1
|
McGill CJ, White OS, Lu RJ, Sampathkumar NK, Benayoun BA. Sex-dimorphic gene regulation in murine macrophages across niches. Immunol Cell Biol 2025. [PMID: 40390161 DOI: 10.1111/imcb.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025]
Abstract
Macrophages are a key cell type of the innate immune system and are involved at all steps of inflammation: (i) they present antigens to initiate inflammation, (ii) they clear up foreign bodies through phagocytosis and (iii) they resolve inflammation by removing or deactivating mediator cells. Many subtypes of macrophages have been identified, classified by their niche and/or embryonic origin. In order to better develop therapies for conditions with macrophage dysfunction, it is crucial to decipher potential sex differences in key physiological mediators of inflammation so that treatment efficacy can be ensured regardless of biological sex. Here, we conduct a meta-analysis approach of transcriptomics data sets for male vs. female mouse macrophages across 8 niches to characterize conserved sex-dimorphic pathways in macrophages across origins and niches. For this purpose, we leveraged new and publicly available RNA-sequencing data sets from murine macrophages, preprocessed these datasets and filtered them based on objective QC criteria, and performed differential gene expression analysis using sex as the covariate of interest. Differentially expressed (DE) genes were compared across data sets and macrophage subsets, and functional enrichment analysis was performed to identify sex-specific functional differences. Consistent with their presence on the sex chromosomes, three genes were found differentially expressed across datasets (i.e. Xist, Eif2s3y and Ddx3y). More broadly, we found that female-biased pathways across niches are more consistent than male-biased pathways, specifically relating to the extracellular matrix. Our findings increase our understanding of transcriptional similarities across macrophage niches and underscore the importance of including sex as a biological variable in immune-related studies.
Collapse
Affiliation(s)
- Cassandra J McGill
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Olivia S White
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA, USA
| | - Ryan J Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nirmal K Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ding D, Yang M, Zheng X, Zhao M. Discovery of KDM5D as a novel biomarker for traumatic brain injury identified through bioinformatics analysis. Front Immunol 2025; 16:1538561. [PMID: 40196131 PMCID: PMC11973351 DOI: 10.3389/fimmu.2025.1538561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background and aim Traumatic brain injury (TBI) poses a significant burden on the global economy due to its poor treatment and prognosis. Current TBI markers do not comprehensively reflect the disease status. Therefore, identifying more meaningful biomarkers is beneficial for improving the prognosis and clinical treatment of TBI patients. Methods The gene expression profile of TBI was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were subjected to enrichment analysis, and key potential genes were identified through the protein-protein interaction network and cytoHubba modules. ROC curves were used to construct diagnostic models for hub genes. Immunofluorescence experiments were conducted to detect the expression of candidate biomarkers in TBI rat models. Finally, we investigated the expression of TBI biomarkers in normal human organs and pan-cancer tumor tissues, and evaluated their correlation with immune infiltration in different tumors. Results A total of 44 DEGs were identified across four brain regions of TBI patients. Enrichment analysis revealed that these genes were primarily involved in intracellular and cell signal transduction pathways. Furthermore, three hub genes- RPS4Y1, KDM5D and NLGN4Y-were identified through different module analysis. The ROC curve diagnostic model also confirmed that these genes also have high diagnostic value in serum. Subsequently, the presence of Kdm5d was detected in the brain tissue of TBI rats through immunofluorescence experiments. Compared to normal rats, Kdm5d expression increased in the cortical area of TBI rats, with no significant change in the hippocampus area, aligning with observations in TBI patients. Immune infiltration analysis demonstrated changes in immune cell subsets in HIP and PCx, revealing that plasma cells and CD8 T cells were lowly expressed in TBI (HIP) and while neutrophils was under-expressed in TBI (PCx). Pan-cancer analysis indicated that KDM5D was significantly up-regulated in 23 cancers, down-regulated in 3 cancers, and significantly associated with immune infiltration in 10 cancers. Conclusion Based on the results of bioinformatics analysis and animal experiments, KDM5D serves as a potential biomarker for the diagnosis and prognosis of TBI. Additionally, research on KDM5D may develop into new serum markers, providing new indicators for further clinical liquid biopsy and aiding in the prevention of both TBI and tumors to a certain extent.
Collapse
Affiliation(s)
- Dengfeng Ding
- Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Mengzhe Yang
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xinou Zheng
- Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Ming Zhao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin‐Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 PMCID: PMC11667503 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
|
4
|
Boumali R, Urli L, Naim M, Soualmia F, Kinugawa K, Petropoulos I, El Amri C. Kallikrein-related peptidase's significance in Alzheimer's disease pathogenesis: A comprehensive survey. Biochimie 2024; 226:77-90. [PMID: 38608749 DOI: 10.1016/j.biochi.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Alzheimer's disease (AD) and related dementias constitute an important global health challenge. Detailed understanding of the multiple molecular mechanisms underlying their pathogenesis constitutes a clue for the management of the disease. Kallikrein-related peptidases (KLKs), a lead family of serine proteases, have emerged as potential biomarkers and therapeutic targets in the context of AD and associated cognitive decline. Hence, KLKs were proposed to display multifaceted impacts influencing various aspects of neurodegeneration, including amyloid-beta aggregation, tau pathology, neuroinflammation, and synaptic dysfunction. We propose here a comprehensive survey to summarize recent findings, providing an overview of the main kallikreins implicated in AD pathophysiology namely KLK8, KLK6 and KLK7. We explore the interplay between KLKs and key AD molecular pathways, shedding light on their significance as potential biomarkers for early disease detection. We also discuss their pertinence as therapeutic targets for disease-modifying interventions to develop innovative therapeutic strategies aimed at halting or ameliorating the progression of AD and associated dementias.
Collapse
Affiliation(s)
- Rilès Boumali
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Laureline Urli
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Meriem Naim
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Feryel Soualmia
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Kiyoka Kinugawa
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France; AP-HP, Paris, France; Charles-Foix Hospital, Functional Exploration Unit for Older Patients, 94200 Ivry-sur-Seine, France
| | - Isabelle Petropoulos
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| |
Collapse
|
5
|
Chen C, Yuan F, Meng X, Peng F, Shao X, Wang C, Shen Y, Du H, Lv D, Zhang N, Wang X, Wang T, Wang P. Genetic biomarker prediction based on gender disparity in asthma throughout machine learning. Front Med (Lausanne) 2024; 11:1397746. [PMID: 39346946 PMCID: PMC11427272 DOI: 10.3389/fmed.2024.1397746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background Asthma is a chronic respiratory condition affecting populations worldwide, with prevalence ranging from 1-18% across different nations. Gender differences in asthma prevalence have attracted much attention. Purpose The aim of this study was to investigate biomarkers of gender differences in asthma prevalence based on machine learning. Method The data came from the gene expression omnibus database (GSE69683, GSE76262, and GSE41863), which involved in a number of 575 individuals, including 240 males and 335 females. Theses samples were divided into male group and female group, respectively. Grid search and cross-validation were employed to adjust model parameters for support vector machine, random forest, decision tree and logistic regression model. Accuracy, precision, recall, and F1 score were used to evaluate the performance of the models during the training process. After model optimization, four machine learning models were utilized to predict biomarkers of sex differences in asthma. In order to validate the accuracy of our results, we performed Wilcoxon tests on the genes expression. Result In datasets GSE76262 and GSE69683, support vector machine, random forest, logistic regression, and decision tree all achieve 100% accuracy, precision, recall, and F1 score. Our findings reveal that XIST serves as a common biomarker among the three samples, comprising a total of 575 individuals, with higher expression levels in females compared to males (p < 0.01). Conclusion XIST serves as a genetic biomarker for gender differences in the prevalence of asthma.
Collapse
Affiliation(s)
- Cai Chen
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Fenglong Yuan
- Department of Pulmonary and Critical Care Medicine, Yantai Yeda Hospital, Yantai, China
| | - Xiangwei Meng
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Fulai Peng
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Xuekun Shao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Wang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Yang Shen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Danyang Lv
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Ningling Zhang
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Xiuli Wang
- Department of Pulmonary and Critical Care Medicine, Yantai Yeda Hospital, Yantai, China
| | - Tao Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
7
|
Tian X, Zhao Z, Zhao J, Su D, He B, Shi C, Shi Y. Transcriptomic analysis to identify genes associated with hypothalamus vulnerability in aging mice with cognitive decline. Behav Brain Res 2024; 465:114943. [PMID: 38452974 DOI: 10.1016/j.bbr.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The normal aging process is accompanied by cognitive decline, and previous studies have indicated the crucial role of the hypothalamus in regulating both aging and cognition. However, the precise molecular mechanism underlying this relationship remains unclear. Therefore, this present study aimed to identify potential predictors of cognitive decline associated with aging specifically within the hypothalamus. To achieve this, we employed Morris water maze (MWM) testing to assess learning and memory differences between young and aged mice. Additionally, transcriptome sequencing was conducted on the hypothalamus of young and aged mice to identify potential genes. Subsequently, GO and KEGG analyses were performed to investigate the functions of differentially expressed genes (DEGs) and their associated biological pathways. Finally, the results obtained from sequencing analysis were further validated using qRT-PCR. Notably, MWM testing revealed a significant decrease in spatial learning and memory ability among aged mice. According to KEGG analysis, the DEGs primarily encompassed various biochemical signaling pathways related to immune system (e.g., C3; C4b; Ccl2; Ccl7; Cebpb; Clec7a; Col3a1; Cxcl10; Cxcl2; Fosb; Fosl1; Gbp5; H2-Ab1; Hspa1a; Hspa1b; Icam1; Il1b; Itga5; Itgax; Lilrb4a; Plaur; Ptprc; Serpine1; Tnfrsf10b; Tnfsf10), neurodegenerative disease (e.g., Atp2a1; Creb5; Fzd10; Hspa1a; Hspa1b; Il1b; Kcnj10; Nxf3; Slc6a3; Tubb6; Uba1y; Wnt9b), nervous system function (e.g., Chrna4; Chrna6; Creb5; Slc6a3),and aging (e.g., Creb5; Hspa1a; Hspa1b) among others. These identified genes may serve as potential predictors for cognitive function in elderly individuals and will provide a crucial foundation for further exploration into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiaofeng Tian
- Department of clinical laboratory, the Third Affiliated Hospital of Zhengzhou University. Zhengzhou, China
| | - Zhixing Zhao
- Department of clinical laboratory, the Third Affiliated Hospital of Zhengzhou University. Zhengzhou, China
| | - Jing Zhao
- Department of clinical laboratory, the Third Affiliated Hospital of Zhengzhou University. Zhengzhou, China
| | - Dongmei Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Cuige Shi
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China.
| | - Ying Shi
- Department of clinical laboratory, the Third Affiliated Hospital of Zhengzhou University. Zhengzhou, China.
| |
Collapse
|
8
|
George SA, Trampel KA, Brunner K, Efimov IR. Moderate Endurance Exercise Increases Arrhythmia Susceptibility and Modulates Cardiac Structure and Function in a Sexually Dimorphic Manner. J Am Heart Assoc 2024; 13:e033317. [PMID: 38686869 PMCID: PMC11179941 DOI: 10.1161/jaha.123.033317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Although moderate endurance exercise has been reported to improve cardiovascular health, its effects on cardiac structure and function are not fully characterized, especially with respect to sexual dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice. METHODS AND RESULTS C57BL/6J mice of both sexes were run on a treadmill for 6 weeks. ECG and echocardiography were performed every 2 weeks. After 6 weeks of exercise, mice were euthanized, and triple parametric optical mapping was performed on Langendorff perfused hearts to assess cardiac electrophysiology. Arrhythmia inducibility was tested by programmed electrical stimulation. Left ventricular tissue was fixed, and RNA sequencing was performed to determine exercise-induced transcriptional changes. Exercise-induced left ventricular dilatation was observed in female mice alone, as evidenced by increased left ventricular diameter and reduced left ventricular wall thickness. Increased cardiac output was also observed in female exercised mice but not males. Optical mapping revealed further sexual dimorphism in exercise-induced modulation of cardiac electrophysiology. In female mice, exercise prolonged action potential duration and reduced voltage-calcium influx delay. In male mice, exercise reduced the calcium decay constant, suggesting faster calcium reuptake. Exercise increased arrhythmia inducibility in both male and female mice; however, arrhythmia duration was increased only in females. Lastly, exercise-induced transcriptional changes were sex dependent: females and males exhibited the most significant changes in contractile versus metabolism-related genes, respectively. CONCLUSIONS Our data suggest that moderate endurance exercise can significantly alter multiple aspects of cardiac physiology in a sex-dependent manner. Although some of these effects are beneficial, like improved cardiac mechanical function, others are potentially proarrhythmic.
Collapse
Affiliation(s)
- Sharon A. George
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
| | - Katy Anne Trampel
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
| | - Kelsey Brunner
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
| | - Igor R. Efimov
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDC
- Department of Biomedical EngineeringNorthwestern UniversityChicagoIL
- Department of MedicineNorthwestern UniversityChicagoIL
| |
Collapse
|
9
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, Jager PD, Bennett DA, Greenwood A, Ertekin-Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale Deep Proteomic Analysis in Alzheimer's Disease Brain Regions Across Race and Ethnicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590547. [PMID: 38712030 PMCID: PMC11071432 DOI: 10.1101/2024.04.22.590547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.
Collapse
Affiliation(s)
| | - Edward J Fox
- Emory University School of Medicine, Atlanta, GA USA
| | | | - Yue Liu
- Emory University School of Medicine, Atlanta, GA USA
| | - Eric B Dammer
- Emory University School of Medicine, Atlanta, GA USA
| | - Erica Modeste
- Emory University School of Medicine, Atlanta, GA USA
| | - Duc M Duong
- Emory University School of Medicine, Atlanta, GA USA
| | - Luming Yin
- Emory University School of Medicine, Atlanta, GA USA
| | | | - Qi Guo
- Emory University School of Medicine, Atlanta, GA USA
| | - Kaiming Xu
- Emory University School of Medicine, Atlanta, GA USA
| | - Lingyan Ping
- Emory University School of Medicine, Atlanta, GA USA
| | - Joseph S Reddy
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Mariet Allen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Zachary Quicksall
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | | | | | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | | | - Xianfeng Chen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Saurabh Baheti
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Charlotte Ho
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Thuy Nguyen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Geovanna Yepez
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | | | | | - Xue Wang
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | | | | | - Thomas Beach
- Banner Sun Health Research Institute, Sun City, AR USA
| | | | - Dennis W Dickson
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelpha, PA, USA
| | - Todd E Golde
- Emory University School of Medicine, Atlanta, GA USA
| | | | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Varham Haroutunian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marla Gearing
- Emory University School of Medicine, Atlanta, GA USA
| | - James J Lah
- Emory University School of Medicine, Atlanta, GA USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL USA
| | | | - Nilüfer Ertekin-Taner
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
- Mayo Clinic Florida, Department of Neurology, Jacksonville, FL USA
| | - Allan I Levey
- Emory University School of Medicine, Atlanta, GA USA
| | - Aliza Wingo
- Emory University School of Medicine, Atlanta, GA USA
| | - Thomas Wingo
- Emory University School of Medicine, Atlanta, GA USA
| | | |
Collapse
|
10
|
Daily KP, Badr A, Eltobgy M, Estfanous S, Whitham O, Tan MH, Carafice C, Krause K, McNamara A, Hamilton K, Houle S, Gupta S, Gupta GA, Madhu S, Fitzgerald J, Saadey AA, Laster B, Yan P, Webb A, Zhang X, Pietrzak M, Kokiko-Cochran ON, Ghoneim HE, Amer AO. DNA hypomethylation promotes the expression of CASPASE-4 which exacerbates inflammation and amyloid-β deposition in Alzheimer's disease. Alzheimers Res Ther 2024; 16:29. [PMID: 38326859 PMCID: PMC10851453 DOI: 10.1186/s13195-024-01390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the USA. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release pro-inflammatory products such as IL-1β which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed reduced representation bisulfite sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed promotes the generation of IL-1β and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4 and CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-β (Aβ) and increased microglial production of IL-1β in 5xFAD mice. Utilizing RNA-sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1β from macrophages in response to cytosolic Aβ through cleavage of downstream effector Gasdermin D (GSDMD). Therefore, here we unravel the role for CASP11 and GSDMD in the generation of IL-1β in response to Aβ and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential DNA methylation in AD microglia contributes to the progression of AD pathobiology. Thus, we identify CASP4 as a potential target for immunotherapies for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Kylene P Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Michelle H Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrew McNamara
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Samuel Houle
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Spandan Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Gauruv A Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shruthi Madhu
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Abbey A Saadey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Wang Y. Erdr1 Drives Macrophage Programming via Dynamic Interplay with YAP1 and Mid1. Immunohorizons 2024; 8:198-213. [PMID: 38392560 PMCID: PMC10916360 DOI: 10.4049/immunohorizons.2400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in regulating T cells and NK cell function, its role in macrophage remains unclear. This study explored the function and mechanism of Erdr1 in macrophage inflammatory response. The data demonstrated that Erdr1 could promote anti-inflammatory cytokine production, a function that also has been reported by previous research. However, I found Erdr1 also could play a proinflammatory role. The function of Erdr1 in macrophages depends on its dose and cell density. I observed that Erdr1 expression was inhibited in M1 macrophages but was upregulated in M2 macrophages compared with unpolarized macrophages. I hypothesized that Erdr1 balances the inflammatory response by binding with distinct adaptors dependent on varying concentrations. Mechanistically, I demonstrated YAP1 and Mid1 as the two adaptor proteins of Erdr1. The Erdr1-YAP1 interaction promotes anti-inflammatory cytokine production when Erdr1 levels are elevated, whereas the Erdr1-Mid1 interaction induces proinflammatory cytokine production when Erdr1 levels are decreased. This study highlights the effects of Erdr1 on regulating cytokine production from polarized macrophages potentially by regulating YAP1 in the nonclassical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, IA City, IA
| |
Collapse
|
12
|
Daily KP, Badr A, Eltobgy M, Estfanous S, Whitham O, Tan MH, Carafice C, Krause K, McNamara A, Hamilton K, Houle S, Gupta S, Gupta GA, Madhu S, Fitzgerald J, Saadey AA, Laster B, Yan P, Webb A, Zhang X, Pietrzak M, Kokiko-Cochran ON, Ghoneim HE, Amer AO. DNA hypomethylation promotes the expression of CASPASE-4 which exacerbates neuroinflammation and amyloid-β deposition in Alzheimer's disease The Ohio State University College of Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555526. [PMID: 37693600 PMCID: PMC10491177 DOI: 10.1101/2023.08.30.555526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer's Disease (AD) is the 6th leading cause of death in the US. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release proinflammatory products such as IL-1β which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed Reduced Representation Bisulfite Sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed, can be involved in generation of IL-1β and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4, CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-β (Aβ) and increased microglial production of IL-1β in 5xFAD mice. Utilizing RNA sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1β from macrophages in response to cytosolic Aβ through cleavage of downstream effector Gasdermin D (G SDMD). We describe a role for CASP11 and GSDMD in the generation of IL-1β in response to Aβ and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential methylation in AD microglia contributes to the progression of AD pathobiology, thus identifying CASP4 as a potential target for immunotherapies for the treatment of AD.
Collapse
Affiliation(s)
- Kylene P. Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michelle H. Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrew McNamara
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Samuel Houle
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Spandan Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Gauruv A. Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shruthi Madhu
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Abbey A. Saadey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, USA; Department of Internal Medicine, The Ohio State University, USA; The Ohio State University, Columbus, OH 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Hazem E. Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Xu DH, Du JK, Liu SY, Zhang H, Yang L, Zhu XY, Liu YJ. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death Dis 2023; 14:278. [PMID: 37076499 PMCID: PMC10115824 DOI: 10.1038/s41419-023-05800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Dan-Hong Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology, Navy Medical University, Shanghai, 200433, China
| | - Jian-Kui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, China
| | - Shi-Yu Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lu Yang
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, 200433, China.
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
14
|
Cabrera Zapata LE, Garcia-Segura LM, Cambiasso MJ, Arevalo MA. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci 2022; 23:ijms232012288. [PMID: 36293143 PMCID: PMC9603441 DOI: 10.3390/ijms232012288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life. Here we will review and discuss relevant data showing how particular X- and Y-linked genes and epigenetic mechanisms controlling their expression and inheritance are involved, along with or independently of gonadal hormones, in the generation of sex differences in the brain.
Collapse
Affiliation(s)
- Lucas E. Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | | | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Correspondence: (M.J.C.); (M.A.A.)
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.J.C.); (M.A.A.)
| |
Collapse
|
15
|
Cabrera Zapata LE, Cambiasso MJ, Arevalo MA. Epigenetic modifier Kdm6a/Utx controls the specification of hypothalamic neuronal subtypes in a sex-dependent manner. Front Cell Dev Biol 2022; 10:937875. [PMID: 36268511 PMCID: PMC9577230 DOI: 10.3389/fcell.2022.937875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Kdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher Kdm6a levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus. Hypothalamic neuronal cultures were established from sex-segregated E14 mouse embryos and transfected with siRNAs to knockdown Kdm6a expression (Kdm6a-KD). We evaluated the effect of Kdm6a-KD on Ngn3 expression, a bHLH transcription factor regulating neuronal sub-specification in hypothalamus. Kdm6a-KD decreased Ngn3 expression in females but not in males, abolishing basal sex differences. Then, we analyzed Kdm6a-KD effect on Ascl1, Pomc, Npy, Sf1, Gad1, and Th expression by RT-qPCR. While Kdm6a-KD downregulated Ascl1 in both sexes equally, we found sex-specific effects for Pomc, Npy, and Th. Pomc and Th expressed higher in female than in male neurons, and Kdm6a-KD reduced their levels only in females, while Npy expressed higher in male than in female neurons, and Kdm6a-KD upregulated its expression only in females. Identical results were found by immunofluorescence for Pomc and Npy neuropeptides. Finally, using ChIP-qPCR, we found higher H3K27me3 levels at Ngn3, Pomc, and Npy promoters in male neurons, in line with Kdm6a higher expression and demethylase activity in females. At all three promoters, Kdm6a-KD induced an enrichment of H3K27me3 only in females. These results indicate that Kdm6a plays a sex-specific role in controlling the expression of transcription factors and neuropeptides critical for the differentiation of hypothalamic neuronal populations regulating food intake and energy homeostasis.
Collapse
Affiliation(s)
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Role of Nuclear-Receptor-Related 1 in the Synergistic Neuroprotective Effect of Umbilical Cord Blood and Erythropoietin Combination Therapy in Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2022; 23:ijms23052900. [PMID: 35270042 PMCID: PMC8911165 DOI: 10.3390/ijms23052900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/10/2022] Open
Abstract
Neonatal hypoxic–ischemic encephalopathy (HIE) results in neurological impairments; cell-based therapy has been suggested as a therapeutic avenue. Previous research has demonstrated the synergistically potentiated therapeutic efficacy of human umbilical cord blood (UCB) by combining recombinant human erythropoietin (EPO) treatment for recovery from HIE. However, its molecular mechanism is not entirely understood. In the present study, we analyzed the mechanisms underlying the effect of combination treatment with EPO and UCB by transcriptomic analysis, followed by gene enrichment analysis. Mouse HIE model of the neonate was prepared and randomly divided into five groups: sham, HIE, and UCB, EPO, and UCB+EPO treatments after HIE. A total of 376 genes were differentially expressed when |log2FC| ≥ 1-fold change expression values were considered to be differentially expressed between UCB+EPO and HIE. Further assessment through qRT-PCR and gene enrichment analysis confirmed the expression and correlation of its potential target, Nurr1, as an essential gene involved in the synergistic effect of the UCB+EPO combination. The results indicated the remarkable activation of Wnt/β-catenin signaling by reducing the infarct size by UCB+EPO treatment, accompanied by Nurr1 activity. In conclusion, these findings suggest that the regulation of Nurr1 through the Wnt/β-catenin pathway exerts a synergistic neuroprotective effect in UCB and EPO combination treatment.
Collapse
|
17
|
Liu W, Li N, Zhang M, Arisha AH, Hua J. The role of Eif2s3y in mouse spermatogenesis. Curr Stem Cell Res Ther 2021; 17:750-755. [PMID: 34727865 DOI: 10.2174/1574888x16666211102091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.
Collapse
Affiliation(s)
- Wenqing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig El_Sharkia 44519 . Egypt
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100 . China
| |
Collapse
|
18
|
X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell Mol Life Sci 2021; 78:7043-7060. [PMID: 34633482 PMCID: PMC8558156 DOI: 10.1007/s00018-021-03945-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022]
Abstract
Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17β-estradiol treatment in culture. Kdm6a pharmacological blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization.
Collapse
|
19
|
Zhang M, Zhou Y, Jiang Y, Lu Z, Xiao X, Ning J, Sun H, Zhang X, Luo H, Can D, Lu J, Xu H, Zhang YW. Profiling of Sexually Dimorphic Genes in Neural Cells to Identify Eif2s3y, Whose Overexpression Causes Autism-Like Behaviors in Male Mice. Front Cell Dev Biol 2021; 9:669798. [PMID: 34307355 PMCID: PMC8292149 DOI: 10.3389/fcell.2021.669798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Many neurological disorders exhibit sex differences and sex-specific therapeutic responses. Unfortunately, significant amounts of studies investigating molecular and cellular mechanisms underlying these neurological disorders use primary cell cultures with undetermined sexes; and this may be a source for contradictory results among different studies and impair the validity of study conclusion. Herein, we comprehensively compared sexual dimorphism of gene expression in primary neurons, astrocytes, and microglia derived from neonatal mouse brains. We found that overall sexually dimorphic gene numbers were relatively low in these primary cells, with microglia possessing the most (264 genes), neurons possessing the medium (69 genes), and astrocytes possessing the least (30 genes). KEGG analysis indicated that sexually dimorphic genes in these three cell types were strongly enriched for the immune system and immune-related diseases. Furthermore, we identified that sexually dimorphic genes shared by these primary cells dominantly located on the Y chromosome, including Ddx3y, Eif2s3y, Kdm5d, and Uty. Finally, we demonstrated that overexpression of Eif2s3y increased synaptic transmission specifically in male neurons and caused autism-like behaviors specifically in male mice. Together, our results demonstrate that the sex of primary cells should be considered when these cells are used for studying the molecular mechanism underlying neurological disorders with sex-biased susceptibility, especially those related to immune dysfunction. Moreover, our findings indicate that dysregulation of sexually dimorphic genes on the Y chromosome may also result in autism and possibly other neurological disorders, providing new insights into the genetic driver of sex differences in neurological disorders.
Collapse
Affiliation(s)
- Muxian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yunqiang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yiru Jiang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Emergency Department, Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Zhancheng Lu
- Institute of Chemistry, University of Vienna, Vienna, Austria
| | - Xiaoxia Xiao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhuan Ning
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jinsheng Lu
- Emergency Department, Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute for Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Inglis A, Ubungen R, Farooq S, Mata P, Thiam J, Saleh S, Shibin S, Al-Mohanna FA, Collison KS. Strain-based and sex-biased differences in adrenal and pancreatic gene expression between KK/HlJ and C57BL/6 J mice. BMC Genomics 2021; 22:180. [PMID: 33711921 PMCID: PMC7953684 DOI: 10.1186/s12864-021-07495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/26/2021] [Indexed: 11/15/2022] Open
Abstract
Background The ever-increasing prevalence of diabetes and associated comorbidities serves to highlight the necessity of biologically relevant small-animal models to investigate its etiology, pathology and treatment. Although the C57BL/6 J model is amongst the most widely used mouse model due to its susceptibility to diet-induced obesity (DIO), there are a number of limitations namely [1] that unambiguous fasting hyperglycemia can only be achieved via dietary manipulation and/or chemical ablation of the pancreatic beta cells. [2] Heterogeneity in the obesogenic effects of hypercaloric feeding has been noted, together with sex-dependent differences, with males being more responsive. The KK mouse strain has been used to study aspects of the metabolic syndrome and prediabetes. We recently conducted a study which characterized the differences in male and female glucocentric parameters between the KK/HlJ and C57BL/6 J strains as well as diabetes-related behavioral differences (Inglis et al. 2019). In the present study, we further characterize these models by examining strain- and sex-dependent differences in pancreatic and adrenal gene expression using Affymetrix microarray together with endocrine-associated serum analysis. Results In addition to strain-associated differences in insulin tolerance, we found significant elevations in KK/HlJ mouse serum leptin, insulin and aldosterone. Additionally, glucagon and corticosterone were elevated in female mice of both strains. Using 2-factor ANOVA and a significance level set at 0.05, we identified 10,269 pancreatic and 10,338 adrenal genes with an intensity cut-off of ≥2.0 for all 4 experimental groups. In the pancreas, gene expression upregulated in the KK/HlJ strain related to increased insulin secretory granule biofunction and pancreatic hyperplasia, whereas ontology of upregulated adrenal differentially expressed genes (DEGs) related to cell signaling and neurotransmission. We established a network of functionally related DEGs commonly upregulated in both endocrine tissues of KK/HlJ mice which included the genes coding for endocrine secretory vesicle biogenesis and regulation: PCSK2, PCSK1N, SCG5, PTPRN, CHGB and APLP1. We also identified genes with sex-biased expression common to both strains and tissues including the paternally expressed imprint gene neuronatin. Conclusion Our novel results have further characterized the commonalities and diversities of pancreatic and adrenal gene expression between the KK/HlJ and C57BL/6 J strains as well as differences in serum markers of endocrine physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07495-4.
Collapse
Affiliation(s)
- Angela Inglis
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Rosario Ubungen
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Sarah Farooq
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Princess Mata
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Jennifer Thiam
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Soad Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Sherin Shibin
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Kate S Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
21
|
Pereira LDS, Gobbo DR, Ferreira JGP, Horta-Junior JDADCE, Sá SI, Bittencourt JC. Effects of ovariectomy on inputs from the medial preoptic area to the ventromedial nucleus of the hypothalamus of young adult rats. J Anat 2021; 238:467-479. [PMID: 32914872 PMCID: PMC7812137 DOI: 10.1111/joa.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/03/2023] Open
Abstract
Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.
Collapse
Affiliation(s)
- Laís da Silva Pereira
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Denise Ribeiro Gobbo
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | | | | | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Medicine, CINTESIS, Centre for Health Technology and Services Research, University of Porto, Porto, Portugal
| | - Jackson Cioni Bittencourt
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
- Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Fels JA, Casalena GA, Manfredi G. Sex and oestrogen receptor β have modest effects on gene expression in the mouse brain posterior cortex. Endocrinol Diabetes Metab 2021; 4:e00191. [PMID: 33532622 PMCID: PMC7831211 DOI: 10.1002/edm2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Sex differences in brain cortical function affect cognition, behaviour and susceptibility to neural diseases, but the molecular basis of sexual dimorphism in cortical function is still largely unknown. Oestrogen and oestrogen receptors (ERs), specifically ERβ, the most abundant ER in the cortex, may play a role in determining sex differences in gene expression, which could underlie functional sex differences. However, further investigation is needed to address brain region specificity of the effects of sex and ERβ on gene expression. The goal of this study was to investigate sex differences in gene expression in the mouse posterior cortex, where sex differences in transcription have never been examined, and to determine how genetic ablation of ERβ affects transcription. Methods In this study, we performed unbiased transcriptomics on RNA from the posterior cortex of adult wild-type and ERβ knockout mice (n = 4/sex/genotype). We used unbiased clustering to analyse whole-transcriptome changes between the groups. We also performed differential expression analysis on the data using DESeq2 to identify specific changes in gene expression. Results We found only 27 significantly differentially expressed genes (DEGs) in wild-type (WT) males vs females, of which 17 were autosomal genes. Interestingly, in ERβKO males vs females all the autosomal DEGs were lost. Gene Ontology analysis of the subset of DEGs with sex differences only in the WT cortex revealed a significant enrichment of genes annotated with the function 'cation channel activity'. Moreover, within each sex we found only a few DEGs in ERβKO vs WT mice (8 and 5 in males and females, respectively). Conclusions Overall, our results suggest that in the adult mouse posterior cortex there are surprisingly few sex differences in gene expression, and those that exist are mainly related to cation channel activity. Additionally, they indicate that brain region-specific functional effects of ERβ may be largely post-transcriptional.
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
23
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
24
|
Melo L, Tilmant K, Hagar A, Klaunig JE. Effect of endurance exercise training on liver gene expression in male and female mice. Appl Physiol Nutr Metab 2020; 46:356-367. [PMID: 33052711 DOI: 10.1139/apnm-2020-0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Karen Tilmant
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Amit Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, Bloomington, IN 47405, USA.,Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Ewald AC, Kiernan EA, Roopra AS, Radcliff AB, Timko RR, Baker TL, Watters JJ. Sex- and Region-Specific Differences in the Transcriptomes of Rat Microglia from the Brainstem and Cervical Spinal Cord. J Pharmacol Exp Ther 2020; 375:210-222. [PMID: 32661056 PMCID: PMC7569313 DOI: 10.1124/jpet.120.266171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The neural control system underlying breathing is sexually dimorphic with males being more vulnerable to dysfunction. Microglia also display sex differences, and their role in the architecture of brainstem respiratory rhythm circuitry and modulation of cervical spinal cord respiratory plasticity is becoming better appreciated. To further understand the molecular underpinnings of these sex differences, we performed RNA sequencing of immunomagnetically isolated microglia from brainstem and cervical spinal cord of adult male and female rats. We used various bioinformatics tools (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, STRING, MAGICTRICKS) to functionally categorize identified gene sets, as well as to pinpoint common transcriptional gene drivers that may be responsible for the observed transcriptomic differences. We found few sex differences in the microglial transcriptomes derived from the brainstem, but several hundred genes were differentially expressed by sex in cervical spinal microglia. Comparing brainstem and spinal microglia within and between sexes, we found that the major factor guiding transcriptomic differences was central nervous system (CNS) location rather than sex. We further identified key transcriptional drivers that may be responsible for the transcriptomic differences observed between sexes and CNS regions; enhancer of zeste homolog 2 emerged as the predominant driver of the differentially downregulated genes. We suggest that functional gene alterations identified in metabolism, transcription, and intercellular communication underlie critical microglial heterogeneity and sex differences in CNS regions that contribute to respiratory disorders categorized by dysfunction in neural control. These data will also serve as an important resource data base to advance our understanding of innate immune cell contributions to sex differences and the field of respiratory neural control. SIGNIFICANCE STATEMENT: The contributions of central nervous system (CNS) innate immune cells to sexually dimorphic differences in the neural circuitry controlling breathing are poorly understood. We identify key transcriptomic differences, and their transcriptional drivers, in microglia derived from the brainstem and the C3-C6 cervical spinal cord of healthy adult male and female rats. Gene alterations identified in metabolism, gene transcription, and intercellular communication likely underlie critical microglial heterogeneity and sex differences in these key CNS regions that contribute to the neural control of breathing.
Collapse
Affiliation(s)
- Andrea C Ewald
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Kiernan
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar S Roopra
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Abigail B Radcliff
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Rebecca R Timko
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Tracy L Baker
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J Watters
- Departments of Comparative Biosciences (A.C.E., E.A.K., A.B.R., R.R.T., T.L.B., J.J.W.) and Neuroscience (A.S.R.), University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
26
|
Buchmann GK, Schürmann C, Warwick T, Schulz MH, Spaeth M, Müller OJ, Schröder K, Jo H, Weissmann N, Brandes RP. Deletion of NoxO1 limits atherosclerosis development in female mice. Redox Biol 2020; 37:101713. [PMID: 32949971 PMCID: PMC7502371 DOI: 10.1016/j.redox.2020.101713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Oxidative stress is a risk factor for atherosclerosis. NADPH oxidases of the Nox family produce ROS but their contribution to atherosclerosis development is less clear. Nox2 promotes and Nox4 rather limits atherosclerosis. Although Nox1 with its cytosolic co-factors are largely expressed in epithelial cells, a role for Nox1 for atherosclerosis development was suggested. To further define the role of this homologue, the role of its essential cytosolic cofactor, NoxO1, was determined for atherosclerosis development with the aid of knockout mice. METHODS AND RESULTS Wildtype (WT) and NoxO1 knockout mice were treated with high fat diet and adeno-associated virus (AAV) overexpressing pro-protein convertase subtilisin/kexin type 9 (PCSK9) to induce hepatic low-density lipoprotein (LDL) receptor loss. As a result, massive hypercholesterolemia was induced and spontaneous atherosclerosis developed within three month. Deletion of NoxO1 reduced atherosclerosis formation in brachiocephalic artery and aortic arch in female but not male NoxO1-/- mice as compared to WT littermates. This was associated with a reduced pro-inflammatory cytokine signature in the plasma of female but not male NoxO1-/- mice. MACE-RNAseq of the vessel did not reveal this signature and the expression of the Nox1/NoxO1 system was low to not detectable. CONCLUSIONS The scaffolding protein NoxO1 plays some role in atherosclerosis development in female mice probably by attenuating the global inflammatory burden.
Collapse
Affiliation(s)
- Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Tim Warwick
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Marcel H Schulz
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; Institute for Cardiovascular Regeneration, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Ludwigstraße 23, 35390, Gießen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany.
| |
Collapse
|
27
|
Kurihara M, Kato K, Sanbo C, Shigenobu S, Ohkawa Y, Fuchigami T, Miyanari Y. Genomic Profiling by ALaP-Seq Reveals Transcriptional Regulation by PML Bodies through DNMT3A Exclusion. Mol Cell 2020; 78:493-505.e8. [PMID: 32353257 DOI: 10.1016/j.molcel.2020.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Abstract
The promyelocytic leukemia (PML) body is a phase-separated nuclear structure physically associated with chromatin, implying its crucial roles in genome functions. However, its role in transcriptional regulation is largely unknown. We developed APEX-mediated chromatin labeling and purification (ALaP) to identify the genomic regions proximal to PML bodies. We found that PML bodies associate with active regulatory regions across the genome and with ∼300 kb of the short arm of the Y chromosome (YS300) in mouse embryonic stem cells. The PML body association with YS300 is essential for the transcriptional activity of the neighboring Y-linked clustered genes. Mechanistically, PML bodies provide specific nuclear spaces that the de novo DNA methyltransferase DNMT3A cannot access, resulting in the steady maintenance of a hypo-methylated state at Y-linked gene promoters. Our study underscores a new mechanism for gene regulation in the 3D nuclear space and provides insights into the functional properties of nuclear structures for genome function.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan
| | - Kagayaki Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan
| | - Chiaki Sanbo
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, Hayama, 240-0193, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Takeshi Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Yusuke Miyanari
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, Hayama, 240-0193, Japan.
| |
Collapse
|
28
|
Camsari C, Folger JK, Rajput SK, McGee D, Latham KE, Smith GW. Transgenerational Effects of Periconception Heavy Metal Administration on Adipose Weight and Glucose Homeostasis in Mice at Maturity. Toxicol Sci 2020; 168:610-619. [PMID: 30629257 DOI: 10.1093/toxsci/kfz008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that periconception maternal administration (2 mg/kg body weight each) of cadmium chloride (CdCl2) plus methylmercury (II) chloride (CH3HgCl) impaired glucose homeostasis and increased body weights and abdominal adipose tissue weight of male offspring in the F1 generation. However, transgenerational effects of this exposure have not been studied. Therefore, the effects of periconception Cd+Hg administration on indices of chronic diseases at adulthood in F2-F4 generations were examined. Male and female progeny of Cd+Hg periconceptionally treated females, and offspring of vehicle control females were bred with naïve CD1 mice to obtain F2 offspring, with additional crosses as above to the F4 generation (F1-F4 animals were not administered Cd+Hg). Birth weights and litter size were similar in all generations. Indices of impaired glucose homeostasis were observed in matrilineally descended F2 male offspring, including reduced glucose tolerance, along with increased basal phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307 suggesting altered insulin signaling. Reduced glucose tolerance was also seen in F4 males. Increased body weight and/or abdominal adiposity were observed through the F4 generation in males descended matrilineally from the treated female progenitors. Patrilineally derived F2 females displayed reduced glucose tolerance. Females (F2) patrilineally and matrilineally derived displayed significant kidney enlargement. Periconception administration of cadmium and mercury caused persistent transgenerational effects in offspring through the F4 generation in the absence of continued toxicant exposure, with persistent transgenerational effects inherited specifically through the matrilineal germline.
Collapse
Affiliation(s)
- Cagri Camsari
- Laboratory of Mammalian Reproductive Biology and Genomics.,Department of Animal Science, Michigan State University, East Lansing, Michigan 48824.,Innovative Food Technologies Development Application and Research Center, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics.,Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics.,Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Devin McGee
- Laboratory of Mammalian Reproductive Biology and Genomics.,Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824.,Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics.,Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
29
|
Pompili A, Iorio C, Gasbarri A. Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Gegenhuber B, Tollkuhn J. Signatures of sex: Sex differences in gene expression in the vertebrate brain. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e348. [PMID: 31106965 PMCID: PMC6864223 DOI: 10.1002/wdev.348] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Sex Determination.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
31
|
Waiho K, Fazhan H, Zhang Y, Li S, Zhang Y, Zheng H, Ikhwanuddin M, Ma H. Comparative profiling of ovarian and testicular piRNAs in the mud crab Scylla paramamosain. Genomics 2020; 112:323-331. [DOI: 10.1016/j.ygeno.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
|
32
|
Le Dieu-Lugon B, Dupré N, Legouez L, Leroux P, Gonzalez BJ, Marret S, Leroux-Nicollet I, Cleren C. Why considering sexual differences is necessary when studying encephalopathy of prematurity through rodent models. Eur J Neurosci 2019; 52:2560-2574. [PMID: 31885096 DOI: 10.1111/ejn.14664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
Preterm birth is a high-risk factor for the development of gray and white matter abnormalities, referred to as "encephalopathy of prematurity," that may lead to life-long motor, cognitive, and behavioral impairments. The prevalence and clinical outcomes of encephalopathy of prematurity differ between sexes, and elucidating the underlying biological basis has become a high-priority challenge. Human studies are often limited to assessment of brain region volumes by MRI, which does not provide much information about the underlying mechanisms of lesions related to very preterm birth. However, models using KO mice or pharmacological manipulations in rodents allow relevant observations to help clarify the mechanisms of injury sustaining sex-differential vulnerability. This review focuses on data obtained from mice aged P1-P5 or rats aged P3 when submitted to cerebral damage such as hypoxia-ischemia, as their brain lesions share similarities with lesion patterns occurring in very preterm human brain, before 32 gestational weeks. We first report data on the mechanisms underlying the development of sexual brain dimorphism in rodent, focusing on the hippocampus. In the second part, we describe sex specificities of rodent models of encephalopathy of prematurity (RMEP), focusing on mechanisms underlying differences in hippocampal vulnerability. Finally, we discuss the relevance of these RMEP. Together, this review highlights the need to systematically search for potential effects of sex when studying the mechanisms underlying deficits in RMEP in order to design effective sex-specific medical interventions in human preterms.
Collapse
Affiliation(s)
- Bérénice Le Dieu-Lugon
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Nicolas Dupré
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Lou Legouez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Philippe Leroux
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Bruno J Gonzalez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Stéphane Marret
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France.,Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Isabelle Leroux-Nicollet
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Carine Cleren
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| |
Collapse
|
33
|
Tsai HW, Franklin M, Armoskus C, Taniguchi S, Moder C, Trang K, Santacruz M, Milla A. Androgenic regulation of sexually dimorphic expression of RNA binding motif protein 48 in the developing mouse cortex and hippocampus. Int J Dev Neurosci 2019; 78:33-44. [PMID: 31400491 PMCID: PMC6897302 DOI: 10.1016/j.ijdevneu.2019.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
To further reveal the molecular mechanism underlying sexual differentiation of the mouse cerebral cortex and hippocampus, we reanalyzed our previous microarray study with Gene Ontology (GO) term enrichment and found that the GO term "RNA binding" was over-represented among the 89 sexually dimorphic candidate genes. Thus, we selected 16 autosomal genes annotated to the term RNA binding and profiled their mRNA expression in the developing male and female mouse cortex/hippocampus. During the first three weeks after birth, sex differences in mRNA levels of Khdrbs2, Nanos2, Rbm48, and Tdrd3 were observed in the mouse cortex/hippocampus. Of these genes, only the female-biased expression of Rbm48 in neonates was abolished by prenatal exposure to testosterone propionate (TP), while postnatal treatment of TP three weeks after birth increased Rbm48 and Tdrd3 mRNA levels in both sexes. Regardless of sex, the postnatal cortex/hippocampus also showed a marked increase in the content of androgen receptor (Ar) and estrogen receptor β (Esr2), but a decrease in estrogen receptor α (Esr1) and aromatase (Cyp19a1), which might confer the different responses of Rbm48 to prenatal and postnatal TP. Our results suggest that androgen-regulated, sexually dimorphic Rbm48 expression might present a novel molecular mechanism by which perinatal androgens control development of sexual dimorphism in cortical and hippocampal structure and function.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Michael Franklin
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Chris Armoskus
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Saori Taniguchi
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Courtney Moder
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Kathy Trang
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Marilisa Santacruz
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Allyson Milla
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
34
|
Chucair-Elliott AJ, Ocanas SR, Stanford DR, Hadad N, Wronowski B, Otalora L, Stout MB, Freeman WM. Tamoxifen induction of Cre recombinase does not cause long-lasting or sexually divergent responses in the CNS epigenome or transcriptome: implications for the design of aging studies. GeroScience 2019; 41:691-708. [PMID: 31493147 PMCID: PMC6885072 DOI: 10.1007/s11357-019-00090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
The systemic delivery of tamoxifen (Tam) to activate inducible CreERT2-loxP transgenic mouse systems is now widely used in neuroscience studies. This critical technological advancement allows temporal control of DNA-cre recombination, avoidance of embryonically lethal phenotypes, and minimization of residual cell labeling encountered in constitutively active drivers. Despite its advantages, the use of Tam has the potential to cause long-lasting, uncharacterized side effects on the transcriptome and epigenome in the CNS, given its mixed estrogen receptor (ER) agonist/antagonist actions. With the welcome focus on including both sexes in biomedical studies and efforts to understand sex differences, Tam administration could also cause sexually divergent responses that would confound studies. To examine these issues, epigenetic and transcriptomic profiles were compared in C57BL/6 J female and male hippocampus, cortex, and retina 1 month after a 5-day Tam treatment typical for cre induction, or vehicle control (sunflower seed oil). Cytosine methylation and hydroxymethylation levels, in both CG and non-CG contexts, were unchanged as determined by oxidative bisulfite sequencing. Long-lasting Tam transcriptomic effects were also not evident/minimal. Furthermore, there is no evidence of sexually divergent responses with Tam administration and Tam did not alter sex differences evident in controls. Combined with recently reported data that Tam alone does not cause long-lasting changes in behavior and neurogenesis, our findings provide confidence that Tam can be used as a cre-recombinase inducer without introducing significant confounds in transcriptomic and epigenomic neuroscience studies, particularly those focused on genomic and transcriptomic aspects of the aging brain.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocanas
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin Wronowski
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
35
|
Patil M, Belugin S, Mecklenburg J, Wangzhou A, Paige C, Barba-Escobedo PA, Boyd JT, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin Regulates Pain Responses via a Female-Selective Nociceptor-Specific Mechanism. iScience 2019; 20:449-465. [PMID: 31627131 PMCID: PMC6818331 DOI: 10.1016/j.isci.2019.09.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Many clinical and preclinical studies report an increased prevalence and severity of chronic pain among females. Here, we identify a sex-hormone-controlled target and mechanism that regulates dimorphic pain responses. Prolactin (PRL), which is involved in many physiologic functions, induces female-specific hyperalgesia. A PRL receptor (Prlr) antagonist in the hind paw or spinal cord substantially reduced hyperalgesia in inflammatory models. This effect was mimicked by sensory neuronal ablation of Prlr. Although Prlr mRNA is expressed equally in female and male peptidergic nociceptors and central terminals, Prlr protein was found only in females and PRL-induced excitability was detected only in female DRG neurons. PRL-induced excitability was reproduced in male Prlr+ neurons after prolonged treatment with estradiol but was prevented with addition of a translation inhibitor. We propose a novel mechanism for female-selective regulation of pain responses, which is mediated by Prlr signaling in sensory neurons via sex-dependent control of Prlr mRNA translation. Local or spinal PRL injection induces hyperalgesia in a female-selective manner Sensory neuron Prlr regulates tissue injury-induced pain only in females PRL regulates excitability in Prlr+ neurons depending on sex and estrogen Regulation of Prlr translation defines female-selective neuronal excitability
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Molecular Pharmacology and Physiology, University South Florida (USF), Tampa, FL 33612, USA
| | - Sergei Belugin
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jennifer Mecklenburg
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Priscilla A Barba-Escobedo
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jacob T Boyd
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - David Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.
| | - Armen N Akopian
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
36
|
Xing Y, Zheng X, Fu Y, Qi J, Li M, Ma M, Wang S, Li S, Zhu D. Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension. Mol Ther 2019; 27:2166-2181. [PMID: 31477557 DOI: 10.1016/j.ymthe.2019.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 01/22/2023] Open
Abstract
The expression and function of long noncoding RNAs (lncRNAs) in the development of hypoxic pulmonary hypertension (HPH), especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs), are largely unknown. Herein, we examined the expression and role of lncRNA-maternally expressed gene 3 (lncRNA-MEG3) in HPH. lncRNA-MEG3 was significantly increased and primarily localized in the cytoplasm of hypoxic PASMCs. lncRNA-MEG3 knockdown by lung-specific delivery of small interfering RNAs (siRNAs) significantly inhibited the development of HPH in vivo. Silencing of lncRNA-MEG3 by siRNAs and gapmers attenuated proliferation and cell-cycle progression in both PASMCs from idiopathic pulmonary arterial hypertension (iPAH) patients (iPAH-PASMCs) and hypoxia-exposed PASMCs in vitro. Mechanistically, we found that lncRNA-MEG3 interacts with and leads to the degradation of microRNA-328-3p (miR-328-3p), leading to upregulation of insulin-like growth factor 1 receptor (IGF1R). Additionally, higher expression of lncRNA-MEG3 and IGF1R and lower expression of miR-328-3p were observed in iPAH-PASMCs and relevant HPH models. These data provide insights into the contribution of lncRNA-MEG3 to HPH. Upregulation of lncRNA-MEG3 sequesters cytoplasmic miR-328-3p, eventually leading to expression of IGF1R, revealing a regulatory mechanism by lncRNAs in hypoxia-induced PASMC proliferation.
Collapse
Affiliation(s)
- Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiaodong Zheng
- Department of Genetics and Cell Biology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China.
| | - Yao Fu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China
| | - Jing Qi
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China; Department of Pharmaceutical, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Minghui Li
- Department of Pharmaceutical, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Mingfei Ma
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China
| | - Shuang Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shuzhen Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China; Central Laboratory of Harbin Medical University-Daqing, Daqing 163319, P.R. China; State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing 163319, P.R. China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, P.R. China.
| |
Collapse
|
37
|
McCallum-Loudeac J, Anderson G, Wilson MJ. Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. J Mol Neurosci 2019; 69:419-432. [PMID: 31267314 DOI: 10.1007/s12031-019-01371-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The spinal cord is essential for neuronal communication between the brain and rest of the body. To gain further insight into the molecular changes underpinning maturation of the mouse spinal cord, we analysed gene expression differences between 4 weeks of age (prior to puberty onset) and adulthood (8 weeks). We found 800 genes were significantly differentially expressed between juvenile and adult spinal cords. Gene ontology analysis revealed an overrepresentation of genes with roles in myelination and signal transduction among others. The expression of a further 19 genes was sexually dimorphic; these included both autosomal and sex-linked genes. Given the presence of steroid hormone receptors in the spinal cord, we also looked at the impact of two major steroid hormones, oestradiol and dihydrotestosterone (DHT) on spinal cord gene expression for selected genes. In gonadectomised male animals, implants with oestradiol and DHT produced significant changes to spinal cord gene expression. This study provides an overview of the global gene expression changes that occur as the spinal cord matures, over a key period of maturation. This confirms that both age and sex are important considerations in studies involving the spinal cord.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Greg Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
38
|
Abstract
Supplemental Digital Content is Available in the Text. Glial inhibitors only reverse mechanical hypersensitivity in male mice subjected to arthritis. No obvious arthritis-related transcriptional difference was identified between male and female spinal microglia. Recent studies have suggested a sexually dimorphic role of spinal glial cells in the maintenance of mechanical hypersensitivity in rodent models of chronic pain. We have used the collagen antibody–induced arthritis (CAIA) mouse model to examine differences between males and females in the context of spinal regulation of arthritis-induced pain. We have focused on the late phase of this model when joint inflammation has resolved, but mechanical hypersensitivity persists. Although the intensity of substance P, calcitonin gene–related peptide, and galanin immunoreactivity in the spinal cord was not different from controls, the intensity of microglia (Iba-1) and astrocyte (glial fibrillary acidic protein) markers was elevated in both males and females. Intrathecal administration of the glial inhibitors minocycline and pentoxifylline reversed mechanical thresholds in male, but not in female mice. We isolated resident microglia from the lumbar dorsal horns and observed a significantly lower number of microglial cells in females by flow cytometry analysis. However, although genome-wide RNA sequencing results pointed to several transcriptional differences between male and female microglia, no convincing differences were identified between control and CAIA groups. Taken together, these findings suggest that there are subtle sex differences in microglial expression profiles independent of arthritis. Our experiments failed to identify the underlying mRNA correlates of microglial actions in the late phase of the CAIA model. It is likely that transcriptional changes are either subtle and highly localised and therefore difficult to identify with bulk isolation techniques or that other factors, such as changes in protein expression or epigenetic modifications, are at play.
Collapse
|
39
|
Kvello AMS, Andersen JM, Øiestad EL, Steinsland S, Aase A, Mørland J, Bogen IL. A Monoclonal Antibody against 6-Acetylmorphine Protects Female Mice Offspring from Adverse Behavioral Effects Induced by Prenatal Heroin Exposure. J Pharmacol Exp Ther 2019; 368:106-115. [PMID: 30361238 DOI: 10.1124/jpet.118.251504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023] Open
Abstract
Escalating opioid use among fertile women has increased the number of children being exposed to opioids during fetal life. Furthermore, accumulating evidence links prenatal opioid exposure, including opioid maintenance treatment, to long-term negative effects on cognition and behavior, and presses the need to explore novel treatment strategies for pregnant opioid users. The present study examined the potential of a monoclonal antibody (mAb) targeting heroin's first metabolite, 6-acetylmorphine (6-AM), in providing fetal protection against harmful effects of prenatal heroin exposure in mice. First, we examined anti-6-AM mAb's ability to block materno-fetal transfer of active metabolites after maternal heroin administration. Next, we studied whether maternal mAb pretreatment could prevent adverse effects in neonatal and adolescent offspring exposed to intrauterine heroin (3 × 1.05 mg/kg). Anti-6-AM mAb pretreatment of pregnant dams profoundly reduced the distribution of active heroin metabolites to the fetal brain. Furthermore, maternal mAb administration prevented hyperactivity and drug sensitization in adolescent female offspring prenatally exposed to heroin. Our findings demonstrate that passive immunization with a 6-AM-specific antibody during pregnancy provides fetal neuroprotection against heroin metabolites, and thereby prevents persistent adverse behavioral effects in the offspring. An immunotherapeutic approach to protect the fetus against long-term effects of prenatal drug exposure has not been reported previously, and should be further explored as prophylactic treatment of pregnant heroin users susceptible to relapse.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Leere Øiestad
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Audun Aase
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jørg Mørland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
40
|
Sex separation induces differences in the olfactory sensory receptor repertoires of male and female mice. Nat Commun 2018; 9:5081. [PMID: 30514924 PMCID: PMC6279840 DOI: 10.1038/s41467-018-07120-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023] Open
Abstract
Within the mammalian olfactory sensory epithelium, experience-dependent changes in the rate of neuronal turnover can alter the relative abundance of neurons expressing specific chemoreceptors. Here we investigate how the mouse olfactory sensory receptor repertoire changes as a function of exposure to odors emitted from members of the opposite sex, which are highly complex and sexually dimorphic. Upon housing mice either sex-separated or sex-combined until six months of age, we find that sex-separated mice exhibit significantly more numerous differentially expressed genes within their olfactory epithelia. A subset of these chemoreceptors exhibit altered expression frequencies following both sex-separation and olfactory deprivation. We show that several of these receptors detect either male- or female-specific odors. We conclude that the distinct odor experiences of sex-separated male and female mice induce sex-specific differences in the abundance of neurons that detect sexually dimorphic odors.
Collapse
|
41
|
Brown SM, Bush SJ, Summers KM, Hume DA, Lawrence AB. Environmentally enriched pigs have transcriptional profiles consistent with neuroprotective effects and reduced microglial activity. Behav Brain Res 2018; 350:6-15. [PMID: 29778628 PMCID: PMC6002610 DOI: 10.1016/j.bbr.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Environmental enrichment (EE) is widely used to study the effects of external factors on brain development, function and health in rodent models, but very little is known of the effects of EE on the brain in a large animal model such as the pig. Twenty-four young pigs (aged 5 weeks at start of study, 1:1 male: female ratio) were housed in environmentally enriched (EE) pens and provided with additional enrichment stimulation (a bag filled with straw) once daily. Litter, weight and sex matched controls n= (24) were housed in barren (B) conditions. Behaviour was recorded on alternate days from study day 10. After 21 days, RNA-sequencing of the frontal cortex of male piglets culled one hour after the enrichment stimulation, but not those at 4 h after stimulation, showed upregulation of genes involved in neuronal activity and synaptic plasticity in the EE compared to the B condition. This result is mirrored in the behavioural response to the stimulation which showed a peak in activity around the 1 h time-point. By contrast, EE piglets displayed a signature consistent with a relative decrease in microglial activity compared to those in the B condition. These results confirm those from rodents, suggesting that EE may also confer neuronal health benefits in large mammal models, through a potential relative reduction in neuroinflammatory process and increase in neuroprotection driven by an enrichment-induced increase in behavioural activity.
Collapse
Affiliation(s)
- S M Brown
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| | - S J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - K M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - D A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - A B Lawrence
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| |
Collapse
|
42
|
Manoli DS, Tollkuhn J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann N Y Acad Sci 2018; 1420:26-45. [PMID: 29363776 PMCID: PMC5991992 DOI: 10.1111/nyas.13564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The sexual differentiation of the mammalian nervous system requires the precise coordination of the temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at multiple developmental time points to specify sex-typical differentiation during embryonic and early development and to coordinate subsequent responses to gonadal hormones later in life by establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting on different neural substrates or chromatin landscapes in males and females. Finally, as stress hormone signaling may directly alter the molecular machinery that interacts with sex hormone receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or presentation of mental illness may be additionally different between the sexes. Here, we review the mechanisms that contribute to sexual differentiation in the mammalian nervous system and consider some of the implications of these processes for sex differences in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Devanand S. Manoli
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
43
|
Drobná Z, Henriksen AD, Wolstenholme JT, Montiel C, Lambeth PS, Shang S, Harris EP, Zhou C, Flaws JA, Adli M, Rissman EF. Transgenerational Effects of Bisphenol A on Gene Expression and DNA Methylation of Imprinted Genes in Brain. Endocrinology 2018; 159:132-144. [PMID: 29165653 PMCID: PMC5761590 DOI: 10.1210/en.2017-00730] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous man-made endocrine disrupting compound (EDC). Developmental exposure to BPA changes behavioral and reproductive phenotypes, and these effects can last for generations. We exposed embryos to BPA, producing two lineages: controls and BPA exposed. In the third filial generation (F3), brain tissues containing the preoptic area, the bed nucleus of the stria terminalis, and the anterior hypothalamus were collected. RNA sequencing (RNA-seq) and subsequent data analyses revealed 50 differentially regulated genes in the brains of F3 juveniles from BPA vs control lineages. BPA exposure can lead to loss of imprinting, and one of the two imprinted genes in our data set, maternally expressed gene 3 (Meg3), has been associated with EDCs and neurobehavioral phenotypes. We used quantitative polymerase chain reaction to examine the two imprinted genes in our data set, Meg3 and microRNA-containing gene Mirg (residing in the same loci). Confirming the RNA-seq, Meg3 messenger RNA was higher in F3 brains from the BPA lineage than in control brains. This was true in brains from mice produced with two different BPA paradigms. Next, we used pyrosequencing to probe differentially methylated regions of Meg3. We found transgenerational effects of BPA on imprinted genes in brain. Given these results, and data on Meg3 methylation in humans, we suggest this gene may be a biomarker indicative of early life environmental perturbation.
Collapse
Affiliation(s)
- Zuzana Drobná
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anne D Henriksen
- Department of Integrated Science and Technology, MSC 4102, James Madison University, Harrisonburg, Virginia
| | - Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Catalina Montiel
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Philip S Lambeth
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Erin P Harris
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Emilie F Rissman
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
44
|
Turano A, Osborne BF, Schwarz JM. Sexual Differentiation and Sex Differences in Neural Development. Curr Top Behav Neurosci 2018; 43:69-110. [PMID: 29967999 DOI: 10.1007/7854_2018_56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sex determination occurs at the moment of conception, as a result of XX or XY chromosome pairing. From that point, the body undergoes the process of sexual differentiation, inducing the development of physical characteristics that are easily distinguishable between the sexes and are often reflected in one's physical appearance and gender identity. Although less apparent, the brain also undergoes sexual differentiation. Sex differences in the brain are organized during a critical period of neural development and have an instrumental role in determining the physiology and behavior of an individual throughout the lifespan. Understanding the extent of sex differences in neurodevelopment also influences our understanding of the potential risk for a number of neurodevelopmental, neurological, and mental health disorders that exhibit strong sex biases. Advances made in our understanding of sexually dimorphic brain nuclei, sex differences in neural cell communication, and sex differences in the communication between the brain and peripheral organs are all research fields that have provided valuable information related to the physiological and behavioral outcomes of sex differences in brain development. More recently, investigations into the impact of epigenetic mechanisms on sexual differentiation of the brain have indicated that changes in gene expression, via epigenetic modifications, also contribute to sexual differentiation of the developing brain. Still, there are a number of important questions and ideas that have arisen from our current understanding of sex differences in neurodevelopmental processes that necessitate more time and attention in this field.
Collapse
Affiliation(s)
- Alexandra Turano
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
45
|
Lopes DM, Malek N, Edye M, Jager SB, McMurray S, McMahon SB, Denk F. Sex differences in peripheral not central immune responses to pain-inducing injury. Sci Rep 2017; 7:16460. [PMID: 29184144 PMCID: PMC5705679 DOI: 10.1038/s41598-017-16664-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Women suffer chronic pain more frequently than men. It is not clear whether this is due to differences in higher level cognitive processes or basic nociceptive responses. In this study we used a mouse model of neuropathic pain to dissociate these factors. We performed RNA-seq on purified peripheral afferent neurons, but found no striking differences in gene expression between male and female mice, neither before nor after nerve injury. Similarly, spinal cord immune responses between the sexes appeared to be indistinguishable when studied by flow cytometry or qRT-PCR. Differences emerged only upon studying peripheral immune cell infiltration into the dorsal root ganglion, suggesting that adaptive immune responses in neuropathic pain could be sexually dimorphic.
Collapse
Affiliation(s)
| | - Natalia Malek
- King's College London, London, United Kingdom.,Laboratory of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
46
|
Spermatogenic failure and the Y chromosome. Hum Genet 2017; 136:637-655. [PMID: 28456834 DOI: 10.1007/s00439-017-1793-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Abstract
The Y chromosome harbors a number of genes essential for testis development and function. Its highly repetitive structure predisposes this chromosome to deletion/duplication events and is responsible for Y-linked copy-number variations (CNVs) with clinical relevance. The AZF deletions remove genes with predicted spermatogenic function en block and are the most frequent known molecular causes of impaired spermatogenesis (5-10% of azoospermic and 2-5% of severe oligozoospermic men). Testing for this deletion has both diagnostic and prognostic value for testicular sperm retrieval in azoospermic men. The most dynamic region on the Yq is the AZFc region, presenting numerous NAHR hotspots leading to partial losses or gains of the AZFc genes. The gr/gr deletion (a partial AZFc deletion) negatively affects spermatogenic efficiency and it is a validated, population-dependent risk factor for oligozoospermia. In certain populations, the Y background may play a role in the phenotypic expression of partial AZFc rearrangements and similarly it may affect the predisposition to specific deletions/duplication events. Also, the Yp contains a gene array, TSPY1, with potential effect on germ cell proliferation. Despite intensive investigations during the last 20 years on the role of this sex chromosome in spermatogenesis, a number of clinical and basic questions remain to be answered. This review is aimed at providing an overview of the role of Y chromosome-linked genes, CNVs, and Y background in spermatogenesis.
Collapse
|
47
|
Zettergren A, Karlsson S, Studer E, Sarvimäki A, Kettunen P, Thorsell A, Sihlbom C, Westberg L. Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice. BMC Neurosci 2017; 18:9. [PMID: 28056817 PMCID: PMC5217640 DOI: 10.1186/s12868-016-0332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (ARNesDel) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Results Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between ARNesDel and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Conclusions Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0332-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Anna Sarvimäki
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Annika Thorsell
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.
| |
Collapse
|
48
|
Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Rep 2016; 6:36916. [PMID: 27845378 PMCID: PMC5109279 DOI: 10.1038/srep36916] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.
Collapse
|
49
|
Arambula SE, Belcher SM, Planchart A, Turner SD, Patisaul HB. Impact of Low Dose Oral Exposure to Bisphenol A (BPA) on the Neonatal Rat Hypothalamic and Hippocampal Transcriptome: A CLARITY-BPA Consortium Study. Endocrinology 2016; 157:3856-3872. [PMID: 27571134 PMCID: PMC5045502 DOI: 10.1210/en.2016-1339] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting, high volume production chemical found in a variety of products. Evidence of prenatal exposure has raised concerns that developmental BPA may disrupt sex-specific brain organization and, consequently, induce lasting changes on neurophysiology and behavior. We and others have shown that exposure to BPA at doses below the no-observed-adverse-effect level can disrupt the sex-specific expression of estrogen-responsive genes in the neonatal rat brain including estrogen receptors (ERs). The present studies, conducted as part of the Consortium Linking Academic and Regulatory Insights of BPA Toxicity program, expanded this work by examining the hippocampal and hypothalamic transcriptome on postnatal day 1 with the hypothesis that genes sensitive to estrogen and/or sexually dimorphic in expression would be altered by prenatal BPA exposure. NCTR Sprague-Dawley dams were gavaged from gestational day 6 until parturition with BPA (0-, 2.5-, 25-, 250-, 2500-, or 25 000-μg/kg body weight [bw]/d). Ethinyl estradiol was used as a reference estrogen (0.05- or 0.5-μg/kg bw/d). Postnatal day 1 brains were microdissected and gene expression was assessed with RNA-sequencing (0-, 2.5-, and 2500-μg/kg bw BPA groups only) and/or quantitative real-time PCR (all exposure groups). BPA-related transcriptional changes were mainly confined to the hypothalamus. Consistent with prior observations, BPA induced sex-specific effects on hypothalamic ERα and ERβ (Esr1 and Esr2) expression and hippocampal and hypothalamic oxytocin (Oxt) expression. These data demonstrate prenatal BPA exposure, even at doses below the current no-observed-adverse-effect level, can alter gene expression in the developing brain.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Scott M Belcher
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Antonio Planchart
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Stephen D Turner
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Heather B Patisaul
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
50
|
Arnold AP, Reue K, Eghbali M, Vilain E, Chen X, Ghahramani N, Itoh Y, Li J, Link JC, Ngun T, Williams-Burris SM. The importance of having two X chromosomes. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150113. [PMID: 26833834 DOI: 10.1098/rstb.2015.0113] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/14/2022] Open
Abstract
Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Karen Reue
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xuqi Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Negar Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Yuichiro Itoh
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Jingyuan Li
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jenny C Link
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tuck Ngun
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| | - Shayna M Williams-Burris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, CA, USA
| |
Collapse
|