1
|
Su X, Wang R, Wu Y, Yang M, Ba Y, Huang H. Lead and cadmium co-exposure modified PC12 viability and ER stress: study from a 3 × 3 factorial design. Toxicol Res (Camb) 2023; 12:1135-1142. [PMID: 38145091 PMCID: PMC10734615 DOI: 10.1093/toxres/tfad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 12/26/2023] Open
Abstract
Background Although exposure to individual metal does exhibit its toxicity, combined exposures provide a more effective representation of the toxic effects of different heavy metal exposures on public health as well as ecosystems. Furthermore, there are few studies on composite exposure to low concentrations of heavy metals, which is more consistent with real-life exposure. The purpose of this study was to explore the neurotoxicity induced by combined exposure to low concentrations of Lead (Pb) and cadmium (Cd) and the potential interaction of their mixture in vitro. Methods PC12 cells were incubation with the corresponding concentration of cadmium chloride and/or lead acetate. Viability of PC12 cells was measured by CCK8 assay after 12, 24 and 48h incubation. Next, We measured the ROS, mitochondrial membrane potential (MMP) and apoptosis produced by different treated cells using ROS assay kit, JC-1 MMP assay kit and annexin V-FITC/propidium iodide (PI) apoptosis assay kit, respectively. Expression of proteins related to PI3K/AKT and endoplasmic reticulum (ER) stress in PC12 cells were tested by western blotting. Our study was the first to analyze the interaction between Pb and Cd using a 3 × 3 factorial design approach to observe neurotoxicity. Results The results showed that the combined exposure of them was more cytotoxic than the single metal. The activation of PI3K/AKT signaling pathway and several parameters related to oxidative stress and ER stress were significantly altered in combined exposure to low concentrations of Pb and Cd compared with the Pb or Cd. Regarding apoptosis and ER stress, a synergistic interaction between Pb and Cd was evident. Moreover, evoked ER stress as a mechanism involved in the apoptosis of PC12 cells by the combined exposure to Pb and Cd. Conclusion The present study provides a theoretical basis used for the toxicological assessment of metal mixtures induced neurotoxicity of concern in terms of public health, and more effective control measures should be taken for the environmental pollution caused by various mixed heavy metals discharged from industry and agriculture.
Collapse
Affiliation(s)
- Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| |
Collapse
|
2
|
Wang J, Wang X, Zhang M, Lang Y, Chen B, Ye Y, Bai Y, Ding S. The activation of spliced X-box binding protein 1 by isorhynchophylline therapy improves diabetic encephalopathy. Cell Biol Toxicol 2023; 39:2587-2613. [PMID: 36695953 DOI: 10.1007/s10565-022-09789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
The primary symptom of diabetic encephalopathy (DE), a kind of central diabetic neuropathy caused by diabetes mellitus (DM), is cognitive impairment. In addition, the tetracyclic oxindole alkaloid isorhynchophylline (IRN) helps lessen cognitive impairment. However, it is still unclear how IRN affects DM and DE and what mechanisms are involved. The effectiveness of IRN on brain insulin resistance was carefully examined in this work, both in vitro and in vivo. We found that IRN accelerates spliced form of X-box binding protein 1 (sXBP1) translocation into the nucleus under high glucose conditions in vitro. IRN also facilitates the nuclear association of pCREB with sXBP1 and the binding of regulatory subunits of phosphatidylinositol 3-kinase (PI3K) p85α or p85β with XBP1 to restore high glucose impairment. Also, IRN treatment improves high glucose-mediated impairment of insulin signaling, endoplasmic reticulum stress, and pyroptosis/apoptosis by depending on sXBP1 in vitro. In vivo studies suggested that IRN attenuates cognitive impairment, ameliorating peripheral insulin resistance, activating insulin signaling, inactivating activating transcription factor 6 (ATF6) and C/EBP homology protein (CHOP), and mitigating pyroptosis/apoptosis by stimulation of sXBP1 nuclear translocation in the brain. In summary, these data indicate that IRN contributes to maintaining insulin homeostasis by activating sXBP1 in the brain. Thus, IRN is a potent antidiabetic agent as well as an sXBP1 activator that has promising potential for the prevention or treatment of DE.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Xuebao Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Baihui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiru Ye
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saidan Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Tüfekci KK, Tatar M, Terzi F, Bakirhan EG. An investigation of the endoplasmic reticulum stress in obesity exposure in the prenatal period. J Chem Neuroanat 2023; 134:102348. [PMID: 37858742 DOI: 10.1016/j.jchemneu.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Exposure to maternal obesity has been shown to make offspring more prone to cognitive and metabolic disorders later in life. Although the underlying mechanisms are unclear, the role of endoplasmic reticulum (ER) stress in the fetal programming process is remarkable. ER stress can be activated by many chronic diseases, including obesity and diabetes. Therefore, our study aimed to investigate the role of ER stress caused by maternal diet-induced obesity in the offspring hippocampus. We also evaluated the protective effect of N-acetylcysteine (NAC) against ER stress. METHODS A rat obesity model was created by providing a high-fat (60 % kcal) diet. N-acetylcysteine (NAC) was administered at a dosage of 150 mg/kg via the intragastric route. The animals were mated at the age of 12 weeks. The same diet was maintained during pregnancy and lactation. The experiment was terminated on the postnatal 28th day, and the offspring's brain tissues were examined. Immunohistochemical staining for ER stress markers was performed on sections taken from tissues after routine histological procedures. RESULTS The results revealed increased GRP78, PERK, and eIF2α immunoreactivities in the hippocampal dentate gyrus (DG) and cornu ammonis 1 (CA1) regions in the obese group offspring, while the expression of those markers in those regions normalized with NAC supplementation (p < 0.01). Statistical analysis of XBP1 immunoreactivity H-scores revealed no difference between the study groups (p > 0.05). DISCUSSION These results suggest that exposure to obesity during the prenatal period may cause increased ER stress in hippocampal neurons, which have an important role in the regulation of learning, memory and behavior, and this may contribute to decreased cognitive performance. On the other hand, NAC stands out as an effective agent that can counteract hippocampal ER stress.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Turkiye.
| | - Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Turkiye
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Turkiye
| | - Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Turkiye
| |
Collapse
|
4
|
Horvat A, Vlašić I, Štefulj J, Oršolić N, Jazvinšćak Jembrek M. Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life (Basel) 2023; 13:2291. [PMID: 38137892 PMCID: PMC10744738 DOI: 10.3390/life13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Toltin AC, Belkadi A, Gamba LM, Hossain MM. The Preventive Effects of Salubrinal against Pyrethroid-Induced Disruption of Adult Hippocampal Neurogenesis in Mice. Int J Mol Sci 2023; 24:15614. [PMID: 37958604 PMCID: PMC10648946 DOI: 10.3390/ijms242115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Environmental factors, including pesticide exposure, have been identified as substantial contributors to neurodegeneration and cognitive impairments. Previously, we demonstrated that repeated exposure to deltamethrin induces endoplasmic reticulum (ER) stress, reduces hippocampal neurogenesis, and impairs cognition in adult mice. Here, we investigated the potential relationship between ER stress and hippocampal neurogenesis following exposure to deltamethrin, utilizing both pharmacological and genetic approaches. To investigate whether ER stress is associated with inhibition of neurogenesis, mice were given two intraperitoneal injections of eIf2α inhibitor salubrinal (1 mg/kg) at 24 h and 30 min prior to the oral administration of deltamethrin (3 mg/kg). Salubrinal prevented hippocampal ER stress, as indicated by decreased levels of C/EBP-homologous protein (CHOP) and transcription factor 4 (ATF4) and attenuated deltamethrin-induced reductions in BrdU-, Ki-67-, and DCX-positive cells in the dentate gyrus (DG) of the hippocampus. To further explore the relationship between ER stress and adult neurogenesis, we used caspase-12 knockout (KO) mice. The caspase-12 KO mice exhibited significant protection against deltamethrin-induced reduction of BrdU-, Ki-67-, and DCX-positive cells in the hippocampus. In addition, deltamethrin exposure led to a notable upregulation of CHOP and caspase-12 expression in a significant portion of BrdU- and Ki-67-positive cells in WT mice. Conversely, both salubrinal-treated mice and caspase-12 KO mice exhibited a considerably lower number of CHOP-positive cells in the hippocampus. Together, these findings suggest that exposure to the insecticide deltamethrin triggers ER stress-mediated suppression of adult hippocampal neurogenesis, which may subsequently contribute to learning and memory deficits in mice.
Collapse
Affiliation(s)
| | | | | | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Wang W, Liang M, Wang L, Bei W, Guo J. 15-Hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates hepatic abnormal lipid metabolism, ER stress, and inflammation through PGE 2/EP4 in T2DM mice. Bioorg Chem 2023; 137:106646. [PMID: 37285764 DOI: 10.1016/j.bioorg.2023.106646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly growing epidemic that results in increased morbidity, mortality, and soaring medical costs. Prostaglandin E2 (PGE2), a vital lipid mediator, has been reported to protect against hepatic steatosis, inflammation, endoplasmic reticulum (ER) stress, and insulin resistance, indicating its potential therapeutic role in T2DM. PGE2 can be degraded by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). SW033291, an inhibitor of 15-PGDH, has been reported to increase PGE2 levels, however, the effect of SW033291 in T2DM remains to be explored. This study aims to evaluate whether SW033291 protects against T2DM and explore its potential mechanisms. A T2DM mouse model was established through high-fat diet/streptozotocin injection, while palmitic acid-treated mouse primary hepatocytes were used as insulin-resistant cell models. SW033291 treatment reduced body weight, fat weight, fasting blood glucose, and improved impaired glucose tolerance and insulin resistance in T2DM mice. More importantly, SW033291 alleviated steatosis, inflammation, and ER stress in the liver of T2DM mice. Mechanistically, SW033291 decreased the expressions of SREBP-1c and ACC1, and increased the expression of PPARα in T2DM mice. Additionally, SW033291 inhibited NF-κB and eIF2α/CHOP signaling in T2DM mice. Further, we showed that the protective effects of SW033291 on the above-mentioned pathophysiological processes could be hindered by inhibition of the PGE2 receptor EP4. Overall, our study reveals a novel role of SW033291 in alleviating T2DM and suggests its potential as a new therapeutic strategy for T2DM.
Collapse
Affiliation(s)
- Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jiao Guo
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Rzayev E, Amanvermez R, Gün S, Tiryaki ES, Arslan G. 4-Phenylbutyric Acid Plus Valproic Acid Exhibits the Therapeutic and Neuroprotective Effects in Acute Seizures Induced by Pentylenetetrazole. Neurochem Res 2022; 47:3104-3113. [PMID: 35764848 DOI: 10.1007/s11064-022-03662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Endoplasmic reticulum (ER) stress and apoptosis are implicated in the pathogenesis of epilepsy. Here we examine the effects of valproic acid (VA) plus 4-phenylbutyric acid (4-PBA) on abnormal electrical brain activity, ER stress and apoptosis in acute seizures induced by pentylenetetrazole (PTZ). Forty male rats were randomly divided into five groups, each consisting of 8 rats as follows: Sham, PTZ, VA+PTZ, 4-PBA+PTZ, and VA plus 4-PBA+PTZ. The treated groups received VA, 4-PBA and VA plus 4-PBA by intraperitoneal application for 7 days prior to PTZ-induced seizure. On the 8th day, acute epileptic seizures were induced by PTZ (50 mg/kg, i.p.) injection, except for the sham group. Then, the seizure stage was observed and ECoG activities were recorded during the 30 min. At 24th post seizures, the hippocampus and blood samples were collected for biochemical and histopathological examinations. Administration of VA plus 4-PBA prior to PTZ-induced seizures significantly decreased seizure stage, the duration of generalized tonic-clonic seizure and the total number of spikes as increased the latency to the first myoclonic jerk when compared to the PTZ group. 4-PBA suppressed the increased levels of ER stress markers GRP78 and CHOP in the hippocampus. VA plus 4-PBA treatment before seizures significantly inhibited PTZ-induced elevations of apoptosis-related indicators caspase-3 and caspase-12, and significantly reduced the number of histopathological lesions of the hippocampus region at 24th post seizures. These findings suggest that administration of VA plus 4-PBA prior to PTZ-induced seizures may be involved in the neuroprotective potential of these agents for seizures.
Collapse
Affiliation(s)
- Emil Rzayev
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Atakum, 55139, Samsun, Turkey
| | - Ramazan Amanvermez
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Atakum, 55139, Samsun, Turkey.
| | - Seda Gün
- Department of Medical Pathology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emre S Tiryaki
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Peng D, Qing X, Guan L, Li HY, Qiao L, Chen YB, Cai YF, Wang Q, Zhang SJ. Carnosine improves cognitive impairment through promoting SIRT6 expression and inhibiting ER stress in a diabetic encephalopathy model. Rejuvenation Res 2022; 25:79-88. [PMID: 35302398 DOI: 10.1089/rej.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic encephalopathy is one of complications of diabetes mellitus. Carnosine is a dipeptide composed of β-alanine and L-histidine. Study has shown that carnosine could ameliorate cognitive impairment in animal model with diabetes mellitus. However, the mechanism remains unclear. An animal model of type 2 diabetes (db/db mice) was used in this study. The animals were treated with 0.9 % saline or carnosine (100 mg/kg) for 8 weeks. Morris water maze was tested after drug administration. Oxidative stress-related factors malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and pro-inflammatory factors inducible nitric oxide synthase (iNOS) were measured. Synapse-related protein postsynapticdensity 95 (PSD95) and brain-derived neurotrophic factor (BDNF) were detected by western blot. Besides, the expressions of sirtuin 6 (SIRT6), binding immunoglobulin protein (BIP), protein kinase R-like endoplasmic reticulum kinase (PERK), phospho-protein kinase R-like endoplasmic reticulum kinase (P-PERK), inositol-requiring enzyme-1α (IRE1α), phospho-inositol-requiring enzyme-1α (P-IRE1α), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) in the hippocampus of the brain were detected. The results showed that treatment with carnosine ameliorated cognitive impairment in db/db mice. Carnosine reduced neuronal oxidative stress damage and iNOS expression in db/db mice. Meanwhile, carnosine relieved neurodegeneration in the hippocampus of db/db mice. Furthermore, carnosine promoted the expression of SIRT6 and reduced the expressions of endoplasmic reticulum (ER) related factors (BIP, P-PERK, P-IRE1α, ATF6, CHOP). In conclusion, these data suggested that the protective effect of carnosine against diabetic encephalopathy might be related to SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Dong Peng
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Xia Qing
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Li Guan
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Hong-Ying Li
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Lijun Qiao
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Ye-Feng Cai
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Shi-Jie Zhang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006;
| |
Collapse
|
9
|
Nourbakhsh M, Sharifi R, Heydari N, Nourbakhsh M, Ezzati-Mobasser S, Zarrinnahad H. Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress. J Endocrinol Invest 2022; 45:649-655. [PMID: 34591271 DOI: 10.1007/s40618-021-01683-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus (T2DM) and insulin resistance. Tribbles homolog 3 (TRB3) is a pseudokinase upregulated by ER stress and hyperglycemia. Glucose-regulated protein 78 (GRP78) is an ER stress protein that is overexpressed under ER stress conditions. The current study aimed to investigate serum levels of TRB3 and GRP78, as an ER stress marker, in T2DM patients and their correlations with the metabolic profile. METHODS Fifty-seven patients with type 2 diabetes and 23 healthy control subjects were evaluated for serum concentrations of TRB3, GRP78, and AGEs by enzyme-linked immunosorbent assay (ELISA). Fasting plasma glucose (FPG), HbA1c, lipid profile, TNF-α and insulin were also measured, and insulin resistance was calculated using a homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Serum concentrations of TRB3, GRP78, AGEs, and TNF-α were significantly higher in T2DM patients compared to the healthy controls. Moreover, a statistically significant positive correlation was observed between plasma concentrations of TRB3 and FPG, HbA1c, HOMA-IR, and AGE. GRP78 levels were positively correlated with HbA1c and AGEs. There was also a positive correlation between GRP78 and TRB3. AGEs levels were positively correlated with the levels of FPG, HbA1c, HOMA-IR, and TNF-α. CONCLUSION The current findings suggest that TRB3 and GRP78 may contribute to the pathogenesis of T2DM and might be considered as a therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- M Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, 1449614535, Tehran, Iran.
| | - N Heydari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Nourbakhsh
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - S Ezzati-Mobasser
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - H Zarrinnahad
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang C, Gu Z, Gu X, Tan X, Wang S, Zhang R, Li R, Sun M, Gui C, Li S, Ye Y, Ma J, Su L, Liang C. Nano-selenium attenuates mitochondrial-associated apoptosis via the PI3K/AKT pathway in nickel-induced hepatotoxicity in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2022; 37:101-119. [PMID: 34612572 DOI: 10.1002/tox.23381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/01/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate the protective effects of Nano-Se against nickel (Ni)-induced hepatotoxicity and the potential mechanism. Hence, we constructed in vivo and in vitro models of Ni-induced hepatotoxicity. Sprague-Dawley (SD) rats were exposed to nickel sulfate (NiSO4 , 5.0 mg/kg, i.p.) with or without Nano-Se (0.5, 1, and 2 mg/kg, oral gavage) co-administration for 14 days, and HepG2 cells were exposed to NiSO4 (1500 μM) with or without Nano-Se (20 μM) for 24 h. Nano-Se obviously prevented Ni-induced hepatotoxicity indicated by ameliorating pathological change and decreasing Ni accumulation in rat livers. Ni induced a significant increase in hepatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSH-Px), and malondialdehyde (MDA) level, decreased the glutathione (GSH) content while compared to those in the control group. Nano-Se administration improved the hepatic antioxidant capacity through increase hepatic GSH contents and GSH-Px activity, decrease the activities of SOD, CAT, and MDA level. Nano-Se improved the cell viability, decreased active oxygen (ROS) generation and ameliorated morphological changes of nuclear structures in Ni-treated HepG2 cells. In addition, Nano-Se inhibited the Ni-induced increases of cytochrome c, caspase-9, cleaved caspase-3, increased PI3K and AKT phosphorylation both in vivo and in vitro. Besides, the PI3K inhibitor Y294002 could inhibit the protective effects of Nano-Se on apoptosis. Thus, Nano-Se significantly activates PI3K/AKT signaling to ameliorate apoptosis in Ni-induced hepatotoxicity.
Collapse
Affiliation(s)
- Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhangyu Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinyue Tan
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ruifen Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingkun Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Chunyan Gui
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Biological Monitoring and Restoration of Environmental Pollution in Gansu Province, Lanzhou, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
11
|
Li X, He Q, Zhao N, Chen X, Li T, Cheng B. High intensity interval training ameliorates cognitive impairment in T2DM mice possibly by improving PI3K/Akt/mTOR Signaling-regulated autophagy in the hippocampus. Brain Res 2021; 1773:147703. [PMID: 34743961 DOI: 10.1016/j.brainres.2021.147703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Exercise can improve cognitive impairment in type 2 diabetes mellitus (T2DM). However, the underlying mechanisms are not clear, and the optimal exercise modes for cognitive benefits are controversial. The aim of this study was to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity interval training (MICT) on cognitive function and the PI3K/Akt/mTOR pathway as well as autophagy in T2DM mice. The results showed that 8 weeks of HIIT and MICT intervention could improve the spatial learning and memory ability of T2DM mice, as determined by the Morris water maze (MWM) test. Both HIIT and MICT similarly improved autophagy, as evidenced by increased Beclin1 and LC3 II/I ratios and decreased p62. Meanwhile, HIIT and MICT inhibited excessive activation of the PI3K/Akt/mTOR pathway in the hippocampus. HIIT induced a larger reduction in mTOR activity than MICT. This study suggests that both HIIT and MICT can alleviate cognitive decline induced by T2DM, improve autophagy in the hippocampus, and downregulate the excessive activation of the PI3K/Akt/mTOR signaling pathway, with similar effects.
Collapse
Affiliation(s)
- Xuejiao Li
- School of Physical Education of Shandong University, Jinan, China
| | - Qiang He
- School of Physical Education of Shandong University, Jinan, China
| | - Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Tuojian Li
- School of Physical Education of Shandong University, Jinan, China
| | - Bin Cheng
- School of Physical Education of Shandong University, Jinan, China.
| |
Collapse
|
12
|
Lee SO, Joo SH, Kwak AW, Lee MH, Seo JH, Cho SS, Yoon G, Chae JI, Shim JH. Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling. Biomol Ther (Seoul) 2021; 29:658-666. [PMID: 34642263 PMCID: PMC8551740 DOI: 10.4062/biomolther.2021.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.
Collapse
Affiliation(s)
- Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| |
Collapse
|
13
|
Ma N, Xu N, Yin D, Zheng P, Liu W, Wang G, Hui Y, Han G, Yang C, Cheng X. Levels of circulating GRP78 and CHOP in endoplasmic reticulum stress pathways in Chinese type 2 diabetic kidney disease patients. Medicine (Baltimore) 2021; 100:e26879. [PMID: 34414940 PMCID: PMC8376381 DOI: 10.1097/md.0000000000026879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
The current study aimed to investigate circulating glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) concentrations in Chinese type 2 diabetes mellitus (T2DM) patients, especially those with microalbuminuria. We recruited 67 patients with T2DM and 63 control subjects. We determined circulating GRP78 and CHOP concentrations by ELISA, collected anthropometric data, and measured biochemical parameters in a clinical laboratory. Compared with control groups, patients with T2DM showed decreased circulating levels of GRP78 (0.21 [0.16-0.24] vs 0.16 [0.16-0.19] ng/mL, P < .01) and CHOP ([0.29 ± 0.02] vs [0.27 ± 0.03]ng/mL, P < .01). Reduction in circulating GRP78 and CHOP levels was more pronounced in patients with more severe categories of albuminuria. Amounts of circulating GRP78 correlated directly with serum fasting c-peptide, cystatin-c (Cys-c), creatinine (Cr), blood urea nitrogen (BUN), and uric acid, and inversely with glomerular filtration rates. Circulating CHOP level was positively correlated with age, Cr, BUN, Cys-c, and urinary microalbumin/creatinine (UmALB/Cr). Circulating GRP78 was predicted independently by Cr, BUN, serum uric acid, estimated glomerular filtration rate, and Cys-c, while CHOP depended on age, Cr, BUN, estimated glomerular filtration rate, UmALB/Cr, and Cys-c. After controlling for confounding factors, circulating GRP78 and CHOP expression were significantly associated with diabetic kidney disease (binary logistic regression, P < .01). Patients with T2DM showed increased circulating GRP78 and CHOP concentrations. Receiver operating characteristic areas under the curve for predicting diabetic kidney disease based on GRP78 and CHOP were 0.686 (95% CI: 0.558-0.813) and 0.670 (0.524-0.816), respectively.
Collapse
Affiliation(s)
- Ning Ma
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Dong Yin
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Ping Zheng
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Weiwei Liu
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Guofeng Wang
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Yuan Hui
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Guanjun Han
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Chuanhui Yang
- Department of Endocrinology and Metabolism, Lianyungang No1 People's Hospital, 6 Zhenghua Road, Lianyungang, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
BEKTUR AYKANAT NE, ŞAHİN E, KAÇAR S, BAĞCI R, KARAKAYA Ş, BURUKOĞLU DÖNMEZ D, ŞAHİNTÜRK V. Investigation of the effect of hyperthyroidism on endoplasmic reticulum stress and tran- sient receptor potential canonical 1 channel in the kidney. Turk J Med Sci 2021; 51:1554-1563. [PMID: 33754657 PMCID: PMC8283502 DOI: 10.3906/sag-2007-109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/20/2021] [Indexed: 11/07/2022] Open
Abstract
Background/aim Hyperthyroidism is associated with results in increased glomerular filtration rate as well as increased renin-angio- tensin-aldosterone activation. The disturbance of Ca2+ homeostasis in the endoplasmic reticulum (ER) is associated with many diseases, including diabetic nephropathy and hyperthyroidism. Transient receptor potential canonical 1 (TRPC1) channel is the first cloned TRPC family protein. Although it is expressed in many places in the kidney, its function is uncertain. TRPC1 is involved in regulating Ca2+ homeostasis, and its upregulation increases ER Ca2+ level, activates the unfolded protein response, which leads to cellular damage in the kidney. This study investigated the role of TRPC1 in the kidneys of hyperthyroid rats in terms of ER stress markers that are gluco- se-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), (protein kinase R (PKR)-like endoplasmic reticulum kinase) (PERK), Inositol-requiring enzyme 1 (IRE1). Materials and methods Twenty male rats were assigned into control and hyperthyroid groups (n = 10). Hyperthyroidism was induced by adding 12 mg/L thyroxine into the drinking water of rats for 4 weeks. The serum-free T3 and T4 (fT3, fT4), TSH, blood urea nitrogen (BUN), and creatinine levels were measured. The histochemical analysis of kidney sections for morphological changes and also im- munohistochemical and western blot analysis of kidney sections were performed for GRP78, ATF6, PERK, IRE1, TRPC1 antibodies. Results TSH, BUN, and creatinine levels decreased while fT3 and fT4 levels increased in the hyperthyroid rat. The morphologic analy- sis resulted in the capillary basal membrane thickening in glomeruli and also western blot, and immunohistochemical results showed an increase in TRPC1, GRP78, and ATF6 in the hyperthyroid rat (p < 0.05). Conclusion In conclusion, in our study, we showed for the first time that the relationship between ER stress and TRPC1, and their increased expression caused renal damage in hyperthyroid rats.
Collapse
Affiliation(s)
| | - Erhan ŞAHİN
- Department of Histology and Embryology, Faculty of Medicine, Osmangazi University, AnkaraTurkey
| | - Sedat KAÇAR
- Department of Histology and Embryology, Faculty of Medicine, Osmangazi University, AnkaraTurkey
| | - Rıdvan BAĞCI
- Department of IVF Unit Andrology Laboratory, Adana City Education and Research Hospital, AdanaTurkey
| | - Şerife KARAKAYA
- Department of Histology and Embryology, Faculty of Medicine, Osmangazi University, AnkaraTurkey
| | - Dilek BURUKOĞLU DÖNMEZ
- Department of Histology and Embryology, Faculty of Medicine, Osmangazi University, AnkaraTurkey
| | - Varol ŞAHİNTÜRK
- Department of Histology and Embryology, Faculty of Medicine, Osmangazi University, AnkaraTurkey
| |
Collapse
|
15
|
Guo Y, Zhang C, Wang C, Huang Y, Liu J, Chu H, Ren X, Kong L, Ma H. Thioredoxin-1 Is a Target to Attenuate Alzheimer-Like Pathology in Diabetic Encephalopathy by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress. Front Physiol 2021; 12:651105. [PMID: 34079471 PMCID: PMC8166324 DOI: 10.3389/fphys.2021.651105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Varying degrees of central nervous system neuropathy induced by diabetes mellitus (DM) contribute to a cognitive disorder known as diabetic encephalopathy (DE), which is also one of the independent risk factors for Alzheimer's disease (AD). Endoplasmic reticulum stress (ERS) plays a critical role in the occurrence and development of DE and AD. However, its molecular mechanism remains largely unknown. This study aims to investigate whether thioredoxin-1 (Trx-1) could alleviate DE and AD through ERS, oxidative stress (OS) and apoptosis signaling pathways. Mice were randomly divided into a wild-type group (WT-NC), a streptozotocin (STZ)-treated DM group (WT-DM), a Trx-1-TG group (TG-NC) and a Trx-1-TG DM group (TG-DM). Diabetic animals showed an increase in the time spent in the target quadrant and the number of platform crossings as well as AD-like behavior in the water maze experiment. The immunocontent of the AD-related protein Tau and the levels of cell apoptosis, β-amyloid (Aβ) plaque formation and neuronal degeneration in the hippocampus of the diabetic group were increased. Some key factors associated with ERS, such as protein disulfide isomerase (PDI), glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), apoptosis signal-regulating kinase-1 (ASK1), c-Jun N-terminal kinase (JNK), protein kinase RNA (PKR)-like ER kinase (PERK), and C/EBP homologous protein (CHOP), were upregulated, and other factors related to anti-oxidant stress, such as nuclear factor erythroid 2-related factor (Nrf2), were downregulated in the DM group. Moreover, DM caused an increase in the immunocontents of caspase-3 and caspase-12. However, these changes were reversed in the Trx-1-tg DM group. Therefore, we conclude that Trx-1 might be a key factor in alleviating DE and AD by regulating ERS and oxidative stress response, thus preventing apoptosis.
Collapse
Affiliation(s)
- Yu Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chenghong Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunyang Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufei Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingyun Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haiying Chu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Li N, Zhao Y, Shen Y, Cheng Y, Qiao M, Song L, Huang X. Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111917. [PMID: 33497860 DOI: 10.1016/j.ecoenv.2021.111917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a heavy metal environmental pollutant that can cause functional damage and anemia of immune organs. More and more evidence indicate that the toxicity of lead was related to apoptosis driven by oxidative stress and endoplasmic reticulum stress. This article mainly discusses the protective effect and mechanism of folic acid intervention on lead-induced spleen injury and apoptosis. In this study, Sprague-Dawley rats were randomly divided into control group, lead exposure group (0.2% lead acetate), folic acid + lead group (0.4 mg/kg folic acid and 0.2% lead acetate), and folic acid group (0.4 mg/kg folic acid). By recording and calculating the rat's initial body weight, final body weight, net weight gain, daily weight gain, and spleen index, observe the rat's weight change and spleen weight. And adopt the immunofluorescence staining method to determine the expression level of NrF2, HO-1, GRP78, CHOP protein in the spleen. The results showed that The 0.4 mg/kg folic acid diet did not significantly improve in the body weight and spleen index of lead-exposed rats (P > 0.05). While compared with the control group, the expression levels of HO-1 and CHOP protein were significantly increased in the lead exposure group (P < 0.05), and the expression levels of HO-1 and CHOP protein were significantly reduced in the folic acid intervention group (P < 0.05). In conclusion, lead exposure increased the expression levels of HO-1 and CHOP in the spleen of rats, and caused damage to the spleen. Folic acid down-regulated the expression levels of HO-1 and CHOP proteins through the two pathways of NrF2/HO-1 and GRP78/CHOP, thereby exerting a certain protective effect and alleviating the spleen caused by lead-induced oxidative stress and endoplasmic reticulum stress damage.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agriculture University, 450002, China.
| | - Yali Zhao
- College of Food Science and Technology, Henan Agriculture University, 450002, China
| | - Yue Shen
- College of Food Science and Technology, Henan Agriculture University, 450002, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agriculture University, 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agriculture University, 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agriculture University, 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agriculture University, 450002, China.
| |
Collapse
|
17
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
18
|
Tian L, Ri H, Qi J, Fu P. Berberine elevates mitochondrial membrane potential and decreases reactive oxygen species by inhibiting the Rho/ROCK pathway in rats with diabetic encephalopathy. Mol Pain 2021; 17:1744806921996101. [PMID: 33632015 PMCID: PMC7934021 DOI: 10.1177/1744806921996101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Diabetic encephalopathy (DE) is a serious complication of diabetes mainly occurring in the elderly patients. Berberine (BBR) is an isoquinoline alkaloids extracted from Coptis chinensis that is applied in the treatment of diabetes clinically. This study explored the possible mechanism of BBR in relieving DE. METHODS Wistar rats were injected with streptozotocin and fed a high fat diet to establish the model of DE. The model rats were treated with BBR. The body weight, blood glucose and insulin of rats were measured, and Morris water maze test was conducted to evaluate the learning and memory abilities. The pathological conditions of cortical tissues were detected. The cortical mitochondria membrane potential (MMP) and reactive oxygen species (ROS) were monitored. The expressions of Rho/ROCK pathway-related genes of rat cortex were detected. The changes of MMP and ROS were detected after the treatment of Rho/ROCK pathway activator. RESULTS The body weight of model rats changed little, and levels of blood glucose and insulin were increased. The spatial learning and memory abilities were impaired, with disordered cortical neurons, and obvious neurons apoptosis and glia proliferation. BBR alleviated cognitive dysfunction and pathological damage in rats with DE. BBR enhanced cortical MMP and suppressed ROS. BBR treatment inhibited the Rho/ROCK pathway. Activation of the Rho/ROCK pathway reversed the effects of BBR on MMP and ROS. CONCLUSION BBR elevated MMP and reduced ROS in rats with DE by inhibiting the Rho/ROCK pathway. This study may offer novel insights for the management of DE.
Collapse
Affiliation(s)
- Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Hong Ri
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
19
|
Zhao XY, Yu TT, Liu S, Liu YJ, Liu JJ, Qin J. Effect of liraglutide on endoplasmic reticulum stress in the renal tissue of type 2 diabetic rats. World J Diabetes 2020; 11:611-621. [PMID: 33384768 PMCID: PMC7754169 DOI: 10.4239/wjd.v11.i12.611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide 1 receptor agonist analog that has been found to have a therapeutic effect in diabetes. In addition to its ability to treat diabetes, liraglutide has beneficial effects on the cardiovascular system and kidney as well as other beneficial effects, but its specific mechanism is not clear. In this study, a rat model of type 2 diabetes was established by administration of a high-sugar, high-fat diet combined with low-dose streptozotocin (STZ) to observe the effect of liraglutide on the kidneys of type 2 diabetes rats and the possible underlying mechanisms.
AIM To explore whether liraglutide has a protective effect on type 2 diabetic rat kidneys and the underlying mechanisms.
METHODS Eight-week-old male Sprague-Dawley rats were randomly divided into a control group, model group, low-dose liraglutide group, and high-dose liraglutide group. Control rats were fed a standard diet, while model group and intervention group rats were fed high-sugar, high-fat feed for 1 mo and then intraperitoneally injected with 40 mg/kg STZ to induce type 2 diabetes. The low-dose and high-dose intervention groups received 100 µg/kg and 200 µg/kg liraglutide, respectively, once daily by subcutaneous injection. The control and model groups were given an equivalent volume of physiological saline for 8 wk. Pathological changes in renal tissues were observed by hematoxylin and eosin staining and periodic acid-Schiff staining, and GRP78 and caspase-12 expression was detected by Western blot and reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS Western blot analysis showed that GRP78 and caspase-12 protein expression in kidney tissue was significantly higher in model rats than in normal rats and lower in the liraglutide-treated groups than in the model group, with a more significant decrease being observed in the high-dose group than in the low-dose group. RT-PCR showed that the mRNA expression of GRP78 and caspase-12 was higher in model rats than in control rats and lower in the liraglutide-treated groups than in the model group, with the high-dose group exhibiting a more significant decrease than the low-dose group.
CONCLUSION Liraglutide may delay the progression of diabetic nephropathy by reducing endoplasmic reticulum stress and protect the kidneys in a dose-dependent manner.
Collapse
Affiliation(s)
- Xuan-Ye Zhao
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Ting-Ting Yu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Sheng Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Yao-Ji Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Jing-Jin Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Jie Qin
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
20
|
Lang X, Zhao N, He Q, Li X, Li X, Sun C, Zhang X. Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Res Bull 2020; 165:30-39. [PMID: 32987101 DOI: 10.1016/j.brainresbull.2020.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Although previous studies showed that exercise can improve cognitive dysfunction in type 2 diabetes (T2DM), the underlying mechanism remains unclear. Sirtuin 1 (SIRT1) has been shown to play a role in regulating inflammatory responses in the brain and increasing BDNF expression. This study investigated the effects of treadmill exercise on the hippocampal inflammatory response and BDNF expression in a T2DM mice model. We also tested whether these effects are SIRT1-dependent. In this study, C57BL/ 6 mice were used to construct T2DM model by a high-fat diet and STZ injection. We found that treadmill exercise for 8 weeks can significantly improve the cognitive dysfunction, alleviate activation of proinflammatory microglia M1 (Iba1 labeling) in the hippocampus of T2DM mice, and reduce the levels of proinflammatory factors IL-1β, IL-6, TNF-α, increase the expression levels of anti-inflammatory factors IL-10, TGF-β1, and promote the release of BDNF. We also found that exercise activate the signaling pathway of SIRT1/ NF-κB and SIRT1/ PGC-1α/ FNDC5/ BDNF. After the application of nicotinamide (NAM, SIRT1 inhibitor), the positive effects of exercise were remarkably suppressed. Our results showed that long-term moderate intensity treadmill exercise can alleviate inflammatory response in the hippocampus and increase BDNF expression in T2DM mice by activating SIRT1.
Collapse
Affiliation(s)
| | - Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Qiang He
- School of Physical Education of Shandong University, Jinan, China
| | - Xun Li
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuejiao Li
- School of Physical Education of Shandong University, Jinan, China
| | - Chuanning Sun
- School of Physical Education of Shandong University, Jinan, China
| | - Xianliang Zhang
- School of Physical Education of Shandong University, Jinan, China.
| |
Collapse
|
21
|
Berberine ameliorates rats model of combined Alzheimer's disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. 3 Biotech 2020; 10:359. [PMID: 32832321 DOI: 10.1007/s13205-020-02354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
This study is aimed to investigate the protective effect against type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) of Berberine (BBR), and the underlying mechanism of action is explored. We established a rat model of combined AD and T2DM and used it to investigate the effect of BBR (150 mg/kg) on the course of these pathologies. The Morris water maze, biochemical analysis, hematoxylin-eosin staining, immunohistochemical study, immunofluorescent staining, TUNEL assay, RT-qPCR and western blot were used to reveal the effect of BBR on blood glucose, lipid changes, hippocampal injuries and cognitive impairment. The results showed that BBR could alleviate memory deficits, restore the disordered arrangement of nerve cells, the damage of neurons, improve TUNEL-positive cells and decrease the elevated levels of fasting blood glucose, triglyceride, total cholesterol and glycosylated serum protein levels in Alzheimer diabetic rats. Moreover, BBR treatment reduces the transcription of mRNAs and expression of proteins related to endoplasmic reticulum (ER) stress. These findings conclude that BBR can protect neurons by inhibiting the pathway of ER stress and thereby play an essential role in the preventive and therapeutic of AD and T2DM.
Collapse
|
22
|
He YX, Shen QY, Tian JH, Wu Q, Xue Q, Zhang GP, Wei W, Liu YH. Zonisamide Ameliorates Cognitive Impairment by Inhibiting ER Stress in a Mouse Model of Type 2 Diabetes Mellitus. Front Aging Neurosci 2020; 12:192. [PMID: 32754028 PMCID: PMC7367218 DOI: 10.3389/fnagi.2020.00192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of Alzheimer’s disease (AD)-like dementia and pathology. Endoplasmic reticulum stress (ERS) plays a key role in the development of cognitive impairment in T2DM. Zonisamide (ZNS) was found to suppress ERS-induced neuronal cell damage in the experimental models of Parkinson’s disease (PD). However, the protective effect of Zonisamide in the treatment of diabetes-related dementia is not determined. Here, we studied whether ZNS can attenuate cognitive impairments in T2DM mice. C57BL/6J mice were fed with a high-fat diet (HFD) and received one intraperitoneal injection of streptozotocin (STZ) to develop T2DM. After the 9-week diet, the mice were orally gavaged with ZNS or vehicle for 16 consecutive weeks. We found that ZNS improved spatial learning and memory ability and slightly attenuated hyperglycemia. In addition, the expression levels of synaptic-related proteins, such as postsynaptic density 95 (PSD95) and synaptophysin, were increased along with the activation of the cyclic AMP response element-binding (CREB) protein and cAMP-dependent protein kinase (PKA) both in the hippocampus and cortex of T2DM mice. Meanwhile, ZNS attenuated Aβ deposition, Tau hyperphosphorylation at Ser-396/404, and also decreased the activity of Tau upstream kinases including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). Moreover, ZNS also decreased the ERS hallmark protein levels. These data suggest that ZNS can efficiently prevent cognitive impairment and improve AD-like pathologies by attenuating ERS in T2DM mice.
Collapse
Affiliation(s)
- Yong-Xiang He
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi-Ying Shen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Hui Tian
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gui-Ping Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- Department of Pathophysiology, School of Medicine, Institute of Brain Research, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University, Guangzhou, China
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Sun KH, Jin Y, Mei ZG, Feng ZT, Liu JR, Cao MQ, Wu ZZ. Antidepressant-Like Effects of Chaihu Shugan Powder () on Rats Exposed to Chronic Unpredictable Mild Stress through Inhibition of Endoplasmic Reticulum Stress-Induced Apoptosis. Chin J Integr Med 2020; 27:353-360. [PMID: 32572775 DOI: 10.1007/s11655-020-3228-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the antidepressant-like effects of Chaihu Shugan Powder (CSP, ) and to explore its underlying mechanisms. METHODS Thirty-two Sprague-Dawley rats were randomly divided into control (CON), chronic unpredictable mild stress (CUMS), fluoxetine (FLU), and CSP groups, 8 rats in each group. All of the rats except for those in the control group were subjected to 3 consecutive weeks of CUMS to establish the depression model. The open field test (OFT), forced swimming test (FST), and sucrose preference test were used to assess the anti-anxiety and antidepressant effects of CSP. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling was used to determine the apoptosis rate in the hippocampal tissues. The mRNA and protein levels of glucose-regulated protein (GRP) 78, spliced X-box-binding protein (XBP)-1, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, and c-Jun N-terminal kinase (JNK) in the hippocampus of rats were evaluated by real-time PCR and Western blot analysis, respectively. RESULTS Administration of CSP alleviated anxiety and depression-like behavior in CUMS rats, as revealed by enhanced time and distance in the center of the OFT (P<0.05), an increased preference for sucrose, and longer swimming time and shorter immobility time during the FST (all P<0.05). In addition, CSP treatment significantly reduced the rate of apoptosis in rat hippocampal neurons (P<0.05). The mRNA and protein expression levels of GRP78, spliced XBP-1, and CHOP were down-regulated along with the expression of caspase-12 and cleaved caspase-12 proteins (all P<0.05), whereas total and phosphorylated JNK1 protein levels did not differ significantly between control and CSP-treated rats. CONCLUSION CSP can improve depression-like behavior in rats exposed to CUMS, possibly by suppressing CHOP and caspase-12 mediated apoptosis in the rat hippocampus.
Collapse
Affiliation(s)
- Ke-Huan Sun
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518020, China
| | - Yu Jin
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518020, China
| | - Zhi-Gang Mei
- Third- Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, 443002, China
| | - Zhi-Tao Feng
- Third- Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, 443002, China
| | - Jie-Ren Liu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518020, China
| | - Mei-Qun Cao
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518020, China
| | - Zheng-Zhi Wu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518020, China.
| |
Collapse
|
24
|
Endoplasmic Reticulum Stress Regulates Scleral Remodeling in a Guinea Pig Model of Form-Deprivation Myopia. J Ophthalmol 2020; 2020:3264525. [PMID: 32587758 PMCID: PMC7303736 DOI: 10.1155/2020/3264525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to investigate the role of endoplasmic reticulum (ER) stress in scleral remodeling in a guinea pig model of form-deprivation myopia (FDM). Methods Guinea pigs were form deprived to induce myopia. ER ultrastructural changes in the sclera were examined by transmission electron microscopy (TEM). The protein levels of ER stress chaperones, including GRP78, CHOP, and calreticulin (CRT), were analyzed by western blotting at 24 hours, 1 week, and 4 weeks of FD. Scleral fibroblasts from guinea pigs were cultured and exposed to the ER stress inducer tunicamycin (TM) or the ER stress inhibitor 4-phenylbutyric acid (4-PBA). CRT was knocked down by lentivirus-mediated CRT shRNA transfection. The expression levels of GRP78, CHOP, TGF-β1, and COL1A1 were analyzed by qRT-PCR or western blotting. Results The sclera of FDM eyes exhibited swollen and distended ER at 4 weeks, as well as significantly increased protein expression of GRP78 and CRT at 1 week and 4 weeks, compared to the sclera of the control eyes. In vitro, TM induced ER stress in scleral fibroblasts, which was suppressed by 4-PBA. The mRNA expression of TGF-β1 and COL1A1 was upregulated after TM stimulation for 24 hours, but downregulated for 48 hours. Additionally, change of TGF-β1 and COL1A1 transcription induced by TM was suppressed by CRT knockdown. Conclusions ER stress was an important modulator which could influence the expression of the scleral collagen. CRT might be a new target for the intervention of the FDM scleral remodeling process.
Collapse
|
25
|
Tang L, Ren X, Han Y, Chen L, Meng X, Zhang C, Chu H, Kong L, Ma H. Sulforaphane attenuates apoptosis of hippocampal neurons induced by high glucose via regulating endoplasmic reticulum. Neurochem Int 2020; 136:104728. [DOI: 10.1016/j.neuint.2020.104728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
|
26
|
Exercise and Curcumin in Combination Improves Cognitive Function and Attenuates ER Stress in Diabetic Rats. Nutrients 2020; 12:nu12051309. [PMID: 32375323 PMCID: PMC7284733 DOI: 10.3390/nu12051309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease associated with chronic low-grade inflammation that is mainly associated with lifestyles. Exercise and healthy diet are known to be beneficial for adults with T2DM in terms of maintaining blood glucose control and overall health. We investigated whether a combination of exercise and curcumin supplementation ameliorates diabetes-related cognitive distress by regulating inflammatory response and endoplasmic reticulum (ER) stress. This study was performed using male Otsuka Long-Evans Tokushima Fatty (OLETF) rats (a spontaneous diabetes Type 2 model) and Long-Evans Tokushima Otsuka (LETO) rats (LETO controls) by providing them with exercise alone or exercise and curcumin in combination. OLETF rats were fed either a diet of chow (as OLETF controls) or a diet of chow containing curcumin (5 g/kg diet) for five weeks. OLETF rats exercised with curcumin supplementation exhibited weight loss and improved glucose homeostasis and lipid profiles as compared with OLETF controls or exercised OLETF rats. Next, we examined cognitive functions using a Morris water maze test. Exercise plus curcumin improved escape latency and memory retention compared to OLETF controls. Furthermore, OLETF rats exercised and fed curcumin had lower IL6, TNFα, and IL10 levels (indicators of inflammatory response) and lower levels of ER stress markers (BiP and CHOP) in the intestine than OLETF controls. These observations suggest exercise plus curcumin may offer a means of treating diabetes-related cognitive dysfunction.
Collapse
|
27
|
MANF Ablation Causes Prolonged Activation of the UPR without Neurodegeneration in the Mouse Midbrain Dopamine System. eNeuro 2020; 7:ENEURO.0477-19.2019. [PMID: 32005751 PMCID: PMC7053174 DOI: 10.1523/eneuro.0477-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) localized protein that regulates ER homeostasis and unfolded protein response (UPR). The biology of endogenous MANF in the mammalian brain is unknown and therefore we studied the brain phenotype of MANF-deficient female and male mice at different ages focusing on the midbrain dopamine system and cortical neurons. We show that a lack of MANF from the brain led to the chronic activation of UPR by upregulation of the endoribonuclease activity of the inositol-requiring enzyme 1α (IRE1α) pathway. Furthermore, in the aged MANF-deficient mouse brain in addition the protein kinase-like ER kinase (PERK) and activating transcription factor 6 (ATF6) branches of the UPR pathways were activated. Neuronal loss in neurodegenerative diseases has been associated with chronic ER stress. In our mouse model, increased UPR activation did not lead to neuronal cell loss in the substantia nigra (SN), decrease of striatal dopamine or behavioral changes of MANF-deficient mice. However, cortical neurons lacking MANF were more vulnerable to chemical induction of additional ER stress in vitro. We conclude that embryonic neuronal deletion of MANF does not cause the loss of midbrain dopamine neurons in mice. However, endogenous MANF is needed for maintenance of neuronal ER homeostasis both in vivo and in vitro.
Collapse
|
28
|
Xu M, Li Z, Yang L, Zhai W, Wei N, Zhang Q, Chao B, Huang S, Cui H. Elucidation of the Mechanisms and Molecular Targets of Sanhuang Xiexin Decoction for Type 2 Diabetes Mellitus Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5848497. [PMID: 32851081 PMCID: PMC7436345 DOI: 10.1155/2020/5848497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
Sanhuang Xiexin Decoction (SXD) is commonly used to treat type 2 diabetes mellitus (T2DM) in clinical practice of traditional Chinese medicine (TCM). In order to elucidate the specific analysis mechanisms of SXD for T2DM, the method of network pharmacology was applied to this article. First, the effective ingredients of SXD were obtained and their targets were identified based on the TCMSP database. The T2DM-related targets screened from the GEO database were also collected by comparing the differential expressed genes between T2DM patients and healthy individuals. Then, the common targets in SXD-treated T2DM were obtained by intersecting the putative targets of SXD and the differential expressed genes of T2DM. And the protein-protein interaction (PPI) network was established using the above common targets to screen key genes through protein interactions. Meanwhile, these common targets were used for GO and KEGG analyses to further elucidate how they exert antidiabetic effects. Finally, a gene pathway network was established to capture the core one in common targets enriched in the major pathways to further illustrate the role of specific genes. Based on the data obtained, a total of 67 active compounds and 906 targets of SXD were identified. Four thousand one hundred and seventy-six differentially expressed genes with a P value < 0.005 and ∣log2(fold change) | >0.5 were determined between T2DM patients and control groups. After further screening, thirty-seven common targets related to T2DM in SXD were finally identified. Through protein interactions, the top 5 genes (YWHAZ, HNRNPA1, HSPA8, HSP90AA1, and HSPA5) were identified. It was found that the functional annotations of target genes were associated with oxygen levels, protein kinase regulator, mitochondria, and so on. The top 20 pathways including the PI3K-Akt signaling pathway, cancers, HIF-1 signaling pathway, and JAK-STAT signaling pathway were significantly enriched. CDKN1A was shown to be the core gene in the gene-pathway network, and other several genes such as CCND1, ERBB2, RAF1, EGF, and VEGFA were the key genes for SXD against T2DM. Based on the network pharmacology approach, we identified key genes and pathways related to the prognosis and pathogenesis of T2DM and also provided a feasible method for further studying the chemical basis and pharmacology of SXD.
Collapse
Affiliation(s)
- Manman Xu
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhonghao Li
- 2Department of Neurology, Dongfang Hosipital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Lu Yang
- 3Shaanxi University of Chinese Medicine, Department of Traditional Chinese Medicine, First Clinical Medical College, 712000 Shaanxi, China
| | - Wujianwen Zhai
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Nina Wei
- 3Shaanxi University of Chinese Medicine, Department of Traditional Chinese Medicine, First Clinical Medical College, 712000 Shaanxi, China
| | - Qiuyan Zhang
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bin Chao
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hanming Cui
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
29
|
Liu Y, Yu J, Shi YC, Zhang Y, Lin S. The role of inflammation and endoplasmic reticulum stress in obesity-related cognitive impairment. Life Sci 2019; 233:116707. [PMID: 31374234 DOI: 10.1016/j.lfs.2019.116707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
The epidemiological investigations and animal model experiments have confirmed the impact of obesity on the brain, behavior, and cognition. However, the mechanism by which obesity affects cognitive function is not fully understood. With the development of an aging society, there is an increase in the economic and social burden caused by the decline in cognitive function. This manuscript reviews the effects of inflammation and endoplasmic reticulum stress (ERS) on the hypothalamus, hippocampus, and the possible impact on cognitive impairment. These findings provide new insights into the pathophysiological mechanisms that lead to the development of cognitive impairment in the context of obesity.
Collapse
Affiliation(s)
- Yilan Liu
- Quanzhou First Hospital, Fujian Medical University, China
| | - Jing Yu
- Quanzhou First Hospital, Fujian Medical University, China
| | - Yan-Chuan Shi
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Yi Zhang
- Quanzhou First Hospital, Fujian Medical University, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China; Illawarra Health and Medical Research Institute, Wollongong 2522, Australia.
| |
Collapse
|
30
|
Gürbüz P, Düzova H, Yildiz A, Çakan P, Kaya GB, Bağ HGG, Durhan M, Gül CC, Taşlidere AÇ. Effects of noopept on cognitive functions and pubertal process in rats with diabetes. Life Sci 2019; 233:116698. [PMID: 31356906 DOI: 10.1016/j.lfs.2019.116698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
AIM Type 1 diabetes (T1DM) is a common chronic disease in childhood. Increasing insulin resistance in puberty gives rise to higher doses of insulin usage in treatment. Of this reason new approaches in treatment are needed. Noopept researches suggest it to have anti-diabetic properties. We tried to determine the effects of noopept on pubertal diabetes. MAIN METHOD The research was made with 60 prepubertal, 28 day-old, male, Sprague Dawley rats. The rats were divided into randomised 6 groups (n = 10/group). i) Control, ii) Diabetes Control, iii) Noopept Control, iv) Diabetes + Noopept, v) Diabetes + Insulin, vi) Diabetes + Insulin + Noopept. T1DM model was induced by streptozotocin on postnatal 28th day. 0.5 mg/kg noopept and 1 IU insulin were administered intraperitoneally for 14 days. Blood glucose and body weight measurements, puberty follow-up and MWM tests were performed. Hippocampus, hypothalamus and testis were evaluated histologically. Hypothalamic GnRH and kisspeptin were studied immunohistochemically. Serum LH, FSH and insulin, hippocampal homogenate NGF and BDNF levels were determined by ELISA. KEY FINDINGS Delayed puberty was normalized by noopept (p < 0.05). Blood glucose levels were lower in noopept-administered diabetic groups (p < 0.05). Noopept decreased HOMA-IR in insulin administered diabetic group (p < 0.05). Number of degenerated cells in hippocampus and testis were higher in diabetes control group when compared with other groups (p < 0.05). GnRH immunoreactivity in Diabetes + Noopept group was increased when compared to insulin + noopept group (p = 0.018). There was no difference in kisspeptin, serum LH, FSH, hippocampal NGF-BDNF levels and spatial learning assessment among groups (p > 0.05). SIGNIFICANCE Noopept may have positive effect in treatment of pubertal diabetes.
Collapse
Affiliation(s)
- Perihan Gürbüz
- Inonu University, Faculty of Medicine, Department of Physiology, Malatya, Turkey.
| | - Halil Düzova
- Inonu University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
| | - Azibe Yildiz
- Inonu University, Faculty of Medicine, Department of Histology and Embryology, Malatya, Turkey
| | - Pınar Çakan
- Inonu University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
| | - Gül Büşra Kaya
- Inonu University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
| | - Harika Gözde Gözükara Bağ
- Inonu University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Malatya, Turkey
| | - Merve Durhan
- Inonu University, Faculty of Medicine, Department of Medical Biology and Genetics, Malatya, Turkey
| | - Cemile Ceren Gül
- Inonu University, Faculty of Medicine, Department of Histology and Embryology, Malatya, Turkey
| | - Aslı Çetin Taşlidere
- Inonu University, Faculty of Medicine, Department of Histology and Embryology, Malatya, Turkey
| |
Collapse
|
31
|
Díaz-Gerevini GT, Daín A, Pasqualini ME, López CB, Eynard AR, Repossi G. Diabetic encephalopathy: beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis 2019; 18:43. [PMID: 30736810 PMCID: PMC6368734 DOI: 10.1186/s12944-018-0938-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Diabetic encephalopathy is a chronic complications of diabetes mellitus that affects the central nervous system. We evaluated the effect of ω3 and ω6 polyunsaturated fatty acids (PUFAs) supplementation plus the antioxidant agent nordihydroguaiaretic acid (NDGA) on the etiopathology of diabetic encephalopathy in eSS rats, a spontaneous model of type 2 diabetes. Methods One hundred twenty spontaneous diabetic eSS male rats and 38 non-diabetic Wistar, used as healthy control, received monthly by intraperitoneal route, ω3 or ω6 PUFA (6.25 mg/kg) alone or plus NDGA (1.19 mg/kg) for 12 months. Diabetic rats had a worse performance in behavioural Hole-Board test. Histopathological analysis confirmed lesions in diabetic rats brain tissues. We also detected low expression of synaptophysin, a protein linked to release of neurotransmitters, by immunohistochemically techniques in eSS rats brain. Biochemical and histopathological studies of brain were performed at 12th month. Biochemical analysis showed altered parameters related to metabolism. High levels of markers of oxidative stress and inflammation were detected in plasma and brain tissues. Data were analysed by ANOVA test and paired t test was used by comparison of measurements of the same parameter at different times. Results The data obtained in this work showed that behavioural, biochemical and morphological alterations observed in eSS rats are compatible with previously reported indices in diabetic encephalopathy and are associated with increased glucolipotoxicity, chronic low-grade inflammation and oxidative stress burden. Experimental treatments assayed modulated the values of studied parameters. Conclusions The treatments tested with ω3 or ω3 plus NDGA showed improvement in the values of the studied parameters in eSS diabetic rats. These observations may form the basis to help in prevent and manage the diabetic encephalopathy. Electronic supplementary material The online version of this article (10.1186/s12944-018-0938-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Tomás Díaz-Gerevini
- Biología Celular, Histología y Embriología. Facultad de Ciencias Médicas, INICSA CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Geriatric Center "San Ricardo Pampuri", Villa Carlos Paz and Gerontology Committee, Argentine Society of Diabetes, Córdoba, Argentina
| | - Alejandro Daín
- Biología Celular, Histología y Embriología. Facultad de Ciencias Médicas, INICSA CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Eugenia Pasqualini
- Biología Celular, Histología y Embriología. Facultad de Ciencias Médicas, INICSA CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristina B López
- Biología Celular, Histología y Embriología. Facultad de Ciencias Médicas, INICSA CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Histología y Embriología, Universidad Nacional de La Rioja (UNLaR), La Rioja, Argentina
| | - Aldo R Eynard
- Biología Celular, Histología y Embriología. Facultad de Ciencias Médicas, INICSA CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gastón Repossi
- Biología Celular, Histología y Embriología. Facultad de Ciencias Médicas, INICSA CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
32
|
Zheng L, Zhang YL, Chen X, Chen DL, Dai YC, Tang ZP. Astragalus Polysaccharides Protects Thapsigargin-induced Endoplasmic Reticulum Stress in HT29 Cells. Open Life Sci 2019; 14:494-501. [PMID: 33817185 PMCID: PMC7874815 DOI: 10.1515/biol-2019-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
AIM This study investigates the effect of astragalus polysaccharides (APS) in protecting against thapsigargin-induced endoplasmic reticulum (ER) stress in HT29 cells by suppressing the PERK-eIF2a signaling pathway. METHODS HT29 cells were induced by thapsigargin for 12 hours, then treated with APS for 24 hours, and the gene expressions of GRP78, CHOP and eIF2a were quantified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression of GRP78, CHOP, PERK, p-PERK, eIF2a, and p-eIF2a were detected by Western blot. RESULTS The ER stress caused by thapsigargin strongly up-regulated the expression of GRP78 and CHOP in HT29 cells, which activated the PERK-eIF2a pathway. There was an increase in PERK phosphorylation, and induction of eIF2a in HT29 cells. Thapsigargin caused significant ER expansion in HT29 cells due to the 12-hour ER stress. Importantly, Astragalus polysaccharide significantly inhibited the phosphorylation of PERK and eIF2a, which reduced the mRNA levels of GRP78, CHOP, PERK and eIF2a, and inhibited the ER expansion in HT29 cells after 24 hours of treatment. CONCLUSION The results indicate that APS reduces the expression of GRP78 and CHOP in HT29 cells, at least in part, by preventing the activation of the PERK-eIF2a signaling pathway.
Collapse
Affiliation(s)
- Lie Zheng
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai200032, China
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi, Xi’an, China
| | - Ya-Li Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai200032, China
| | - Xuan Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - De-Liang Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai200032, China
- Department of Tuina, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing210029, China
| | - Yan-Cheng Dai
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai200032, China
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai200082, China
| | - Zhi-Peng Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping Road, Shanghai200032, China
| |
Collapse
|
33
|
Pinto BAS, França LM, Laurindo FRM, Paes AMDA. Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:67-82. [DOI: 10.1007/978-3-030-11488-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Jin X, Riew TR, Kim HL, Kim S, Lee MY. Spatiotemporal Expression of GRP78 in the Blood Vessels of Rats Treated With 3-Nitropropionic Acid Correlates With Blood-Brain Barrier Disruption. Front Cell Neurosci 2018; 12:434. [PMID: 30515081 PMCID: PMC6255854 DOI: 10.3389/fncel.2018.00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/01/2018] [Indexed: 11/13/2022] Open
Abstract
Glucose-regulated protein (GRP78) or BiP, a 78-kDa chaperone protein located in the endoplasmic reticulum (ER), has recently been reported to be involved in the neuroglial response to ischemia-induced ER stress. The present study was designed to study the expression patterns of this protein and the cell types involved in the induction of GRP78 expression in rats treated with the mitochondrial toxin 3-nitropropionic acid (3-NP). GRP78 immunoreactivity was almost exclusively localized to striatal neurons in saline-treated controls, but GRP78 expression was induced in activated glial cells, including reactive astrocytes and activated microglia/macrophages, in the striata of rats treated with 3-NP. In the lesion core, increased GRP78 immunoreactivity was observed in the vasculature; this was evident in the lesion periphery of the core at 3 days after lesion induction, and was evenly distributed throughout the lesion core by 7 days after lesion induction. Vascular GRP78 expression was correlated, both temporally and spatially, with infiltration of activated microglia into the lesion core. In addition, this was coincident with the time and pattern of blood-brain barrier (BBB) leakage, detected by the extravasation of fluorescein isothiocyanate-albumin, an established BBB permeability marker. Vascular GRP78-positive cells in the lesion core were identified as endothelial cells, smooth muscle cells, and adventitial fibroblast-like cells, in which GRP78 protein was specifically localized to the cisternae of the rough ER and perinuclear cisternae, but not to other organelles such as mitochondria or nuclei. Thus, our data provide novel insights into the phenotypic and functional heterogeneity of GRP78-positive cells within the lesion core, suggesting the involvement of GRP78 in the activation/recruitment of activated microglia/macrophages and its potential role in BBB impairment in response to a 3-NP-mediated neurotoxic insult.
Collapse
Affiliation(s)
- Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
35
|
Yoo DY, Cho SB, Jung HY, Kim W, Lee KY, Kim JW, Moon SM, Won MH, Choi JH, Yoon YS, Kim DW, Choi SY, Hwang IK. Protein disulfide-isomerase A3 significantly reduces ischemia-induced damage by reducing oxidative and endoplasmic reticulum stress. Neurochem Int 2018; 122:19-30. [PMID: 30399388 DOI: 10.1016/j.neuint.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Abstract
Ischemia causes oxidative stress in the endoplasmic reticulum (ER), accelerates the accumulation of unfolded and misfolded proteins, and may ultimately lead to neuronal cell apoptosis. In the present study, we investigated the effects of protein disulfide-isomerase A3 (PDIA3), an ER-resident chaperone that catalyzes disulfide-bond formation in a subset of glycoproteins, against oxidative damage in the hypoxic HT22 cell line and against ischemic damage in the gerbil hippocampus. We also confirmed the neuroprotective effects of PDIA3 by using PDIA3-knockout HAP1 cells. The HT22 and HAP1 cell lines showed effective (dose-dependent and time-dependent) penetration and stable expression of the Tat-PDIA3 fusion protein 24 h after Tat-PDIA3 treatment compared to that in the control-PDIA3-treated group. We observed that the fluorescence for both 2',7'-dichlorofluorescein diacetate (DCF-DA) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), which are markers for the formation of hydrogen peroxide (H2O2)-induced reactive oxygen species and apoptosis, respectively, was higher in HAP1 cells than in HT22 cells. The administration of Tat-PDIA3 significantly reduced the (1) DCF-DA and TUNEL fluorescence in HT22 and HAP1 cells, (2) ischemia-induced hyperactivity that was observed 1 day after ischemia/reperfusion, (3) ischemia-induced neuronal damage and glial (astrocytes and microglia) activation that was observed in the hippocampal CA1 region 4 days after ischemia/reperfusion, and (4) lipid peroxidation and nitric oxide generation in the hippocampal homogenates 3-12 h after ischemia/reperfusion. Transient forebrain ischemia significantly elevated the immunoglobulin-binding protein (BiP) and C/EBP-homologous protein (CHOP) mRNA levels in the hippocampus at 12 h and 4 days after ischemia, relative to those in the time-matched sham-operated group. Administration of Tat-PDIA3 ameliorated the ischemia-induced upregulation of BiP mRNA levels versus the Tat peptide- or control-PDIA3-treated groups, and significantly reduced the induction of CHOP mRNA levels, at 12 h or 4 days after ischemia. Collectively, these results suggest that Tat-PDIA3 acts as a neuroprotective agent against ischemia by attenuating oxidative damage and blocking the apoptotic pathway that is related to the unfolded protein response in the ER.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea; Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, 31151, South Korea
| | - Su Bin Cho
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
36
|
Shruthi K, Reddy SS, Chitra PS, Reddy GB. Ubiquitin‐proteasome system and ER stress in the brain of diabetic rats. J Cell Biochem 2018; 120:5962-5973. [DOI: 10.1002/jcb.27884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Karnam Shruthi
- Biochemistry Division National Institute of Nutrition Hyderabad India
| | | | - P Swathi Chitra
- Biochemistry Division National Institute of Nutrition Hyderabad India
| | | |
Collapse
|
37
|
Lu J, Dai QM, Ma GS, Zhu YH, Chen B, Li B, Yao YY. Erythropoietin Attenuates Cardiac Dysfunction in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Diabetic Cardiomyopathy. Cardiovasc Drugs Ther 2018; 31:367-379. [PMID: 28779372 DOI: 10.1007/s10557-017-6742-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Enhanced endoplasmic reticulum (ER) stress and down-regulated SERCA2a expression play crucial roles in diabetes. We aimed to verify whether erythropoietin (EPO) attenuates cardiac dysfunction by suppressing ER stress in diabetic rats. METHODS Forty male SD rats were randomly divided into four groups: control, EPO-treated control, vehicle-treated diabetic, and EPO-treated diabetic groups. The animals in the EPO-treated control and diabetic groups were administered recombinant human EPO (1000 U/kg body weight) once per week for 12 weeks. RT-PCR and Western blotting assays were performed to detect the expression of 78-kDa glucose-regulated protein precursor (GRP78) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA2a). We cultured neonatal rat cardiomyocytes and investigated the protective effects of EPO against high glucose (HG)-induced apoptosis. Intracellular calcium levels were measured through confocal microscopy. RESULTS We observed increased myocardial GRP78 expression and decreased myocardial SERCA2a expression in diabetic rats. EPO prevented the changes in GRP78, SERCA2a expression and cardiac dysfunction in diabetic rats. The levels of GRP78 protein were significantly reduced in EPO-treated diabetic rats compared with vehicle-treated diabetic rats (GRP78 protein 0.09 ± 0.03 vs. 0.54 ± 0.04, P < 0.01). The levels of the SERCA2a proteins were significantly increased in EPO-treated diabetic rats compared with vehicle-treated diabetic rats (SERCA2a protein 0.60 ± 0.05 vs. 0.13 ± 0.04, P < 0.01). A reduction in apoptosis was observed in the cardiomyocytes treated with 20 U/mL EPO compared with the cardiomyocytes cultured under HG conditions (apoptosis rate 18.9 ± 1.94 vs. 37.9 ± 1.59%, P < 0.01). CONCLUSIONS This study demonstrates that EPO treatment improved the parameters of cardiac function following HG-induced injury by suppressing ER stress and inducing SERCA2a expression.
Collapse
Affiliation(s)
- Jing Lu
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Qi-Ming Dai
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Gen-Shan Ma
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yue-Hong Zhu
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Bing Chen
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Bing Li
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yu-Yu Yao
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, No. 87 Dingjiaqiao Street, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Jin X, Kim DK, Riew TR, Kim HL, Lee MY. Cellular and Subcellular Localization of Endoplasmic Reticulum Chaperone GRP78 Following Transient Focal Cerebral Ischemia in Rats. Neurochem Res 2018; 43:1348-1362. [PMID: 29774449 DOI: 10.1007/s11064-018-2550-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
Abstract
The 78-kDa glucose-regulated protein (GRP78), a chaperone protein located in the endoplasmic reticulum (ER), has been reported to have neuroprotective effects in the injured central nervous system. Our aim was to examine the expression profiles and subcellular distributions of GRP78 and its association with the neuroglial reaction in the rat striatum after transient, focal cerebral ischemia. In sham-operated rats, constitutive, specific immunoreactivity for GRP78 was almost exclusively localized to the rough ER of striatal neurons, with none in the resting, ramified microglia or astrocytes. At 1 day post reperfusion, increased expression was observed in ischemia-resistant cholinergic interneurons, when most striatal neurons had lost GRP78 expression (this occurred earlier than the loss of other neuronal markers). By 3 days post reperfusion, GRP78 expression had re-emerged in association with the activation of glial cells in both infarct and peri-infarct areas but showed different patterns in the two regions. Most of the expression induced in the infarct area could be attributed to brain macrophages, while expression in the peri-infarct area predominantly occurred in neurons and reactive astrocytes. A gradual, sustained induction of GRP78 immunoreactivity occurred in reactive astrocytes localized to the astroglial scar, lasting for at least 28 days post reperfusion. Using correlative light- and electron-microscopy, we found conspicuous GRP78 protein localized to abnormally prominent, dilated rough ER in both glial cell types. Thus, our data indicate a link between GRP78 expression and the activated functional status of neuroglial cells, predominantly microglia/macrophages and astrocytes, occurring in response to ischemia-induced ER stress.
Collapse
Affiliation(s)
- Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06501, Republic of Korea
| | - Dong Kyu Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06501, Republic of Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06501, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscopy, College of Medicine, The Catholic University of Korea, Seoul, 06501, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06501, Republic of Korea.
| |
Collapse
|
39
|
Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci (Lond) 2018; 132:111-125. [PMID: 29212786 DOI: 10.1042/cs20171432] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a significant global public health problem depicting a rising prevalence worldwide. As a serious complication of diabetes, diabetes-associated cognitive decline is attracting increasing attention. However, the underlying mechanisms are yet to be fully determined. Both endoplasmic reticulum (ER) stress and autophagy have been reported to modulate neuronal survival and death and be associated with several neurodegenerative diseases. Here, a streptozotocin-induced diabetic mouse model and primary cultured mouse hippocampal neurons were employed to investigate the possible role of ER stress and autophagy in diabetes-induced neuronal apoptosis and cognitive impairments, and further explore the potential molecular mechanisms. ER stress markers GRP78 and CHOP were both enhanced in diabetic mice, as was phosphorylation of PERK, IRE1α, and JNK. In addition, the results indicated an elevated level of autophagy in diabetic mice, as demonstrated by up-regulated expressions of autophagy markers LC3-II, beclin 1 and down-regulated level of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. Meanwhile, we found that these effects could be abolished by ER stress inhibitor 4-phenylbutyrate or JNK inhibitor SP600125 in vitro. Furthermore, neuronal apoptosis of diabetic mice was attenuated by pretreatment with 4-phenylbutyrate, while aggravated by application of inhibitor of autophagy bafilomycin A1 in vitro. These results suggest that ER stress pathway may be involved in diabetes-mediated neurotoxicity and promote the following cognitive impairments. More important, autophagy was induced by diabetes possibly through ER stress-mediated JNK pathway, which may protect neurons against ER stress-associated cell damages.
Collapse
|
40
|
Tang YY, Wang AP, Wei HJ, Li MH, Zou W, Li X, Wang CY, Zhang P, Tang XQ. Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress. Behav Brain Res 2018; 342:35-42. [PMID: 29307666 DOI: 10.1016/j.bbr.2017.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Homocysteine (Hcy) causes cognitive deficits and hippocampal endoplasmic reticulum (ER) stress. Our previous study has confirmed that Hydrogen sulfide (H2S) attenuates Hcy-induced cognitive dysfunction and hippocampal ER stress. Silent information regulator 1 (Sirt-1) is indispensable in the formation of learning and memory. Therefore, the aim of this study was to explore the role of Sirt-1 in the protective effect of H2S against Hcy-induced cognitive dysfunction. We found that NaHS (a donor of H2S) markedly up-regulated the expression of Sirt-1 in the hippocampus of Hcy-exposed rats. Sirtinol, a specific inhibitor of Sirt-1, reversed the improving role of NaHS in the cognitive function of Hcy-exposed rats, as evidenced by that sirtinol increased the escape latency and the swim distance in the acquisition trial of morris water maze (MWM) test, decreased the times crossed through and the time spent in the target quadrant in the probe trail of MWM test, and reduced the discrimination index in the novel object recognition test (NORT) in the rats cotreated with NaHS and Hcy. We also found that sirtinol reversed the protection of NaHS against Hcy-induced hippocampal ER-stress, as evidenced by up-regulating the expressions of GRP78, CHOP, and cleaved caspase-12 in the hippocampus of rats cotreated with NaHS and Hcy. These results suggested the contribution of upregulation of hippocampal Sirt-1 to the improving role of H2S in the cognitive function of Hcy-exposed rats, which involves suppression of hippocampal ER stress. Our finding provides a new insight into the mechanism underlying the inhibitory role of H2S in Hcy-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yi-Yun Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Anatomy, Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Man-Hong Li
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, PR China
| | - Wei Zou
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Xiang Li
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Anaesthesiology, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, PR China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Pathophysiology, Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Ping Zhang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, PR China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Physiology, Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, PR China.
| |
Collapse
|
41
|
Tian A, Ma H, Zhang R, Cui Y, Wan C. Edaravone improves spatial memory and modulates endoplasmic reticulum stress-mediated apoptosis after abdominal surgery in mice. Exp Ther Med 2017; 14:355-360. [PMID: 28672938 DOI: 10.3892/etm.2017.4489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Patients who receive major surgery often develop postoperative cognitive dysfunction (POCD); however, there is a lack of effective management as the pathogenesis of this disorder has not been fully elucidated. The neuroprotective effects of edaravone have been characterized in both in vitro cultured cells and in experimental animal models. The present study aimed to determine the potential role of edaravone in surgery-induced cognitive decline in mice. Animals were assigned to three groups: Control group (n=32), where mice received local anesthesia; surgery group (n=32), where mice underwent abdominal surgery under anesthesia; and edaravone group (n=32), where mice received abdominal surgery and were administered with edaravone (3 mg/kg). Morris water maze and T-maze tests demonstrated that edaravone attenuated surgery-induced cognitive impairment. Nissl staining indicated that edaravone prevented neuronal loss in the hippocampus of mice that underwent surgery. Furthermore, treatment with edaravone mitigated the surgery-induced upregulation of glucose-regulated protein 78 and CCAAT-enhancer-binding homologous protein and reduced the number of terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling-positive nuclei in mice hippocampi. In conclusion, edaravone may prevent POCD-induced neuronal apoptosis through attenuating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ayong Tian
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong Ma
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rongwei Zhang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chengfu Wan
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
42
|
Jangra A, Sriram CS, Dwivedi S, Gurjar SS, Hussain MI, Borah P, Lahkar M. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation. Cell Mol Neurobiol 2017; 37:65-81. [PMID: 26886752 PMCID: PMC11482225 DOI: 10.1007/s10571-016-0344-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/03/2016] [Indexed: 01/21/2023]
Abstract
Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Shubham Dwivedi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Satendra Singh Gurjar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Md Iftikar Hussain
- State Biotech Hub, College of Veterinary Science, Khanapara, Guwahati, Assam, 781022, India
| | - Probodh Borah
- State Biotech Hub, College of Veterinary Science, Khanapara, Guwahati, Assam, 781022, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India.
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India.
| |
Collapse
|
43
|
Wang Z, Huang Y, Cheng Y, Tan Y, Wu F, Wu J, Shi H, Zhang H, Yu X, Gao H, Lin L, Cai J, Zhang J, Li X, Cai L, Xiao J. Endoplasmic reticulum stress-induced neuronal inflammatory response and apoptosis likely plays a key role in the development of diabetic encephalopathy. Oncotarget 2016; 7:78455-78472. [PMID: 27793043 PMCID: PMC5346653 DOI: 10.18632/oncotarget.12925] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023] Open
Abstract
We assumed that diabetic encephalopathy (DEP) may be induced by endoplasmic reticulum (ER)-mediated inflammation and apoptosis in central nervous system. To test this notion, here we investigated the neuronal ER stress and associated inflammation and apoptosis in a type 2 diabetes model induced with high-fat diet/streptozotocin in Sprague-Dawley rats. Elevated expressions of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor-6 (ATF-6), X-box binding protein-1 (XBP-1), and C/EBP homologous protein, and phosphor-Jun N-terminal kinase (p-JNK) were evident in the hippocampus CA1 of diabetic rats. These changes were also accompanied with the activation of NF-κB and the increased levels of inflammatory cytokines, tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6). Mechanistic study with in vitro cultured hippocampus neurons exposed to high glucose (HG), which induced a diabetes-like effects, shown by increased ER stress, JNK and NF-κB activation, and inflammatory response. Inhibition of ER stress by 4-phenylbutyrate (4-PBA) or blockade of JNK activity by specific inhibitor or transfection of DN-JNK attenuated HG-induced inflammation and associated apoptosis. To validate the in vitro finding, in vivo application of 4-PBA resulted in a significant reduction of diabetes-induced neuronal ER stress, inflammation and cell death, leading to the prevention of DEP. These results suggest that diabetes-induced neuronal ER stress plays the critical role for diabetes-induced neuronal inflammation and cell death, leading to the development of DEP.
Collapse
MESH Headings
- Activating Transcription Factor 6/metabolism
- Animals
- Anti-Inflammatory Agents/pharmacology
- Apoptosis/drug effects
- Behavior, Animal
- Brain Diseases/etiology
- Brain Diseases/metabolism
- Brain Diseases/pathology
- Brain Diseases/prevention & control
- Cells, Cultured
- Cognition
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum Stress/drug effects
- Heat-Shock Proteins/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Interleukin-6/metabolism
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Time Factors
- Transcription Factor CHOP/metabolism
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
- X-Box Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Zhouguang Wang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Huang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Cheng
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Children's Hospital Research Institute, the University of Louisville, Louisville, Kentucky, USA
| | - Fenzan Wu
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiamin Wu
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongxue Shi
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xichong Yu
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongchang Gao
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Lin
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Cai
- Department of Pediatrics, Children's Hospital Research Institute, the University of Louisville, Louisville, Kentucky, USA
| | - Jinsan Zhang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Children's Hospital Research Institute, the University of Louisville, Louisville, Kentucky, USA
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Children's Hospital Research Institute, the University of Louisville, Louisville, Kentucky, USA
| | - Jian Xiao
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
44
|
Pinto BAS, Melo TM, Flister KFT, França LM, Kajihara D, Tanaka LY, Laurindo FRM, Paes AMDA. Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats. Metab Brain Dis 2016; 31:917-27. [PMID: 27154727 DOI: 10.1007/s11011-016-9830-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries. At postnatal day 21, weaned male rats started to be fed a standard chow (10 % sucrose, CTR) or a high-sucrose diet (25 % sucrose, HSD) for 9 weeks prior to euthanasia at postnatal day 90. HSD did not alter weight gain and feed efficiency between groups, but increased visceral, non-visceral and brown adipose tissue accumulation. HSD rats demonstrated elevated blood glucose levels in both fasting and fed states, which were associated to impaired glucose tolerance. Peripheral insulin sensitivity did not change, whereas hepatic insulin resistance was supported by increased serum triglyceride levels, as well as higher TyG index values. Assessment of hippocampal gene expression showed endoplasmic reticulum (ER) stress pathways were activated in HSD rats, as compared to CTR. HSD rats had overexpression of unfolded protein response sensors, PERK and ATF6; ER chaperone, PDIA2 and apoptosis-related genes, CHOP and Caspase 3; but decreased expression of chaperone GRP78. Finally, HSD rats demonstrated impaired neuromuscular function and anxious behavior, but preserved cognitive parameters. In conclusion, our data indicate that early exposure to HSD promote metabolic disturbances, which disrupt hippocampus homeostasis and might precociously affect its neurobehavioral functions.
Collapse
Affiliation(s)
- Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Karla Frida Torres Flister
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Daniela Kajihara
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leonardo Yuji Tanaka
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil.
| |
Collapse
|
45
|
Yu H, Zhen J, Yang Y, Gu J, Wu S, Liu Q. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med 2016; 20:623-31. [PMID: 26869403 PMCID: PMC5125941 DOI: 10.1111/jcmm.12739] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022] Open
Abstract
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Haitao Yu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Juan Zhen
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinning Gu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Suisheng Wu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Quan Liu
- Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|