling in BLA, as well as the effect of alcohol drinking on anxiety-like behavior and the BLA eCB system, in female rats. Our results show that TBI does not promote escalation of operant alcohol self-administration or increase anxiety-like behavior in female rats. In the BLA, TBI and alcohol drinking alter tissue amounts of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA) 1 h post-injury, and 2-AG levels remain low 11 days post-injury. Eleven days after injury, BLA pyramidal neurons were hyperexcitable, but measures of synaptic transmission and eCB signaling were unchanged. These data show that TBI impacts BLA 2-AG tissue levels, that this effect is modified by alcohol drinking, and also that TBI increases BLA cell excitability.
Collapse
Affiliation(s)
- Zachary F Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Elizabeth A Fucich
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Jason W Middleton
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Bharadwaj VN, Copeland C, Mathew E, Newbern J, Anderson TR, Lifshitz J, Kodibagkar VD, Stabenfeldt SE. Sex-Dependent Macromolecule and Nanoparticle Delivery in Experimental Brain Injury. Tissue Eng Part A 2020; 26:688-701. [PMID: 32697674 PMCID: PMC7398445 DOI: 10.1089/ten.tea.2020.0040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
The development of effective therapeutics for brain disorders is challenging, in particular, the blood-brain barrier (BBB) severely limits access of the therapeutics into the brain parenchyma. Traumatic brain injury (TBI) may lead to transient BBB permeability that affords a unique opportunity for therapeutic delivery via intravenous administration ranging from macromolecules to nanoparticles (NPs) for developing precision therapeutics. In this regard, we address critical gaps in understanding the range/size of therapeutics, delivery window(s), and moreover, the potential impact of biological factors for optimal delivery parameters. Here we show, for the first time, to the best of our knowledge, that 24-h postfocal TBI female mice exhibit a heightened macromolecular tracer and NP accumulation compared with male mice, indicating sex-dependent differences in BBB permeability. Furthermore, we report for the first time the potential to deliver NP-based therapeutics within 3 days after focal injury in both female and male mice. The delineation of injury-induced BBB permeability with respect to sex and temporal profile is essential to more accurately tailor time-dependent precision and personalized nanotherapeutics. Impact statement In this study, we identified a sex-dependent temporal profile of blood/brain barrier disruption in a preclinical mouse model of traumatic brain injury (TBI) that contributes to starkly different macromolecule and nanoparticle delivery profiles post-TBI. The implications and potential impact of this work are profound and far reaching as it indicates that a demand of true personalized medicine for TBI is necessary to deliver the right therapeutic at the right time for the right patient.
Collapse
Affiliation(s)
- Vimala N. Bharadwaj
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Connor Copeland
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Ethan Mathew
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jason Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Trent R. Anderson
- Basic Medical Sciences, University of Arizona, College of Medicine–Phoenix, Phoenix, Arizona, USA
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona, College of Medicine–Phoenix, Phoenix, Arizona, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Phoenix VA Health Care System, Phoenix, Arizona, USA
| | - Vikram D. Kodibagkar
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
21
|
Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol Teratol 2020; 81:106905. [PMID: 32534151 DOI: 10.1016/j.ntt.2020.106905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The present study was designed to clarify the effects of resveratrol (RSV) on social behavioral alterations and nociceptive reactivity in valproic acid (VPA)-induced autistic-like model in female and male rats. METHODS Pregnant Wistar rats were randomly divided in five groups. Animals received saline, DMSO, VPA, RSV and RSV + VPA. VPA was administered (600 mg/kg, i. p.) on embryonic day 12.5 (E12.5) and pretreatment by resveratrol (3.6 mg/kg, s. c.) was applied on E6.5 until E18.5. All offspring were weaned on postnatal day 21 and the experiments were done in male and female rats on day 60. Social interaction, hot plate and tail flick tests were set out to assess social deficits and pain threshold, respectively. Sociability index (SI), Social novelty index (SNI) and latency time were calculated as the standard indices of social behaviors and pain threshold, respectively. RESULTS The results indicated that systemic intraperitoneal administration of VPA (600 mg/kg) significantly decreased SI and SNI in social interaction test (SIT) especially in male rats, indicating the social impairments caused by VPA. RSV (3.6 mg/kg, s. c.) reversed VPA-induced social deficits in male rats, but not in female group. VPA administration resulted in significant increase in latency time in the hot plate and tail flick tests in male rats, whereas it had no such dramatic effect in females. RSV administration in combination with VPA had no significant effect on latency time compared to the valproic acid group in male rats. It is important to note that RSV by itself had no significant effect on SI, SNI and latency time in female and male rats. CONCLUSION It can be concluded that valproic acid produces autistic-like behaviors and increases pain threshold in male rats which may be ameliorated at least in part by resveratrol administration. Further studies are needed to elucidate the molecular mechanisms involved in valproic acid and resveratrol-induced effects.
Collapse
|
22
|
Sara S, Mohammad K, Nader S, Maryam I, Marzieh S, Elham J, Neda S. Using the NGF/IL-6 ratio as a reliable criterion to show the beneficial effects of progesterone after experimental diffuse brain injury. Heliyon 2020; 6:e03844. [PMID: 32373743 PMCID: PMC7191606 DOI: 10.1016/j.heliyon.2020.e03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
Acute progesterone injection has been shown to reduce brain edema following traumatic brain injury (TBI) due to its neuroprotective effect. We investigated the effects of sustained release of progesterone through implantation of subcutaneous capsules on rat's brain edema and alteration of cerebrospinal fluid (CSF), and serum ratio of NGF/IL-6 after TBI. This experiment was performed on ovariectomized (OVX) rats and the brain injury was induced by Marmarou's method. A high and a low dose of progesterone (HP and LP) was injected intraperitoneally two h after the brain injury. In addition, in the capsule progesterone-treated group (CP), the intervention was implemented 6 h after the brain injury. Brain edema, NGF and IL-6 biomarkers in serum and cerebrospinal fluid (CSF) were measured 48 h after the TBI in injection groups and one week after the TBI in the CP group. No significant difference was found in the two groups or in the admonition methods. After TBI, the NGF level increased and IL-6 level decreased by injection of both doses, as well as by taking the capsule. Ratio of NGF/IL-6 in CSF increased significantly by all forms of progesterone administration. The increase in the level of NGF and IL-6 after TBI was higher in CSF than in serum. These results indicated that effects of progesterone in capsule form were better than the injection form. Progesterone probably works by increasing NGF and reducing IL-6. Future studies should investigate the ratio of these biomarkers as a variable to determine the neuroprotective effects of another drug.
Collapse
Affiliation(s)
- Shirazpour Sara
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Khaksari Mohammad
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrokhi Nader
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Iranpour Maryam
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahryari Marzieh
- Department of Physiology, Neuroscience Research Center, Medical Faculty, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jafari Elham
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Salmani Neda
- Department of Psychology, Genetic Institute, Islamic Azad University of Zarand, Keman, Iran
| |
Collapse
|
23
|
Sun MK, Passaro AP, Latchoumane CF, Spellicy SE, Bowler M, Goeden M, Martin WJ, Holmes PV, Stice SL, Karumbaiah L. Extracellular Vesicles Mediate Neuroprotection and Functional Recovery after Traumatic Brain Injury. J Neurotrauma 2020; 37:1358-1369. [PMID: 31774030 DOI: 10.1089/neu.2019.6443] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lack of effective therapies for moderate-to-severe traumatic brain injuries (TBIs) leaves patients with lifelong disabilities. Neural stem cells (NSCs) have demonstrated great promise for neural repair and regeneration. However, direct evidence to support their use as a cell replacement therapy for neural injuries is currently lacking. We hypothesized that NSC-derived extracellular vesicles (NSC EVs) mediate repair indirectly after TBI by enhancing neuroprotection and therapeutic efficacy of endogenous NSCs. We evaluated the short-term effects of acute intravenous injections of NSC EVs immediately following a rat TBI. Male NSC EV-treated rats demonstrated significantly reduced lesion sizes, enhanced presence of endogenous NSCs, and attenuated motor function impairments 4 weeks post-TBI, when compared with vehicle- and TBI-only male controls. Although statistically not significant, we observed a therapeutic effect of NSC EVs on brain lesion volume, nestin expression, and behavioral recovery in female subjects. Our study demonstrates the neuroprotective and functional benefits of NSC EVs for treating TBI and points to gender-dependent effects on treatment outcomes, which requires further investigation.
Collapse
Affiliation(s)
- Min Kyoung Sun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Neuroscience Program, University of Georgia, Athens, Georgia, USA
| | - Austin P Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Neuroscience Program, University of Georgia, Athens, Georgia, USA
| | - Charles-Francois Latchoumane
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Neuroscience Program, University of Georgia, Athens, Georgia, USA
| | - Michael Bowler
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Morgan Goeden
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - William J Martin
- Animal Health Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Philip V Holmes
- Interdisciplinary Neuroscience Program, University of Georgia, Athens, Georgia, USA
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Neuroscience Program, University of Georgia, Athens, Georgia, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Neuroscience Program, University of Georgia, Athens, Georgia, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
24
|
Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J Neurotrauma 2019; 36:3063-3091. [PMID: 30794028 PMCID: PMC6818488 DOI: 10.1089/neu.2018.6171] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing recognition of the problem of male bias in neuroscience research, including in the field of traumatic brain injury (TBI) where fewer women than men are recruited to clinical trials and male rodents have predominantly been used as an experimental injury model. Despite TBI being a leading cause of mortality and disability worldwide, sex differences in pathophysiology and recovery are poorly understood, limiting clinical care and successful drug development. Given growing interest in sex as a biological variable affecting injury outcomes and treatment efficacy, there is a clear need to summarize sex differences in TBI. This scoping review presents an overview of current knowledge of sex differences in TBI and a comparison of human and animal studies. We found that overall, human studies report worse outcomes in women than men, whereas animal studies report better outcomes in females than males. However, closer examination shows that multiple factors including injury severity, sample size, and experimental injury model may differentially interact with sex to affect TBI outcomes. Additionally, we explore how sex differences in mitochondrial structure and function might contribute to possible sex differences in TBI outcomes. We propose recommendations for future investigations of sex differences in TBI, which we hope will lead to improved patient management, prognosis, and translation of therapies from bench to bedside.
Collapse
Affiliation(s)
- Raeesa Gupte
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - William Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Clinical and Translational Sciences Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel Vukas
- School of Medicine, Dykes Library of Health Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet Pierce
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- Address correspondence to: Janna Harris, PhD, Hoglund Brain Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
25
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
26
|
Greco T, Ferguson L, Giza C, Prins ML. Mechanisms underlying vulnerabilities after repeat mild traumatic brain injuries. Exp Neurol 2019; 317:206-213. [PMID: 30853388 DOI: 10.1016/j.expneurol.2019.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) has drawn national attention for its high incidence and mechanistic complexity. The majority of TBI cases are "mild" in nature including concussions and mild TBI (mTBI). Concussions are a distinct form of mTBI where diagnosis is difficult, quantification of the incidence is challenging and there is greater risk for subsequent injuries. While concussions occur in the general population, it has become a hallmark injury consistently observed among adolescent and young adult athletes and the risks for repeat TBI (rTBI) is significant. Clinical and experimental evidence shows that the magnitude and duration of deficits is dependent on the number and the interval between injuries. Several studies suggest that metabolic vulnerabilities after injury may contribute to the window for cerebral vulnerability from rTBI. In addition to metabolism, this review addresses how age, sex and hormones also play an important role in the response to repeat concussions. Understanding how these factors collectively contribute to concussion and rTBI recovery is critically important in establishing age/sex appropriate return to play guidelines, injury prevention, therapeutic interventions and mitigation of long-term consequences of rTBI.
Collapse
Affiliation(s)
- T Greco
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States
| | - L Ferguson
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States
| | - C Giza
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States
| | - M L Prins
- UCLA Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
27
|
Glushakova OY, Glushakov AV, Yang L, Hayes RL, Valadka AB. Intracranial Pressure Monitoring in Experimental Traumatic Brain Injury: Implications for Clinical Management. J Neurotrauma 2019; 37:2401-2413. [PMID: 30595079 DOI: 10.1089/neu.2018.6145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is often associated with long-term disability and chronic neurological sequelae. One common contributor to unfavorable outcomes is secondary brain injury, which is potentially treatable and preventable through appropriate management of patients in the neurosurgical intensive care unit. Intracranial pressure (ICP) is currently the predominant neurological-specific physiological parameter used to direct the care of severe TBI (sTBI) patients. However, recent clinical evidence has called into question the association of ICP monitoring with improved clinical outcome. The detailed cellular and molecular derangements associated with intracranial hypertension (IC-HTN) and their relationship to injury phenotype and neurological outcomes are not completely understood. Various animal models of TBI have been developed, but the clinical applicability of ICP monitoring in the pre-clinical setting has not been well-characterized. Linking basic mechanistic studies in translational TBI models with investigation of ICP monitoring that more faithfully replicates the clinical setting will provide clinical investigators with a more informed understanding of the pathophysiology of IC-HTN, thus facilitating development of improved therapies for sTBI patients.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Likun Yang
- Department of Neurosurgery, The 101st Hospital of Chinese People's Liberation Army, Xuxi, Jiangsu, China
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA.,Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
28
|
Gölz C, Kirchhoff FP, Westerhorstmann J, Schmidt M, Hirnet T, Rune GM, Bender RA, Schäfer MKE. Sex hormones modulate pathogenic processes in experimental traumatic brain injury. J Neurochem 2019; 150:173-187. [PMID: 30790293 DOI: 10.1111/jnc.14678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022]
Abstract
Clinical and animal studies have revealed sex-specific differences in histopathological and neurological outcome after traumatic brain injury (TBI). The impact of perioperative administration of sex steroid inhibitors on TBI is still elusive. Here, we subjected male and female C57Bl/6N mice to the controlled cortical impact (CCI) model of TBI and applied pharmacological inhibitors of steroid hormone synthesis, that is, letrozole (LET, inhibiting estradiol synthesis by aromatase) and finasteride (FIN, inhibiting dihydrotestosterone synthesis by 5α-reductase), respectively, starting 72 h prior CCI, and continuing for a further 48 h after CCI. Initial gene expression analyses showed that androgen (Ar) and estrogen receptors (Esr1) were sex-specifically altered 72 h after CCI. When examining brain lesion size, we found larger lesions in male than in female mice, but did not observe effects of FIN or LET treatment. However, LET treatment exacerbated neurological deficits 24 and 72 h after CCI. On the molecular level, FIN administration reduced calpain-dependent spectrin breakdown products, a proxy of excitotoxicity and disturbed Ca2+ homeostasis, specifically in males, whereas LET increased the reactive astrocyte marker glial fibrillary acid protein specifically in females. Examination of neurotrophins (brain-derived neurotrophic factor, neuronal growth factor, NT-3) and their receptors (p75NTR , TrkA, TrkB, TrkC) revealed CCI-induced down-regulation of TrkB and TrkC protein expression, which was reduced by LET in both sexes. Interestingly, FIN decreased neuronal growth factor mRNA expression and protein levels of its receptor TrkA only in males. Taken together, our data suggest a sex-specific impact on pathogenic processes in the injured brain after TBI. Sex hormones may thus modulate pathogenic processes in experimental TBI.
Collapse
Affiliation(s)
- Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Paul Kirchhoff
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Matthias Schmidt
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tobias Hirnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Roland A Bender
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences, Mainz, Germany.,Research Center for Immunotherapy (FZI), Mainz, Germany
| |
Collapse
|
29
|
Azizian H, Khaksari M, Asadi Karam G, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed Pharmacother 2018; 108:153-164. [PMID: 30218860 DOI: 10.1016/j.biopha.2018.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy is the most common chronic disease in postmenopausal women, but the mechanism(s) is unclear. G-protein coupled receptor 30 (GPR30) is one of the receptors that binds to 17-β Estradiol (E2). To date, there is little information on GPR30 and its expression in postmenopausal type 2 diabetes (T2D) in the heart. The current study hypothesized that GPR30 mediated cardioprotective effects of E2 in ovariectomized diabetic rats. Female ovariectomized diabetic rats were divided in nine groups: Control, Vehicle, Diabetes, Proestrous, Non-proestrous, E2, E2+Vehicle, E2+G15, and G1. G15 is a GPR30 antagonist, while G1 is an agonist of GPR30. T2D was induced by high fat diet and streptozotocin. E2, G1 and G15 were administrated for four weeks after establishment of T2D. Results showed that mean arterial pressure, fasting blood glucose and HOMA-IR in diabetic and vehicle groups were alleviated by E2 and G1, while salutary effects of E2 were inhibited by G15. Furthermore, E2 and G1 improved cardiac weight, atherogenic and cardiovascular risk indices; meanwhile G15 exacerbated cardiac weight and atherogenic indices. Also, diabetes increased cardiac levels of tumor necrosis factor-alpha and interleukin 6 and E2 only decreased interleukin 6. Significant decrement in the level of interleukin 10, and GPR30 protein were observed in diabetic group, whereas E2 and G1 increased the cardiac levels of interleukin 10, and GPR30 protein. Our study suggested that beneficial and anti-inflammatory effects of E2 on diabetic cardiomyopathy are probably mediated via non-genomic E2 pathways.
Collapse
Affiliation(s)
- Hossein Azizian
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Asadi Karam
- Department of Biochemistry, and Metabolism & Endocrinology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Sayeed I, Wali B, Guthrie DB, Saindane MT, Natchus MG, Liotta DC, Stein DG. Development of a novel progesterone analog in the treatment of traumatic brain injury. Neuropharmacology 2018; 145:292-298. [PMID: 30222982 DOI: 10.1016/j.neuropharm.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
Although systemic progesterone (PROG) treatment has been shown to be neuroprotective by many laboratories and in multiple animal models of brain injury including traumatic brain injury (TBI), PROG's poor aqueous solubility limits its potential for use as a therapeutic agent. The problem of solubility presents challenges for an acute intervention for neural injury, when getting a neuroprotectant to the brain quickly is crucial. Native PROG (nPROG) is hydrophobic and does not readily dissolve in an aqueous-based medium, so this makes it harder to give under emergency field conditions. An agent with properties similar to those of PROG but easier to store, transport, formulate, and administer early in emergency trauma situations could lead to better and more consistent clinical outcomes following TBI. At the same time, the engineering of a new molecule designed to treat a complex systemic injury must anticipate a range of translational issues including solubility and bioavailability. Here we describe the development of EIDD-1723, a novel, highly stable PROG analog with >104-fold higher aqueous solubility than that of nPROG. We think that, with further testing, EIDD-1723 could become an attractive candidate use as a field-ready treatment for TBI patients. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - Bushra Wali
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - David B Guthrie
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Michael G Natchus
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Späni CB, Braun DJ, Van Eldik LJ. Sex-related responses after traumatic brain injury: Considerations for preclinical modeling. Front Neuroendocrinol 2018; 50:52-66. [PMID: 29753798 PMCID: PMC6139061 DOI: 10.1016/j.yfrne.2018.03.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) has historically been viewed as a primarily male problem, since men are more likely to experience a TBI because of more frequent participation in activities that increase risk of head injuries. This male bias is also reflected in preclinical research where mostly male animals have been used in basic and translational science. However, with an aging population in which TBI incidence is increasingly sex-independent due to falls, and increasing female participation in high-risk activities, the attention to potential sex differences in TBI responses and outcomes will become more important. These considerations are especially relevant in designing preclinical animal models of TBI that are more predictive of human responses and outcomes. This review characterizes sex differences following TBI with a special emphasis on the contribution of the female sex hormones, progesterone and estrogen, to these differences. This information is potentially important in developing and customizing TBI treatments.
Collapse
Affiliation(s)
- Claudia B Späni
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA.
| | - David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA.
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, B481, BBSRB, 741 S. Limestone Street, Lexington, KY 40536, USA; Department of Neuroscience, College of Medicine, University of Kentucky, UK Medical Center MN 150, Lexington, KY 40536, USA.
| |
Collapse
|
32
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
33
|
Jullienne A, Salehi A, Affeldt B, Baghchechi M, Haddad E, Avitua A, Walsworth M, Enjalric I, Hamer M, Bhakta S, Tang J, Zhang JH, Pearce WJ, Obenaus A. Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury. J Neurotrauma 2018; 35:1646-1658. [PMID: 29648973 DOI: 10.1089/neu.2017.5547] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that traumatic brain injuries (TBI) alter the cerebrovasculature near the injury site in rats, followed by revascularization over a 2-week period. Here, we tested our hypothesis that male and female adult mice have differential cerebrovascular responses following a moderate controlled cortical impact (CCI). Using in vivo magnetic resonance imaging (MRI), a new technique called vessel painting, and immunohistochemistry, we found no differences between males and females in lesion volume, neurodegeneration, blood-brain barrier (BBB) alteration, and microglia activation. However, females exhibited more astrocytic hypertrophy and heme-oxygenase-1 (HO-1) induction at 1 day post-injury (dpi), whereas males presented with increased endothelial activation and expression of β-catenin, shown to be involved in angiogenesis. At 7 dpi, we observed an increase in the number of vessels and an enhancement in vessel complexity in the injured cortex of males compared with females. Cerebrovasculature recovers differently after CCI, suggesting biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Amandine Jullienne
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Arjang Salehi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Bethann Affeldt
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mohsen Baghchechi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Elizabeth Haddad
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Angela Avitua
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mark Walsworth
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Isabelle Enjalric
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mary Hamer
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Sonali Bhakta
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Jiping Tang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California
| | - John H Zhang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,3 Department of Anesthesiology, University of California Irvine , Irvine, California.,4 Department of Neurosurgery, University of California Irvine , Irvine, California
| | - William J Pearce
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,5 Center for Perinatal Biology, Loma Linda University , Loma Linda, California
| | - André Obenaus
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California.,6 Department of Pediatrics, University of California Irvine , Irvine, California
| |
Collapse
|
34
|
Clevenger AC, Kim H, Salcedo E, Yonchek JC, Rodgers KM, Orfila JE, Dietz RM, Quillinan N, Traystman RJ, Herson PS. Endogenous Sex Steroids Dampen Neuroinflammation and Improve Outcome of Traumatic Brain Injury in Mice. J Mol Neurosci 2018; 64:410-420. [PMID: 29450697 DOI: 10.1007/s12031-018-1038-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
The role of biological sex in short-term and long-term outcome after traumatic brain injury (TBI) remains controversial. The observation that exogenous female sex steroids (progesterone and estrogen) reduce brain injury coupled with a small number of clinical studies showing smaller injury in women suggest that sex steroids may play a role in outcome from TBI. We used the controlled cortical impact (CCI) model of TBI in mice to test the hypothesis that after CCI, female mice would demonstrate less injury than male mice, related to the protective role of endogenous steroids. Indeed, adult females exhibit histological protection (3.7 ± 0.5 mm3) compared to adult male mice (6.8 ± 0.6 mm3), and females that lacked sex steroids (ovex) showed increased injury compared to intact females. Consistent with histology, sensorimotor deficits measured as reduced contralateral limb use were most pronounced in male mice (31.9 ± 6.9% reduced limb use) compared to a 12.7 ± 3.8% reduction in female mice. Ovex mice exhibited behavioral deficits similar to males (31.5 ± 3.9% reduced limb use). Ovex females demonstrated increased microglial activation relative to intact females in both the peri-injury cortex and the reticular thalamic nucleus. Ovex females also demonstrated increased astrogliosis in comparison to both females and males in the peri-injury cortex. These data indicate that female sex steroids reduce brain sensitivity to TBI and that reduced acute neuroinflammation may contribute to the relative protection observed in females.
Collapse
Affiliation(s)
- Amy C Clevenger
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, 13121 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Hoon Kim
- Department of Emergency Medicine, College of Medicine, Chungbuk National University Hospital, Chung Dae Ro1, Seowon-Gu, Cheongju, Republic of Korea
| | - Ernesto Salcedo
- Department of Cell and Developmental Biology, University of Colorado Denver, Anschutz Medical Campus, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Joan C Yonchek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - Krista M Rodgers
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - Robert M Dietz
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, 13121 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - Richard J Traystman
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
Khaksari M, Hajmohammadi M, Sepehri G. The effect of angiotensin receptor type 2 inhibition and estrogen on experimental traumatic brain injury. ARCHIVES OF TRAUMA RESEARCH 2018. [DOI: 10.4103/atr.atr_51_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
37
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
38
|
Wali B, Stein DG, Sayeed I. Intralipid Vehicle Does Not Interfere with the Efficacy of Progesterone in Attenuating Edema following Traumatic Brain Injury. J Neurotrauma 2017; 34:2183-2186. [DOI: 10.1089/neu.2016.4845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| | - Donald G. Stein
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
39
|
Soltani Z, Shahrokhi N, Karamouzian S, Khaksari M, Mofid B, Nakhaee N, Reihani H. Does progesterone improve outcome in diffuse axonal injury? Brain Inj 2016; 31:16-23. [DOI: 10.1080/02699052.2016.1213421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zahra Soltani
- Physiology Research Center, Institute of Neuropharmacology, Afzalipour School of Medical, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology
| | | | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Nouzar Nakhaee
- Neuroscience Research Center, Institute of Neuropharmacology
| | | |
Collapse
|
40
|
Radabaugh HL, Carlson LJ, O'Neil DA, LaPorte MJ, Monaco CM, Cheng JP, de la Tremblaye PB, Lajud N, Bondi CO, Kline AE. Abbreviated environmental enrichment confers neurobehavioral, cognitive, and histological benefits in brain-injured female rats. Exp Neurol 2016; 286:61-68. [PMID: 27693618 DOI: 10.1016/j.expneurol.2016.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Environmental enrichment (EE) promotes behavioral recovery after experimental traumatic brain injury (TBI). However, the chronic rehabilitation provided in the laboratory is not analogous to the clinic where physiotherapy is typically limited. Moreover, females make up approximately 40% of the clinical TBI population, yet they are seldom studied in brain trauma. Hence, the goal of this study was to test the hypothesis that abbreviated EE would confer neurobehavioral, cognitive, and histological benefits in brain injured female rats. Anesthetized rats received a cortical impact of moderate-to-severe injury (2.8mm tissue deformation at 4m/s) or sham surgery and then were randomly assigned to groups receiving standard (STD) housing or 4h, 6h, or 24h of EE daily. Motor function (beam-balance/walk and rotarod) was assessed on post-operative days 1-5 and every other day from 1 to 19, respectively. Spatial learning/memory (Morris water maze) was evaluated on days 14-19, and cortical lesion volume was quantified on day 21. No statistical differences were appreciated among the sham controls in any assessment and thus the data were pooled. All EE conditions improved motor function and memory retention, but only 6h and 24h enhanced spatial learning relative to STD (p<0.05). Moreover, EE, regardless of duration reduced cortical lesion volume (p<0.05). These data confirm that abbreviated EE confers robust neurobehavioral, cognitive, and histological benefits in TBI female rats, which supports the hypothesis and strengthens the utility of EE as a pre-clinical model of neurorehabilitation.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Lauren J Carlson
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Darik A O'Neil
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Megan J LaPorte
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Christina M Monaco
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Patricia B de la Tremblaye
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social Morelia, Mexico
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
41
|
Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj 2016; 30:1293-1301. [PMID: 27712117 DOI: 10.1080/02699052.2016.1193628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After 30 years of characterisation and implementation, fluid percussion injury (FPI) is firmly recognised as one of the best-characterised reproducible and clinically relevant models of TBI, encompassing concussion through diffuse axonal injury (DAI). Depending on the specific injury parameters (e.g. injury site, mechanical force), FPI can model diffuse TBI with or without a focal component and may be designated as mild-to-severe according to the chosen mechanical forces and resulting acute neurological responses. Among FPI models, midline FPI may best represent clinical diffuse TBI, because of the acute behavioural deficits, the transition to late-onset behavioural morbidities and the absence of gross histopathology. REVIEW The goal here was to review acute and chronic physiological and behavioural deficits and morbidities associated with diffuse TBI induced by midline FPI. In the absence of neurodegenerative sequelae associated with focal injury, there is a need for biomarkers in the diagnostic, prognostic, predictive and therapeutic approaches to evaluate outcomes from TBI. CONCLUSIONS The current literature suggests that midline FPI offers a clinically-relevant, validated model of diffuse TBI to investigators wishing to evaluate novel therapeutic strategies in the treatment of TBI and the utility of biomarkers in the delivery of healthcare to patients with brain injury.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - Rachel K Rowe
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Daniel R Griffiths
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Megan N Evilsizor
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Theresa C Thomas
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - P David Adelson
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | | |
Collapse
|
42
|
Tucker LB, Burke JF, Fu AH, McCabe JT. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury. J Neurotrauma 2016; 34:890-905. [PMID: 27149139 PMCID: PMC5314988 DOI: 10.1089/neu.2016.4508] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression.
Collapse
Affiliation(s)
- Laura B Tucker
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - John F Burke
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Amanda H Fu
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Joseph T McCabe
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
43
|
Wali B, Sayeed I, Guthrie DB, Natchus MG, Turan N, Liotta DC, Stein DG. Evaluating the neurotherapeutic potential of a water-soluble progesterone analog after traumatic brain injury in rats. Neuropharmacology 2016; 109:148-158. [PMID: 27267687 DOI: 10.1016/j.neuropharm.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
Abstract
The poor aqueous solubility of progesterone (PROG) limits its potential use as a therapeutic agent. We designed and tested EIDD-1723, a novel water-soluble analog of PROG with >100-fold higher solubility than that of native PROG, as candidate for development as a field-ready treatment for traumatic brain injury (TBI). The pharmacokinetic effects of EIDD-1723 on morphological and functional outcomes in rats with bilateral cortical impact injury were evaluated. Following TBI, 10-mg/kg doses of EIDD-1723 or PROG were given intramuscularly (i.m.) at 1, 6 and 24 h post-injury, then daily for the next 6 days, with tapering of the last 2 treatments. Rats were tested pre-injury to establish baseline performance on grip strength and sensory neglect, and then retested at 4, 9 and 21 days post-TBI. Spatial learning was evaluated from days 11-17 post-TBI. At 22 days post-injury, rats were perfused and brains extracted and processed for lesion size. For the edema assay the animals were killed and brains removed at 24 h post-injury. EIDD-1723 significantly reduced cerebral edema and improved recovery from motor, sensory and spatial learning deficits as well as, or better than, native PROG. Pharmacokinetic investigation after a single i.m. injection in rats revealed that EIDD-1723 was rapidly converted to the active metabolite EIDD-036, demonstrating first-order elimination kinetics and ability to cross the blood-brain barrier. Our results suggest that EIDD-1723 represents a substantial advantage over current PROG formulations because it overcomes storage, formulation and delivery limitations of PROG and can thereby reduce the time between injury and treatment.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA.
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| | - David B Guthrie
- Emory Institute for Drug Development/Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute for Drug Development/Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Nefize Turan
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development/Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
Soltani Z, Khaksari M, Jafari E, Iranpour M, Shahrokhi N. Is genistein neuroprotective in traumatic brain injury? Physiol Behav 2015; 152:26-31. [DOI: 10.1016/j.physbeh.2015.08.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/17/2015] [Accepted: 08/29/2015] [Indexed: 01/12/2023]
|
45
|
Herrera-Melero MC, Egea-Guerrero JJ, Vilches-Arenas A, Rincón-Ferrari MD, Flores-Cordero JM, León-Carrión J, Murillo-Cabezas F. Acute predictors for mortality after severe TBI in Spain: Gender differences and clinical data. Brain Inj 2015; 29:1439-44. [DOI: 10.3109/02699052.2015.1071428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Tucker LB, Fu AH, McCabe JT. Performance of Male and Female C57BL/6J Mice on Motor and Cognitive Tasks Commonly Used in Pre-Clinical Traumatic Brain Injury Research. J Neurotrauma 2015; 33:880-94. [PMID: 25951234 DOI: 10.1089/neu.2015.3977] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability.
Collapse
Affiliation(s)
- Laura B Tucker
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Amanda H Fu
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Joseph T McCabe
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
47
|
Tan TK, Cheng MH, Sim EY. Options for managing raised intracranial pressure. PROCEEDINGS OF SINGAPORE HEALTHCARE 2015. [DOI: 10.1177/2010105815598444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This article reviews the current monitoring and management options for raised intracranial pressure (ICP), primarily in traumatic head injuries, in line with current literature and guidelines. The use of ICP monitoring is useful in managing, predicting outcomes, following the progression and guiding interventions of neurological disease states. Patients with raised ICP should be monitored closely in a neurocritical care setting where appropriate interventions can be instituted based on available monitoring parameters. Various first- and second-tier methods should be considered, with the primary goal to decrease secondary insult to brain tissue for best outcomes.
Collapse
Affiliation(s)
- Tong Khee Tan
- Department of Anaesthesiology, Singapore General Hospital, Singapore
| | - Ming Hua Cheng
- Department of Anaesthesiology, Singapore General Hospital, Singapore
| | - Eileen Yilin Sim
- Department of Anaesthesiology, Singapore General Hospital, Singapore
| |
Collapse
|
48
|
Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 2015; 24:743-60. [PMID: 25727893 PMCID: PMC4433440 DOI: 10.1517/13543784.2015.1021919] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. AREAS COVERED The following article provides an overview of select cell-based and pharmacological therapies under early development for the treatment of TBI. These therapies seek to enhance cognitive and neurological functional recovery through neuroprotective and neurorestorative strategies. EXPERT OPINION TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Hospital, Department of Neurosurgery , Education and Research Building, Room 3096, 2799 West Grand Boulevard, Detroit, MI 48202 , USA +1 313 916 4743 ; +1 313 916 9855 ;
| | | | | | | |
Collapse
|
49
|
Dehghan F, Khaksari M, Abbasloo E, Shahrokhi N. The Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat. IRANIAN BIOMEDICAL JOURNAL 2015; 19:165-71. [PMID: 26024665 PMCID: PMC4571012 DOI: 10.7508/ibj.2015.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: In previous studies, the neuroprotective effect of 17β-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17β-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into eight groups. Brain injury was induced by Marmarou’s method. Estrogen was injected 30 minutes after traumatic brain injury, and ICI 182,780 was injected before traumatic brain injury and also before estrogen treatment. In one group only ICI 182,780 was injected. The brain water content and Evans blue dye content were measured 24 and 5 hours after traumatic brain injury, respectively. The neurologic outcomes and intracranial pressure were assessed before, 4, and 24 hours after traumatic brain injury. Results: Brain water content and Evans blue content were less in estrogen-treated group comparison to vehicle group. ICI 182,780 eliminated the effects of estrogen on brain edema and brain blood barrier permeability. Intracranial pressure was increased significantly after trauma, and estrogen decreased intracranial pressure at 4 and 24 hours after traumatic brain injury in comparison to vehicle. This inhibitory effect was also eliminated by treatment with ICI182,780. ICI 182,780 also inhibited the estrogen induced increase in neurologic outcomes following traumatic brain injury. However, the use of ICI 182,780 alone had no neuroprotective effect after traumatic brain injury. Conclusion: The results suggest that classical estrogen receptors have probably a role in the neuroprotective function of estrogen following traumatic brain injury.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Physiology Research Center, Institute of Neuropharmacology and Physiology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Neuroscience Research Center, Institute of Nneuropharmacology and Physiology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology and Physiology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Institute of Neuropharmacology and Physiology Department, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
50
|
COX-2 regulation and TUNEL-positive cell death differ between genders in the secondary inflammatory response following experimental penetrating focal brain injury in rats. Acta Neurochir (Wien) 2015; 157:649-59. [PMID: 25597483 DOI: 10.1007/s00701-014-2331-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Traumatic brain injury is followed by secondary neuronal degeneration, largely dependent on an inflammatory response. This response is probably gender specific, since females are better protected than males in experimental models. The reasons are not fully known. We examined aspects of the inflammatory response following experimental TBI in male and female rats to explore possible gender differences at 24 h and 72 h after trauma, times of peak histological inflammation and neuronal degeneration. METHODS A penetrating brain injury model was used to produce penetrating focal TBI in 20 Sprague-Dawley rats, 5 males and 5 females for each time point. After 24 and 72 h the brains were removed and subjected to in situ hybridization and immunohistochemical analyses for COX-2, iNOS, osteopontin, glial fibrillary acidic protein, 3-nitrotyrosine, TUNEL and Fluoro-Jade. RESULTS COX-2 mRNA and protein levels were increased in the perilesional area compared to the uninjured contralateral side and significantly higher in males at 24 h and 72 h (p < 0.05). iNOS mRNA was significantly increased in females at 24 h (p < 0.05) although protein was not. TUNEL was increased in male rats after 24 h (p < 0.05). Glial fibrillary acidic protein, osteopontin, 3-nitrotyrosine and Fluoro-Jade stained degenerating neurons were increased in the perilesional area, showing no difference between genders. CONCLUSIONS COX-2 regulation differed between genders after TBI. The increased COX-2 expression in male rats correlated with increased apoptotic cell death detected by increased TUNEL staining at 24 h, but not with neuronal necrosis measured by Flouro-Jade. Astrogliosis and microgliosis did not differ, confirming a comparable level of trauma. The gender-specific trait of the secondary inflammatory response may be connected to prostaglandin regulation, which may partially explain gender variances in outcome after TBI.
Collapse
|