1
|
Klippel Zanona Q, Alves Marconi G, de Sá Couto Pereira N, Lazzarotto G, Luiza Ferreira Donatti A, Antonio Cortes de Oliveira J, Garcia-Cairasco N, Elisa Calcagnotto M. Absence-like seizures, cortical oscillations abnormalities and decreased anxiety-like behavior in Wistar Audiogenic Rats with cortical microgyria. Neuroscience 2022; 500:26-40. [DOI: 10.1016/j.neuroscience.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/25/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
2
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
3
|
Dos Santos RR, Bernardino TC, da Silva MCM, de Oliveira ACP, Drumond LE, Rosa DV, Massensini AR, Moraes MFD, Doretto MC, Romano-Silva MA, Reis HJ. Neurochemical abnormalities in the hippocampus of male rats displaying audiogenic seizures, a genetic model of epilepsy. Neurosci Lett 2021; 761:136123. [PMID: 34293418 DOI: 10.1016/j.neulet.2021.136123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.
Collapse
Affiliation(s)
- Rodrigo Ribeiro Dos Santos
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil; Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Túlio C Bernardino
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Antônio C P de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Luciana E Drumond
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Daniela V Rosa
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria C Doretto
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - Helton J Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Koga Y, Tsuchimoto D, Hayashi Y, Abolhassani N, Yoneshima Y, Sakumi K, Nakanishi H, Toyokuni S, Nakabeppu Y. Neural stem cell-specific ITPA deficiency causes neural depolarization and epilepsy. JCI Insight 2020; 5:140229. [PMID: 33208550 PMCID: PMC7710303 DOI: 10.1172/jci.insight.140229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Inosine triphosphate pyrophosphatase (ITPA) hydrolyzes inosine triphosphate (ITP) and other deaminated purine nucleotides to the corresponding nucleoside monophosphates. In humans, ITPA deficiency causes severe encephalopathy with epileptic seizure, microcephaly, and developmental retardation. In this study, we established neural stem cell-specific Itpa-conditional KO mice (Itpa-cKO mice) to clarify the effects of ITPA deficiency on the neural system. The Itpa-cKO mice showed growth retardation and died within 3 weeks of birth. We did not observe any microcephaly in the Itpa-cKO mice, although the female Itpa-cKO mice did show adrenal hypoplasia. The Itpa-cKO mice showed limb-clasping upon tail suspension and spontaneous and/or audiogenic seizure. Whole-cell patch-clamp recordings from entorhinal cortex neurons in brain slices revealed a depolarized resting membrane potential, increased firing, and frequent spontaneous miniature excitatory postsynaptic current and miniature inhibitory postsynaptic current in the Itpa-cKO mice compared with ITPA-proficient controls. Accumulated ITP or its metabolites, such as cyclic inosine monophosphates, or RNA containing inosines may cause membrane depolarization and hyperexcitability in neurons and induce the phenotype of ITPA-deficient mice, including seizure.
Collapse
Affiliation(s)
- Yuichiro Koga
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and
| | - Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and
| | - Yasuto Yoneshima
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and
| |
Collapse
|
5
|
Garcia-Gomes MDSA, Zanatto DA, Galvis-Alonso OY, Mejia J, Antiorio ATFB, Yamamoto PK, Olivato MCM, Sandini TM, Flório JC, Lebrun I, Massironi SMG, Alexandre-Ribeiro SR, Bernardi MM, Ienne S, de Souza TA, Dagli MLZ, Mori CMC. Behavioral and neurochemical characterization of the spontaneous mutation tremor, a new mouse model of audiogenic seizures. Epilepsy Behav 2020; 105:106945. [PMID: 32109856 DOI: 10.1016/j.yebeh.2020.106945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 11/18/2022]
Abstract
The tremor mutant phenotype results from an autosomal recessive spontaneous mutation arisen in a Swiss-Webster mouse colony. The mutant mice displayed normal development until three weeks of age when they began to present motor impairment comprised by whole body tremor, ataxia, and decreased exploratory behavior. These features increased in severity with aging suggesting a neurodegenerative profile. In parallel, they showed audiogenic generalized clonic seizures. Results from genetic mapping identified the mutation tremor on chromosome 14, in an interval of 5 cM between D14Mit37 (33.21 cM) and D14Mit115 (38.21 cM), making Early Growth Response 3 (Egr3) the main candidate gene. Comparing with wild type (WT) mice, the tremor mice showed higher hippocampal gene expression of Egr3 and Gabra1 and increased concentrations of noradrenalin (NOR; p = .0012), serotonin (5HT; p = .0083), 5-hydroxyindoleacetic acid (5-HIAA; p = .0032), γ-amino butyric acid (GABA; p = .0123), glutamate (p = .0217) and aspartate (p = .0124). In opposition, the content of glycine (p = .0168) and the vanillylmandelic acid (VMA)/NOR ratio (p = .032) were decreased. Regarding to dopaminergic system, neither dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) contents nor the turnover rate of DA showed statistically significant differences between WT and mutant mice. Data demonstrated that audiogenic seizures of tremor mice are associated with progressive motor impairment as well as to hippocampal alterations of the Egr3 and Gabra1 gene expression and amino acid and monoamine content. In addition, the tremor mice could be useful for study of neurotransmission pathways as modulators of epilepsy and the pathogenesis of epilepsies occurring with generalized clonic seizures.
Collapse
Affiliation(s)
| | - Dennis Albert Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | | | - Jorge Mejia
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Pedro Kenzo Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | | | - Thaísa Meira Sandini
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Jorge Camilo Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Brazil
| | - Silvia Maria Gomes Massironi
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | | | | | - Susan Ienne
- Core Facility for Scientific Research - University of São Paulo (CEFAP-USP/GENIAL (Genome Investigation and Analysis Laboratory), Brazil
| | - Tiago Antonio de Souza
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo (USP), Brazil
| | - Maria Lúcia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | | |
Collapse
|
6
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
7
|
Cunha AOS, Ceballos CC, de Deus JL, Pena RFDO, de Oliveira JAC, Roque AC, Garcia-Cairasco N, Leão RM. Intrinsic and synaptic properties of hippocampal CA1 pyramidal neurons of the Wistar Audiogenic Rat (WAR) strain, a genetic model of epilepsy. Sci Rep 2018; 8:10412. [PMID: 29991737 PMCID: PMC6039528 DOI: 10.1038/s41598-018-28725-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
Despite the many studies focusing on epilepsy, a lot of the basic mechanisms underlying seizure susceptibility are mainly unclear. Here, we studied cellular electrical excitability, as well as excitatory and inhibitory synaptic neurotransmission of CA1 pyramidal neurons from the dorsal hippocampus of a genetic model of epilepsy, the Wistar Audiogenic Rat (WARs) in which limbic seizures appear after repeated audiogenic stimulation. We examined intrinsic properties of neurons, as well as EPSCs evoked by Schaffer-collateral stimulation in slices from WARs and Wistar parental strain. We also analyzed spontaneous IPSCs and quantal miniature inhibitory events. Our data show that even in the absence of previous seizures, GABAergic neurotransmission is reduced in the dorsal hippocampus of WARs. We observed a decrease in the frequency of IPSCs and mIPSCs. Moreover, mIPSCs of WARs had faster rise times, indicating that they probably arise from more proximal synapses. Finally, intrinsic membrane properties, firing and excitatory neurotransmission mediated by both NMDA and non-NMDA receptors are similar to the parental strain. Since GABAergic inhibition towards CA1 pyramidal neurons is reduced in WARs, the inhibitory network could be ineffective to prevent the seizure-dependent spread of hyperexcitation. These functional changes could make these animals more susceptible to the limbic seizures observed during the audiogenic kindling.
Collapse
Affiliation(s)
| | - Cesar Celis Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia Lara de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo Felipe de Oliveira Pena
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Antonio Carlos Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Parreira GM, Resende MDA, Garcia IJP, Sartori DB, Umeoka EHDL, Godoy LD, Garcia-Cairasco N, Barbosa LA, Santos HDL, Tilelli CQ. Oxidative stress and Na,K-ATPase activity differential regulation in brainstem and forebrain of Wistar Audiogenic rats may lead to increased seizure susceptibility. Brain Res 2018; 1679:171-178. [DOI: 10.1016/j.brainres.2017.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
|
9
|
Garcia-Cairasco N, Umeoka EHL, Cortes de Oliveira JA. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives. Epilepsy Behav 2017; 71:250-273. [PMID: 28506440 DOI: 10.1016/j.yebeh.2017.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the context of modeling epilepsy and neuropsychiatric comorbidities, we review the Wistar Audiogenic Rat (WAR), first introduced to the neuroscience international community more than 25years ago. The WAR strain is a genetically selected reflex model susceptible to audiogenic seizures (AS), acutely mimicking brainstem-dependent tonic-clonic seizures and chronically (by audiogenic kindling), temporal lobe epilepsy (TLE). Seminal neuroethological, electrophysiological, cellular, and molecular protocols support the WAR strain as a suitable and reliable animal model to study the complexity and emergent functions typical of epileptogenic networks. Furthermore, since epilepsy comorbidities have emerged as a hot topic in epilepsy research, we discuss the use of WARs in fields such as neuropsychiatry, memory and learning, neuroplasticity, neuroendocrinology, and cardio-respiratory autonomic regulation. Last, but not least, we propose that this strain be used in "omics" studies, as well as with the most advanced molecular and computational modeling techniques. Collectively, pioneering and recent findings reinforce the complexity associated with WAR alterations, consequent to the combination of their genetically-dependent background and seizure profile. To add to previous studies, we are currently developing more powerful behavioral, EEG, and molecular methods, combined with computational neuroscience/network modeling tools, to further increase the WAR strain's contributions to contemporary neuroscience in addition to increasing knowledge in a wide array of neuropsychiatric and other comorbidities, given shared neural networks. During the many years that the WAR strain has been studied, a constantly expanding network of multidisciplinary collaborators has generated a growing research and knowledge network. Our current and major wish is to make the WARs available internationally to share our knowledge and to facilitate the planning and execution of multi-institutional projects, eagerly needed to contribute to paradigm shifts in epileptology. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Eduardo H L Umeoka
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
10
|
Pinto HPP, Carvalho VR, Medeiros DDC, Almeida AFS, Mendes EMAM, Moraes MFD. Auditory processing assessment suggests that Wistar audiogenic rat neural networks are prone to entrainment. Neuroscience 2017; 347:48-56. [PMID: 28188855 DOI: 10.1016/j.neuroscience.2017.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/17/2022]
Abstract
Epilepsy is a neurological disease related to the occurrence of pathological oscillatory activity, but the basic physiological mechanisms of seizure remain to be understood. Our working hypothesis is that specific sensory processing circuits may present abnormally enhanced predisposition for coordinated firing in the dysfunctional brain. Such facilitated entrainment could share a similar mechanistic process as those expediting the propagation of epileptiform activity throughout the brain. To test this hypothesis, we employed the Wistar audiogenic rat (WAR) reflex animal model, which is characterized by having seizures triggered reliably by sound. Sound stimulation was modulated in amplitude to produce an auditory steady-state-evoked response (ASSR; -53.71Hz) that covers bottom-up and top-down processing in a time scale compatible with the dynamics of the epileptic condition. Data from inferior colliculus (IC) c-Fos immunohistochemistry and electrographic recordings were gathered for both the control Wistar group and WARs. Under 85-dB SLP auditory stimulation, compared to controls, the WARs presented higher number of Fos-positive cells (at IC and auditory temporal lobe) and a significant increase in ASSR-normalized energy. Similarly, the 110-dB SLP sound stimulation also statistically increased ASSR-normalized energy during ictal and post-ictal periods. However, at the transition from the physiological to pathological state (pre-ictal period), the WAR ASSR analysis demonstrated a decline in normalized energy and a significant increase in circular variance values compared to that of controls. These results indicate an enhanced coordinated firing state for WARs, except immediately before seizure onset (suggesting pre-ictal neuronal desynchronization with external sensory drive). These results suggest a competing myriad of interferences among different networks that after seizure onset converge to a massive oscillatory circuit.
Collapse
Affiliation(s)
- Hyorrana Priscila Pereira Pinto
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil
| | - Vinícius Rezende Carvalho
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Programa de Pós-Graduação em Engenharia Elétrica - Escola de Engenharia - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil
| | - Daniel de Castro Medeiros
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Programa de Pós-Graduação em Engenharia Elétrica - Escola de Engenharia - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância - CTPMAG - Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana Flávia Santos Almeida
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil
| | - Eduardo Mazoni Andrade Marçal Mendes
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Programa de Pós-Graduação em Engenharia Elétrica - Escola de Engenharia - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância - CTPMAG - Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Programa de Pós-Graduação em Engenharia Elétrica - Escola de Engenharia - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância - CTPMAG - Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Damasceno DD, Savergnini SQ, Gomes ER, Guatimosim S, Ferreira AJ, Doretto MC, Almeida AP. Cardiac dysfunction in rats prone to audiogenic epileptic seizures. Seizure 2013; 22:259-66. [DOI: 10.1016/j.seizure.2013.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 11/30/2022] Open
|
12
|
Drumond L, Kushmerick C, Guidine P, Doretto M, Moraes M, Massensini A. Reduced hippocampal GABAergic function in Wistar audiogenic rats. Braz J Med Biol Res 2011; 44:1054-9. [DOI: 10.1590/s0100-879x2011007500118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 08/25/2011] [Indexed: 03/13/2023] Open
|
13
|
Gitaí DLG, Fachin AL, Mello SS, Elias CF, Bittencourt JC, Leite JP, Passos GADS, Garcia-Cairasco N, Paçó-Larson ML. The non-coding RNA BC1 is down-regulated in the hippocampus of Wistar Audiogenic Rat (WAR) strain after audiogenic kindling. Brain Res 2010; 1367:114-21. [PMID: 20974111 DOI: 10.1016/j.brainres.2010.10.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/21/2010] [Accepted: 10/17/2010] [Indexed: 01/08/2023]
Abstract
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1⁻/⁻ mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs.
Collapse
Affiliation(s)
- Daniel Leite Goes Gitaí
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gitaí DLG, Martinelli HN, Valente V, Pereira MGAG, Oliveira JAC, Elias CF, Bittencourt JC, Leite JP, Costa-Neto CM, Garcia-Cairasco N, Paçó-Larson ML. Increased expression of GluR2-flip in the hippocampus of the Wistar audiogenic rat strain after acute and kindled seizures. Hippocampus 2010; 20:125-33. [PMID: 19330849 DOI: 10.1002/hipo.20590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Wistar Audiogenic Rat (WAR) is an epileptic-prone strain developed by genetic selection from a Wistar progenitor based on the pattern of behavioral response to sound stimulation. Chronic acoustic stimulation protocols of WARs (audiogenic kindling) generate limbic epileptogenesis, confirmed by ictal semiology, amygdale, and hippocampal EEG, accompanied by hippocampal and amygdala cell loss, as well as neurogenesis in the dentate gyrus (DG). In an effort to identify genes involved in molecular mechanisms underlying epileptic process, we used suppression-subtractive hybridization to construct normalized cDNA library enriched for transcripts expressed in the hippocampus of WARs. The most represented gene among the 133 clones sequenced was the ionotropic glutamate receptor subunit II (GluR2), a member of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleopropionic acid (AMPA) receptor. Although semiquantitative RT-PCR analysis shows that the hippocampal levels of the GluR2 subunits do not differ between naïve WARs and their Wistar counterparts, we observed that the expression of the transcript encoding the splice-variant GluR2-flip is increased in the hippocampus of WARs submitted to both acute and kindled audiogenic seizures. Moreover, using in situ hybridization, we verified upregulation of GluR2-flip mainly in the CA1 region, among the hippocampal subfields of audiogenic kindled WARs. Our findings on differential upregulation of GluR2-flip isoform in the hippocampus of WARs displaying audiogenic seizures is original and agree with and extend previous immunohistochemical for GluR2 data obtained in the Chinese P77PMC audiogenic rat strain, reinforcing the association of limbic AMPA alterations with epileptic seizures.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Puzzling challenges in contemporary neuroscience: insights from complexity and emergence in epileptogenic circuits. Epilepsy Behav 2009; 14 Suppl 1:54-63. [PMID: 18835370 DOI: 10.1016/j.yebeh.2008.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/24/2022]
Abstract
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical or electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current computational neuroscience tools will help the interpretation, storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies.
Collapse
|
16
|
Garcia-Cairasco N. Learning about brain physiology and complexity from the study of the epilepsies. Braz J Med Biol Res 2009; 42:76-86. [DOI: 10.1590/s0100-879x2009000100012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/16/2008] [Indexed: 01/26/2023] Open
|
17
|
Morales R, Riss M, Wang L, Gavín R, Del Río JA, Alcubilla R, Claverol-Tinturé E. Integrating multi-unit electrophysiology and plastic culture dishes for network neuroscience. LAB ON A CHIP 2008; 8:1896-1905. [PMID: 18941691 DOI: 10.1039/b802165a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The electrophysiological characterisation of cultured neurons is of paramount importance for drug discovery, safety pharmacology and basic research in the neurosciences. Technologies offering low cost, low technical complexity and potential for scalability towards high-throughput electrophysiology on in vitro neurons would be advantageous, in particular for screening purposes. Here we describe a plastic culture substrate supporting low-complexity multi-unit loose-patch recording and stimulation of developing networks while retaining manufacturability compatible with low-cost and large-scale production. Our hybrid polydimethylsilane (PDMS)-on-polystyrene structures include chambers (6 mm in diameter) and microchannels (25 microm x 3.7 microm x 1 mm) serving as substrate-embedded recording pipettes. Somas are plated and retained in the chambers due to geometrical constraints and their processes grow along the microchannels, effectively establishing a loose-patch configuration without human intervention. We demonstrate that off-the-shelf voltage-clamp, current-clamp and extracellular amplifiers can be used to record and stimulate multi-unit activity with the aid of our dishes. Spikes up to 50 pA in voltage-clamp and 300 microV in current-clamp modes are recorded in sparse and bursting activity patterns characteristic of 1 week-old hippocampal cultures. Moreover, spike sorting employing principal component analysis (PCA) confirms that single microchannels support the recording of multiple neurons. Overall, this work suggests a strategy to endow conventional culture plasticware with added functionality to enable cost-efficient network electrophysiology.
Collapse
|