1
|
Wang Y, Zhao M, Li Q, Hao Z, Zhang J, Huang L, Ding Q, Cheng Z, Zhang J, Li H, Jia X. Altered resting-state functional connectivity of amygdala subregions in adults with subthreshold depression after aerobic exercise. Brain Imaging Behav 2025; 19:468-484. [PMID: 39994101 DOI: 10.1007/s11682-025-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Aerobic exercise has been proved to reduce the risk of major depression in subthreshold depression (StD) individuals effectively, yet previous studies ignored the different functions of amygdala subregions. In this study, 44 StD individuals and 34 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging before and after eight weeks of aerobic exercise respectively. Transverse and longitudinal analyses were conducted based on the seed-based functional connectivity (FC) analysis between amygdala subregions and the whole brain of the two groups. The transverse analyses showed that compared to HCs, StD individuals showed abnormal FC between the right dorsal amygdala (DA) and right superior frontal gyrus, the left medial amygdala (MA) and left gyrus rectus, right caudate, as well as the right ventrolateral amygdala (VA) and right angular gyrus before the exercise intervention, while increased FC between the right DA and left supramarginal gyrus after the exercise intervention. The longitudinal analysis showed decreased FC between the left DA and left caudate, left middle frontal gyrus, while increased FC between the right MA and posterior central gyrus in StD individuals after exercise intervention. As for HCs, the DA showed FC differences with the insula, frontal lobe, parietal lobe, temporal lobe and thalamus. The MA showed FC differences with the central posterior gyrus, occipital lobe and thalamus. The VA showed FC differences with the calcarine cortex and parietal lobe. The findings demonstrated the alleviative effect of aerobic exercise on depression from the perspective of brain function.
Collapse
Affiliation(s)
- Yihe Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qin Li
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, People's Hospital, Changshu No.2, Changshu, Jiangsu, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, People's Hospital, Changshu No.2, Changshu, Jiangsu, China
| | - Qingguo Ding
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, People's Hospital, Changshu No.2, Changshu, Jiangsu, China
| | - Zhixiang Cheng
- Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, Ultimo, 2007, Australia
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
2
|
Tamayo M, Agusti A, Molina-Mendoza GV, Rossini V, Frances-Cuesta C, Tolosa-Enguís V, Sanz Y. Bifidobacterium longum CECT 30763 improves depressive- and anxiety-like behavior in a social defeat mouse model through the immune and dopaminergic systems. Brain Behav Immun 2025; 125:35-57. [PMID: 39694341 DOI: 10.1016/j.bbi.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Adolescence is a crucial period marked by profound changes in the brain. Exposure to psychological stressors such as bullying, abuse or maltreatment during this developmental period may increase the risk of developing depression, anxiety and comorbid cardiometabolic conditions. Chronic psychological stress is associated with behavioral changes and disruption of the hypothalamic-pituitary-adrenal axis, leading to corticosterone overproduction in rodents and changes in both the immune system and the gut microbiome. Here, we demonstrate the ability of Bifidobacterium longum CECT 30763 (B. longum) to ameliorate adolescent depressive and anxiety-like behaviors in a chronic social defeat (CSD) mouse model. The mechanisms underlying this beneficial effect are related to the ability of B. longum to attenuate the inflammation and immune cell changes induced by CSD after the initial stress exposure through the induction of T regulatory cells with enduring effects that may prevent and mitigate the adverse consequences of repeated stress exposure on mental and cardiometabolic health. B. longum administration also normalized dopamine release, metabolism and signaling at the end of the intervention, which may secondarily contribute to the reversal of behavioral changes. The anti-inflammatory effects of B. longum could also explain its cardioprotective effects, which were reflected in an amelioration of the oxidative stress-induced damage in the heart and improved lipid metabolism in the liver. Overall, our findings suggest that B. longum regulates the links between the immune and dopaminergic systems from the gut to the brain, potentially underpinning its beneficial psychobiotic and physiological effects in CSD.
Collapse
Affiliation(s)
- M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Tolosa-Enguís
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
3
|
Sievertsen SA, Zhu J, Fang A, Forsyth JK. Resting-State Cortical Network and Subcortical Hyperconnectivity in Youth With Generalized Anxiety Disorder in the ABCD Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00062-X. [PMID: 39988295 DOI: 10.1016/j.bpsc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Generalized anxiety disorder (GAD) frequently emerges during childhood or adolescence, yet few studies have examined functional connectivity differences in youth with GAD. Functional magnetic resonance imaging (fMRI) studies of adults with GAD have implicated multiple brain regions; however, frequent examination of individual brain seed regions and/or networks has limited a holistic view of GAD-associated differences. The current study therefore used resting-state fMRI data from the Adolescent Brain Cognitive Development (ABCD) Study to investigate connectivity in youths with GAD across multiple cortical networks and subcortical regions implicated in adult GAD, considering diagnosis changes across 2 assessment periods. METHODS In 164 youths with GAD and 3158 healthy control participants, within- and between-network connectivity for 6 cortical networks and 6 subcortical regions was assessed using linear mixed-effect models. Changes in GAD-associated connectivity between baseline and 2-year follow-up were then compared for participants with continuous GAD, GAD at baseline and not follow-up (GAD remitters), and GAD at follow-up and not baseline (GAD converters) versus control participants. RESULTS Youths with GAD showed greater within-ventral attention network (VAN) connectivity and hyperconnectivity between the amygdala and cingulo-opercular network and between striatal regions and the cingulo-opercular, default mode, and salience networks (false discovery rate p < .05). Within-VAN connectivity decreased for GAD remitters between baseline and follow-up. Sensitivity analyses revealed that these hyperconnectivity patterns were not observed in youths with major depressive disorder (n = 19), separation anxiety (n = 33), or social anxiety disorder (n = 111) who did not have GAD. CONCLUSIONS Results indicate that GAD in childhood and adolescence is associated with altered subcortical to cortical network connectivity and that within-VAN hyperconnectivity, in particular, is associated with clinically significant GAD-specific symptoms.
Collapse
Affiliation(s)
- Sam A Sievertsen
- Department of Psychology, University of Washington, Seattle, Washington
| | - Jinhan Zhu
- Department of Psychology, University of Washington, Seattle, Washington
| | - Angela Fang
- Department of Psychology, University of Washington, Seattle, Washington
| | - Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle, Washington.
| |
Collapse
|
4
|
Xu Y, Chen D, Dong M, Zhang Y, Yu H, Han Y. Bidirectional relationship between depression and activities of daily living and longitudinal mediation of cognitive function in patients with Parkinson's disease. Front Aging Neurosci 2025; 17:1513373. [PMID: 40013091 PMCID: PMC11861111 DOI: 10.3389/fnagi.2025.1513373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To investigate the bidirectional relationship between depression and activities of daily living (ADL) in Parkinson's disease (PD) patients and explore the mediating role of cognitive function over time. Methods Data from 892 PD patients from the Parkinson's Progression Markers Initiative (PPMI) database were included in this study, and depression, cognitive function, and ADL were measured using the Geriatric Depression Scale (GDS-15), Montreal Cognitive Assessment Scale (MoCA), and Unified Parkinson's Disease Rating Scale, Part II (UPDRS II) respectively. The cross-lagged panel model (CLPM) was employed to analyze the reciprocal relationship between depression and ADL. Then, we explored the mediating role of cognitive function in the bidirectional relationship between depression and ADL in patients with PD, and the mediation effect test was carried out using a bias-corrected nonparametric percentile bootstrap approach. Results Depression in patients with PD predicted their subsequent ADL (β = 0.079, p < 0.01), and ADL also predicted their subsequent depression (β = 0.069, p < 0.05), In addition, Bootstrap analysis showed that cognitive function played a significant mediating role in prediction of depression to ADL in patients with PD (β = 0.006, p = 0.074, 95%CI = 0.001 ~ 0.014), and cognitive function also played a significant mediating role in prediction of depression to ADL (β = 0.006, p = 0.067, 95%CI = 0.001 ~ 0.013). Conclusion There is a bidirectional relationship between depression and ADL in patients with PD. Furthermore, we found that cognitive function mediates the relationship that exists between depression and ADL in patients with PD. Interventions aimed at enhancing cognitive function could potentially lessen the vicious cycle of depression and ADL in PD, thus improving patient quality of life (QOL).
Collapse
Affiliation(s)
- Yue Xu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Durong Chen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Meiqi Dong
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yun Zhang
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, China
- Department of Neurology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogebicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yanqing Han
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Neurology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Piechal A, Blecharz-Klin K, Jakimiuk A, Pyrzanowska J, Joniec-Maciejak I, Mirowska-Guzel D, Widy-Tyszkiewicz E. The effect of 3-di-o-tolylguanidine on the level of neurotransmitters in the cerebellum and related disorders of social behavior. Neuroscience 2025; 565:549-557. [PMID: 39694318 DOI: 10.1016/j.neuroscience.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
It is common knowledge that the cerebellum is a structure of the central nervous system that influences the processes of balance and motor coordination. Recently its influence on social interactions has also been emphasized. The sigma receptor agonist: 3-di-o-tolylguanidine (DTG) is characterized by high affinity for sigma 1 and sigma 2 receptors, widely distributed in the cerebellum. In the experiment we assessed the effect of long term administration of DTG to adult male Sprague Dawley rats on social behavior and the concentration of neurotransmitters in the cerebellum. DTG was administered orally at a dose of 3 mg/kg body weight (bw) (DTG3), 10 mg/kg bw (DTG10) and 30 mg/kg bw (DTG30) for 9 weeks before the behavioral test. After the experiment, the concentration of catecholamines and amino acids in the cerebellum was assessed using high performance liquid chromatography (HPLC). Treatment groups showed reductions in social interactions such as grooming, sniffing and total time spent interacting. At the same time, it was shown that in the group receiving the lowest dose of the drug, a decrease in the concentration of dopamine and serotonin in the cerebellum was observed. Furthermore, changes in the concentration of taurine, alanine, glutamic acid and gamma-aminobutyric acid were observed in the treated groups. We found that long term administration of DTG disturbs animals' social interactions and the concentration of neurotransmitters in the cerebellum.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland.
| | - Alicja Jakimiuk
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Ballard IC, Waskom M, Nix KC, D'Esposito M. Reward Reinforcement Creates Enduring Facilitation of Goal-directed Behavior. J Cogn Neurosci 2024; 36:2847-2862. [PMID: 38579249 PMCID: PMC11602007 DOI: 10.1162/jocn_a_02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Stimulus-response habits benefit behavior by automatizing the selection of rewarding actions. However, this automaticity can come at the cost of reduced flexibility to adapt behavior when circumstances change. The goal-directed system is thought to counteract the habit system by providing the flexibility to pursue context-appropriate behaviors. The dichotomy between habitual action selection and flexible goal-directed behavior has recently been challenged by findings showing that rewards bias both action and goal selection. Here, we test whether reward reinforcement can give rise to habitual goal selection much as it gives rise to habitual action selection. We designed a rewarded, context-based perceptual discrimination task in which performance on one rule was reinforced. Using drift-diffusion models and psychometric analyses, we found that reward facilitates the initiation and execution of rules. Strikingly, we found that these biases persisted in a test phase in which rewards were no longer available. Although this facilitation is consistent with the habitual goal selection hypothesis, we did not find evidence that reward reinforcement reduced cognitive flexibility to implement alternative rules. Together, the findings suggest that reward creates a lasting impact on the selection and execution of goals but may not lead to the inflexibility characteristic of habits. Our findings demonstrate the role of the reward learning system in influencing how the goal-directed system selects and implements goals.
Collapse
|
7
|
Somerville Y, Abend R. The Organization of Anxiety Symptoms Along the Threat Imminence Continuum. Curr Top Behav Neurosci 2024. [PMID: 39579323 DOI: 10.1007/7854_2024_548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Pathological anxiety is highly prevalent, impairing, and often chronic. Yet, despite considerable research, mechanistic understanding of anxiety and its translation to clinical practice remain limited. Here, we first highlight two foundational complications that contribute to this gap: a reliance on a phenomenology-driven definition of pathological anxiety in neurobiological mechanistic research, and a limited understanding of the chronicity of anxiety symptom expression. We then posit that anxiety symptoms may reflect aberrant expression of otherwise normative defensive responses. Accordingly, we propose that threat imminence, an organizing dimension for normative defensive responses observed across species, may be applied to organize and understand anxiety symptoms along a temporal dimension of expression. Empirical evidence linking distinct anxiety symptoms and the aberrant expression of imminence-dependent defensive responses is reviewed, alongside the neural mechanisms which may underpin these cognitive, physiological, and behavioral responses. Drawing from extensive translational and clinical research, we suggest that understanding anxiety symptoms through this neurobiologically-informed framework may begin to overcome the conceptual complications hindering advancement in mechanistic research and clinical interventions for pathological anxiety.
Collapse
Affiliation(s)
- Ya'ira Somerville
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Rany Abend
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel.
| |
Collapse
|
8
|
Bas-Hoogendam JM. Genetic Vulnerability to Social Anxiety Disorder. Curr Top Behav Neurosci 2024. [PMID: 39543021 DOI: 10.1007/7854_2024_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Most anxiety disorders 'run within families': people suffering from an anxiety disorder often have family members who are highly anxious as well. In this chapter, we explore recent work devoted to unraveling the complex interplay between genes and environment in the development of anxiety. We review studies focusing on the genetic vulnerability to develop social anxiety disorder (SAD), as SAD is one of the most prevalent anxiety disorders, with an early onset, a chronic course, and associated with significant life-long impairments. More insight into the development of SAD is thus of uttermost importance.First, we will discuss family studies, twin studies, and large-sized population-based registry studies and explain what these studies can reveal about the genetic vulnerability to develop anxiety. Next, we describe the endophenotype approach; in this context, we will summarize results from the Leiden Family Lab study on Social Anxiety Disorder. Subsequently, we review the relationship between the heritable trait 'behavioral inhibition' and the development of SAD, and highlight the relevance of this work for the development and improvement of preventative and therapeutic interventions for socially anxious youth.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Leiden University, Leiden, The Netherlands.
- Leiden University Medical Center, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
9
|
Jia X, Li M, Wang C, Antwi CO, Darko AP, Zhang B, Ren J. Local brain abnormalities in emotional disorders: Evidence from resting state fMRI studies. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1694. [PMID: 39284783 DOI: 10.1002/wcs.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024]
Abstract
Emotional disorders inflict an enormous burden on society. Research on brain abnormalities implicated in emotional disorders has witnessed great progress over the past decades. Using cross-sectional and longitudinal designs, resting state functional magnetic resonance imaging (rs-fMRI) and its analytic approaches have been applied to characterize the local properties of patients with emotional disorders. Additionally, brain activity alterations of emotional disorders have shown frequency-specific. Despite the gains in understanding the roles of brain abnormalities in emotional disorders, the limitation of the small sample size needs to be highlighted. Lastly, we proposed that evidence from the positive psychology research stream presents it as a viable discipline, whose suggestions could be developed in future emotional disorders research. Such interdisciplinary research may produce novel treatments and intervention options. This article is categorized under: Psychology > Brain Function and Dysfunction.
Collapse
Affiliation(s)
- Xize Jia
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | | | - Baojing Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
10
|
Agusti A, Molina-Mendoza GV, Tamayo M, Rossini V, Cenit MC, Frances-Cuesta C, Tolosa-Enguis V, Gómez Del Pulgar EM, Flor-Duro A, Sanz Y. Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress. Biomed Pharmacother 2024; 180:117377. [PMID: 39316970 DOI: 10.1016/j.biopha.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress. We demonstrate that administered C. minuta alleviates chronic stress-induced depressive, anxiogenic and antisocial behavior. These effects are attributed to the bacterium's ability to modulate the hypothalamic-pituitary-adrenal axis, which mediates the stress response. This included the oversecretion of corticosterone and the overexpression of its receptors, as well as the metabolism of dopamine (DA) and the expression of its receptors (D1, D2L and D2S). Additionally, C. minuta administration reduced chronically induced inflammation in plasma, spleen and some brain areas, which likely contribute to the recovery of physical and behavioral function. Furthermore, C. minuta administration prevented chronic stress-induced cardiovascular damage by regulating key enzymes mediating liver fibrosis and oxidative stress. Finally, C. minuta increased the abundance of bacteria associated with mental health. Overall, our study highlights the potential of microbiota-directed interventions to alleviate both the physical and mental effects of chronic stress.
Collapse
Affiliation(s)
- A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M C Cenit
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - V Tolosa-Enguis
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - E M Gómez Del Pulgar
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - A Flor-Duro
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| |
Collapse
|
11
|
El-Kadi RA, AbdelKader NF, Zaki HF, Kamel AS. Vilazodone Alleviates Neurogenesis-Induced Anxiety in the Chronic Unpredictable Mild Stress Female Rat Model: Role of Wnt/β-Catenin Signaling. Mol Neurobiol 2024; 61:9060-9077. [PMID: 38584231 PMCID: PMC11496359 DOI: 10.1007/s12035-024-04142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Defective β-catenin signaling is accompanied with compensatory neurogenesis process that may pave to anxiety. β-Catenin has a distinct role in alleviating anxiety in adolescence; however, it undergoes degradation by the degradation complex Axin and APC. Vilazodone (VZ) is a fast, effective antidepressant with SSRI activity and 5-HT1A partial agonism that amends somatic and/or psychic symptoms of anxiety. Yet, there is no data about anxiolytic effect of VZ on anxiety-related neurogenesis provoked by stress-reduced β-catenin signaling. Furthermore, females have specific susceptibility toward psychopathology. The aim of the present study is to uncover the molecular mechanism of VZ relative to Wnt/β-catenin signaling in female rats. Stress-induced anxiety was conducted by subjecting the rats to different stressful stimuli for 21 days. On the 15th day, stressed rats were treated with VZ(10 mg/kg, p.o.) alone or concomitant with the Wnt inhibitor: XAV939 (0.1 mg/kg, i.p.). Anxious rats showed low β-catenin level turned over by Axin-1 with unanticipated reduction of APC pursued with elevated protein levels of neurogenesis-stimulating proteins: c-Myc and pThr183-Erk likewise gene expressions of miR-17-5p and miR-18. Two weeks of VZ treatment showed anxiolytic effect figured by alleviation of hippocampal histological examination. VZ protected β-catenin signal via reduction in Axin-1 and elevation of APC conjugated with modulation of β-catenin downstream targets. The cytoplasmic β-catenin turnover by Axin-1 was restored by XAV939. Herein, VZ showed anti-anxiety effect, which may be in part through regaining the balance of the reduced β-catenin and its subsequent exaggerated response of p-Erk, c-Myc, Dicer-1, miR-17-5p, and miR-18.
Collapse
Affiliation(s)
- Rana A El-Kadi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Alexandria University Hospitals, Champollion Street, El-Khartoum Square, El Azareeta, Alexandria, 21131, Egypt
| | - Noha F AbdelKader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
12
|
Rosenberg BM, Moreira JFG, Leal ASM, Saragosa-Harris NM, Gaines E, Meredith WJ, Waizman Y, Ninova E, Silvers JA. Functional connectivity between the nucleus accumbens and amygdala underlies avoidance learning during adolescence: Implications for developmental psychopathology. Dev Psychopathol 2024:1-13. [PMID: 39324228 PMCID: PMC11936845 DOI: 10.1017/s095457942400141x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND Reward and threat processes work together to support adaptive learning during development. Adolescence is associated with increasing approach behavior (e.g., novelty-seeking, risk-taking) but often also coincides with emerging internalizing symptoms, which are characterized by heightened avoidance behavior. Peaking engagement of the nucleus accumbens (NAcc) during adolescence, often studied in reward paradigms, may also relate to threat mechanisms of adolescent psychopathology. METHODS 47 typically developing adolescents (9.9-22.9 years) completed an aversive learning task during functional magnetic resonance imaging, wherein visual cues were paired with an aversive sound or no sound. Task blocks involved an escapable aversively reinforced stimulus (CS+r), the same stimulus without reinforcement (CS+nr), or a stimulus that was never reinforced (CS-). Parent-reported internalizing symptoms were measured using Revised Child Anxiety and Depression Scales. RESULTS Functional connectivity between the NAcc and amygdala differentiated the stimuli, such that connectivity increased for the CS+r (p = .023) but not for the CS+nr and CS-. Adolescents with greater internalizing symptoms demonstrated greater positive functional connectivity for the CS- (p = .041). CONCLUSIONS Adolescents show heightened NAcc-amygdala functional connectivity during escape from threat. Higher anxiety and depression symptoms are associated with elevated NAcc-amygdala connectivity during safety, which may reflect poor safety versus threat discrimination.
Collapse
Affiliation(s)
- Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - João F. Guassi Moreira
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Adriana S. Méndez Leal
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Elizabeth Gaines
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wesley J. Meredith
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yael Waizman
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Emilia Ninova
- College of Social Work, Florida State University, Tallahassee, FL, USA
| | - Jennifer A. Silvers
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
13
|
Fang L, Tong Y, Li M, Wang C, Li Y, Yuan M, Zhang X, Wang G, Wang J, Su P. Anxiety in adolescents and subsequent risk of suicidal behavior: A systematic review and meta-analysis. J Affect Disord 2024; 358:97-104. [PMID: 38703913 DOI: 10.1016/j.jad.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Suicide is a major public health concern, and anxiety is a prevalent developmental challenge in adolescents closely linked to suicidal behavior. This study aimed to assess the association between anxiety in adolescents and subsequent risk of suicidal behavior through a meta-analysis, offering crucial insights for suicide prevention. METHODS Six bibliographic databases were comprehensively searched to clarify the association between adolescents anxiety and subsequent risk of suicidal behavior. We used a fixed-effects model to determine the total pooled effect size estimate and reported odds ratios and the corresponding 95 % confidence intervals. Subgroup analysis, sensitivity analysis and publication bias analysis were conducted with Stata version 15.1. RESULTS The findings revealed a significant association between anxiety in adolescents and subsequent suicidal behavior (OR = 2.33, 95 % CI [2.00, 2.71]). Subgroup analyses indicated differences in mean effect size estimates based on clinical diagnoses and self-reported measures used to assess anxiety. The correlation strength between adolescent anxiety and subsequent suicidal behavior increased with a longer follow-up period. Furthermore, adolescents anxiety was associated with increased risk of subsequent suicidal ideation (OR = 1.97, 95 % CI [1.72, 2.25]) and attempts (OR = 3.56, 95 % CI [2.49, 5.07]). Finally, boys (OR = 2.41, 95 % CI [1.67, 3.47]) with anxiety had a greater risk of subsequent suicidal behavior than girls (OR = 2.02, 95 % CI [1.47, 2.78]). CONCLUSION This study revealed that adolescents anxiety increases the risk of suicidal behavior, including suicidal ideation and attempts. Consequently, there is a critical need for timely interventions tailored to adolescents with anxiety to prevent future instances of suicide.
Collapse
Affiliation(s)
- Lulu Fang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Yingying Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Min Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Cong Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Yonghan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengyuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jun Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
14
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
15
|
Casalvera A, Goodwin M, Lynch KG, Teferi M, Patel M, Grillon C, Ernst M, Balderston NL. Threat of shock increases distractor susceptibility during the short-term maintenance of visual information. Soc Cogn Affect Neurosci 2024; 19:nsae036. [PMID: 38809714 PMCID: PMC11173208 DOI: 10.1093/scan/nsae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Elevated arousal in anxiety is thought to affect attention control. To test this, we designed a visual short-term memory (VSTM) task to examine distractor suppression during periods of threat and no-threat. We hypothesized that threat would impair performance when subjects had to filter out large numbers of distractors. The VSTM task required subjects to attend to one array of squares while ignoring a separate array. The number of target and distractor squares varied systematically, with high (four squares) and low (two squares) target and distractor conditions. This study comprised two separate experiments. Experiment 1 used startle responses and white noise as to directly measure threat-induced anxiety. Experiment 2 used BOLD to measure brain responses. For Experiment 1, subjects showed significantly larger startle responses during threat compared to safe period, supporting the validity of the threat manipulation. For Experiment 2, we found that accuracy was affected by threat, such that the distractor load negatively impacted accuracy only in the threat condition. We also found threat-related differences in parietal cortex activity. Overall, these findings suggest that threat affects distractor susceptibility, impairing filtering of distracting information. This effect is possibly mediated by hyperarousal of parietal cortex during threat.
Collapse
Affiliation(s)
- Abigail Casalvera
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Madeline Goodwin
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Kevin G Lynch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Teferi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Milan Patel
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Zhang X, Niu P, Su M, Zhou L, Huang Y, Chen J, Liu S. Topological differences of striato-thalamo-cortical circuit in functional brain network between premature ejaculation patients with and without depression. Brain Behav 2024; 14:e3585. [PMID: 38849981 PMCID: PMC11161395 DOI: 10.1002/brb3.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION Premature ejaculation (PE), a common male sexual dysfunction, often accompanies by abnormal psychological factors, such as depression. Recent neuroimaging studies have revealed structural and functional brain abnormalities in PE patients. However, there is limited neurological evidence supporting the comorbidity of PE and depression. This study aimed to explore the topological changes of the functional brain networks of PE patients with depression. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 60 PE patients (30 with depression and 30 without depression) and 29 healthy controls (HCs). Functional brain networks were constructed for all participants based on rs-fMRI data. The nodal parameters including nodal centrality and efficiency were calculated by the method of graph theory analysis and then compared between groups. In addition, the results were corrected for multiple comparisons by family-wise error (FWE) (p < .05). RESULTS PE patients with depression had increased degree centrality and global efficiency in the right pallidum, as well as increased degree centrality in the right thalamus when compared with HCs. PE patients without depression showed increased degree centrality in the right pallidum and thalamus, as well as increased global efficiency in the right precuneus, pallidum, and thalamus when compared with HCs. PE patients with depression demonstrated decreased degree centrality in the right pallidum and thalamus, as well as decreased global efficiency in the right precuneus, pallidum, and thalamus when compared to those without depression. All the brain regions above survived the FWE correction. CONCLUSION The results suggested that increased and decreased functional connectivity, as well as the capability of global integration of information in the brain, might be related to the occurrence of PE and the comorbidity depression in PE patients, respectively. These findings provided new insights into the understanding of the pathological mechanisms underlying PE and those with depression.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Peining Niu
- Department of AndrologySiyang County Traditional Chinese Medicine Hospital Affiliated to Yangzhou University School of MedicineSuqiangChina
| | - Mengqing Su
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Li Zhou
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yunke Huang
- Women's HospitalZhejiang University School of MedicineZhejiangChina
| | - Jianhuai Chen
- Department of AndrologyJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Shaowei Liu
- Department of RadiologyJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
17
|
Liu H, Hao Z, Qiu S, Wang Q, Zhan L, Huang L, Shao Y, Wang Q, Su C, Cao Y, Sun J, Wang C, Lv Y, Li M, Shen W, Li H, Jia X. Grey matter structural alterations in anxiety disorders: a voxel-based meta-analysis. Brain Imaging Behav 2024; 18:456-474. [PMID: 38150133 DOI: 10.1007/s11682-023-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Anxiety disorders (ADs) are a group of prevalent and destructive mental illnesses, but the current understanding of their underlying neuropathology is still unclear. Employing voxel-based morphometry (VBM), previous studies have demonstrated several common brain regions showing grey matter volume (GMV) abnormalities. However, contradictory results have been reported among these studies. Considering that different subtypes of ADs exhibit common core symptoms despite different diagnostic criteria, and previous meta-analyses have found common core GMV-altered brain regions in ADs, the present research aimed to combine the results of individual studies to identify common GMV abnormalities in ADs. Therefore, we first performed a systematic search in PubMed, Embase, and Web of Science on studies investigating GMV differences between patients with ADs and healthy controls (HCs). Then, the anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. A total of 24 studies (including 25 data sets) were included in the current study, and 906 patients with ADs and 1003 HCs were included. Compared with the HCs, the patients with ADs showed increased GMV in the left superior parietal gyrus, right angular gyrus, left precentral gyrus, and right lingual gyrus, and decreased GMV in the bilateral insula, bilateral thalamus, left caudate, and right putamen. In conclusion, the current study has identified some abnormal GMV brain regions that are related to the pathological mechanisms of anxiety disorders. These findings could contribute to a better understanding of the underlying neuropathology of ADs.
Collapse
Affiliation(s)
- Han Liu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Shasha Qiu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qianqian Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- School of Western Languages, Heilongjiang University, Heilongjiang, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Youbin Shao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Chang Su
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Chunjie Wang
- Institute of Brain Science, Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Wenbin Shen
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
18
|
Hu L, Stamoulis C. Strength and resilience of developing brain circuits predict adolescent emotional and stress responses during the COVID-19 pandemic. Cereb Cortex 2024; 34:bhae164. [PMID: 38669008 PMCID: PMC11484496 DOI: 10.1093/cercor/bhae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 10/19/2024] Open
Abstract
The COVID-19 pandemic has had profound but incompletely understood adverse effects on youth. To elucidate the role of brain circuits in how adolescents responded to the pandemic's stressors, we investigated their prepandemic organization as a predictor of mental/emotional health in the first ~15 months of the pandemic. We analyzed resting-state networks from n = 2,641 adolescents [median age (interquartile range) = 144.0 (13.0) months, 47.7% females] in the Adolescent Brain Cognitive Development study, and longitudinal assessments of mental health, stress, sadness, and positive affect, collected every 2 to 3 months from May 2020 to May 2021. Topological resilience and/or network strength predicted overall mental health, stress and sadness (but not positive affect), at multiple time points, but primarily in December 2020 and May 2021. Higher resilience of the salience network predicted better mental health in December 2020 (β = 0.19, 95% CI = [0.06, 0.31], P = 0.01). Lower connectivity of left salience, reward, limbic, and prefrontal cortex and its thalamic, striatal, amygdala connections, predicted higher stress (β = -0.46 to -0.20, CI = [-0.72, -0.07], P < 0.03). Lower bilateral robustness (higher fragility) and/or connectivity of these networks predicted higher sadness in December 2020 and May 2021 (β = -0.514 to -0.19, CI = [-0.81, -0.05], P < 0.04). These findings suggest that the organization of brain circuits may have played a critical role in adolescent stress and mental/emotional health during the pandemic.
Collapse
Affiliation(s)
- Linfeng Hu
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 77 Huntington Ave, Boston, MA 02115, United States
| | - Catherine Stamoulis
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| |
Collapse
|
19
|
Cui X, Wang J, Xue S, Qin Z, Peng CK. Quantifying the accuracy of inter-beat intervals acquired from consumer-grade photoplethysmography wristbands using an electrocardiogram-aided information-based similarity approach. Physiol Meas 2024; 45:035002. [PMID: 38387061 DOI: 10.1088/1361-6579/ad2c14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Objective. Although inter-beat intervals (IBI) and the derived heart rate variability (HRV) can be acquired through consumer-grade photoplethysmography (PPG) wristbands and have been applied in a variety of physiological and psychophysiological conditions, their accuracy is still unsatisfactory.Approach.In this study, 30 healthy participants concurrently wore two wristbands (E4 and Honor 5) and a gold-standard electrocardiogram (ECG) device under four conditions: resting, deep breathing with a frequency of 0.17 Hz and 0.1 Hz, and mental stress tasks. To quantitatively validate the accuracy of IBI acquired from PPG wristbands, this study proposed to apply an information-based similarity (IBS) approach to quantify the pattern similarity of the underlying dynamical temporal structures embedded in IBI time series simultaneously recorded using PPG wristbands and the ECG system. The occurrence frequency of basic patterns and their rankings were analyzed to calculate the IBS distance from gold-standard IBI, and to further calculate the signal-to-noise ratio (SNR) of the wristband IBI time series.Main results.The accuracies of both HRV and mental state classification were not satisfactory due to the low SNR in the wristband IBI. However, by rejecting data segments of SNR < 25, the Pearson correlation coefficients between the wristbands' HRV and the gold-standard HRV were increased from 0.542 ± 0.235 to 0.922 ± 0.120 for E4 and from 0.596 ± 0.227 to 0.859 ± 0.145 for Honor 5. The average accuracy of four-class mental state classification increased from 77.3% to 81.9% for E4 and from 79.3% to 83.3% for Honor 5.Significance.Consumer-grade PPG wristbands are acceptable for HR and HRV monitoring when removing low SNR segments. The proposed method can be applied for quantifying the accuracies of IBI and HRV indices acquired via any non-ECG system.
Collapse
Affiliation(s)
- Xingran Cui
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jing Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Shan Xue
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Zeguang Qin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Chung-Kang Peng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing, People's Republic of China
- Center for Dynamical Biomarkers, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, United States of America
| |
Collapse
|
20
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Chen T, Zhu SJ, Xu S, Wang YQ, Aji A, Zhang C, Wang H, Li FL, Chu YX. Resting-state fMRI reveals changes within the anxiety and social avoidance circuitry of the brain in mice with psoriasis-like skin lesions. Exp Dermatol 2023; 32:1900-1914. [PMID: 37622736 DOI: 10.1111/exd.14914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Psoriasis is an autoimmune skin disease that often co-occurs with psychological morbidities such as anxiety and depression, and psychosocial issues also lead psoriasis patients to avoid other people. However, the precise mechanism underlying the comorbidity of psoriasis and anxiety is unknown. Also, whether the social avoidance phenomenon seen in human patients also exists in psoriasis-like animal models remains unknown. In the present study, anxiety-like behaviours and social avoidance-like behaviours were observed in an imiquimod-induced psoriasis-like C57-BL6 mouse model along with typical psoriasis-like dermatitis and itch-like behaviours. The 11.7T resting-state functional magnetic resonance imaging showed differences in brain regions between the model and control group, and voxel-based morphometry showed that the grey matter volume changed in the basal forebrain region, anterior commissure intrabulbar and striatum in the psoriasis-like mice. Seed-based resting state functional connectivity analysis revealed connectivity changes in the amygdala, periaqueductal gray, raphe nuclei and lateral septum. We conclude that the imiquimod-induced psoriasis-like C57-BL6 mouse model is well suited for mechanistic studies and for performing preclinical therapeutic trials for treating anxiety and pathological social avoidance in psoriasis patients.
Collapse
Affiliation(s)
- Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Sheng-Jie Zhu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuai Xu
- Department of Neurology, Institute of Science and Technology for Brain-Inspired Intelligence, Zhongshan Hospital, Human Phenome Institute, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Yu-Quan Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - He Wang
- Department of Neurology, Institute of Science and Technology for Brain-Inspired Intelligence, Zhongshan Hospital, Human Phenome Institute, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Baribeau DA, Vigod SN, Pullenayegum E, Kerns CM, Vaillancourt T, Duku E, Smith IM, Volden J, Zwaigenbaum L, Bennett T, Elsabbagh M, Zaidman-Zait A, Richard AE, Szatmari P. Developmental cascades between insistence on sameness behaviour and anxiety symptoms in autism spectrum disorder. Eur Child Adolesc Psychiatry 2023; 32:2109-2118. [PMID: 35871413 DOI: 10.1007/s00787-022-02049-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/06/2022] [Indexed: 12/28/2022]
Abstract
Autistic children experience high rates of anxiety. Insistence on sameness behaviour (IS) is a core feature of autism that appears correlated with anxiety severity. The objective of this study was to examine the longitudinal relations between anxiety and IS in autistic children using a developmental cascade model. A longitudinal cohort of 421 autistic children was followed between 4 and 11 years of age. Anxiety was quantified using items from the Anxiety Problems subscale of the Child Behavior Checklist; sameness behaviours were measured using the Repetitive Behavior Scale-Revised, Ritualistic/sameness subscale (both parent-report measures). Structural equation modelling was used to examine the longitudinal and directional associations between anxiety and IS at four time-points, through cross-lagged panel models (CLPM) with and without a random-intercepts component (RI-CLPM). Both the CLPM and the RI-CLPM had good fit. Significant directional associations were detected whereby elevated or increasing IS preceded elevated or increasing anxiety symptoms 1-2 years later, respectively. Stable baseline tendencies towards anxiety and IS as between-person traits (intercepts) were strongly associated (standardized estimate = 0.69, p < 0.001). The magnitude of the cross-sectional associations between anxiety and IS appeared to lessen with age. IS and anxiety symptoms in autism are closely related. They appear to be shared traits that mirror each other particularly in younger children. Increasing IS may be a sign of emerging future anxiety. Interventions that target IS to reduce or prevent anxiety amongst school-aged autistic children merit further study.
Collapse
Affiliation(s)
- Danielle A Baribeau
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- The Hospital for Sick Children, Toronto, ON, Canada.
- The Hospital for Sick Children, University of Toronto, 123 Edward Street, 12th floor, Room 1210, Toronto, ON, M5G 1E2, Canada.
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.
| | - Simone N Vigod
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Women's College Hospital and Women's College Research Institute, Toronto, ON, Canada
| | - Eleanor Pullenayegum
- The Hospital for Sick Children, Toronto, ON, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Connor M Kerns
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Eric Duku
- Offord Centre for Child Studies, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Isabel M Smith
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
- Autism Research Centre, IWK Health Centre, Halifax, NS, Canada
| | - Joanne Volden
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | | | - Teresa Bennett
- Offord Centre for Child Studies, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Anat Zaidman-Zait
- Department of School Counseling and Special Education at the Constantiner School of Education, Tel Aviv University, Tel Aviv, Israel
- The School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Annie E Richard
- Autism Research Centre, IWK Health Centre, Halifax, NS, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
23
|
Ma M, Quan H, Chen S, Fu X, Zang L, Dong L. The Anxiolytic Effect of Polysaccharides from Stellariae Radix through Monoamine Neurotransmitters, HPA Axis, and ECS/ERK/CREB/BDNF Signaling Pathway in Stress-induced Male Rats. Brain Res Bull 2023; 203:110768. [PMID: 37739234 DOI: 10.1016/j.brainresbull.2023.110768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Stellaria dichotoma L. var. lanceolata Bge. is renowned for its efficacy in "clearing deficiency heat" and represents a significant traditional Chinese medicine (TCM) resource. Modern pharmacology has demonstrated the anti-anxiety effects of Stellaria dichotoma L. var. lanceolata Bge. polysaccharides (SDPs). SDPs are one of the active constituents of Stellaria dichotoma L. var. lanceolata Bge. This study presents the first extraction of SDPs and investigates their potential molecular mechanisms and anxiolytic effects that are not previously reported. METHODS First, SDPs were obtained by water extraction and alcohol precipitation and analyzed for their monosaccharide composition by high performance liquid chromatography (HPLC). Male SD rats were subjected to a two-week indeterminate empty bottle stress procedure and a three-day acute restraint stress procedure, during which diazepam (DZP) (1 mg/kg) and SDPs (50, 100 and 200 mg/kg, intragastrically) were administered. A number of behavioral tests, including the elevated plus maze test (EPM), the open field test (OFT) and the light/dark box test (LDB), were used to assess the anti-anxiety potential of SDPs. Serum levels of Corticosterone (CORT) and Adrenocorticotropic hormone (ACTH), as well as the levels of Dopamine (DA) and serotonin (5-HT) found in the hippocampus and frontal cortex, were quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits. In addition, protein levels of key proteins cAMP-response element binding protein (CREB), phospho-CREB (p-CREB), brain-derived neurotrophic factor (BDNF), ERK½, p-ERK½, and GAPDH expression in rat hippocampus were measured by Western blot analysis, and modulation of the endocannabinoid system was assessed by immunohistochemistry. RESULTS Following administration of SDPs (50, 100, 200 mg/kg) and diazepam 1 mg/kg, anxiolytic activity was exhibited through an increase in the percentage of arm opening times and arm opening time of rats in the elevated plus maze. Additionally, there was an increase in the number of times and time spent in the open field center, percentage of time spent in the open box, and shuttle times in the LDB. Furthermore, tissue levels of DA and 5-HT were increased in the hippocampus and frontal cortex of rats after treatment with SDPs. In addition, SDPs significantly decreased serum levels of CORT and ACTH in rats. SDPs also effectively regulated the phosphorylation of the extracellular regulated protein kinases (ERK) and CREB-BDNF pathway in the hippocampus. Moreover, the expression levels of CB1 and CB2 proteins were heightened due to SDPs treatment in rats. CONCLUSIONS The study verified that SDPs alleviate anxiety in the EBS and ARS. The neuroregulatory behavior is accomplished by regulating the Monoamine neurotransmitter, HPA axis, and ECB-ERK-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Miao Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongfeng Quan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Shujuan Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China
| | - Lingling Zang
- Hainan Health Vocational College, Haikou 813099, China
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| |
Collapse
|
24
|
Zhang X, Yang X, Wu B, Pan N, He M, Wang S, Kemp GJ, Gong Q. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol Med 2023; 53:6194-6204. [PMID: 36330833 PMCID: PMC10520603 DOI: 10.1017/s0033291722003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
25
|
Miyanishi H, Suga S, Sumi K, Takakuwa M, Izuo N, Asano T, Muramatsu SI, Nitta A. The Role of GABA in the Dorsal Striatum-Raphe Nucleus Circuit Regulating Stress Vulnerability in Male Mice with High Levels of Shati/Nat8l. eNeuro 2023; 10:ENEURO.0162-23.2023. [PMID: 37813564 PMCID: PMC10598637 DOI: 10.1523/eneuro.0162-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
Depression is a frequent and serious illness, and stress is considered the main risk factor for its onset. First-line antidepressants increase serotonin (5-hydroxytryptamine; 5-HT) levels in the brain. We previously reported that an N-acetyltransferase, Shati/Nat8l, is upregulated in the dorsal striatum (dSTR) of stress-susceptible mice exposed to repeated social defeat stress (RSDS) and that dSTR Shati/Nat8l overexpression in mice (dSTR-Shati OE) induces stress vulnerability and local reduction in 5-HT content. Male mice were used in this study, and we found that dSTR 5-HT content decreased in stress-susceptible but not in resilient mice. Moreover, vulnerability to stress in dSTR-Shati OE mice was suppressed by the activation of serotonergic neurons projecting from the dorsal raphe nucleus (dRN) to the dSTR, followed by upregulation of 5-HT content in the dSTR using designer receptors exclusively activated by designer drugs (DREADD). We evaluated the role of GABA in modulating the serotonergic system in the dRN. Stress-susceptible after RSDS and dSTR-Shati OE mice exhibited an increase in dRN GABA content. Furthermore, dRN GABA content was correlated with stress sensitivity. We found that the blockade of GABA signaling in the dRN suppressed stress susceptibility in dSTR-Shati OE mice. In conclusion, we propose that dSTR 5-HT and dRN GABA, controlled by striatal Shati/Nat8l via the dSTR-dRN neuronal circuitry, critically regulate stress sensitivity. Our study provides insights into the neural processes that underlie stress and suggests that dSTR Shati/Nat8l could be a novel therapeutic target for drugs against depression, allowing direct control of the dRN serotonergic system.
Collapse
Affiliation(s)
- Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shiori Suga
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kazuyuki Sumi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Miho Takakuwa
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, Shimotsuke 329-0498, Japan
- Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
26
|
Lin H, Bruchmann M, Straube T. Altered Putamen Activation for Social Comparison-Related Feedback in Social Anxiety Disorder: A Pilot Study. Neuropsychobiology 2023; 82:359-372. [PMID: 37717563 DOI: 10.1159/000531762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/13/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Social anxiety disorder (SAD) is characterized by abnormal processing of performance-related social stimuli. Previous studies have shown altered emotional experiences and activations of different sub-regions of the striatum during processing of social stimuli in patients with SAD. However, whether and to what extent social comparisons affect behavioural and neural responses to feedback stimuli in patients with SAD is unknown. MATERIALS AND METHODS To address this issue, emotional ratings and functional magnetic resonance imaging (fMRI) responses were assessed while patients suffering from SAD and healthy controls (HC) were required to perform a choice task and received performance feedback (correct, incorrect, non-informative) that varied in relation to the performance of fictitious other participants (a few, half, or most of others had the same outcome). RESULTS Across all performance feedback conditions, fMRI analyses revealed reduced activations in bilateral putamen when feedback was assumed to be received by only a few compared to half of the other participants in patients with SAD. Nevertheless, analysis of rating data showed a similar modulation of valence and arousal ratings in patients with SAD and HC depending on social comparison-related feedback. CONCLUSIONS This suggests altered neural processing of performance feedback depending on social comparisons in patients with SAD.
Collapse
Affiliation(s)
- Huiyan Lin
- Laboratory for Behavioral and Regional Finance, Guangdong University of Finance, Guangzhou, China
- Institute of Applied Psychology, Guangdong University of Finance, Guangzhou, China
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Seiger R, Reggente N, Majid DSA, Ly R, Tadayonnejad R, Strober M, Feusner JD. Neural representations of anxiety in adolescents with anorexia nervosa: a multivariate approach. Transl Psychiatry 2023; 13:283. [PMID: 37582758 PMCID: PMC10427677 DOI: 10.1038/s41398-023-02581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Anorexia nervosa (AN) is characterized by low body weight, fear of gaining weight, and distorted body image. Anxiety may play a role in the formation and course of the illness, especially related to situations involving food, eating, weight, and body image. To understand distributed patterns and consistency of neural responses related to anxiety, we enrolled 25 female adolescents with AN and 22 non-clinical female adolescents with mild anxiety who underwent two fMRI sessions in which they saw personalized anxiety-provoking word stimuli and neutral words. Consistency in brain response patterns across trials was determined using a multivariate representational similarity analysis (RSA) approach within anxiety circuits and in a whole-brain voxel-wise searchlight analysis. In the AN group there was higher representational similarity for anxiety-provoking compared with neutral stimuli predominantly in prefrontal regions including the frontal pole, medial prefrontal cortex, dorsolateral prefrontal cortex, and medial orbitofrontal cortex, although no significant group differences. Severity of anxiety correlated with consistency of brain responses within anxiety circuits and in cortical and subcortical regions including the frontal pole, middle frontal gyrus, orbitofrontal cortex, thalamus, lateral occipital cortex, middle temporal gyrus, and cerebellum. Higher consistency of activation in those with more severe anxiety symptoms suggests the possibility of a greater degree of conditioned brain responses evoked by personally-relevant emotional stimuli. Anxiety elicited by disorder-related stimuli may activate stereotyped, previously-learned neural responses within- and outside of classical anxiety circuits. Results have implications for understanding consistent and automatic responding to environmental stimuli that may play a role in maintenance of AN.
Collapse
Affiliation(s)
- René Seiger
- General Adult Psychiatry and Health Systems, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - D S-Adnan Majid
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Ronald Ly
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Reza Tadayonnejad
- Division of Neuromodulation, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael Strober
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- General Adult Psychiatry and Health Systems, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Women's and Children's Health, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Ji R, Cui M, Zhou D, Pan X, Xie Y, Wu X, Liang X, Zhang H, Song W. Adulthood bisphenol A exposure induces anxiety in male mice via downregulation of alpha-1D adrenergic receptor in paraventricular thalamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115205. [PMID: 37392660 DOI: 10.1016/j.ecoenv.2023.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disrupting chemical, is widely used in household plastic products. Large amounts of evidence indicate prenatal and postnatal BPA exposure causes neurodevelopmental disorders such as anxiety and autism. However, the neuronal mechanisms underlying the neurotoxic effects of adulthood BPA exposure remain poorly understood. Here, we provided evidences that adult mice treated with BPA (0.45 mg/kg/day) during 3 weeks exhibited sex-specific anxiety like behaviors. We demonstrated that the BPA-induced anxiety in male mice, but not in female mice, was closely associated with hyperactivity of glutamatergic neurons in the paraventricular thalamus (PVT). Acute chemogenetic activation of PVT glutamatergic neurons caused similar effects on anxiety as observed in male mice exposed to BPA. In contrast, acute chemogenetic inhibition of PVT glutamatergic neurons reduced BPA-induced anxiety in male mice. Concomitantly, the BPA-induced anxiety was related with a down-regulation of alpha-1D adrenergic receptor in the PVT. Taken together, the present study indicated a previously unknown target region in the brain for neurotoxic effects of BPA on anxiety and implicated a possible molecular mechanism of action.
Collapse
Affiliation(s)
- Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoyuan Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuqi Xie
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiling Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Liang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
29
|
Kurth C. Are we virtuously caring or just anxious? Behav Brain Sci 2023; 46:e69. [PMID: 37154355 DOI: 10.1017/s0140525x22001960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
According to Grossmann, the high levels of cooperation seen in humans are the result of a "virtuous caring cycle" on which the increased care that more fearful children receive brings increased cooperative tendencies in those children. But this proposal overlooks an equally well supported alternative on which children's anxiety - not a virtuous caring cycle - explains the cooperative tendencies of humans.
Collapse
Affiliation(s)
- Charlie Kurth
- Department of Philosophy, Western Michigan University, Kalamazoo, MI 49008-5328, ; www.charliekurth.com
| |
Collapse
|
30
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Angeles-López QD, Tristán-López L, González-Espinosa C, Pérez-Severiano F. Toll-Like Receptor 4 Plays a Significant Role in the Biochemical and Neurological Alterations Observed in Two Distinct Mice Models of Huntington's Disease. Mol Neurobiol 2023; 60:2678-2690. [PMID: 36701109 DOI: 10.1007/s12035-023-03234-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.
Collapse
Affiliation(s)
- Pablo E Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Marian J Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Quetzalli D Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico.
| |
Collapse
|
31
|
Chen K, Zhang L, Wang F, Mao H, Tang Q, Shi G, You Y, Yuan Q, Chen B, Fang X. Altered functional connectivity within the brain fear circuit in Parkinson's disease with anxiety: A seed-based functional connectivity study. Heliyon 2023; 9:e15871. [PMID: 37305477 PMCID: PMC10256910 DOI: 10.1016/j.heliyon.2023.e15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives Aimed to investigate whether there are abnormal changes in the functional connectivity (FC) between the amygdala with other brain areas, in Parkinson's disease (PD) patients with anxiety. Methods Participants were enrolled prospectively, and the Hamilton Anxiety Rating (HAMA) Scale was used to quantify anxiety disorder. Rest-state functional MRI (rs-fMRI) was applied to analyze the amygdala FC patterns among anxious PD patients, non-anxious PD patients, and healthy controls. Results Thirty-three PD patients were recruited, 13 with anxiety, 20 without anxiety, and 19 non-anxious healthy controls. In anxious PD patients, FC between the amygdala with the hippocampus, putamen, intraparietal sulcus, and precuneus showed abnormal alterations compared with non-anxious PD patients and healthy controls. In particular, FC between the amygdala and hippocampus negatively correlated with the HAMA score (r = -0.459, p = 0.007). Conclusion Our results support the role of the fear circuit in emotional regulation in PD with anxiety. Also, the abnormal FC patterns of the amygdala could preliminarily explain the neural mechanisms of anxiety in PD.
Collapse
Affiliation(s)
- Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Li Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qunfeng Tang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Guofeng Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Yiping You
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qingfang Yuan
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Bixue Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| |
Collapse
|
32
|
Kilford EJ, Foulkes L, Blakemore SJ. Associations between age, social reward processing and social anxiety symptoms. CURRENT PSYCHOLOGY 2023; 43:1-18. [PMID: 37359660 PMCID: PMC10113964 DOI: 10.1007/s12144-023-04551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Reward processing undergoes marked changes in adolescence, with social interactions representing a powerful source of reward. Reward processing is also an important factor in the development of social anxiety disorder, a condition that most commonly first appears in adolescence. This study investigated the relationship between age, social reward processing and social anxiety in a cross-sectional sample of female participants (N = 80) aged 13-34. Participants performed two versions of a probabilistic reward anticipation task, in which a speeded response could result in different probabilities of receiving either social or monetary rewarding feedback. Participants also completed self-report assessments of social reward value, trait anxiety and social anxiety symptoms. At high reward probabilities, performance on both reward tasks showed a quadratic effect of age, with the fastest responses at around 22-24 years. A similar quadratic effect was found for subjective liking ratings of both reward stimuli, although these were not associated with performance. Social anxiety was not associated with a subjective liking of the rewards but did predict performance on both tasks at all reward probabilities. Age-related variation in reward processing was not accounted for by age-related variation in social anxiety symptoms, suggesting that, while both social anxiety and age were associated with variation in reward processing, their effects were largely independent. Together, these findings provide evidence that social reward processing continues to develop across adolescence and that individual differences in social anxiety should be considered when considering reward sensitivity during this period. Supplementary Information The online version contains supplementary material available at 10.1007/s12144-023-04551-y.
Collapse
Affiliation(s)
- Emma J. Kilford
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ UK
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, Gower Street, London, WC1E 6BT UK
| | - Lucy Foulkes
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG UK
| | - Sarah-Jayne Blakemore
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK
| |
Collapse
|
33
|
Meyer HC, Fields A, Vannucci A, Gerhard DM, Bloom PA, Heleniak C, Opendak M, Sullivan R, Tottenham N, Callaghan BL, Lee FS. The Added Value of Crosstalk Between Developmental Circuit Neuroscience and Clinical Practice to Inform the Treatment of Adolescent Anxiety. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:169-178. [PMID: 37124361 PMCID: PMC10140450 DOI: 10.1016/j.bpsgos.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Significant advances have been made in recent years regarding the developmental trajectories of brain circuits and networks, revealing links between brain structure and function. Emerging evidence highlights the importance of developmental trajectories in determining early psychiatric outcomes. However, efforts to encourage crosstalk between basic developmental neuroscience and clinical practice are limited. Here, we focus on the potential advantage of considering features of neural circuit development when optimizing treatments for adolescent patient populations. Drawing on characteristics of adolescent neurodevelopment, we highlight two examples, safety cues and incentives, that leverage insights from neural circuit development and may have great promise for augmenting existing behavioral treatments for anxiety disorders during adolescence. This commentary seeks to serve as a framework to maximize the translational potential of basic research in developmental populations for strengthening psychiatric treatments. In turn, input from clinical practice including the identification of age-specific clinically relevant phenotypes will continue to guide future basic research in the same neural circuits to better reflect clinical practices. Encouraging reciprocal communication to bridge the gap between basic developmental neuroscience research and clinical implementation is an important step toward advancing both research and practice in this domain.
Collapse
Affiliation(s)
- Heidi C. Meyer
- Department of Psychiatry, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Andrea Fields
- Department of Psychology, Columbia University, New York, New York
| | - Anna Vannucci
- Department of Psychology, Columbia University, New York, New York
| | - Danielle M. Gerhard
- Department of Psychiatry, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| | - Paul A. Bloom
- Department of Psychology, Columbia University, New York, New York
| | | | - Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, New York
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Neuroscience, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, New York
| | - Bridget L. Callaghan
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Francis S. Lee
- Department of Psychiatry, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
34
|
Zhang J, Li J, You P, Jiang H, Liu Y, Han D, Liu M, Yu H, Su B. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166641. [PMID: 36669576 DOI: 10.1016/j.bbadis.2023.166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Li
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haitian Jiang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjun Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Daobin Han
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meiqi Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
35
|
Silvers JA, Peris TS. Research Review: The neuroscience of emerging adulthood - reward, ambiguity, and social support as building blocks of mental health. J Child Psychol Psychiatry 2023. [PMID: 36878602 DOI: 10.1111/jcpp.13776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The interval between adolescence and adulthood, 'emerging adulthood' (EA), lays the foundation for lifelong health and well-being. To date, there exist little empirical data - particularly in the neurobiological domain - to establish markers of risk and resilience during the transition to adulthood. This gap in the literature is concerning given the numerous forms of psychiatric illness that emerge or worsen during this period. METHODS In this review, we focus on two strands of research with distinct importance for EA: reward sensitivity, and tolerance of ambiguity. We begin by placing these domains in a framework that considers the unique developmental goals of EA and then synthesize emerging neurobiological research on how these domains develop during EA. We then consider their role in common mental health problems that occur during this interval as well as how social support may moderate outcomes. Finally, we offer recommendations for advancing research to understand developmental process and outcomes in EA. FINDINGS AND CONCLUSIONS Few longitudinal studies specifically address emerging adult development and the milestones that characterize this interval. Data on neurobiological development are similarly sparse. Understanding neurobiological development during this window and its links to key adjustment outcomes is crucial for optimizing outcomes.
Collapse
Affiliation(s)
- Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tara S Peris
- Division of Child & Adolescent Psychiatry, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
François M, Delgado IC, Lafond A, Lewis EM, Kuromaru M, Hassouna R, Deng S, Thaker VV, Dölen G, Zeltser LM. Amygdala AVPR1A mediates susceptibility to chronic social isolation in females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528679. [PMID: 36824966 PMCID: PMC9948989 DOI: 10.1101/2023.02.15.528679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Females are more sensitive to social exclusion, which could contribute to their heightened susceptibility to anxiety disorders. Chronic social isolation stress (CSIS) for at least 7 weeks after puberty induces anxiety-related behavioral adaptations in female mice. Here, we show that Arginine vasopressin receptor 1a ( Avpr1a )-expressing neurons in the central nucleus of the amygdala (CeA) mediate these sex-specific effects, in part, via projections to the caudate putamen. Loss of function studies demonstrate that AVPR1A signaling in the CeA is required for effects of CSIS on anxiety-related behaviors in females but has no effect in males or group housed females. This sex-specificity is mediated by AVP produced by a subpopulation of neurons in the posterodorsal medial nucleus of the amygdala that project to the CeA. Estrogen receptor alpha signaling in these neurons also contributes to preferential sensitivity of females to CSIS. These data support new therapeutic applications for AVPR1A antagonists in women.
Collapse
|
37
|
Chavanne AV, Paillère Martinot ML, Penttilä J, Grimmer Y, Conrod P, Stringaris A, van Noort B, Isensee C, Becker A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Martinot JL, Artiges E. Anxiety onset in adolescents: a machine-learning prediction. Mol Psychiatry 2023; 28:639-646. [PMID: 36481929 PMCID: PMC9908534 DOI: 10.1038/s41380-022-01840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.
Collapse
Grants
- MRF_MRF-058-0004-RG-DESRI MRF
- MR/R00465X/1 Medical Research Council
- R01 MH085772 NIMH NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R56 AG058854 NIA NIH HHS
- MR/W002418/1 Medical Research Council
- MR/S020306/1 Medical Research Council
- MRF_MRF-058-0009-RG-DESR-C0759 MRF
- MR/N000390/1 Medical Research Council
- R01 DA049238 NIDA NIH HHS
- This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313), Human Brain Project (HBP SGA 2, 785907, and HBP SGA 3, 945539), the Medical Research Council Grant 'c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the National Institute of Health (NIH) (R01DA049238, A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministerium für Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC- Mind 01GL1745B), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265, NE 1383/14-1), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01). Further support was provided by grants from: - the ANR (ANR-12-SAMA-0004, AAPG2019 - GeBra), the Eranet Neuron (AF12-NEUR0008-01 - WM2NA; and ANR-18-NEUR00002-01 - ADORe), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l’Avenir (grant AP-RM-17-013), the Fédération pour la Recherche sur le Cerveau; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence. The INSERM, and the Strasbourg University and SATT CONECTUS, provided sponsorship (PI: Jean-Luc Martinot).
Collapse
Affiliation(s)
- Alice V Chavanne
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie Laure Paillère Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Jani Penttilä
- Department of Social and Health Care, Psychosocial Services Adolescent Outpatient Clinic Kauppakatu 14, Lahti, Finland
| | - Yvonne Grimmer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patricia Conrod
- Department of Psychiatry, CHU Sainte-Justine Hospital, University of Montréal, Montreal, QC, Canada
| | | | - Betteke van Noort
- Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, Campus CharitéMitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Corinna Isensee
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Andreas Becker
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CHU Sainte-Justine Research Center, Population Neuroscience Laboratory, University of Montreal, Montreal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Section of Systems Neuroscience, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Section of Systems Neuroscience, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University Shanghai and Department of Psychiatry and Neuroscience, Charité University Medicine, Berlin, Germany
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France.
| | - Eric Artiges
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand, Etampes, France
| |
Collapse
|
38
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Bouras NN, Mack NR, Gao WJ. Prefrontal modulation of anxiety through a lens of noradrenergic signaling. Front Syst Neurosci 2023; 17:1173326. [PMID: 37139472 PMCID: PMC10149815 DOI: 10.3389/fnsys.2023.1173326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Anxiety disorders are the most common class of mental illness in the U.S., affecting 40 million individuals annually. Anxiety is an adaptive response to a stressful or unpredictable life event. Though evolutionarily thought to aid in survival, excess intensity or duration of anxiogenic response can lead to a plethora of adverse symptoms and cognitive dysfunction. A wealth of data has implicated the medial prefrontal cortex (mPFC) in the regulation of anxiety. Norepinephrine (NE) is a crucial neuromodulator of arousal and vigilance believed to be responsible for many of the symptoms of anxiety disorders. NE is synthesized in the locus coeruleus (LC), which sends major noradrenergic inputs to the mPFC. Given the unique properties of LC-mPFC connections and the heterogeneous subpopulation of prefrontal neurons known to be involved in regulating anxiety-like behaviors, NE likely modulates PFC function in a cell-type and circuit-specific manner. In working memory and stress response, NE follows an inverted-U model, where an overly high or low release of NE is associated with sub-optimal neural functioning. In contrast, based on current literature review of the individual contributions of NE and the PFC in anxiety disorders, we propose a model of NE level- and adrenergic receptor-dependent, circuit-specific NE-PFC modulation of anxiety disorders. Further, the advent of new techniques to measure NE in the PFC with unprecedented spatial and temporal resolution will significantly help us understand how NE modulates PFC function in anxiety disorders.
Collapse
|
40
|
Mulders PCR, van Eijndhoven PFP, van Oort J, Oldehinkel M, Duyser FA, Kist JD, Collard RM, Vrijsen JN, Haak KV, Beckmann CF, Tendolkar I, Marquand AF. Striatal connectopic maps link to functional domains across psychiatric disorders. Transl Psychiatry 2022; 12:513. [PMID: 36513630 PMCID: PMC9747785 DOI: 10.1038/s41398-022-02273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Transdiagnostic approaches to psychiatry have significant potential in overcoming the limitations of conventional diagnostic paradigms. However, while frameworks such as the Research Domain Criteria have garnered significant enthusiasm among researchers and clinicians from a theoretical angle, examples of how such an approach might translate in practice to understand the biological mechanisms underlying complex patterns of behaviors in realistic and heterogeneous populations have been sparse. In a richly phenotyped clinical sample (n = 186) specifically designed to capture the complex nature of heterogeneity and comorbidity within- and between stress- and neurodevelopmental disorders, we use exploratory factor analysis on a wide range of clinical questionnaires to identify four stable functional domains that transcend diagnosis and relate to negative valence, cognition, social functioning and inhibition/arousal before replicating them in an independent dataset (n = 188). We then use connectopic mapping to map inter-individual variation in fine-grained topographical organization of functional connectivity in the striatum-a central hub in motor, cognitive, affective and reward-related brain circuits-and use multivariate machine learning (canonical correlation analysis) to show that these individualized topographic representations predict transdiagnostic functional domains out of sample (r = 0.20, p = 0.026). We propose that investigating psychiatric symptoms across disorders is a promising path to linking them to underlying biology, and can help bridge the gap between neuroscience and clinical psychiatry.
Collapse
Affiliation(s)
- Peter C R Mulders
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Philip F P van Eijndhoven
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jasper van Oort
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud university medical center Nijmegen, Nijmegen, The Netherlands
| | - Fleur A Duyser
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
| | - Josina D Kist
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rose M Collard
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
| | - Janna N Vrijsen
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Depression Expertise Centre, Pro Persona Mental Health Care, Nijmegen, The Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Indira Tendolkar
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Bartos M, Gumilar F, Baier CJ, Dominguez S, Bras C, Cancela LM, Minetti A, Gallegos CE. Rat developmental fluoride exposure affects retention memory, leads to a depressive-like behavior, and induces biochemical changes in offspring rat brains. Neurotoxicology 2022; 93:222-232. [DOI: 10.1016/j.neuro.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
42
|
Wroblewski A, Hollandt M, Yang Y, Ridderbusch IC, Pietzner A, Szeska C, Lotze M, Wittchen HU, Heinig I, Pittig A, Arolt V, Koelkebeck K, Rothkopf CA, Adolph D, Margraf J, Lueken U, Pauli P, Herrmann MJ, Winkler MH, Ströhle A, Dannlowski U, Kircher T, Hamm AO, Straube B, Richter J. Sometimes I feel the fear of uncertainty: How intolerance of uncertainty and trait anxiety impact fear acquisition, extinction and the return of fear. Int J Psychophysiol 2022; 181:125-140. [PMID: 36116610 DOI: 10.1016/j.ijpsycho.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
It is hypothesized that the ability to discriminate between threat and safety is impaired in individuals with high dispositional negativity, resulting in maladaptive behavior. A large body of research investigated differential learning during fear conditioning and extinction protocols depending on individual differences in intolerance of uncertainty (IU) and trait anxiety (TA), two closely-related dimensions of dispositional negativity, with heterogenous results. These might be due to varying degrees of induced threat/safety uncertainty. Here, we compared two groups with high vs. low IU/TA during periods of low (instructed fear acquisition) and high levels of uncertainty (delayed non-instructed extinction training and reinstatement). Dependent variables comprised subjective (US expectancy, valence, arousal), psychophysiological (skin conductance response, SCR, and startle blink), and neural (fMRI BOLD) measures of threat responding. During fear acquisition, we found strong threat/safety discrimination for both groups. During early extinction (high uncertainty), the low IU/TA group showed an increased physiological response to the safety signal, resulting in a lack of CS discrimination. In contrast, the high IU/TA group showed strong initial threat/safety discrimination in physiology, lacking discriminative learning on startle, and reduced neural activation in regions linked to threat/safety processing throughout extinction training indicating sustained but non-adaptive and rigid responding. Similar neural patterns were found after the reinstatement test. Taken together, we provide evidence that high dispositional negativity, as indicated here by IU and TA, is associated with greater responding to threat cues during the beginning of delayed extinction, and, thus, demonstrates altered learning patterns under changing environments.
Collapse
Affiliation(s)
- Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany.
| | - Maike Hollandt
- Department of Psychology, University of Greifswald, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Isabelle C Ridderbusch
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Anne Pietzner
- Department of Psychology, University of Greifswald, Germany
| | | | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology of the University Medicine Greifswald, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich, Germany
| | - Ingmar Heinig
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Germany
| | - Andre Pittig
- Translational Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katja Koelkebeck
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Germany
| | | | - Dirk Adolph
- Mental Health Research and Treatment Center, Ruhr-University Bochum, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-University Bochum, Germany
| | - Ulrike Lueken
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Wuerzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Paul Pauli
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Wuerzburg, Germany
| | - Markus H Winkler
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Würzburg, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Germany corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berliner Institut für Gesundheitsforschung, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Alfons O Hamm
- Department of Psychology, University of Greifswald, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Germany
| | - Jan Richter
- Department of Psychology, University of Greifswald, Germany
| |
Collapse
|
43
|
Lipopolysaccharide Exposure Differentially Alters Plasma and Brain Inflammatory Markers in Adult Male and Female Rats. Brain Sci 2022; 12:brainsci12080972. [PMID: 35892413 PMCID: PMC9331770 DOI: 10.3390/brainsci12080972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Humans and rodents have sexually dimorphic immune responses, which could influence the brain’s response to a systemic inflammatory insult. Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood–brain barrier (BBB) dysfunction under inflammatory conditions. Therefore, we examined whether inflammatory response to LPS and the associated BBB disruption differed in male and female adult rats. Rats were treated with saline or two injections of 1 mg/kg LPS and studied 24 h after the second LPS injection. Plasma isolated from trunk blood and brain tissue homogenates of the prefrontal cortex (PFC), dorsal striatum (DS), hippocampus, and cerebellum were analyzed for cytokines and chemokines using a 9-plex panel from Meso Scale Discovery. BBB disruption was analyzed with tight junction proteins claudin-5 and VE-cadherin via Western blotting and VEGF by ELISA. This allowed us to compare sex differences in the levels of individual cytokines as well as associations among cytokines and expression of tight junction proteins between the plasma and specific brain regions. Higher levels of interferon-γ, interleukin-10 (IL-10), IL-13, IL-4, CXCL-1, and VEGF in the plasma were revealed compared to the brain homogenates, and higher levels of TNFα, IL-1β, IL-6, and IL-5 in the PFC were seen compared with plasma and other brain regions in males. Females showed higher levels of plasma CXCL1 and VEGF compared to males, and males showed higher levels of PFC TNFα, IL-6, IL-4, and VEGF compared to females. LPS induced significant increases in plasma cytokines and VEGF in both sexes. LPS did not significantly alter cytokines in brain tissue homogenates, however, it increased chemokines in the PFC, DS, and hippocampus. In the PFC, LPS produced BBB disruption, which is evident as reduced expression of claudin-5 in males and reduced expression of VE-cadherin in both sexes. Taken together, our results reveal significant sex differences in pro-inflammatory cytokine and chemokine levels in plasma and brain that were associated with BBB disruption after LPS, and validate the use of multiplex assay for plasma and brain tissue samples.
Collapse
|
44
|
Palamarchuk IS, Vaillancourt T. Integrative Brain Dynamics in Childhood Bullying Victimization: Cognitive and Emotional Convergence Associated With Stress Psychopathology. Front Integr Neurosci 2022; 16:782154. [PMID: 35573445 PMCID: PMC9097078 DOI: 10.3389/fnint.2022.782154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Bullying victimization is a form of psychological stress that is associated with poor outcomes in the areas of mental health and learning. Although the emotional maladjustment and memory impairment following interpersonal stress are well documented, the mechanisms of complex cerebral dysfunctions have neither been outlined nor studied in depth in the context of childhood bullying victimization. As a contribution to the cross-disciplinary field of developmental psychology and neuroscience, we review the neuropathophysiology of early life stress, as well as general psychological stress to synthesize the data and clarify the versatile dynamics within neuronal networks linked to bullying victimization. The stress-induced neuropsychological cascade and associated cerebral networks with a focus on cognitive and emotional convergence are described. The main findings are that stress-evoked neuroendocrine reactivity relates to neuromodulation and limbic dysregulation that hinder emotion processing and executive functioning such as semantic cognition, cognitive flexibility, and learning. Developmental aspects and interacting neural mechanisms linked to distressed cognitive and emotional processing are pinpointed and potential theory-of-mind nuances in targets of bullying are presented. The results show that childhood stress psychopathology is associated with a complex interplay where the major role belongs to, but is not limited to, the amygdala, fusiform gyrus, insula, striatum, and prefrontal cortex. This interplay contributes to the sensitivity toward facial expressions, poor cognitive reasoning, and distress that affect behavioral modulation and emotion regulation. We integrate the data on major brain dynamics in stress neuroactivity that can be associated with childhood psychopathology to help inform future studies that are focused on the treatment and prevention of psychiatric disorders and learning problems in bullied children and adolescents.
Collapse
|
45
|
Abu-Taweel GM, Rudayni HA. Curcumin ameliorated the mercuric chloride induced depression and anxiety in female mice offspring. ENVIRONMENTAL RESEARCH 2022; 204:112031. [PMID: 34534522 DOI: 10.1016/j.envres.2021.112031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
In the present investigation, the effect of mercuric chloride on gestation and lactation periods in mice was studied. The animals were treated with 10 ppm of HgCl2 and its complications were evaluated by supplementing 150 and 300 ppm of curcumin, respectively. Results indicated that HgCl2 increased depression-like behavior in treated animals compared to control and effects of depression in offspring significantly (p˂0.001) enhanced. Interestingly, the Tail suspension test clearly confirmed that the administration of curcumin enhanced the immobility (p˂0.001). The results confirmed that the curcumin administered mice spent less time in the closed arm (P < 0.001), whereas spent a very long time (P < 0.001) in the open arm. Related to the locomotor behaviors, number of squares crossed, wall rear, rear, and locomotion duration were decreased significantly (P < 0.001) while immobility duration was increased (P < 0.001) significantly compared to control. The anxiety and depression behaviors disorder due to mercuric chloride exposure indicated its availability via placenta or/and milk during lactation. The treatment with curcumin improved anxiety and depression behaviors compared to Hg experimental group.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan, 45142, Saudi Arabia.
| | - Hassan Ahmed Rudayni
- Biology Department, College of Science, Imam Muhammad bin Saud Islamic University, B.o.box 90950, Riyadh, 11623, Saudi Arabia
| |
Collapse
|
46
|
Disrupted Cacna1c gene expression perturbs spontaneous Ca 2+ activity causing abnormal brain development and increased anxiety. Proc Natl Acad Sci U S A 2022; 119:2108768119. [PMID: 35135875 PMCID: PMC8851547 DOI: 10.1073/pnas.2108768119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
The gene CACNA1C encodes for a calcium channel that has been linked to various psychiatric conditions, including schizophrenia and bipolar disorder, through hitherto unknown cellular mechanisms. Here, we report that deletion of Cacna1c in neurons of the developing brain disrupts spontaneous calcium activity and causes abnormal brain development and anxiety. Our results indicate that marginally alterations in the expression level of Cacna1c have major effects on the intrinsic spontaneous calcium activity of neural progenitors that play a crucial role in brain development. Thus, Cacna1c acts as a molecular switch that can increase susceptibility to psychiatric disease. The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.
Collapse
|
47
|
Zhang X, Suo X, Yang X, Lai H, Pan N, He M, Li Q, Kuang W, Wang S, Gong Q. Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Transl Psychiatry 2022; 12:26. [PMID: 35064097 PMCID: PMC8782859 DOI: 10.1038/s41398-022-01791-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Although functional and structural abnormalities in brain regions involved in the neurobiology of fear and anxiety have been observed in patients with social anxiety disorder (SAD), the findings have been heterogeneous due to small sample sizes, demographic confounders, and methodological differences. Besides, multimodal neuroimaging studies on structural-functional deficits and couplings are rather scarce. Herein, we aimed to explore functional network anomalies in brain regions with structural deficits and the effects of structure-function couplings on the SAD diagnosis. High-resolution structural magnetic resonance imaging (MRI) and resting-state functional MRI images were obtained from 49 non-comorbid patients with SAD and 53 demography-matched healthy controls. Whole-brain voxel-based morphometry analysis was conducted to investigate structural alterations, which were subsequently used as seeds for the resting-state functional connectivity analysis. In addition, correlation and mediation analyses were performed to probe the potential roles of structural-functional deficits in SAD diagnosis. SAD patients had significant gray matter volume reductions in the bilateral putamen, right thalamus, and left parahippocampus. Besides, patients with SAD demonstrated widespread resting-state dysconnectivity in cortico-striato-thalamo-cerebellar circuitry. Moreover, dysconnectivity of the putamen with the cerebellum and the right thalamus with the middle temporal gyrus/supplementary motor area partially mediated the effects of putamen/thalamus atrophy on the SAD diagnosis. Our findings provide preliminary evidence for the involvement of structural and functional deficits in cortico-striato-thalamo-cerebellar circuitry in SAD, and may contribute to clarifying the underlying mechanisms of structure-function couplings for SAD. Therefore, they could offer insights into the neurobiological substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qingyuan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China.
| |
Collapse
|
48
|
Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol Psychiatry 2021; 26:7719-7731. [PMID: 34316005 DOI: 10.1038/s41380-021-01229-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Reliable mapping of system-level individual differences is a critical first step toward precision medicine for complex disorders such as schizophrenia. Disrupted structural covariance indicates a system-level brain maturational disruption in schizophrenia. However, most studies examine structural covariance at the group level. This prevents subject-level inferences. Here, we introduce a Network Template Perturbation approach to construct individual differential structural covariance network (IDSCN) using regional gray-matter volume. IDSCN quantifies how structural covariance between two nodes in a patient deviates from the normative covariance in healthy subjects. We analyzed T1 images from 1287 subjects, including 107 first-episode (drug-naive) patients and 71 controls in the discovery datasets and established robustness in 213 first-episode (drug-naive), 294 chronic, 99 clinical high-risk patients, and 494 controls from the replication datasets. Patients with schizophrenia were highly variable in their altered structural covariance edges; the number of altered edges was related to severity of hallucinations. Despite this variability, a subset of covariance edges, including the left hippocampus-bilateral putamen/globus pallidus edges, clustered patients into two distinct subgroups with opposing changes in covariance compared to controls, and significant differences in their anxiety and depression scores. These subgroup differences were stable across all seven datasets with meaningful genetic associations and functional annotation for the affected edges. We conclude that the underlying physiology of affective symptoms in schizophrenia involves the hippocampus and putamen/pallidum, predates disease onset, and is sufficiently consistent to resolve morphological heterogeneity throughout the illness course. The two schizophrenia subgroups identified thus have implications for the nosology and clinical treatment.
Collapse
|
49
|
Clarkson T, Karvay Y, Quarmley M, Jarcho JM. Sex differences in neural mechanisms of social and non-social threat monitoring. Dev Cogn Neurosci 2021; 52:101038. [PMID: 34814040 PMCID: PMC8608892 DOI: 10.1016/j.dcn.2021.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Adolescent males and females differ in their responses to social threat. Yet, threat processing is often probed in non-social contexts using the error-related negativity (ERN; Flanker EEG Task), which does not yield sex-specific outcomes. fMRI studies show inconsistent patterns of sex-specific neural engagement during threat processing. Thus, the relation between threat processing in non-social and social contexts across sexes and the effects perceived level of threat on brain function are unclear. We tested the interactive effect of non-social threat-vigilance (ERN), sex (N = 69; Male=34; 11–14-year-olds), and perceived social threat on brain function while anticipating feedback from ‘unpredictable’, ‘nice’, or ‘mean’ purported peers (fMRI; Virtual School Paradigm). Whole-brain analyses revealed differential engagement of precentral and inferior frontal gyri, putamen, anterior cingulate cortex, and insula. Among males with more threat-vigilant ERNs, greater social threat was associated with increased activation when anticipating unpredictable feedback. Region of interest analyses revealed this same relation in females in the amygdala and anterior hippocampus when anticipating mean feedback. Thus, non-social threat vigilance relates to neural engagement depending on perceived social threat, but peer-based social contexts and brain regions engaged, differ across sexes. This may partially explain divergent psychosocial outcomes in adolescence. Responses to social threat differ by sex and likely influence peer victimization. Threat processing is often probed in nonsocial contexts and is not sex-specific. Responses to type of social threat differed by sex, but relate to response to non-social threat. Brain regions engaged during social threat differ by sex. Perceived social threat relate to in-vivo peer victimization in both sexes.
Collapse
|
50
|
Mohammed AM, Khardali IA, Oraiby ME, Hakami AF, Shaheen ES, Ageel IM, Abutawil EH, Abu-Taweel GM. Anxiety, depression-like behaviors and biochemistry disorders induced by cannabis extract in female mice. Saudi J Biol Sci 2021; 28:6097-6111. [PMID: 34764743 PMCID: PMC8570964 DOI: 10.1016/j.sjbs.2021.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Cannabis is an annual herbaceous plant sometimes grown for decoration and used as bird food that looks like flax. The study wanted to determine if a Cannabis extract may have an effect on how anxious and depressed the female mice behaved. forty healthy female mice were divided into four groups. Tap water was administered to the first group (control). Ethanol was administered to second group (positive control). The third and four groups were given 1 and 2 mg/kg cannabis extract respectively. Treatment continued for 14 days. After therapy, the light–dark chamber, forced swimming, tail suspension, plus lamb and open field tests were done to assess anxiety and depressive behavior. The results indicated that the anxiety and depression were increased in treated females significantly compared to control. Biochemical results showed that DA,5-HT, AChE, GSH, GST, CAT and SOD were decreased while TBARS, corticosterone and cortisol were increased. In conclusion, cannabis effects this kind of females’ behavior but the mechanisms are not clear yet. We need more researches on this trend.
Collapse
Affiliation(s)
- Atheer M Mohammed
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | | | - Magbool E Oraiby
- Poison Control and Medical Forensic Chemistry, Jazan, Saudi Arabia
| | - Abdulrahman F Hakami
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | | | - Ibrahim M Ageel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Eyas H Abutawil
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Saudi Arabia
| | - Gasem M Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| |
Collapse
|