1
|
Alaqel SI, Imran M, Khan A, Nayeem N. Aging, vascular dysfunction, and the blood-brain barrier: unveiling the pathophysiology of stroke in older adults. Biogerontology 2025; 26:67. [PMID: 40044939 DOI: 10.1007/s10522-025-10209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 05/09/2025]
Abstract
The progressive decline of vascular integrity and blood-brain barrier (BBB) function is associated with aging, a major risk factor for stroke. This review describes the cellular and molecular changes in the brain microvasculature of the neurovascular unit (NVU) that contribute to the development of BBB dysfunction in aging, such as endothelial cell senescence, oxidative stress, and degradation of tight junction proteins. Stroke severity and recovery are exacerbated by BBB breakdown, leading to neuroinflammation, neurotoxicity, and cerebral oedema while identifying molecular mechanisms such as the NLRP3 inflammasome, matrix metalloproteinases (MMPs), and non-coding RNAs (e.g., miRNAs and circRNAs) that drive BBB disruption in aging and stroke. Real-time assessment of BBB permeability in stroke pathophysiology is made possible using advanced imaging techniques, such as dynamic contrast-enhanced MRI and positron emission tomography. Furthermore, biomarkers, including claudin-5, PDGFRβ, or albumin concentration, serve as markers of BBB integrity and vascular health. Restoration of BBB function and stroke recovery with emerging therapeutic strategies, including sirtuin modulators (SIRT1 and SIRT3 activators to enhance endothelial function and mitochondrial health), stem cell-derived extracellular vesicles (iPSC-sEVs for BBB repair and neuroprotection), NLRP3 inflammasome inhibitors (MCC950 to attenuate endothelial pyroptosis and inflammation), hydrogen-rich water therapy (to counteract oxidative stress-induced BBB damage), and neuropeptides such as cortistatin (to regulate neuroinflammation and BBB stability), is promising. This review explores the pathophysiological mechanisms of BBB dysfunction in aging and stroke, their relation to potential therapeutic targets, and novel approaches to improve vascular health and neuroprotection.
Collapse
Affiliation(s)
- Saleh I Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- King Salman Center for Disability Research, 11614, Riyadh, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center For Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center For Health Research, Northern Border University, Arar, Saudi Arabia
| | - Naira Nayeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
2
|
Zhang Y, Tang X, Dai J, Li Y, Ma J. Unveiling vital biomarkers and immune infiltration profiles in endoplasmic reticulum stress following spinal cord injury. Sci Rep 2024; 14:29981. [PMID: 39623003 PMCID: PMC11612299 DOI: 10.1038/s41598-024-81844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Spinal cord injury (SCI) is a profound affliction of the central nervous system that often remains inadequately addressed. Prior research has indicated that endoplasmic reticulum stress (ERS), associated with apoptotic signaling, plays a part in subsequent injuries post-SCI. However, the exact mechanisms are still unclear. ERS-related genes and SCI-associated datasets were sourced from the Genecard and GEO databases. We identified 68 ERSDEGs and pinpointed 6 marker genes vital for SCI diagnosis (CYBB, PRDX6, PTGS1, GCH1, TLR2 and PIK3CG) which were all upregulated in SCI based on bioinformatics and qRT-PCR. The nomogram exhibited that these genes could effectively predict the occurrence of SCI. Functional analysis revealed the potential roles of these genes was closely related to neuron cells and immune response. Immune infiltration research underscored the substantial roles of macrophage and CD56 dim NK cells in SCI. The ceRNA network analysis further revealed the complex interplay among marker genes, lncRNAs and miRNAs in SCI. We screened six marker genes with great diagnostic value, and found that these genes may affect the occurrence of SCI by affecting the immune response and recovery of neurons.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Department of Orthopedic, The Affiliated Huaian No.1 people's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Xiaoming Tang
- Department of Orthopedic, The Affiliated Huaian No.1 people's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Jian Dai
- Department of Orthopedic, The Affiliated Huaian No.1 people's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yao Li
- Department of Orthopedic, The Affiliated Huaian No.1 people's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Jian Ma
- Department of Orthopedic, The Affiliated Huaian No.1 people's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China.
| |
Collapse
|
3
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
4
|
Madhubala D, Patra A, Khan MR, Mukherjee AK. Phytomedicine for neurodegenerative diseases: The road ahead. Phytother Res 2024; 38:2993-3019. [PMID: 38600725 DOI: 10.1002/ptr.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
5
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
6
|
Lee BH, Song E, Hong J. Interaction of Thiol Antioxidants with α,β-Unsaturated Ketone Moiety: Its Implication for Stability and Bioactivity of Curcuminoids. Molecules 2023; 28:7711. [PMID: 38067442 PMCID: PMC10707499 DOI: 10.3390/molecules28237711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Many biological functions of curcumin have been reported. As certain bioactivities of curcumin are eliminated by antioxidants, reactive oxygen species generated by curcumin have been suggested as a relevant mechanism. In the present study, the effects of different types of antioxidants on the stability and bioactivities of curcumin were analyzed. High concentrations (>4 mM) of thiol antioxidants, including N-acetylcysteine (NAC), glutathione (GSH), and β-mercaptoethanol, accelerated the decomposition of curcumin and other curcuminoids; the submillimolar levels (<0.5 mM) of GSH and NAC rather improved their stability. Ascorbic acid or superoxide dismutase also stabilized curcumin, regardless of their concentration. The cellular levels and bioactivities of curcumin, including its cytotoxicity and the induction of heme oxygenase-1, were significantly reduced in the presence of 8 mM of GSH and NAC. The effects were enhanced in the presence of submillilmolar GSH and NAC, or non-thiol antioxidants. The present results indicate that antioxidants with a reduced thiol group could directly interact with the α,β-unsaturated carbonyl moiety of curcuminoids and modulate their stability and bioactivity.
Collapse
Affiliation(s)
- Bo Hyun Lee
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Food Science and Technology, College of Natural Science, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea;
| | - Eiseul Song
- Department of Food Science and Technology, College of Natural Science, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea;
| | - Jungil Hong
- Department of Food Science and Technology, College of Natural Science, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea;
| |
Collapse
|
7
|
Huang W, Yu L, Cai W, Ma C. Resveratrol Protects BEAS-2B Cells against Erastin-Induced Ferroptosis through the Nrf2/Keap1 Pathway. PLANTA MEDICA 2023; 89:408-415. [PMID: 36167314 DOI: 10.1055/a-1923-4399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferroptosis is a newly discovered type of cell death that is different from other types of cell death morphologically and biologically. It is considered to play an important role in many pulmonary diseases. Currently, the regulatory roles of antioxidation in lung epithelial ferroptosis have not been fully explored. In this study, we show that resveratrol protected erastin-induced ferroptosis in BEAS-2B cells. Erastin led to increased reactive oxygen species production and iron deposition in BEAS-2B cells, which could be rescued by resveratrol. Furthermore, we observed that resveratrol led to modulating ferroptosis-associated gene glutathione peroxidase 4 expression and regulating glutathione in BEAS-2B cells. Resveratrol exerted an antioxidant property in erastin-induced ferroptosis of BEAS-2B cells by activating the nuclear factor-erythroid 2-related factor 2/Kelch-like ECH-associated protein signaling pathway. Finally, these findings demonstrate that resveratrol protects BEAS-2B from erastin-induced ferroptosis.
Collapse
Affiliation(s)
- Wenhan Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liuda Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wanru Cai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chunfang Ma
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Protective and anti-oxidative effects of curcumin and resveratrol on Aβ-oligomer-induced damage in the SH-SY5Y cell line. J Neurol Sci 2022; 441:120356. [DOI: 10.1016/j.jns.2022.120356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
9
|
Laliwala A, Daverey A, Agrawal SK, Dash AK. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech 2022; 23:195. [PMID: 35831684 DOI: 10.1208/s12249-022-02345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.
Collapse
Affiliation(s)
- Aayushi Laliwala
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA
| | - Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Alekha K Dash
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA.
| |
Collapse
|
10
|
Lee S, Cho DC, Han I, Kim KT. Curcumin as a Promising Neuroprotective Agent for the Treatment of Spinal Cord Injury: A Review of the Literature. Neurospine 2022; 19:249-261. [PMID: 35793928 PMCID: PMC9260551 DOI: 10.14245/ns.2244148.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Curcumin is a polyphenolic chemical derived from the rhizomes of Curcuma longa. It has been used throughout the Indian subcontinent for medicinal purposes, religious events, and regional cuisine. It has various pharmacological benefits owing to its anti-inflammatory and antioxidant properties. Its neuroprotective effects on the brain and peripheral nerves have been demonstrated in several in vivo neuronal tissue studies. Because of these functional properties of curcumin, it is considered to have great potential for use in the treatment of spinal cord injuries (SCIs). Numerous immunopathological and biochemical studies have reported that curcumin can help prevent and alleviate subsequent secondary injuries, such as inflammation, edema, free radical damage, fibrosis, and glial scarring, after a primary SCI. Furthermore, following SCI, curcumin administration resulted in better outcomes of neurological function recovery as per the Basso, Beattie, and Bresnahan locomotor rating scale. However, to date, its utility in treating SCIs has only been reported in laboratories. More studies on its clinical applications are needed in the future for ensuring its bioavailability across the blood-brain barrier and for verifying the safe dose for treating SCIs in humans.
Collapse
Affiliation(s)
- Subum Lee
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Dae-Chul Cho
- Department of Neurosurgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
11
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Abstract
Curcumin is the major biologically active polyphenolic constituent in the turmeric plant (Curcuma longa) that has been shown to have antioxidant, anti-inflammatory, neuroprotective, anticancer, antimicrobial, and cardioprotective effects. Interest in curcumin as a treatment for mental health conditions has increased and there is an expanding body of preclinical and clinical research examining its antidepressant and anxiolytic effects. In this narrative review, human trials investigating the effects of curcumin for the treatment of depression or depressive symptoms are summarised. Using findings from in vitro, animal, and human trials, possible biological mechanisms associated with the antidepressant effects of curcumin are also explored. To increase the understanding of curcumin for the treatment of depression, directions for future research are proposed.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, 38 Arnisdale Rd, Duncraig, Perth, WA, 6023, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
14
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Mechanistic Insight into the Effects of Curcumin on Neuroinflammation-Driven Chronic Pain. Pharmaceuticals (Basel) 2021; 14:ph14080777. [PMID: 34451874 PMCID: PMC8397941 DOI: 10.3390/ph14080777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic pain is a persistent and unremitting condition that has immense effects on patients' quality of life. Studies have shown that neuroinflammation is associated with the induction and progression of chronic pain. The activation of microglia and astrocytes is the major hallmark of spinal neuroinflammation leading to neuronal excitability in the projection neurons. Excessive activation of microglia and astrocytes is one of the major contributing factors to the exacerbation of pain. However, the current chronic pain treatments, mainly by targeting the neuronal cells, remain ineffective and unable to meet the patients' needs. Curcumin, a natural plant product found in the Curcuma genus, improves chronic pain by diminishing the release of inflammatory mediators from the spinal glia. This review details the role of curcumin in microglia and astrocytes both in vitro and in vivo and how it improves pain. We also describe the mechanism of curcumin by highlighting the major glia-mediated cascades in pain. Moreover, the role of curcumin on inflammasome and epigenetic regulation is discussed. Furthermore, we discuss the strategies used to improve the efficacy of curcumin. This review illustrates that curcumin modulating microglia and astrocytes could assure the treatment of chronic pain by suppressing spinal neuroinflammation.
Collapse
|
16
|
Irnidayanti Y, Sutiono DR, Ibrahim N, Wisnuwardhani PH, Santoso A. Potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta-amyloid neurotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. BRAZ J BIOL 2021; 82:e235781. [PMID: 33787733 DOI: 10.1590/1519-6984.235781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022] Open
Abstract
Resveratrol, a natural polyphenol found in tempeh, has not been investigated especially in vitro as a neuroprotective agent against 2-methoxyethanol (2-ME)-induced beta-amyloid cytotoxicity. Beta amyloid peptides (Aβ) could initiate neurotoxic events and neuron-inflammatory response via microglial activation. However, it remains unknown whether the neurotoxic effect of beta-amyloid and/or associated with the potential of 2-ME to induce neurotoxic effects on primary culture of nerve cells induced by 2-ME. This study investigated potential neuroprotective of trans-resveratrol a promising agent tempeh and soybean seed coats-derived against beta-amyloid cytotoxicity on primary culture of nerve cells induced by 2-methoxyethanol. Biotium and MTT assays were used to analyze neurons, which were isolated from the cerebral cortex of fetal mice at gestation day 19 (GD-19). A standard solution of 2-methoxyethanol was dosed at 10 μL. The cultured cells were randomly divided into the following groups: (1) 2-ME group + resveratrol standard, (2) 2-ME group + resveratrol isolated from tempeh, (3) 2-ME group + resveratrol isolated from soybean seed coats, and (4) the control group, without the addition of either 2-ME or resveratrol. Exposure of the primary cortical neuron cells to beta-amyloid monoclonal antibody pre-incubated for 24 h with 10 µL of 4.2 µg/mL resveratrol and 7.5 mmol/l 2-methoxy-ethanol additions. Here, we report that the addition of 2-ME and resveratrol (standard and isolated from tempeh) of cell culture at concentrations of 1.4, 2.8 and 4.2 µg/mL showed that the majority of neurons grew well. In contrast, after exposure to 2-ME and Beta-amyloid, showed that glial activated. These findings demonstrate a role for resveratrol in neuroprotective-neurorescuing action.
Collapse
Affiliation(s)
- Y Irnidayanti
- Universitas Negeri Jakarta, Faculty of Mathematics and Science, Department of Animal Development, Biology, Jakarta, Indonesia
- Jakarta State University, Faculty of Mathematics and Natural Sciences, Research Group of Biology, Jakarta, Indonesia
| | - D R Sutiono
- Jakarta State University, Faculty of Mathematics and Natural Sciences, Research Group of Biology, Jakarta, Indonesia
| | - N Ibrahim
- Universitas Indonesia, Faculty of Medicine, Jakarta, Indonesia
| | - P H Wisnuwardhani
- Indonesian Institute of Sciences - LIPI, Biotechnology, Bogor, Indonesia
| | - A Santoso
- Indonesian Institute of Sciences - LIPI, Biotechnology, Bogor, Indonesia
| |
Collapse
|
17
|
Daverey A, Agrawal SK. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 2021; 58:1275-1289. [PMID: 33159299 DOI: 10.1007/s12035-020-02182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer's solution (2-4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| |
Collapse
|
18
|
Intranasal delivery of chitosan decorated PLGA core /shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer's disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Jia R, Du J, Cao L, Feng W, He Q, Xu P, Yin G. Chronic exposure of hydrogen peroxide alters redox state, apoptosis and endoplasmic reticulum stress in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105657. [PMID: 33075616 DOI: 10.1016/j.aquatox.2020.105657] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2O2) appears to be ubiquitous in natural water. Higher level of H2O2 can cause physiological stress, immunosuppression and even death in aquatic animals, but the physiological and molecular mechanisms of H2O2 toxicity are not well studied. Thus, the aim of the present study was to exposure potential toxic mechanisms of H2O2 via assessing the effects on redox state, apoptosis and endoplasmic reticulum (ER) stress in common carp. The fish were subjected to four concentrations of H2O2 (0, 0.25, 0.5 and 1 mM) for 14 days. And then, the tissues including blood, liver, muscle, gills, intestines, heart, kidney and spleen were collected to measure biochemical parameter and gene expression. The results showed that H2O2 exposure suppressed the majority antioxidative parameters in serum, liver, muscle and intestines, but enhanced T-SOD, CAT and T-AOC levels in gills. In all tested tissues, the MDA content was significantly promoted by H2O2 exposure. The oxidative stress-related genes including nrf2, gstα, sod, cat and/or gpx1 were upregulated in liver, gills, muscle, intestines, and/or kidney, but downregulated in heart after H2O2 exposure. Moreover, the ho-1 mRNA level was inhibited by H2O2 exposure in all tissues except intestines and spleen. After 14 days of exposure, H2O2 induced ER stress and initiated IRE1 and PERK pathways, which activated downstream genes, including chop, grp78 and/or xbp1s, to regulate UPR in liver, gills, muscle and/or heart. Meanwhile, H2O2 exposure activated MAPK pathway to regulate mitochondria-related genes including bcl-2, bax and cytc, which further triggered cas-8, cas-9 and cas-3, and accelerated apoptosis in liver, gills, muscle and heart. Importantly, in different tissues, the genes associated with oxidative stress, ER stress and apoptosis showed a different influence, and more significant influence was observed in the muscle, gills and liver. Overall results suggested that long-term H2O2 exposure induced oxidative stress, ER stress and apoptosis in the majority of tested tissues of common carp. The Nrf2, IRE1, PERK and MAPK pathways played important roles in H2O2-induced toxicity in fish. These data enriched the toxicity mechanism of H2O2 in fish, which might contribute to the risk assessment of H2O2 in aquatic environment.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
20
|
Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia. Neurosci Lett 2020; 738:135351. [PMID: 32891672 DOI: 10.1016/j.neulet.2020.135351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Damage to the spinal cord (SC) can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole, a sodium channel-blocker and glutamate inhibitor, is in preclinical use for SC injury (SCI), and curcumin is an intracellular calcium inhibitor that attenuates glutamate-induced neurotoxicity. As riluzole and curcumin have different mechanisms to protect against SCI, we aimed to investigate the neuroprotective effects of a combination of riluzole and curcumin in human astrocytes and white matter injury (WMI) model of SCI. Our data show that a combination of riluzole (1 μM) and curcumin (1 μM) was effective in inhibiting hydrogen peroxide (H2O2)-induced oxidative dress in astrocytes derived from human SC, however, curcumin alone showed a significant inhibition. In addition, our results demonstrated that curcumin alone downregulates the hypoxia-induced expression of HIF-1, GFAP, and NF-H proteins in WMI, whereas riluzole alone and in combination with curcumin remained ineffective in changing the expression of these proteins. Contrarily, after inhibiting Ca2+ influx with EGTA, riluzole alone and in combination with curcumin significantly downregulated hypoxia-induced expression of GFAP and NF-H. After analysis of caspase 9 and cleaved caspase 9, we observed that curcumin and riluzole both inhibit apoptosis significantly, whereas their combination remains ineffective. Furthermore, we observed that neuroprotective effects of curcumin and riluzole are mediated through Nrf2/HO-1 signaling. In conclusion, our results demonstrate that curcumin and riluzole protect astrocytes from oxidative stress and white matter from hypoxia. However, their combination is not beneficial to reduce hypoxia-induced astrocytosis, axonal damage, and apoptosis. From our results, it is evident that curcumin is more effective in reducing WMI than riluzole.
Collapse
|
21
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
22
|
Sheikholeslami MA, Parvardeh S, Ghafghazi S, Moini Zanjani T, Sabetkasaei M. The Attenuating Effect of Curcumin on Morphine Dependence in Rats: The Involvement of Spinal Microglial Cells and Inflammatory Cytokines. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:198-207. [PMID: 32802100 PMCID: PMC7393048 DOI: 10.22037/ijpr.2019.111701.13309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New evidence suggests an important role for spinal glial cells in the development of opioid dependence. Curcumin, a component of the Curcuma Longa, has shown to act as a suppressor of microglial cells. The main goal of this study was to explore the attenuating effects of curcumin on morphine dependence with a focus on spinal microglial cells and inflammatory cytokines. In order to induce morphine dependence in male Wistar rats, morphine was administered intraperitoneally (i.p.) once daily for 9 days in an increasing dose of 10, 20, and 40 mg/kg. Curcumin (2.5, 5, and 10 mg/kg, i.p.) was given from the days 10th to 18th. Naloxone-precipitated abstinence syndrome was used to assess the behavioral symptoms of morphine dependence. Immunofluorescence staining of Iba1 and ELISA test were used to measure spinal microglial activity and inflammatory cytokines levels, respectively. The results showed that curcumin (2.5, 5, and 10 mg/kg) significantly decreased jumping, leaning, and diarrhea in morphine-dependent rats. In addition, the spinal concentration of TNF-α and IL-6 was reduced by curcumin (2.5, 5, and 10 mg/kg) significantly. Moreover, curcumin showed a potent attenuating effect on the number of Iba1 positive cells in rats which were subjected to morphine dependence. The results of this study demonstrated that curcumin exerts a remarkable reducing effect on morphine dependence in rats. The findings showed that the therapeutic effect of curcumin on morphine dependence is mediated through the suppression of activated microglial cells and reduction of inflammatory cytokines levels in the spinal cord.
Collapse
Affiliation(s)
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taraneh Moini Zanjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sabetkasaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Dhas N, Mehta T. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: A non-invasive approach. Int J Pharm 2020; 586:119553. [DOI: 10.1016/j.ijpharm.2020.119553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/03/2023]
|
24
|
Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 2020; 72:769-782. [PMID: 32458309 DOI: 10.1007/s43440-020-00112-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system, and are important players in both brain injury and neurodegenerative disease. Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), the major active component of turmeric, belongs to the curcuminoid family that was originally isolated from the plant Curcuma longa. Several studies suggest that curcumin may have a beneficial impact on the brain pathology and aging. These effects are due to curcumin's antioxidant, free-radical scavenging, and anti-inflammatory activity. In light of this, our current review aims to discuss the role of astrocytes as essential players in neurodegenerative diseases and suggest that curcumin is capable of direct inhibition of astrocyte activity with a particular focus on its effects in Alexander disease, Alzheimer's disease, ischemia stroke, spinal cord injury, Multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Samira Eghbaliferiz
- Department of Pharmacognosy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
26
|
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127:110234. [PMID: 32559855 DOI: 10.1016/j.biopha.2020.110234] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol derived from grapes, berries, red wine, peanuts amongst other fruits and nuts. Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer of resveratrol have been demonstrated by preclinical and clinical research. A possibility is that these therapeutical effects are associated with modulation of the Nrf2 signaling pathway in the following way: resveratrol may potentiate Nrf2 signaling through blockage of Keap1, by means of changing the Nrf2 mediators, its expression and its nuclear translocation. This article reviews the evidence of the Nrf2 modulating hypothesis as a possible molecular mechanism underlying the medicinal properties of resveratrol.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Silvia Llorens Folgado
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008, Albacete, Spain
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
Cui Y, Li Y, Ning J, Mi Y, Wang X, Qiu Z, Li L, Gou X. Resveratrol alleviates diabetic mechanical allodynia in rats by downregulating P2X3R. Mol Med Rep 2020; 22:957-963. [PMID: 32468070 PMCID: PMC7339507 DOI: 10.3892/mmr.2020.11157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Mechanical allodynia, which develops in patients of diabetes mellitus as a neuropathic manifestation, remains without an effective treatment. The aim of the present study was to investigate the effects and potential mechanisms underlying resveratrol (RES) in a rat model of streptozocin (STZ)‑induced diabetic mechanical allodynia (DMA). The rat model of DMA was established by the administration of an intraperitoneal injection of STZ. From day 8 post‑STZ injection, rats were administered with an intragastric injection of various doses of RES for 14 consecutive days. The von Frey filaments were applied to detect the paw withdrawal threshold and evaluate the analgesic effects of RES. Based on the dose‑effect curve, the ED50 of RES was calculated. Immunofluorescence staining and western blotting were performed to detect the expression of purinergic receptor P2X3 (P2X3R) in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) following RESED50 treatment. The results indicated that RES significantly alleviated mechanical allodynia in DMA model rats in a dose‑dependent manner. Compared with the control group, the expression of P2X3R in DRG neurons and SDH terminals was markedly decreased following the administration of RESED50 (P<0.05). Collectively, the results indicated that RES displayed a dose‑dependent analgesic effect on DMA model rats. Furthermore, P2X3R expression downregulation in the DRG and SDH may be a mechanism underlying the analgesic effects of RES on DMA‑related behaviors.
Collapse
Affiliation(s)
- Yuanyuan Cui
- School of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Yuting Li
- School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jiayi Ning
- School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Yajing Mi
- School of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaolong Wang
- School of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Zhongying Qiu
- School of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Le Li
- School of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xingchun Gou
- School of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
28
|
Dumont U, Sanchez S, Olivier B, Chateil JF, Deffieux D, Quideau S, Pellerin L, Beauvieux MC, Bouzier-Sore AK, Roumes H. Maternal alcoholism and neonatal hypoxia-ischemia: Neuroprotection by stilbenoid polyphenols. Brain Res 2020; 1738:146798. [PMID: 32229200 DOI: 10.1016/j.brainres.2020.146798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 01/16/2023]
Abstract
The impact of maternal nutrition on neurodevelopment and neonatal neuroprotection is a research topic with increasing interest. Maternal diet can also have deleterious effects on fetal brain development. Fetal exposure to alcohol is responsible for poor neonatal global development, and may increase brain vulnerability to hypoxic-ischemic encephalopathy, one of the major causes of acute mortality and chronic neurological disability in newborns. Despite frequent prevention campaigns, about 10% of women in the general population drinks alcohol during pregnancy and breastfeeding. This study was inspired by this alarming fact. Its aim was to evaluate the beneficial effects of maternal supplementation with two polyphenols during pregnancy and breastfeeding, on hypoxic-ischemic neonate rat brain damages, sensorimotor and cognitive impairments, in a context of moderate maternal alcoholism. Both stilbenoid polyphenols, trans-resveratrol (RSV - 0.15 mg/kg/day), and its hydroxylated analog, trans-piceatannol (PIC - 0.15 mg/kg/day), were administered in the drinking water, containing or not alcohol (0.5 g/kg/day). In a 7-day post-natal rat model of hypoxia-ischemia (HI), our data showed that moderate maternal alcoholism does not increase brain lesion volumes measured by MRI but leads to higher motor impairments. RSV supplementation could not reverse the deleterious effects of HI coupled with maternal alcoholism. However, PIC supplementation led to a recovery of all sensorimotor and cognitive functions. This neuroprotection was obtained with a dose of PIC corresponding to the consumption of a single passion fruit per day for a pregnant woman.
Collapse
Affiliation(s)
- Ursule Dumont
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Sanchez
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Benjamin Olivier
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Jean-François Chateil
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | - Luc Pellerin
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France; Department of Physiology, 7 Rue du Bugnon, CH1005 Lausanne, Switzerland.
| | | | - Anne-Karine Bouzier-Sore
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Hélène Roumes
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
29
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
30
|
Daverey A, Agrawal SK. Curcumin Protects against White Matter Injury through NF-κB and Nrf2 Cross Talk. J Neurotrauma 2020; 37:1255-1265. [PMID: 31914858 DOI: 10.1089/neu.2019.6749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation and oxidative stress play a central role in the pathogenesis of white matter injury (WMI). Curcumin (Cur), a polyphenolic compound, exhibits anti-inflammatory and anti-oxidant effects on several conditions. The objective of this study was to investigate neuroprotective effects of Cur on WMI and explore its underlying mechanisms of action. Sprague-Dawley rats were subjected to the removal of white matter from the dorsal column of the spinal cord. Dorsal columns were randomly divided into three groups: Sham (Ringer's solution bubbled with 95% O2 and 5% CO2), hypoxia (Hyp; Ringer's solution bubbled with 95% N2 and 5% CO2 for 1 h), and Cur-treated (Hyp+Cur; Ringer's solution bubbled with 95% N2 and 5% CO2 for 1 h in the presence of 50 μM Cur). For NF-κB inhibition experiments, dorsal columns were incubated with 50 μM BAY 11-7082 (BAY) for 30 min in 95% O2 and 5% CO2 prior to 1-h incubation with 50 μM Cur in 95% N2 and 5% CO2. Our data show that Cur inhibited hypoxia-induced HIF1-α expression and tissue damage by demonstrating the improved morphology of astrocytes and remarkable reduction in vacuolation. Cur also inhibited the hypoxia-induced upregulation of glial fibrillary acidic protein (GFAP) and neurofilament-H (NF-H) after hypoxia and downregulated the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 1 (IL-1). Terminal dexynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-assay analysis showed that Cur effectively attenuated apoptosis in white matter. In addition, we demonstrated that Cur exerted its neuroprotective effect through cross talk between nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. In conclusion, our results indicate that treatment with Cur inhibited the hypoxia, inflammation and apoptosis associated with WMI. Further, the Nrf-2 pathway inhibits NF-κB activation by preventing IkB degradation and increasing HO-1 expression, which in turn reduces reactive oxygen species (ROS) and as a result NF-κB activation is suppressed. Similarly, NF-κB-mediated transcription reduces Nrf2 activation by reducing anti-oxidant response element (ARE) gene and free CREB binding protein by competing with Nrf2 for CBP thus inhibiting the Nrf-2 activation.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
31
|
Xia ZH, Chen WB, Shi L, Jiang X, Li K, Wang YX, Liu YQ. The Underlying Mechanisms of Curcumin Inhibition of Hyperglycemia and Hyperlipidemia in Rats Fed a High-Fat Diet Combined With STZ Treatment. Molecules 2020; 25:molecules25020271. [PMID: 31936547 PMCID: PMC7024244 DOI: 10.3390/molecules25020271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022] Open
Abstract
Curcumin is the main secondary metabolite of Curcuma longa and other Curcuma spp, and has been reported to have some potential in preventing and treating some physiological disorders. This study investigated the effect of curcumin in inhibiting high-fat diet and streptozotocin (STZ)-induced hyperglycemia and hyperlipidemia in rats. Twenty-six male Sprague-Dawley (SD) rats (170–190 g) were randomly divided into a standard food pellet diet group (Control group), a high-fat diet and streptozotocin group (HF + STZ group), and a high-fat diet combined with curcumin and STZ group (HF + Cur + STZ group). Compared with the HF + STZ group, the HF + Cur + STZ group exhibited significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (AST), and aspartate transaminase (ALT) levels, as well as liver coefficients. In the livers of these rats, the expression of malondialdehyde (MDA) and Bax was downregulated, whereas that of superoxide dismutase (SOD) and Bcl-2 was upregulated. Moreover, the liver histology of these rats was improved and resembled that of the control rats. These results suggest that curcumin prevents high-fat diet and STZ-induced hyperglycemia and hyperlipidemia, mainly via anti-oxidant and anti-apoptotic mechanisms in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan-Qiang Liu
- Correspondence: or ; Tel.: +86-22-23508378; Fax: +86-22-23508378
| |
Collapse
|
32
|
Mirhafez SR, Rezai A, Dehabeh M, Nobakht M Gh BF, Bidkhori M, Sahebkar A, Hariri M. Efficacy of phytosomal curcumin among patients with non-alcoholic fatty liver disease. INT J VITAM NUTR RES 2019; 91:278-286. [PMID: 31818232 DOI: 10.1024/0300-9831/a000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Scientists proposed that curcumin could be used for treatment of non-alcoholic fatty liver disease (NAFLD). In this article, we aimed to identify the effect of curcumin on NAFLD improvement. Fifty patients with NAFLD, were divided into two groups in this randomized, double-blind, and controlled clinical trial. Patients in the curcumin group received 250 mg/day of phytosomal curcumin, while those in the control group received 250 mg/day of placebo for duration of eight weeks. Anthropometric measurements and fasting blood samples were taken once at the baseline and once at the end of the study. Analysis was performed on 45 patients (curcumin group n = 22, placebo group n = 22). According to between groups analysis, curcumin significantly reduced the carboxymethyl lisine (CML) (148 ± 108 ng/mL vs 197 ± 101 ng/mL, P = 0.04), 8-hydroxy-2' -deoxyguanosine (8-OHdG) (46.9 ± 31.1 ng/mL vs 52.1 ± 43.1 ng/mL P = 0.03), liver enzymes (P < 0.001), weight (P < 0.001), waist circumference (P < 0.001), body fat percent (P < 0.01), and body mass index (BMI) (P < 0.01) in comparison with placebo. However, curcumin supplementation compared to placebo did not reduce soluble receptors for advanced glycation end products (sRAGE), hip circumference, waist/hip, and fat free mass by the end of the study. Our study indicated that phytosamal curcumin might be able to reduce the NAFLD progress by reducing the anthropometric measures, AGEs, and DNA damage. However, we need more studies with longer intervention duration, and larger sample size.
Collapse
Affiliation(s)
- Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Azam Rezai
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Dehabeh
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - B Fatemeh Nobakht M Gh
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohammad Bidkhori
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
33
|
Dietary Curcumin Prevented Astrocytosis, Microgliosis, and Apoptosis Caused by Acute and Chronic Exposure to Ozone. Molecules 2019; 24:molecules24152839. [PMID: 31387223 PMCID: PMC6696019 DOI: 10.3390/molecules24152839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Ozone is the most oxidant tropospheric pollutant gas, causing damage through the formation of reactive oxygen and nitrogen species. Reactive species induce the nuclear factor-kappa B (NF-κB) activation leading to neuroinflammation characterized by astrocytosis, microgliosis, and apoptotic cell death. There is interest in evaluating the pharmacological activity of natural antioxidants to confer neuroprotection against the damage caused by ozone in highly polluted cities. Curcumin has been proven to exert a protective action in the central nervous system (CNS) of diverse experimental models, with no side effects. The aim of this work is to evaluate the effect of curcumin in a preventive and therapeutic manner against the astrocytosis, microgliosis, and apoptosis induced by ozone in rat hippocampus. Fifty Wistar rats were distributed into five experimental groups: The intact control, curcumin fed control, ozone-exposed group, and the preventive and therapeutic groups receiving the curcumin supplementation while exposed to ozone. Ozone caused astrocytosis and microgliosis, as well as apoptosis in the hippocampus. Meanwhile, curcumin was able to decrease the activation of microglia and astrocytes, and apoptotic cell death in both periods of exposure. Therefore, we propose that curcumin could be used as a molecule capable of counteracting the damage caused by ozone in the CNS.
Collapse
|
34
|
Lin X, Bai D, Wei Z, Zhang Y, Huang Y, Deng H, Huang X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One 2019; 14:e0216711. [PMID: 31112588 PMCID: PMC6528975 DOI: 10.1371/journal.pone.0216711] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 01/20/2023] Open
Abstract
Large-scale breeding environments often lead to oxidative stress. Macrophages play an important role in the immune system and are vulnerable to reactive oxygen species (ROS), which result in macrophage death. Curcumin is the main active component of turmeric and exerts antioxidant effects. Here, we measured the activity of some antioxidant enzymes and chose the Nrf2-Keap1 signaling pathway to study the protective effects of curcumin on macrophages under oxidative stress in vitro. We used RAW264.7 cells as a research model, and oxidative damage was induced by hydrogen peroxide (H2O2). Cell viability was measured by an MTT assay. Flow cytometry was used to measure cellular ROS and apoptosis. The effect of curcumin on Nrf2-Keap1 signaling pathway-related genes was analyzed by qRT-PCR. Furthermore, the translocation of Nrf2 protein was also investigated by Western blot analysis of total and nuclear proteins. All curcumin-treated groups exhibited increased activity of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). Low- and middle-dose curcumin decreased malondialdehyde (MDA) and ROS levels, but high-dose curcumin increased MDA and ROS production. We found that low-dose curcumin protected cells from apoptosis, while apoptosis in the middle- and high-dose curcumin-treated groups were stagnant in the early stage. Furthermore, middle-dose curcumin upregulated Nrf2 expression after H2O2 treatment for 4 h. Low- and middle-dose curcumin could activate Nrf2 and promote it to migrate into nuclei. The translocation of Nrf2 to the nucleus to upregulate the expression of haemoxygenase-1 (HO-1) was promoted in the low- and middle-dose curcumin-treated groups. The middle-dose curcumin-treated group also exhibited enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), but inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). Curcumin resisted oxidants by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway, which could potentially promote cell survival.
Collapse
Affiliation(s)
- Xinyu Lin
- Department of Zoology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Dingping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Zixi Wei
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing, P.R. China
| | - Ying Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Yifan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Xiaohong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Dumont U, Sanchez S, Olivier B, Chateil JF, Pellerin L, Beauvieux MC, Bouzier-Sore AK, Roumes H. Maternal consumption of piceatannol: A nutritional neuroprotective strategy against hypoxia-ischemia in rat neonates. Brain Res 2019; 1717:86-94. [PMID: 30991041 DOI: 10.1016/j.brainres.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 11/19/2022]
Abstract
Hypoxia-ischemia (HI) remains a major cause of perinatal mortality and chronic disability in newborns worldwide (1-6 for 1000 births) with a high risk of future motor, behavioral and neurological deficits. Keeping newborns under moderate hypothermia is the unique therapeutic approach but is not sufficiently successful as nearly 50% of infants do not respond to it. In a 7-day post-natal rat model of HI, we used pregnant and breastfeeding female nutritional supplementation with piceatannol (PIC), a polyphenol naturally found in berries, grapes and passion fruit, as a neuroprotective strategy. Maternal supplementation led to neuroprotection against neonate brain damage and reversed their sensorimotor deficits as well as cognitive impairments. Neuroprotection of per os maternal supplementation with PIC is a preventive strategy to counteract brain damage in pups induced by HI. This nutritional approach could easily be adopted as a preventive strategy in humans.
Collapse
Affiliation(s)
- Ursule Dumont
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Sanchez
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Benjamin Olivier
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Jean-François Chateil
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Luc Pellerin
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France; Department of Physiology, 7 Rue du Bugnon, CH1005 Lausanne, Switzerland.
| | | | - Anne-Karine Bouzier-Sore
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Hélène Roumes
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
36
|
Fan C, Song Q, Wang P, Li Y, Yang M, Yu SY. Neuroprotective Effects of Curcumin on IL-1β-Induced Neuronal Apoptosis and Depression-Like Behaviors Caused by Chronic Stress in Rats. Front Cell Neurosci 2019; 12:516. [PMID: 30666189 PMCID: PMC6330766 DOI: 10.3389/fncel.2018.00516] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Depression is suggested to be a neuropsychiatric disease resulting from neuroinflammation within specific brain regions. Curcumin, a potential neuroprotective agent extracted from curcuma loga, exerts antidepressant-like effects in various animal models of depression. However, the underlying mechanisms, in particular whether curcumin may exert neuroprotection through suppression of inflammatory pathway activity in depression remains largely unknown. In the present study, we examined the molecular events of curcumin as related to its capacity for neuroprotection against inflammation-induced neuronal apoptosis and depression-like behaviors in a rat model of depression. Our results show that chronic administration of curcumin (40 mg/kg, i.p., 5 weeks) prior to stress exposure significantly alleviated depression-like behaviors, expression of the proinflammatory cytokine interleukin-1β (IL-1β) and inhibited neuronal apoptosis within neurons of the ventromedial prefrontal cortex (vmPFC). Within the vmPFC of stressed rats, an intracerebral infusion of an RNAi form of IL-1β in adenovirus associated virus (AAV-IL-1β RNAi) significantly ameliorated depression-like behaviors, neuronal apoptosis and reduced phosphorylated-p38 mitogen-activated protein kinase (p-p38 MAPK) expression levels. More important, within the vmPFC of wild type rats, overexpression of IL-1β via intracerebral infusion of AAV-IL-1β induced p38 MAPK phosphorylation and neuronal apoptosis, which could be significantly prevented by chronic treatment of curcumin. Collectively, these findings reveal that curcumin protects against IL-1β-induced neuronal apoptosis, which may be related to the display of depression-like behaviors in stressed rats. Moreover, they provide new insights into the mechanisms and therapeutic potential for curcumin in the treatment of inflammation-related neuronal deterioration in this disorder.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qiqi Song
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Peng Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mu Yang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
37
|
Jia R, Li Y, Cao L, Du J, Zheng T, Qian H, Gu Z, Jeney G, Xu P, Yin G. Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:56-66. [PMID: 30336289 DOI: 10.1016/j.cbpc.2018.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
Resveratrol, a dietary polyphenol, has been shown to exert antioxidation, hepatoprotection, anti-inflammation and immunostimulation. However, the effects and underlying mechanism of resveratrol on liver injury in fish are still unclear. In the present study, we investigated the potential protective effects and mechanism of resveratrol on oxidative stress-induced liver damage in tilapia. Fish were fed diet containing four doses of resveratrol (0, 0.1, 0.3, and 0.6 g/kg diet) for 60 days, and then given an intraperitoneal injection of H2O2 or saline. The results showed that administration of resveratrol significantly ameliorated H2O2-induced liver injury. In serum and liver, resveratrol treatment suppressed the oxidative stress, as evidenced by the decline of lipid peroxidation level and increase of antioxidant activity. Resveratrol also activated erythroid 2-related factor 2 (Nrf2) signaling pathway and enhanced the heme oxygenase 1 (HO-1), NAD(P) H:quinone oxidoreductase 1 (NQO-1), glutathione S-transferase (GST) mRNA levels. Meanwhile, resveratrol treatment repressed TLR2-Myd88-NF-κB signaling pathway to decrease the inflammatory response in H2O2-induced liver injury as evidenced by the lower interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-8 mRNA levels and higher IL-10 mRNA level. Moreover, resveratrol treatment attenuated immunotoxicity in liver of H2O2-treated fish, accompanied by upregulation of hepcidin (HEP), complement 3 (C3) and lysozyme (LZM) mRNA levels. Overall results suggested that the protection of resveratrol on H2O2-induced liver injury, inflammation and immunotoxicity was due to its antioxidant property and its ability to modulate the Nrf2 and TLR2-Myd88-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yao Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hao Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas 5440, Hungary
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
38
|
Jia R, Du J, Cao L, Li Y, Johnson O, Gu Z, Jeney G, Xu P, Yin G. Antioxidative, inflammatory and immune responses in hydrogen peroxide-induced liver injury of tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 84:894-905. [PMID: 30389642 DOI: 10.1016/j.fsi.2018.10.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of many liver diseases in fish, but the molecular mechanism is still obscure. Here, we used hydrogen peroxide (H2O2) as a reactive oxygen species (ROS) to induce liver injury and assess underlying molecular mechanism linking oxidative stress and liver injury in fish. Tilapia were injected with various concentrations of H2O2 (0, 40, 120, 200, 300 and 400 mM) for 72 h. The blood and liver were collected to assay biochemical parameters and genes expression after 24, 48 and 72 h of injection. The results showed that treatments with higher H2O2 levels (300 and/or 400 mM) significantly increased the levels of GPT, GOT, AKP and MDA, and apparently decreased the levels of TP, ALB, SOD, GSH, CAT, GST and T-AOC throughout of the 72 h. The gene expression data showed that treatments with 200, 300 and/or 400 H2O2 suppressed Nrf2/keap1 pathway and its downstream genes including ho-1, nqo1 and gsta, activated inflammatory response via enhancing the mRNA levels of nf-κb, tnf-α, il-1β and il-8, and attenuating il-10 mRNA level, and caused immunotoxicity through downregulating the genes expression of c3, hep, lzm and Igm for 24, 48 and/or 72 h. Additionally, there was a mild or strong increase in levels of nrf2 and its subsequent antioxidant genes or enzymes such as ho-1, nqo1, gst, CAT and SOD in treatments with lower concentrations of H2O2 (40 or 120 mM) for 24 and/or 48 h. Overall results suggested that H2O2 hepatotoxicity was mainly concerned with lipid peroxidation, impairment antioxidant defense systems, inflammatory response and immunotoxicity, and Nrf2/Keap1 and NF-κB signaling pathways played important roles in oxidative stress-induced liver injury in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yao Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Opigo Johnson
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas, 5440, Hungary
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
39
|
Kang DG, Lee HJ, Lee CJ, Park JS. Inhibition of the Expression of Matrix Metalloproteinases in Articular Chondrocytes by Resveratrol through Affecting Nuclear Factor-Kappa B Signaling Pathway. Biomol Ther (Seoul) 2018; 26:560-567. [PMID: 30464073 PMCID: PMC6254641 DOI: 10.4062/biomolther.2018.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
In the present study, we tried to examine whether resveratrol regulates the expression of matrix metalloproteinases (MMPs) through affecting nuclear factor-kappa B (NF-κB) in articular chondrocytes. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of resveratrol on IL-1β-induced secretion of MMP-3 was investigated in rabbit articular chondrocytes using western blot analysis. To elucidate the action mechanism of resveratrol, effect of resveratrol on IL-1β-induced NF-κB signaling pathway was investigated in SW1353, a human chondrosarcoma cell line, by western blot analysis. The results were as follows: (1) resveratrol inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) resveratrol reduced the secretion of MMP-3; (3) resveratrol inhibited IL-1β-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Bα (IκBα); (4) resveratrol inhibited IL-1β-induced phosphorylation and nuclear translocation of NF-κB p65. This, in turn, led to the down-regulation of gene expression of MMPs in SW1353 cells. These results suggest that resveratrol can regulate the expression of MMPs through affecting NF-κB by directly acting on articular chondrocytes.
Collapse
Affiliation(s)
- Dong-Geun Kang
- Department of Orthopaedic Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon 51472, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin Sung Park
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| |
Collapse
|