1
|
Wan L, Yang F, Yin A, Luo Y, Liu Y, Liu F, Wang JZ, Liu R, Wang X. Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease. Cell Death Differ 2025; 32:837-854. [PMID: 39870805 DOI: 10.1038/s41418-025-01448-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain. Mechanistically, SUMOylation of p53 at K386 residue causes the dissociation of SET/p53 complex, thus releasing SET into the cytoplasm, SET further interacts with cytoplasmic PP2A and inhibits its activity, resulting in tau hyperphosphorylation in neurons. In addition, SUMOylation of p53 promotes the p53 Ser15 phosphorylation that mediates neuronal senescence. Notably, p53 SUMOylation contributes to synaptic damage and cognitive defects in AD model mice. We also demonstrate that the SUMOylation inhibiter, Ginkgolic acid, recovering several senescent phenotypes drove by p53 SUMOylation in primary neurons. These findings suggest a previously undiscovered etiopathogenic relationship between aging and AD that is linked to p53 SUMOylation and the potential of SUMOylated p53-based therapeutics for neurodegeneration such as Alzheimer's disease.
Collapse
Affiliation(s)
- Lu Wan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Yin
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
2
|
Liang W, Liu Y, Jia E, Yang X, Han S, Wei J, Zhao W. Evolution in optical molecular imaging techniques guided nerve imaging from 2009 to 2023: a bibliometric and visualization analysis. Front Neurol 2025; 15:1474353. [PMID: 39911740 PMCID: PMC11794114 DOI: 10.3389/fneur.2024.1474353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025] Open
Abstract
Background Recent years, the use of optical molecular imaging (OMI) techniques guided nerve imaging has made significant progress. However, a comprehensive bibliometric analysis in this field is currently lacking. In this study, we aim to shed light on the current status, identify the emerging hot topics, and provide valuable insights for researchers within this field. Methods In this study, we collected 414 research via the Web of Science Core Collection (WoSCC) from 2009 to 2023. CiteSpace, VOSviewer and R package "bibliometrix" were used for analysis of countries, institutions, journals, etc., to evaluate the trends. Results The amounts of publications in relation to OMI guided nerve imaging has been increasing. United States and China contributed to over 60% of the publications. The Shanghai Jiao Tong University contributed the highest number of publications. Investigative Ophthalmology and Visual Science is considered the most prestigious and prolific journal in the field. It is also widely regarded as the most cited journal. Among the top 10 authors in terms of output, Hehir CAT has the highest number of citations. The "neurosciences neurology," "science technology other topics," and "ophthalmology" are representative research areas. The main cluster of keywords in this field includes "axonal regeneration," "mouse," and "optical coherence tomography." Conclusion This bibliometric investigation offers a comprehensive portrayal of the structure of knowledge and the progression patterns, presents an all-encompassing synthesis of findings, discerns and illustrates the forefront within OMI guided nerve imaging for the first time. It will provide a valuable reference for relevant scholars.
Collapse
Affiliation(s)
- Wenkai Liang
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- Department of Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Erlong Jia
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shufeng Han
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinzheng Wei
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Basic Medicine, Qingdao Medical College of Qingdao University, Qingdao, China
| | - Wei Zhao
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Ren S, Wang S, Lv S, Gao J, Mao Y, Liu Y, Xie Q, Zhang T, Zhao L, Shi J. The nociceptive inputs of the paraventricular hypothalamic nucleus in formalin stimulated mice. Neurosci Lett 2024; 841:137948. [PMID: 39179131 DOI: 10.1016/j.neulet.2024.137948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The paraventricular hypothalamic nucleus (PVH) is an important neuroendocrine center involved in pain regulation, but the nociceptive afferent routes for the nucleus are still unclear. We examined the profile of PVH receiving injurious information by a combination of retrograde tracing with Fluoro-Gold (FG) and FOS expression induced by formalin stimuli. The result showed that formalin injection induced significantly increased expression of FOS in the PVH, among which oxytocin containing neurons are one neuronal phenotype. Immunofluorescent staining of FG and FOS revealed that double labeled neurons were strikingly distributed in the area 2 of the cingulate cortex (Cg2), the lateral septal nucleus (LS), the periaqueductal gray (PAG), the posterior hypothalamic area (PH), and the lateral parabrachial nucleus (LPB). In the five regions, LPB had the biggest number and the highest ratio of FOS expression in FG labeled neurons, with main subnuclei distribution in the external, superior, dorsal, and central parts. Further immunofluorescent triple staining disclosed that about one third of FG and FOS double labeled neurons in the LPB were immunoreactive for calcitonin gene related peptide (CGRP). In conclusion, the present study demonstrates the nociceptive input profile of the PVH area under inflammatory pain and suggests that neurons in the LPB may play essential roles in transmitting noxious information to the PVH.
Collapse
Affiliation(s)
- Shuting Ren
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Shumin Wang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Siting Lv
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Jiaying Gao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yajie Mao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuankun Liu
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Qiongyao Xie
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an 716000, China.
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Balena T, Staley K. Neuronal Death: Now You See It, Now You Don't. Neuroscientist 2024:10738584241282632. [PMID: 39316584 DOI: 10.1177/10738584241282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Fatally injured neurons may necrose and rupture immediately, or they may initiate a programmed cell death pathway and then wait for microglial phagocytosis. Biochemical and histopathologic assays of neuronal death assess the numbers of neurons awaiting phagocytosis at a particular time point after injury. This number varies with the fraction of neurons that have necrosed vs initiated programmed cell death, the time elapsed since injury, the rate of phagocytosis, and the assay's ability to detect neurons at different stages of programmed cell death. Many of these variables can be altered by putatively neurotoxic and neuroprotective interventions independent of the effects on neuronal death. This complicates analyses of neurotoxicity and neuroprotection and has likely contributed to difficulties with clinical translation of neuroprotective strategies after brain injury. Time-resolved assays of neuronal health, such as ongoing expression of transgenic fluorescent proteins, are a useful means of avoiding these problems.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Aydar Y, Rambukkanage SS, Brown L, Wang J, Seo JS, Li K, Cheng Y, Biddlestone-Thorpe L, Boyd C, Sule A, Valerie K. ATM Kinase Small Molecule Inhibitors Prevent Radiation-Induced Apoptosis of Mouse Neurons In Vivo. KINASES AND PHOSPHATASES 2024; 2:268-278. [PMID: 40207186 PMCID: PMC11981642 DOI: 10.3390/kinasesphosphatases2030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
ATM kinase is becoming an important therapeutic target for tumor radiosensitization. Radiation is known to cause neuro-inflammation and neurodegeneration; however, the effects of small molecule ATM inhibitors (ATMi's) and radiation on normal tissue, including healthy brain, are largely unexplored. Therefore, we examined the mouse CNS after ATMi radiosensitization with a focus on the fate of neurons. We used several approaches to assess the effects on the DNA damage response (DDR) and apoptosis of neurons using immunostaining. In vivo, a significant decrease in viable neurons and increase in degenerating neurons and apoptosis was observed in mice treated with radiation alone. On the other hand, an ATMi alone had little to no effect on neuron viability and did not induce apoptosis. Importantly, the ATMi's did not further increase radiation toxicity. In fact, multiplex immunostaining showed that a clinical candidate ATMi (AZD1390) protected mouse neurons from apoptosis by 90% at 4 h after radiation. We speculate that the lack of toxicity to neurons is due to a normal ATM-p53 response that, if blocked transiently with an ATMi, is protective. Altogether, in line with previous work using ATM knockout mice, we provide evidence that ATM kinase inhibition using small molecules does not add to neuronal radiation toxicity, and might, in fact, protect them from radiation-induced apoptosis at least in the short term.
Collapse
Affiliation(s)
- Yüksel Aydar
- Department of Anatomy, Medical School of Osmangazi University, Eskisehir 26040, Turkiye
| | - Sanara S. Rambukkanage
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lauryn Brown
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Juan Wang
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ji Sung Seo
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Keming Li
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yong Cheng
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laura Biddlestone-Thorpe
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Caila Boyd
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amrita Sule
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristoffer Valerie
- Massey Comprehensive Cancer Center, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Liu X, Hong E, Xie J, Li J, Ding B, Chen Y, Xia Z, Jiang W, Lv H, Yang B, Chen Y. Txnrd2 Attenuates Early Brain Injury by Inhibition of Oxidative Stress and Endoplasmic Reticulum Stress via Trx2/Prx3 Pathway after Intracerebral Hemorrhage in Rats. Neuroscience 2024; 545:158-170. [PMID: 38513765 DOI: 10.1016/j.neuroscience.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.
Collapse
Affiliation(s)
- Xuanbei Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Department of Neurosurgery, Jiu Jiang No.1 People's Hospital, Jiu Jiang, China
| | - Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Jiangwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Boyun Ding
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Yongsheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhennan Xia
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Weiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hongzhu Lv
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Bo Yang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Yizhao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
9
|
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics (Basel) 2023; 13:2963. [PMID: 37761332 PMCID: PMC10529314 DOI: 10.3390/diagnostics13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by "omics" such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Ruggirello Mariangela
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| |
Collapse
|
10
|
Balena T, Lillis K, Rahmati N, Bahari F, Dzhala V, Berdichevsky E, Staley K. A Dynamic Balance between Neuronal Death and Clearance in an in Vitro Model of Acute Brain Injury. J Neurosci 2023; 43:6084-6107. [PMID: 37527922 PMCID: PMC10451151 DOI: 10.1523/jneurosci.0436-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
In in vitro models of acute brain injury, neuronal death may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. Neurons undergoing programmed cell death are in this queue, and are the most visible and frequently quantified measure of neuronal death after injury. However, the size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for 2 weeks. Altering phagocytosis rates (e.g., by changing the number of microglia) dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for stains that label dying neurons. Canonically neuroprotective interventions, such as seizure blockade, and neurotoxic maneuvers, such as perinatal ethanol exposure, were mediated by effects on microglial activity and the membrane permeability of neurons undergoing programmed cell death. These canonically neuroprotective and neurotoxic interventions had either no or opposing effects on healthy surviving neurons identified by the ongoing expression of transgenic fluorescent proteins.SIGNIFICANCE STATEMENT In in vitro models of acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus, longitudinal assays of healthy cells, such as serial assessment of the fluorescence emission of transgenically expressed proteins, provide more accurate estimates of cell death than do single-time point anatomic or biochemical assays of the number of dying neurons. More accurate estimates of death rates in vitro will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kyle Lillis
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Negah Rahmati
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Fatemeh Bahari
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Volodymyr Dzhala
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Eugene Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
11
|
Wei J, Liu C, Liang W, Yang X, Han S. Advances in optical molecular imaging for neural visualization. Front Bioeng Biotechnol 2023; 11:1250594. [PMID: 37671191 PMCID: PMC10475611 DOI: 10.3389/fbioe.2023.1250594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Iatrogenic nerve injury is a significant complication in surgery, which can negatively impact patients' quality of life. Currently, the main clinical neuroimaging methods, such as computed tomography, magnetic resonance imaging, and high-resolution ultrasonography, do not offer precise real-time positioning images for doctors during surgery. The clinical application of optical molecular imaging technology has led to the emergence of new concepts such as optical molecular imaging surgery, targeted surgery, and molecular-guided surgery. These advancements have made it possible to directly visualize surgical target areas, thereby providing a novel method for real-time identification of nerves during surgery planning. Unlike traditional white light imaging, optical molecular imaging technology enables precise positioning and identifies the cation of intraoperative nerves through the presentation of color images. Although a large number of experiments and data support its development, there are few reports on its actual clinical application. This paper summarizes the research results of optical molecular imaging technology and its ability to realize neural visualization. Additionally, it discusses the challenges neural visualization recognition faces and future development opportunities.
Collapse
Affiliation(s)
- Jinzheng Wei
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Liang
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufeng Han
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Wu S, Zhang YF, Gui Y, Jiang T, Zhou CM, Li JY, Suo JL, Li YN, Jin RL, Li SL, Cui JY, Tan BH, Li YC. A detection method for neuronal death indicates abnormalities in intracellular membranous components in neuronal cells that underwent delayed death. Prog Neurobiol 2023; 226:102461. [PMID: 37179048 DOI: 10.1016/j.pneurobio.2023.102461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Acute neuronal degeneration is always preceded under the light and electron microscopes by a stage called microvacuolation, which is characterized by a finely vacuolar alteration in the cytoplasm of the neurons destined to death. In this study, we reported a method for detecting neuronal death using two membrane-bound dyes, rhodamine R6 and DiOC6(3), which may be associated with the so-called microvacuolation. This new method produced a spatiotemporally similar staining pattern to Fluoro-Jade B in kainic acid-damaged brains in mice. Further experiments showed that increased staining of rhodamine R6 and DiOC6(3) was observed only in degenerated neurons, but not in glia, erythrocytes, or meninges. Different from Fluoro-Jade-related dyes, rhodamine R6 and DiOC6(3) staining is highly sensitive to solvent extraction and detergent exposure. Staining with Nile red for phospholipids and filipin III for non-esterified cholesterol supports that the increased staining of rhodamine R6 and DiOC6(3) might be associated with increased levels of phospholipids and free cholesterol in the perinuclear cytoplasm of damaged neurons. In addition to kainic acid-injected neuronal death, rhodamine R6 and DiOC6(3) were similarly useful for detecting neuronal death in ischemic models either in vivo or in vitro. As far as we know, the staining with rhodamine R6 or DiOC6(3) is one of a few histochemical methods for detecting neuronal death whose target molecules have been well defined and therefore may be useful for explaining experimental results as well as exploring the mechanisms of neuronal death. (250 words).
Collapse
Affiliation(s)
- Shuang Wu
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Feng Zhang
- Department of Pediatric Neurology, First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Yue Gui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Tian Jiang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Jilin Province 130041, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jia-Le Suo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yong-Nan Li
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jia-Yue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China.
| |
Collapse
|
13
|
Weng YC, Huang YT, Chiang IC, Chuang HC, Lee TH, Tan TH, Chou WH. DUSP6 Deficiency Attenuates Neurodegeneration after Global Cerebral Ischemia. Int J Mol Sci 2023; 24:ijms24097690. [PMID: 37175394 PMCID: PMC10177974 DOI: 10.3390/ijms24097690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Transient global cerebral ischemia (tGCI) resulting from cardiac arrest causes selective neurodegeneration in hippocampal CA1 neurons. Although the effect is clear, the underlying mechanisms directing this process remain unclear. Previous studies have shown that phosphorylation of Erk1/2 promotes cell survival in response to tGCI. DUSP6 (also named MKP3) serves as a cytosolic phosphatase that dephosphorylates Erk1/2, but the role of DUSP6 in tGCI has not been characterized. We found that DUSP6 was specifically induced in the cytoplasm of hippocampal CA1 neurons 4 to 24 h after tGCI. DUSP6-deficient mice showed normal spatial memory acquisition and retention in the Barnes maze. Impairment of spatial memory acquisition and retention after tGCI was attenuated in DUSP6-deficient mice. Neurodegeneration after tGCI, revealed by Fluoro-Jade C and H&E staining, was reduced in the hippocampus of DUSP6-deficient mice and DUSP6 deficiency enhanced the phosphorylation and nuclear translocation of Erk1/2 in the hippocampal CA1 region. These data support the role of DUSP6 as a negative regulator of Erk1/2 signaling and indicate the potential of DUSP6 inhibition as a novel therapeutic strategy to treat neurodegeneration after tGCI.
Collapse
Affiliation(s)
- Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - I-Chen Chiang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| |
Collapse
|
14
|
Gu Q, Sarkar S, Raymick B, Kanungo J. Combining tissue clearing and Fluoro-Jade C labeling for neurotoxicity assessments. Exp Biol Med (Maywood) 2023; 248:605-611. [PMID: 37208909 PMCID: PMC10350804 DOI: 10.1177/15353702231165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Tissue clearing refers to laboratory methods that make tissue transparent by chemical means. This approach allows the labeling, visualization, and analysis of specific targets without cutting the tissue into sections, thereby maintaining three-dimensional architecture. More than two dozen tissue-clearing methods have been developed by different research teams to date. While tissue clearing has been successfully applied in several studies concerning basic science or diseases, little is known about the utilization of tissue clearing for neurotoxicity evaluation. In this study, several tissue-clearing methods were combined with Fluoro-Jade C (FJ-C), a standard marker of neurodegeneration. The results suggest that some but not all tissue-clearing media are compatible with the FJ-C fluorophore. By utilizing a neurotoxicity animal model, the results further suggest that FJ-C labeling can be combined with tissue clearing for neurotoxicity assessments. This approach has the potential to be expanded further by combining multicolor labeling of molecular targets involved in the development and/or mechanisms of neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bryan Raymick
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
15
|
Slowing K, Gomez F, Delgado M, Fernández de la Rosa R, Hernández-Martín N, Pozo MÁ, García-García L. PET Imaging and Neurohistochemistry Reveal that Curcumin Attenuates Brain Hypometabolism and Hippocampal Damage Induced by Status Epilepticus in Rats. PLANTA MEDICA 2023; 89:364-376. [PMID: 36130709 DOI: 10.1055/a-1948-4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous preclinical studies provide evidence that curcumin, a polyphenolic phytochemical extracted from Curcuma longa (turmeric) has neuroprotective, anti-inflammatory and antioxidant properties against various neurological disorders. Curcumin neuroprotective effects have been reported in different animal models of epilepsy, but its potential effect attenuating brain glucose hypometabolism, considered as an early marker of epileptogenesis that occurs during the silent period following status epilepticus (SE), still has not been addressed. To this end, we used the lithium-pilocarpine rat model to induce SE. Curcumin was administered orally (300 mg/kg/day, for 17 days). Brain glucose metabolism was evaluated in vivo by 2-deoxy-2-[18F]Fluoro-D-Glucose ([18F]FDG) positron emission tomography (PET). In addition, hippocampal integrity, neurodegeneration, microglia-mediated neuroinflammation, and reactive astrogliosis were evaluated as markers of brain damage. SE resulted in brain glucose hypometabolism accompanied by body weight (BW) loss, hippocampal neuronal damage, and neuroinflammation. Curcumin did not reduce the latency time to the SE onset, nor the mortality rate associated with SE. Nevertheless, it reduced the number of seizures, and in the surviving rats, curcumin protected BW and attenuated the short-term glucose brain hypometabolism as well as the signs of neuronal damage and neuroinflammation induced by the SE. Overall, our results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage.
Collapse
Affiliation(s)
- Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisca Gomez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
| | | | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
- BIOIMAC, Complutense University of Madrid, Madrid, Spain
| | - Nira Hernández-Martín
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
16
|
Balena T, Lillis K, Rahmati N, Bahari F, Dzhala V, Berdichevsky E, Staley K. A dynamic balance between neuronal death and clearance after acute brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528332. [PMID: 36824708 PMCID: PMC9948967 DOI: 10.1101/2023.02.14.528332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
After acute brain injury, neuronal apoptosis may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. The size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for two weeks. Altering phagocytosis rates, e.g. by changing the number of microglia, dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for vital stains. Canonically neuroprotective interventions such as seizure blockade and neurotoxic maneuvers such as perinatal ethanol exposure were mediated by effects on microglial activity and the membrane permeability of apoptotic neurons, and had either no or opposing effects on healthy surviving neurons. Significance After acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus longitudinal assays of healthy cells, such as assessment of the fluorescence emission of transgenically-expressed proteins, provide more accurate estimates of cell death than do single-time-point anatomical or biochemical assays. More accurate estimates of death rates will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.
Collapse
|
17
|
Yang L, Ren Z, Liu Z, Peng Z, Song P, Zhou J, Wang L, Chen J, Dong Q. Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury. J Tissue Eng Regen Med 2022; 16:836-849. [PMID: 35716353 DOI: 10.1002/term.3334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023]
Abstract
Male erectile dysfunction (ED) caused by cavernous nerve injury is a common complication of pelvic surgery, radiotherapy, transurethral surgery or other operations. However, clinical treatment for iatrogenic or traumatic male ED is difficult and not satisfactory. Many studies have shown that curcumin can promote the repair and regeneration of peripheral nerves; however, whether curcumin can rescue cavernous nerve injury is unknown, and the poor bioavailability of curcumin limits its application in vivo. Hence, the study was conducted. A curved slow-release membrane was produced, and the properties were examined. In addition, the effects of the curcumin slow-release membrane on cavernous nerve-injured SD rats were studied. We found that polylactic acid-glycolic acid-polyethylene glycol (PLGA-PEG) can be used as a good carrier material for curcumin, and curcumin-loaded PLGA-PEG membranes can effectively rescue the cavernous nerve in SD rats, restore the continuity of the cavernous nerve, and increase the expression of nNOS mRNA and proteins in penile tissue, which can improve the penile erectile function of injured SD rats, reduce the degree of penile tissue fibrosis, and effectively promote penis rehabilitation. The curcumin slow-release membrane is proposed to be a new therapeutic approach for penile rehabilitation of cavernous nerve injury.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengju Ren
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linchun Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junhao Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Zhang Y, Khan S, Liu Y, Zhang R, Li H, Wu G, Tang Z, Xue M, Yong VW. Modes of Brain Cell Death Following Intracerebral Hemorrhage. Front Cell Neurosci 2022; 16:799753. [PMID: 35185473 PMCID: PMC8851202 DOI: 10.3389/fncel.2022.799753] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high rates of mortality and morbidity. It induces cell death that is responsible for neurological deficits postinjury. There are no therapies that effectively mitigate cell death to treat ICH. This review aims to summarize our knowledge of ICH-induced cell death with a focus on apoptosis and necrosis. We also discuss the involvement of ICH in recently described modes of cell death including necroptosis, pyroptosis, ferroptosis, autophagy, and parthanatos. We summarize treatment strategies to mitigate brain injury based on particular cell death pathways after ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhouping Tang
- Department of Neurology, Affiliated Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- *Correspondence: Mengzhou Xue,
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- V. Wee Yong,
| |
Collapse
|
19
|
Miller MQ, Hernández IC, Chacko JV, Minderler S, Jowett N. Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold. Sci Rep 2021; 11:18053. [PMID: 34508127 PMCID: PMC8433443 DOI: 10.1038/s41598-021-97562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
Fluoro-Gold is a fluorescent neuronal tracer suitable for targeted deep imaging of the nervous system. Widefield fluorescence microscopy enables visualization of Fluoro-Gold, but lacks depth discrimination. Though scanning laser confocal microscopy yields volumetric data, imaging depth is limited, and optimal single-photon excitation of Fluoro-Gold requires an unconventional ultraviolet excitation line. Two-photon excitation microscopy employs ultrafast pulsed infrared lasers to image fluorophores at high-resolution at unparalleled depths in opaque tissue. Deep imaging of Fluoro-Gold-labeled neurons carries potential to advance understanding of the central and peripheral nervous systems, yet its two-photon spectral and temporal properties remain uncharacterized. Herein, we report the two-photon excitation spectrum of Fluoro-Gold between 720 and 990 nm, and its fluorescence decay rate in aqueous solution and murine brainstem tissue. We demonstrate unprecedented imaging depth of whole-mounted murine brainstem via two-photon excitation microscopy of Fluoro-Gold labeled facial motor nuclei. Optimal two-photon excitation of Fluoro-Gold within microscope tuning range occurred at 720 nm, while maximum lifetime contrast was observed at 760 nm with mean fluorescence lifetime of 1.4 ns. Whole-mount brainstem explants were readily imaged to depths in excess of 450 µm via immersion in refractive-index matching solution.
Collapse
Affiliation(s)
- Matthew Q Miller
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology/Head and Neck Surgery, University of North Carolina Health Care, Chapel Hill, NC, USA
| | - Iván Coto Hernández
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| | - Jenu V Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Steven Minderler
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Nate Jowett
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Santagostino SF, Spinazzi M, Radaelli E. Restricted Sensitivity of FJ-C Staining to Assess Neuronal Degeneration and Death in Preclinical Mouse Studies. Vet Pathol 2021; 58:643-649. [PMID: 33397212 DOI: 10.1177/0300985820985290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescein-derived fluorochromes and anionic dyes such as Fluoro-Jade (FJ) stains have been introduced to facilitate recognition of dying neurons in tissue sections. However, the definition of what is really detected by FJ-based stains and its sensitivity in the detection of neuronal cell death is unclear. In our work, we evaluated the outcome of FJ-C staining in mouse brains from 4 different well-characterized models of neurodegeneration. Neuronal degeneration and loss were highlighted with high sensitivity by FJ-C stain in mice with dysfunctional γ-secretase in the glutamatergic neurons and in mice affected by acute cerebral ischemia. Histopathologically, acute eosinophilic necrosis or "red dead" neurons were associated with FJ-C staining in both settings. Conversely, in mice affected by chronic cerebral microinfarcts due to tumor lysis syndrome as well as in a model of mitochondrial encephalopathy, FJ-C staining failed to detect neuronal death. Histopathologically, these models were characterized by extensive neuronal vacuolation associated with fading neurons ("ghost cells"). Therefore, contrary to the widespread belief that FJ-C stain has high affinity for all degenerating neurons regardless of the underlying cell death mechanism, we observed restricted sensitivity of the technique to specific conditions of neuronal cell death. As such, complementary techniques are essential to evaluate the presence of neurodegeneration in the absence of a positive FJ-C signal.
Collapse
Affiliation(s)
| | - Marco Spinazzi
- 26966Centre Hospitalier Universitaire d' Angers, Angers, France
| | | |
Collapse
|
21
|
Hu H, Liu Y, Li K, Fang M, Zou Y, Wang J, Ge J. Retrograde fluorogold labeling of retinal ganglion cells in neonatal mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:878. [PMID: 34164512 PMCID: PMC8184436 DOI: 10.21037/atm-21-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The neonatal period, especially postnatal day 10 (P10), is important for mouse retinal ganglion cells (RGCs) development, and an effective labeling technique to track neonatal RGCs is needed. Retrograde fluorogold (FG) labeling is widely used for adult mouse RGCs, but its applicability for the neonatal mouse is still unknown. This study aimed to evaluate the safety and efficiency of retrograde FG labeling in P10 mice. Methods The anatomic location of the superior colliculus (SC) of P10 wild-type C57/BL6J mice was clarified by histological brain section and hematoxylin and eosin (H&E) staining. Three doses of 3% FG were injected into the SC of 30 mice, and 3 days post-surgery, labeling efficiency was quantified by retinal flat-mounts, and labeling safety was evaluated by mice mortality. Results Samples of brain tissue from 2–3.5 mm posterior to the bregma, and from 0.5–2.0 mm lateral to the midline showed major SC-related structures. The FG-positive RGC density in the 0.3 µL group was 3,563.9±311.9 cells/mm2, significantly more than in the 0.6 µL group (1,718.6±177.1 cells/mm2) or 1.0 µL group (2,496.8±342.2 cells/mm2). The mortality rate was 10% in both the 0.3 and 0.6 µL groups, but 40% in the 1.0 µL group. Conclusions The appropriate labeling site in P10 mice was confirmed and 0.3 µL FG is an appropriate dose for retrograde labeling of RGCs.
Collapse
Affiliation(s)
- Huiling Hu
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Fang
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Yunyun Zou
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, School of Optometry, Shenzhen University, Shenzhen, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Retrograde Labeling of Different Distribution Features of DRG P2X2 and P2X3 Receptors in a Neuropathic Pain Rat Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9861459. [PMID: 32775458 PMCID: PMC7396081 DOI: 10.1155/2020/9861459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
The distributions of P2X subtypes during peripheral neuropathic pain conditions and their differential roles are not fully understood. To explore these characteristics, the lumbosacral dorsal root ganglion (DRG) in the chronic constriction injury (CCI) sciatic nerve rat model was studied. Retrograde trace labeling combined with immunofluorescence technology was applied to analyze the distribution of neuropathic nociceptive P2X1-6 receptors. Our results suggest that Fluoro-Gold (FG) retrograde trace labeling is an efficient method for studying lumbosacral DRG neurons in the CCI rat model, especially when the DRG neurons are divided into small, medium, and large subgroups. We found that neuropathic nociceptive lumbosacral DRG neurons (i.e., FG-positive cells) were significantly increased in medium DRG neurons, while they declined in the large DRG neurons in the CCI group. P2X3 receptors were markedly upregulated in medium while P2X2 receptors were significantly decreased in small FG-positive DRG neurons. There were no significant changes in other P2X receptors (including P2X1, P2X4, P2X5, and P2X6). We anticipate that P2X receptors modulate nociceptive sensitivity primarily through P2X3 subtypes that are upregulated in medium neuropathic nociceptive DRG neurons and/or via the downregulation of P2X2 cells in neuropathic nociceptive small DRG neurons.
Collapse
|
23
|
Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol 2020; 39:43-58. [PMID: 32505359 DOI: 10.1016/j.tibtech.2020.05.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
Revealing fine-scale cellular heterogeneity among spatial context and the functional and structural foundations of tissue architecture is fundamental within biological research and pharmacology. Unlike traditional approaches involving single molecules or bulk omics, cutting-edge, spatially resolved transcriptomics techniques offer near-single-cell or even subcellular resolution within tissues. Massive information across higher dimensions along with position-coordinating labels can better map the whole 3D transcriptional landscape of tissues. In this review, we focus on developments and strategies in spatially resolved transcriptomics, compare the cell and gene throughput and spatial resolution in detail for existing methods, and highlight the enormous potential in biomedical research.
Collapse
Affiliation(s)
- Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Zhu
- The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|
24
|
Roman E, Weininger J, Lim B, Roman M, Barry D, Tierney P, O'Hanlon E, Levins K, O'Keane V, Roddy D. Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus. Brain Struct Funct 2020; 225:1437-1458. [PMID: 32367265 DOI: 10.1007/s00429-020-02069-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/11/2020] [Indexed: 12/23/2022]
Abstract
The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging connections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiology of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function and development.
Collapse
Affiliation(s)
- Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Education and Research Centre , Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Joshua Weininger
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Basil Lim
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Game Design, Technological University Dublin, Dublin 2, Ireland
| | - Marin Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Denis Barry
- Anatomy Department, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Tierney
- Anatomy Department, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Education and Research Centre , Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Kirk Levins
- Department of Anaesthetics, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Darren Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
25
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Abstract
OBJECTIVE This review details the agents for fluorescence-guided nerve imaging in both preclinical and clinical use to identify factors important in selecting nerve-specific fluorescent agents for surgical procedures. BACKGROUND Iatrogenic nerve injury remains a significant cause of morbidity in patients undergoing surgical procedures. Current real-time identification of nerves during surgery involves neurophysiologic nerve stimulation, which has practical limitations. Intraoperative fluorescence-guided imaging provides a complimentary means of differentiating tissue types and pathology. Recent advances in fluorescence-guided nerve imaging have shown promise, but the ideal agent remains elusive. METHODS In February 2018, PubMed was searched for articles investigating peripheral nerve fluorescence. Key terms used in this search include: "intraoperative, nerve, fluorescence, peripheral nerve, visualization, near infrared, and myelin." Limits were set to exclude articles exclusively dealing with central nervous system targets or written in languages other than English. References were cross-checked for articles not otherwise identified. RESULTS Of the nonspecific agents, tracers that rely on axonal transport showed the greatest tissue specificity; however, neurovascular dyes already enjoy wide clinical use. Fluorophores specific to nerve moieties result in excellent nerve to background ratios. Although noteworthy findings on tissue specificity, toxicity, and route of administration specific to each fluorescent agent were reported, significant data objectively quantifying nerve-specific fluorescence and toxicity are lacking. CONCLUSIONS Fluorescence-based nerve enhancement has advanced rapidly over the past 10 years with potential for continued utilization and progression in translational research. An ideal agent would be easily administered perioperatively, would not cross the blood-brain barrier, and would fluoresce in the near-infrared spectrum. Agents administered systemically that target nerve-specific moieties have shown the greatest promise. Based on the heterogeneity of published studies and methods for reporting outcomes, it appears that the development of an optimal nerve imaging agent remains challenging.
Collapse
|
27
|
Bader M, Li Y, Lecca D, Rubovitch V, Tweedie D, Glotfelty E, Rachmany L, Kim HK, Choi HI, Hoffer BJ, Pick CG, Greig NH, Kim DS. Pharmacokinetics and efficacy of PT302, a sustained-release Exenatide formulation, in a murine model of mild traumatic brain injury. Neurobiol Dis 2019; 124:439-453. [PMID: 30471415 PMCID: PMC6710831 DOI: 10.1016/j.nbd.2018.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a neurodegenerative disorder for which no effective pharmacological treatment is available. Glucagon-like peptide 1 (GLP-1) analogues such as Exenatide have previously demonstrated neurotrophic and neuroprotective effects in cellular and animal models of TBI. However, chronic or repeated administration was needed for efficacy. In this study, the pharmacokinetics and efficacy of PT302, a clinically available sustained-release Exenatide formulation (SR-Exenatide) were evaluated in a concussive mild (m)TBI mouse model. A single subcutaneous (s.c.) injection of PT302 (0.6, 0.12, and 0.024 mg/kg) was administered and plasma Exenatide concentrations were time-dependently measured over 3 weeks. An initial rapid regulated release of Exenatide in plasma was followed by a secondary phase of sustained-release in a dose-dependent manner. Short- and longer-term (7 and 30 day) cognitive impairments (visual and spatial deficits) induced by weight drop mTBI were mitigated by a single post-injury treatment with Exenatide delivered by s.c. injection of PT302 in clinically translatable doses. Immunohistochemical evaluation of neuronal cell death and inflammatory markers, likewise, cross-validated the neurotrophic and neuroprotective effects of SR-Exenatide in this mouse mTBI model. Exenatide central nervous system concentrations were 1.5% to 2.0% of concomitant plasma levels under steady-state conditions. These data demonstrate a positive beneficial action of PT302 in mTBI. This convenient single, sustained-release dosing regimen also has application for other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple system atrophy and multiple sclerosis where prior preclinical studies, likewise, have demonstrated positive Exenatide actions.
Collapse
Affiliation(s)
- Miaad Bader
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yazhou Li
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Daniela Lecca
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - David Tweedie
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Elliot Glotfelty
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hee Kyung Kim
- Peptron Inc., Yuseong-gu, Daejeon, Republic of Korea
| | - Ho-Il Choi
- Peptron Inc., Yuseong-gu, Daejeon, Republic of Korea
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel; Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA.
| | - Dong Seok Kim
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institutes of Health, National Institute on Aging, Baltimore, MD, USA; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
28
|
|
29
|
Kumar V, Weng YC, Wu YC, Huang YT, Chou WH. PKCε phosphorylation regulates the mitochondrial translocation of ATF2 in ischemia-induced neurodegeneration. BMC Neurosci 2018; 19:76. [PMID: 30497386 PMCID: PMC6267029 DOI: 10.1186/s12868-018-0479-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Global cerebral ischemia triggers neurodegeneration in the hippocampal CA1 region, but the mechanism of neuronal death remains elusive. The epsilon isoform of protein kinase C (PKCε) has recently been identified as a master switch that controls the nucleocytoplasmic trafficking of ATF2 and the survival of melanoma cells. It is of interest to assess the role of PKCε–ATF2 signaling in neurodegeneration. Results Phosphorylation of ATF2 at Thr-52 was reduced in the hippocampus of PKCε null mice, suggesting that ATF2 is a phosphorylation substrate of PKCε. PKCε protein concentrations were significantly reduced 4, 24, 48 and 72 h after transient global cerebral ischemia, resulting in translocation of nuclear ATF2 to the mitochondria. Degenerating neurons staining positively with Fluoro-Jade C exhibited cytoplasmic ATF2. Conclusions Our results support the hypothesis that PKCε regulates phosphorylation and nuclear sequestration of ATF2 in hippocampal neurons during ischemia-induced neurodegeneration.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Chieh Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA. .,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
30
|
Alp M, Cucinotta FA. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons. Radiat Res 2018; 189:312-325. [PMID: 29502499 PMCID: PMC5872156 DOI: 10.1667/rr14923.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen (16O, 600 MeV/n) and titanium (48Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions of morphometric parameters is described. An important conclusion of this study is that δ rays play a major role in neuron morphological changes due to the large spatial distribution of damage sites, which results in a reduced dependence on LET, including modest difference between 16O and 48Ti, compared to damages resulting from ED in localized damage sites.
Collapse
Affiliation(s)
- Murat Alp
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada
| |
Collapse
|
31
|
Neurocognitive dysfunction following repeated binge-like self-administration of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 2017; 134:36-45. [PMID: 29183686 DOI: 10.1016/j.neuropharm.2017.11.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/10/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
Synthetic cathinones, frequently referred to as "bath salts", have significant abuse potential, and recent evidence suggests that these novel psychoactive substances can also produce cognitive deficits as well as cytotoxic effects. However, most of these latter findings have been obtained either using high concentrations in vitro or following non-contingent high dose administration in vivo. The present study utilized a model of long-term voluntary binge-like self-administration to determine potential detrimental effects of synthetic cathinones on cognitive function and their known underlying neural circuits, collectively referred to as neurocognitive dysfunction. Male Sprague-Dawley rats were allowed to self-administer the cocaine-like synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV, 0.03 mg/kg/infusion i.v.) in 96-hr sessions, or saline as a control. A total of five 96-hr sessions were conducted, each separated by 3 days of abstinence in the home cage. Three weeks following the last 96-hr session, animals underwent assessment of cognitive function using spatial object recognition (SOR) and novel object recognition (NOR) tasks, after which brains were harvested and assessed for neurodegeneration using FluoroJade C (FJC). Compared to animals self-administering saline, animals self-administering MDPV demonstrated (1) robust drug intake that escalated over time, (2) deficits in NOR but not SOR, and (3) neurodegeneration in the perirhinal and entorhinal cortices. These results indicate that repeated binge-like intake of MDPV can induce neurocognitive dysfunction. In addition, utilization of rodent models of extended binge-like intake may provide insight into potential mechanisms and/or approaches to prevent or reverse the detrimental effects of abused substances on cognitive and neurobiological functioning. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'
Collapse
|