1
|
Zhang W, Wang T, Li L, Xu J, Wang J, Wang G, Du J. The Role of Mitochondrial Dysfunction-Mediated Changes in Immune Cytokine Expression in the Pathophysiology and Treatment of Major Depressive Disorder. Mol Neurobiol 2025:10.1007/s12035-025-04872-y. [PMID: 40163267 DOI: 10.1007/s12035-025-04872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Recent studies have demonstrated an association between major depressive disorder (MDD) and both mitochondrial dysfunction and alterations in pro-inflammatory cytokine expression, suggesting that such changes may be key drivers of MDD pathogenesis. Mechanistically, changes in mitochondrial function are related to endoplasmic reticulum stress, reactive oxygen species production, oxidative phosphorylation, apoptosis, and disrupted calcium ion homeostasis, all of which trigger the activation of signaling cascades that affect the expression of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1, interleukin 6, and interferons. Certain factors present in the gut microbiota ecosystem can influence communication between microorganisms and the brain through the neuroendocrine, immune, and autonomic nervous systems, thereby altering mitochondrial function and cytokine production. This review article explores the means through which mitochondria regulate immune cytokine expression and the role of mitochondrial dysfunction in the pathogenesis and treatment of MDD to provide new perspectives for the diagnosis of this disease and the development of novel therapeutic interventions with greater efficacy and improved safety profiles.
Collapse
Affiliation(s)
- Wanjun Zhang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jiyi Xu
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Jing Du
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Armbruster M, Forsythe P. The Perinatal Microbiota-Gut-Brain Axis: Implications for Postpartum Depression. Neuroimmunomodulation 2025; 32:67-82. [PMID: 39837281 DOI: 10.1159/000543691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Pregnancy and childbirth are accompanied by widespread maternal physiological adaptations and hormonal shifts that have been suggested to result in a period of vulnerability for the development of mood disorders such as postpartum depression (PPD). There is also evidence of peripartum changes in the composition of the gut microbiota, but the potential contribution of intestinal microbes to the adaptations, or subsequent vulnerabilities, during this period are unknown. SUMMARY Here, we outline key pathways involved in peripartum adaptations including GABAergic signaling, oxytocin, and immunomodulation that are also associated with susceptibility to mood disorders and present evidence that these pathways are modulated by gut microbes. We also discuss the therapeutic potential of the microbiota-gut-brain axis in PPD and identify future directions for research to help realize this potential. KEY MESSAGES Peripartum adaptations are associated with shifts in gut microbial composition. Disruption of GABAergic, oxytocin, and immunomodulatory pathways may contribute to vulnerability of mood disorders including PPD. These key adaptive pathways are modulated by intestinal microbes suggesting a role for the gut microbiota in determining susceptibility to PPD. More research is needed to confirm relationship between gut microbes and PPD and to gain the mechanistic understanding required to realize the therapeutic potential of microbiota-gut-brain axis in this mood disorder.
Collapse
Affiliation(s)
- Marie Armbruster
- Pulmonary Division, Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Forsythe
- Pulmonary Division, Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Feng J, Cen Q, Cui Y, Hu X, Li M, Wang L, Wei J, Sun N, Wang J, Zhang A. Lactobacillus rhamnosus: An emerging probiotic with therapeutic potential for depression. Pharmacol Res 2025; 211:107541. [PMID: 39653301 DOI: 10.1016/j.phrs.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Depression, a complex psychological disorder, involves multiple biological pathways in its pathogenesis. In recent years, the gut-brain axis theory has provided novel insights into the pathogenesis of depression, particularly the crucial role of the gut microbiota in mood regulation. While there remains no universal consensus on the most efficacious strains for depression treatment, Lactobacillus rhamnosus has risen to prominence within the realm of probiotics for its potential to positively modulate depressive symptoms. This review preliminarily explores the clinical significance of Lactobacillus rhamnosus in the treatment of depression and summarizes the potential mechanisms by which Lactobacillus rhamnosus treats depression, including its regulation of gut microbiota, alterations in gene expression, improvement of intestinal barrier function, maintenance of neurotransmitter balance, suppression of inflammatory responses, modulation of the immune system, coping with oxidative stress, and optimization of metabolic processes. Future research needs to further explore these mechanisms and combine them with clinical research results to optimize treatment plans and provide more effective treatment options for patients with depression.
Collapse
Affiliation(s)
- Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiuyu Cen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanru Cui
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Juanfang Wei
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Nianyi Sun
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Hinton T, Johnston GAR. GABA, epigallocatechin gallate, tea, and the gut-brain axis. Neurochem Int 2024; 180:105860. [PMID: 39303784 DOI: 10.1016/j.neuint.2024.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Our investigations on GABA-enriched tea and the reduction of stress in a student cohort have shown that more than just GABA may be involved. The effects of other constituents that are changed in the enrichment process are likely to be important. We have concentrated on GABA as well as the major tea flavonoid, epigallocatechin gallate. While this flavonoid is known to get to the brain on oral administration, it is far from clear that GABA does the same. GABA may act primarily on the gut and influence brain function via the gut-brain axis and the gut microbiome. In addition, there may be a microbiome in the brain that has a role. The situation is complex and not clearly understood. Mixtures of bioactive compounds are always difficult to investigate, but even the precise mechanisms of how pure oral GABA acts as a neuro-nutraceutical is unclear.
Collapse
Affiliation(s)
- Tina Hinton
- Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Graham A R Johnston
- Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Jimenez‐García AM, Villarino M, Arias N. A systematic review and meta-analysis of basal microbiota and cognitive function in Alzheimer's disease: A potential target for treatment or a contributor to disease progression? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70057. [PMID: 39734582 PMCID: PMC11672027 DOI: 10.1002/dad2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024]
Abstract
A systematic review and meta-analysis examined the impact of gut microbiota in Alzheimer's disease (AD) pathogenesis. Dysbiosis may influence neurodegeneration by affecting gut permeability and neurotrophic factors, leading to cognitive decline. The study analyzed microbiome differences between patients with AD and healthy individuals, as well as the impact of various interventions in both preclinical and clinical studies. Of 60 studies reviewed, 12 were excluded from the meta-analysis due to unsuitable data or lack of control groups. Meta-analyses revealed significant cognitive impairment in AD patients and animal models, with specific tests identifying these deficits. Notably, Bacteroides levels were higher in patients with AD, whereas probiotics improved Prevotella levels. Natural treatments increased Bacteroidetes and reduced Firmicutes in animal models. The findings emphasize the need for standardized methods to develop therapies targeting the gut microbiota to restore cognition in AD. Understanding individual dysbiosis could further clarify the cognitive effects of the gut-brain axis. Highlights Dysbiosis in the gut microbiota is linked to cognitive decline in Alzheimer's disease (AD).Patients with AD show significant differences in Bacteroides levels compared to healthy individuals.Probiotic treatments increase Prevotella levels in AD animal models.Natural agents boost Bacteroidetes and reduce Firmicutes in AD animal models.Human studies show no consistent effects of gut microbiota interventions on cognitive function in AD.
Collapse
Affiliation(s)
- Ana Maria Jimenez‐García
- BRABE Group, Department of Psychology, Faculty of Life and Natural SciencesUniversity of NebrijaMadridSpain
| | - Maria Villarino
- BRABE Group, Department of Psychology, Faculty of Life and Natural SciencesUniversity of NebrijaMadridSpain
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural SciencesUniversity of NebrijaMadridSpain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), OviedoPrincipado de AsturiasSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), OviedoPrincipado de AsturiasSpain
| |
Collapse
|
7
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
8
|
Zhu H, Wang W, Li Y. The interplay between microbiota and brain-gut axis in epilepsy treatment. Front Pharmacol 2024; 15:1276551. [PMID: 38344171 PMCID: PMC10853364 DOI: 10.3389/fphar.2024.1276551] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/12/2024] [Indexed: 08/12/2024] Open
Abstract
The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.
Collapse
Affiliation(s)
- Hanxiao Zhu
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| | - Wei Wang
- Neurobiology Laboratory, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| |
Collapse
|
9
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
10
|
Dong H, Tang X, Ye J, Xiao W. 16S rRNA gene sequencing reveals the effect of fluoxetine on gut microbiota in chronic unpredictable stress-induced depressive-like rats. Ann Gen Psychiatry 2023; 22:27. [PMID: 37537583 PMCID: PMC10398965 DOI: 10.1186/s12991-023-00458-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVES Gut microbiota is relevant to the pathogenesis of mental disorders including depression. This study aimed to investigate the influence of fluoxetine (FLX) on the gut microbiota in rats with Chronic Unpredictable Mild Stresses (CUMS)-induced depression. RESULTS We confirmed that the 28-day CUMS-induced depression rat model. Chronic FLX administration weakly improved depressive-like behaviors in rats. Illumina 16S rRNA gene sequencing on rat feces showed CUMS increased the relative abundance of Firmicutes (60.31% vs. 48.09% in Control, p < 0.05) and Lactobacillus genus (21.06% vs. 6.82% in control, p < 0.05); FLX and CUMS increased Bacilli class (20.00% ~ 24.08% vs. 10.31% in control, p < 0.05). CONCLUSION Collectively, our study showed that both CUMS and FLX changed the compositions of gut microbiota in rats. FLX and CUMS distinctly regulated the gut microbiota in depressed rats.
Collapse
Affiliation(s)
- Hui Dong
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China.
| | - Xiaowei Tang
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Jie Ye
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Wenhuan Xiao
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Wang Y, Zhu J, Zou N, Zhang L, Wang Y, Zhang M, Wang C, Yang L. Pathogenesis from the microbial-gut-brain axis in white matter injury in preterm infants: A review. Front Integr Neurosci 2023; 17:1051689. [PMID: 37006416 PMCID: PMC10060642 DOI: 10.3389/fnint.2023.1051689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
White matter injury (WMI) in premature infants is a unique form of brain injury and a common cause of chronic nervous system conditions such as cerebral palsy and neurobehavioral disorders. Very preterm infants who survive are at high risk of WMI. With developing research regarding the pathogenesis of premature WMI, the role of gut microbiota has attracted increasing attention in this field. As premature infants are a special group, early microbial colonization of the microbiome can affect brain development, and microbiome optimization can improve outcomes regarding nervous system development. As an important communication medium between the gut and the nervous system, intestinal microbes form a microbial-gut-brain axis. This axis affects the occurrence of WMI in premature infants via the metabolites produced by intestinal microorganisms, while also regulating cytokines and mediating oxidative stress. At the same time, deficiencies in the microbiota and their metabolites may exacerbate WMI in premature infants. This confers promise for probiotics and prebiotics as treatments for improving neurodevelopmental outcomes. Therefore, this review attempted to elucidate the potential mechanisms behind the communication of gut bacteria and the immature brain through the gut-brain axis, so as to provide a reference for further prevention and treatment of premature WMI.
Collapse
|
12
|
Exploring the links between gut microbiota and excitatory and inhibitory brain processes in alcohol use disorder: A TMS study. Neuropharmacology 2023; 225:109384. [PMID: 36567005 DOI: 10.1016/j.neuropharm.2022.109384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
While the impact of the gut microbiota on brain and behavior is increasingly recognized, human studies examining this question are still scarce. The primary objective of the current study was to explore the potential relationships between the gut microbiota composition, motor cortical excitability at rest and during inhibitory control, as well as behavioral inhibition, in healthy volunteers and in patients suffering from alcohol use disorder. Motor cortical excitability was examined using a range of transcranial magnetic stimulation (TMS) measures probed at rest, including the recruitment curve, short and long intracortical inhibition, and intracortical facilitation within the primary motor cortex. Moreover, TMS was applied during a choice reaction time task to assess changes in motor excitability associated with inhibitory control. Finally, behavioral inhibition was investigated using a neuropsychological task (anti-saccade). Overall, our results highlight several interesting correlations between microbial composition and brain measures. Hence, higher bacterial diversity, as well as higher relative abundances of UGC-002 and Christensenellaceae R-7 group were correlated with stronger changes in motor excitability associated with inhibitory control. Also, higher abundance of Anaerostipes was associated with higher level of corticospinal excitability. Finally, relative abundances of Bifidobacterium and Faecalibacterium were positively related to performance in the neuropsychological task, suggesting that they might have a positive impact on behavioral inhibition. Although correlation is not causation, the present study suggests that excitatory and inhibitory brain processes might be related to gut microbiota composition. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
|
13
|
The microbiota-gut-brain axis in pathogenesis of depression: A narrative review. Physiol Behav 2023; 260:114056. [PMID: 36528127 DOI: 10.1016/j.physbeh.2022.114056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The microbiota-gut-brain axis is a bidirectional regulatory pathway between the brain and the gastrointestinal tract, which plays an important role in maintain homeostasis. Gut microbiota could influence the behavior, cognition, stress response and others via the axis. Depression is a complex psychiatric disease, giving rise to heavy social health and economic burden. In recent years, studies have shown that the gut microbiota are closely linked to the pathophysiological processes of depression. In this article, the interaction and its underlying mechanisms between depression and gut microbiota were summarized.
Collapse
|
14
|
Kuznetzova AB, Prazdnova EV, Chistyakov VA, Kutsevalova OY, Batiushin MM. Are Probiotics Needed in Nephrology? NEPHROLOGY (SAINT-PETERSBURG) 2022; 26:18-30. [DOI: 10.36485/1561-6274-2022-26-4-18-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- A. B. Kuznetzova
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - E. V. Prazdnova
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - V. A. Chistyakov
- Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University
| | - O. Yu. Kutsevalova
- Federal State Budgetary Institution "National Medical Research Center of Oncology"
| | | |
Collapse
|
15
|
Mullaney JA, Roy NC, Halliday C, Young W, Altermann E, Kruger MC, Dilger RN, McNabb WC. Effects of early postnatal life nutritional interventions on immune-microbiome interactions in the gastrointestinal tract and implications for brain development and function. Front Microbiol 2022; 13:960492. [PMID: 36504799 PMCID: PMC9726769 DOI: 10.3389/fmicb.2022.960492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
The gastrointestinal (GI) microbiota has co-evolved with the host in an intricate relationship for mutual benefit, however, inappropriate development of this relationship can have detrimental effects. The developing GI microbiota plays a vital role during the first 1,000 days of postnatal life, during which occurs parallel development and maturation of the GI tract, immune system, and brain. Several factors such as mode of delivery, gestational age at birth, exposure to antibiotics, host genetics, and nutrition affect the establishment and resultant composition of the GI microbiota, and therefore play a role in shaping host development. Nutrition during the first 1,000 days is considered to have the most potential in shaping microbiota structure and function, influencing its interactions with the immune system in the GI tract and consequent impact on brain development. The importance of the microbiota-GI-brain (MGB) axis is also increasingly recognized for its importance in these developmental changes. This narrative review focuses on the importance of the GI microbiota and the impact of nutrition on MGB axis during the immune system and brain developmental period in early postnatal life of infants.
Collapse
Affiliation(s)
- Jane A. Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand,AgResearch, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, Auckland, New Zealand,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Christine Halliday
- Riddet Institute, Massey University, Palmerston North, New Zealand,AgResearch, Palmerston North, New Zealand,School of Food and Advanced Technology, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand,AgResearch, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, Auckland, New Zealand,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Marlena C. Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, Auckland, New Zealand,*Correspondence: Warren C. McNabb,
| |
Collapse
|
16
|
Song Z, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Alizadeh K, Moghimi H, Golbabaei A, Alijanpour S, Rezayof A. Post-Weaning Treatment with Probiotic Inhibited Stress-Induced Amnesia in Adulthood Rats: The Mediation of GABAergic System and BDNF/c-Fos Signaling Pathways. Neurochem Res 2022; 47:2357-2372. [PMID: 35618945 DOI: 10.1007/s11064-022-03625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The current study aimed to examine the effect of post-weaning treatment with probiotics on memory formation under stress during the adult period in male Wistar rats. Considering GABA is a potential mediator between probiotics and the host, the present study also investigated the involvement of the GABAergic system in the probiotic response. The hippocampal and prefrontal cortical (PFC) expression levels of BDNF and c-Fos were also assessed to show whether the treatments affect the memory-related signaling pathway. Three weeks after birth, the post-weaning rats were fed with probiotic water (PW) or tap water (TW) for 2, 3, 4, or 5 weeks. Exposure to acute stress impaired memory formation in a passive avoidance learning task. Feeding the post-weaning animals with probiotic strains (3, 4, or 5 weeks) inhibited stress-induced amnesia of the adult period. Post-training intracerebroventricular (ICV) microinjection of muscimol improved stress-induced amnesia in the animals fed with TW. ICV microinjection of muscimol inhibited probiotic treatment's significant effect on the stress response in the memory task. The expression levels of BDNF and c-Fos in the PFC and the hippocampus were significantly decreased in the stress animal group. The levels of BDNF and c-Fos were increased in the PW/stress animal group. The muscimol response was compounded with the decreased levels of BDNF and c-Fos in the PFC and the hippocampus. Thus, the GABA-A receptor mechanism may mediate the inhibitory effect of this probiotic mixture on stress-induced amnesia, which may be associated with the PFC and hippocampal BDNF/c-Fos signaling changes.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Golbabaei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran.
| |
Collapse
|
18
|
Hao WZ, Chen Q, Wang L, Tao G, Gan H, Deng LJ, Huang JQ, Chen JX. Emerging roles of long non-coding RNA in depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110515. [PMID: 35077841 DOI: 10.1016/j.pnpbp.2022.110515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, United States
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
19
|
Xie X, Wu Y, Xie H, Wang H, Zhang X, Yu J, Zhu S, Zhao J, Sui L, Li S. Polysaccharides, Next Potential Agent for the Treatment of Epilepsy? Front Pharmacol 2022; 13:790136. [PMID: 35418858 PMCID: PMC8996301 DOI: 10.3389/fphar.2022.790136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic neurological disorder. Current pharmacological therapies for epilepsy have limited efficacy that result in refractory epilepsy (RE). Owing to the limitations of conventional therapies, it is needed to develop new anti-epileptic drugs. The beneficial effects of polysaccharides from Chinese medicines, such as Lycium barbarum polysaccharides (COP) and Ganoderma lucidum polysaccharides (GLP), for treatment of epilepsy include regulation of inflammatory factors, neurotransmitters, ion channels, and antioxidant reactions. Especially, polysaccharides could be digested by intestinal microbial flora, referred as “intestinal brain organ” or “adult’s second brain”, may be the target for treatment of epilepsy. Actually, polysaccharides can effectively improve the type and quantity of intestinal flora such as bifidobacteria and lactic acid bacteria and achieve the purpose of treating epilepsy. Therefore, polysaccharides are hypothesized and discussed as potential agent for treatment of epilepsy.
Collapse
Affiliation(s)
- Xuemin Xie
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Youliang Wu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haitao Xie
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haiyan Wang
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaojing Zhang
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jiabin Yu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shaofang Zhu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| | - Lisen Sui
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| |
Collapse
|
20
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
21
|
Diviccaro S, Caputi V, Cioffi L, Giatti S, Lyte JM, Caruso D, O’Mahony SM, Melcangi RC. Exploring the Impact of the Microbiome on Neuroactive Steroid Levels in Germ-Free Animals. Int J Mol Sci 2021; 22:ijms222212551. [PMID: 34830433 PMCID: PMC8622241 DOI: 10.3390/ijms222212551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid hormones are essential biomolecules for human physiology as they modulate the endocrine system, nervous function and behaviour. Recent studies have shown that the gut microbiota is directly involved in the production and metabolism of steroid hormones in the periphery. However, the influence of the gut microbiota on levels of steroids acting and present in the brain (i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography–tandem mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-3α, 17β-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated modulation of neuroendocrine pathways involved in preserving host brain functioning.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Fayetteville, AR 72701, USA
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Siobhain M. O’Mahony
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Department of Anatomy and Neuroscience, University College Cork, T12 ND89 Cork, Ireland
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
- Correspondence: ; Tel.: +39-02-50318238; Fax: +39-02-50318202
| |
Collapse
|
22
|
Karen C, Shyu DJH, Rajan KE. Lactobacillus paracasei Supplementation Prevents Early Life Stress-Induced Anxiety and Depressive-Like Behavior in Maternal Separation Model-Possible Involvement of Microbiota-Gut-Brain Axis in Differential Regulation of MicroRNA124a/132 and Glutamate Receptors. Front Neurosci 2021; 15:719933. [PMID: 34531716 PMCID: PMC8438336 DOI: 10.3389/fnins.2021.719933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
This study was designed to investigate stressful social experience (SSE) in early life by examining how it can induce alterations in the microbiota-gut-brain axis. To test this, different experimental groups of pups experienced the presence of either a stranger (S) with mother (M+P+S) or without their mother (MS+S-M). Animals were assessed for anxiety-like behavior and high-throughput bacterial 16s rRNA sequencing was performed to analyze the structure of the gut microbiota. Our analysis revealed that early life SSE induced anxiety-like behavior and reduced the diversity and richness of gut microbiota. In the second experiment, all groups were supplemented with Lactobacillus paracasei HT6. The findings indicated that Lactobacillus supplementation had a significant beneficial effect on anxiety-like behavior in stressed rats (MS, M+P+S, and MS + S-M) accompanied by normalized levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), glucocorticoid receptor (GR), serotonin (5-HT), dopamine (DA), and noradrenaline (NA). Concomitantly, the expression of microRNA (miR)-124a was down-regulated and miR-132, caspase-3, glutamate receptors (GluR1, GluR 2; NR2A, and NR2B) were up-regulated in stressed groups but remained unchanged by Lactobacillus supplementation in stressed individuals. This indicates that stress-associated GluR1-GR altered interactions can be significantly prevented by Lactobacillus supplementation. Analysis of the fecal metabolite profile was undertaken to analyze the effect of Lactobacillus, revealing that five predicted neuroactive microbial metabolites were reduced by early life SSE. Our results showed a potential link between Lactobacillus supplementation and beneficial effects on anxiety-like behavior, the mechanism of which could be potentially mediated through stress hormones, neurotransmitters, and expression of miRNAs, glutamate receptors, and the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Douglas J H Shyu
- Functional Genomics Laboratory, Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
23
|
Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct 2021; 12:4284-4314. [PMID: 33955443 DOI: 10.1039/d0fo02855j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome residing in the human gut performs a wide range of biological functions. Recently, it has been elucidated that a change in dietary habits is associated with alteration in the gut microflora which results in increased health risks and vulnerability towards various diseases. Falling in line with the same concept, depression has also been shown to increase its prevalence around the globe, especially in the western world. Various research studies have suggested that changes in the gut microbiome profile further result in decreased tolerance of stress. Although currently available medications help in relieving the symptoms of depressive disorders briefly, these drugs are not able to completely reverse the multifactorial pathology of depression. The discovery of the communication pathway between gut microbes and the brain, i.e. the Gut-Brain Axis, has led to new areas of research to find more effective and safer alternatives to current antidepressants. The use of probiotics and prebiotics has been suggested as being effective in various preclinical studies and clinical trials for depression. Therefore, in the present review, we address the new antidepressant mechanisms via gut microbe alterations and provide insight into how these can provide an alternative to antidepressant therapy without the side effects and risk of adverse drug reactions.
Collapse
Affiliation(s)
- Hasnain N Methiwala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| | | | | | | | | | | |
Collapse
|
24
|
Hao W, Wu J, Yuan N, Gong L, Huang J, Ma Q, Zhu H, Gan H, Da X, Deng L, Li X, Chen J. Xiaoyaosan Improves Antibiotic-Induced Depressive-Like and Anxiety-Like Behavior in Mice Through Modulating the Gut Microbiota and Regulating the NLRP3 Inflammasome in the Colon. Front Pharmacol 2021; 12:619103. [PMID: 33935710 PMCID: PMC8087337 DOI: 10.3389/fphar.2021.619103] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/24/2021] [Indexed: 11/15/2022] Open
Abstract
Disturbance of the gut microbiota plays an essential role in mental disorders such as depression and anxiety. Xiaoyaosan, a traditional Chinese medicine formula, has a wide therapeutic spectrum and is used especially in the management of depression and anxiety. In this study, we used an antibiotic-induced microbiome-depleted (AIMD) mouse model to determine the possible relationship between imbalance of the intestinal flora and behavioral abnormalities in rodents. We explored the regulatory effect of Xiaoyaosan on the intestinal flora and attempted to elucidate the potential mechanism of behavioral improvement. We screened NLRP3, ASC, and CASPASE-1 as target genes based on the changes in gut microbiota and explored the effect of Xiaoyaosan on the colonic NLRP3 pathway. After Xiaoyaosan intervention, AIMD mice showed a change in body weight and an improvement in depressive and anxious behaviors. Moreover, the gut flora diversity was significantly improved. Xiaoyaosan increased the abundance of Lachnospiraceae in AIMD mice and decreased that of Bacteroidaceae, the main lipopolysaccharide (LPS)-producing bacteria, resulting in decreased levels of LPS in feces, blood, and colon tissue. Moreover, serum levels of the inflammatory factor, IL-1β, and the levels of NLRP3, ASC, and CASPASE-1 mRNA and DNA in the colon were significantly reduced. Therefore, Xiaoyaosan may alleviate anxiety and depression by modulating the gut microbiota, correcting excessive LPS release, and inhibiting the immoderate activation of the NLRP3 inflammasome in the colon.
Collapse
Affiliation(s)
- Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiajia Wu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Naijun Yuan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lian Gong
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huizheng Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Da
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Pittman QJ. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Res 2020; 166:106409. [PMID: 32673970 DOI: 10.1016/j.eplepsyres.2020.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023]
|
27
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
28
|
van de Wouw M, Walsh AM, Crispie F, van Leuven L, Lyte JM, Boehme M, Clarke G, Dinan TG, Cotter PD, Cryan JF. Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. MICROBIOME 2020; 8:67. [PMID: 32423436 PMCID: PMC7236220 DOI: 10.1186/s40168-020-00846-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mounting evidence suggests a role for the gut microbiota in modulating brain physiology and behaviour, through bi-directional communication, along the gut-brain axis. As such, the gut microbiota represents a potential therapeutic target for influencing centrally mediated events and host behaviour. It is thus notable that the fermented milk beverage kefir has recently been shown to modulate the composition of the gut microbiota in mice. It is unclear whether kefirs have differential effects on microbiota-gut-brain axis and whether they can modulate host behaviour per se. METHODS To address this, two distinct kefirs (Fr1 and UK4), or unfermented milk control, were administered to mice that underwent a battery of tests to characterise their behavioural phenotype. In addition, shotgun metagenomic sequencing of ileal, caecal and faecal matter was performed, as was faecal metabolome analysis. Finally, systemic immunity measures and gut serotonin levels were assessed. Statistical analyses were performed by ANOVA followed by Dunnett's post hoc test or Kruskal-Wallis test followed by Mann-Whitney U test. RESULTS Fr1 ameliorated the stress-induced decrease in serotonergic signalling in the colon and reward-seeking behaviour in the saccharin preference test. On the other hand, UK4 decreased repetitive behaviour and ameliorated stress-induced deficits in reward-seeking behaviour. Furthermore, UK4 increased fear-dependent contextual memory, yet decreased milk gavage-induced improvements in long-term spatial learning. In the peripheral immune system, UK4 increased the prevalence of Treg cells and interleukin 10 levels, whereas Fr1 ameliorated the milk gavage stress-induced elevation in neutrophil levels and CXCL1 levels. Analysis of the gut microbiota revealed that both kefirs significantly changed the composition and functional capacity of the host microbiota, where specific bacterial species were changed in a kefir-dependent manner. Furthermore, both kefirs increased the capacity of the gut microbiota to produce GABA, which was linked to an increased prevalence in Lactobacillus reuteri. CONCLUSIONS Altogether, these data show that kefir can signal through the microbiota-gut-immune-brain axis and modulate host behaviour. In addition, different kefirs may direct the microbiota toward distinct immunological and behavioural modulatory effects. These results indicate that kefir can positively modulate specific aspects of the microbiota-gut-brain axis and support the broadening of the definition of psychobiotic to include kefir fermented foods. Video abstract.
Collapse
Affiliation(s)
- Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aaron M Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Microbiology Department, University College Cork, Cork, Ireland
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Iannone LF, Gómez-Eguílaz M, Citaro R, Russo E. The potential role of interventions impacting on gut-microbiota in epilepsy. Expert Rev Clin Pharmacol 2020; 13:423-435. [PMID: 32320306 DOI: 10.1080/17512433.2020.1759414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The gut microbiota seems to be implicated in the functioning and development of basic physiological processes and might also influence central neural processes, through the microbiota-gut-brain (MGB) axis. Pre- and clinical studies support the role of the microbiome in seizure modulation and in the pathogenesis of epilepsy. Acting through different interventions (e.g. diet, supplementations, drugs) could perturb directly and indirectly the MGB axis. Investigating the effects of these interventions might possibly allow better understanding of epilepsy itself, identify biomarkers, or providing new therapeutic options. AREAS COVERED PubMed and Google Scholar searches were used to compile a list of relevant publications until January 2020, using data from preclinical studies and clinical trials and gut microbiome/microbiota projects. Furthermore, we evaluate the impact of the antiepileptic drugs on gut microbiota and the influence of intestinal alterations on seizures occurrence. EXPERT OPINION Investigating the MGB axis and the role of gut supplementation in epilepsy is challenging due to the numerous potential pathways and variables involved. Few studies have been performed so far and all have been limited making speculation still premature. Studies designed with the similar strictness of pharmaceutical drug development trials, performing taxa, and metabolomic analyses with standard methodologies are needed.
Collapse
Affiliation(s)
- Luigi F Iannone
- Science of Health Department, Magna Graecia University of Catanzaro , Catanzaro, Calabria, Italy
| | | | - Rita Citaro
- Science of Health Department, Magna Graecia University of Catanzaro , Catanzaro, Calabria, Italy
| | - Emilio Russo
- Science of Health Department, Magna Graecia University of Catanzaro , Catanzaro, Calabria, Italy
| |
Collapse
|
30
|
Lum GR, Olson CA, Hsiao EY. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol Dis 2020; 135:104576. [PMID: 31445165 DOI: 10.1016/j.nbd.2019.104576] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/29/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome is emerging as a key regulator of brain function and behavior and is associated with symptoms of several neurological disorders. There is emerging evidence that alterations in the gut microbiota are seen in epilepsy and in response to seizure interventions. In this review, we highlight recent studies reporting that individuals with refractory epilepsy exhibit altered composition of the gut microbiota. We further discuss antibiotic treatment and infection as microbiome-related factors that influence seizure susceptibility in humans and animal models. In addition, we evaluate how the microbiome may mediate effects of the ketogenic diet, probiotic treatment, and anti-epileptic drugs on reducing both seizure frequency and severity. Finally, we assess the open questions in interrogating roles for the microbiome in epilepsy and address the prospect that continued research may uncover fundamental insights for understanding risk factors for epilepsy, as well as novel approaches for treating refractory epilepsy.
Collapse
Affiliation(s)
- Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christine A Olson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Metabolic regulation of Ganoderma lucidum extracts in high sugar and fat diet-induced obese mice by regulating the gut-brain axis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Hao WZ, Li XJ, Zhang PW, Chen JX. A review of antibiotics, depression, and the gut microbiome. Psychiatry Res 2020; 284:112691. [PMID: 31791704 DOI: 10.1016/j.psychres.2019.112691] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that disruption of the intestinal flora play an important role in the pathogenesis of depression. As one of the causes of such disturbances, the role of antibiotics in depression risk is gradually being revealed. Herein, we review recent findings showing that the use of both single and multiple antibiotic regimens may be related to depression by changing the gut microbiota and the brain-gut axis. Based on recent discoveries, we also suggest that several brain-gut interactive mechanisms (particularly those involving nerve and glial cells, neurotransmitters, brain neurotrophic factors, inflammatory factors, short-chain fatty acids, circulating metabolites, blood-brain barrier, and oxidative stress) may help understand the effects of antibiotics on intestinal flora and its relationship with depression.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Xiao-Juan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Pei-Wen Zhang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
33
|
De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, Cryan JF, Russo E. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev 2019; 107:750-764. [PMID: 31626816 DOI: 10.1016/j.neubiorev.2019.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
The gut-microbiota, the complex intestinal microbial ecosystem essential to health, is an emerging concept in medicine. Several studies demonstrate a microbiota-gut-brain bidirectional connection via neural, endocrine, metabolic and immune pathways. Accordingly, the gut microbiota has a crucial role in modulating intestinal permeability, to alter local/peripheral immune responses and in production of essential metabolites and neurotransmitters. Its alterations may consequently influence all these pathways that contribute to neuronal hyper-excitability and mirrored neuroinflammation in epilepsy and similarly other neurological conditions. Indeed, pre- and clinical studies support the role of the microbiome in pathogenesis, seizure modulation and responses to treatment in epilepsy. Up to now, researchers have focussed attention above all on the brain to develop antiepileptic treatments, but considering the microbiome, could extend our possibilities for developing novel therapies in the future. We provide here a comprehensive overview of the available data on the potential role of gut microbiota in the physiopathology and therapy of epilepsy and the supposed underlying mechanisms.
Collapse
Affiliation(s)
- Carmen De Caro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS "G. Gaslini" Institute, Genova, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - John F Cryan
- UK.APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Emilio Russo
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
34
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2634] [Impact Index Per Article: 439.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Tsukahara T, Kawase T, Yoshida H, Bukawa W, Kan T, Toyoda A. Preliminary investigation of the effect of oral supplementation of Lactobacillus plantarum strain SNK12 on mRNA levels of neurotrophic factors and GABA receptors in the hippocampus of mice under stress-free and sub-chronic mild social defeat-stressing conditions. Biosci Biotechnol Biochem 2019; 83:2345-2354. [PMID: 31524073 DOI: 10.1080/09168451.2019.1659717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of Lactobacillus plantarum SNK12 (CPLP) supplementation on mRNA levels of hippocampal neurotrophic factors and gamma aminobutyric acid receptors (GABAR) was tested. In Experiment 1, stress-free, unsupplemented and CPLP (4 × 108 cells/head)-supplemented male C57BL/6J (B6) mice were the experimental animals. In Experiment 2, intruder (male, B6) mice [negative control; unsupplemented, sub-chronic mild social defeat stress (sCSDS)-induced; and CPLP-supplemented, sCSDS-induced] were exposed to aggressor mice (adult male Slc:ICR). mRNA levels of neurotrophic factors and GABAR in hippocampal samples of these mice were analyzed. In CPLP-supplemented mice of both experiments, mRNA levels of bdnf, nt-3, and GABAR were upregulated. Moreover, a tendency toward the improvement of habituation ability (Experiment 1) and behavior (Experiment 2) was observed in mice, which may be associated with upregulated neurotrophic factors and GABAR. We demonstrated that oral supplementation of CPLP to stress-free and stress-induced mice upregulated mRNA levels of hippocampal neurotrophic factors and GABAR.
Collapse
Affiliation(s)
| | | | | | - Wakoto Bukawa
- Non-Profit Organization, The Japanese Association of Clinical Research on Supplements, Saitama, Japan
| | | | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
36
|
Laureano-Melo R, Caldeira RF, Guerra AF, Conceição RRD, Souza JSD, Giannocco G, Marinho BG, Luchese RH, Côrtes WS. Maternal supplementation with Lactobacillus paracasei DTA 83 alters emotional behavior in Swiss mice offspring. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol Aspects Med 2018; 66:80-93. [PMID: 30513310 DOI: 10.1016/j.mam.2018.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The global prevalence of diabesity is on the rise, and the clinical, social and economic health burden arising from this epidemic is aggravated by a significant co-morbidity of diabesity with neuropsychiatric disease, particularly depression. Importantly, not only is the prevalence of mood disorders elevated in patients with type 2 diabetes, depressed patients are also more prone to develop diabetes. This reciprocal relationship calls for a molecular and systemic analysis of diabesity-brain interactions to guide preventive and therapeutic strategies. The analysis we are presenting in this review is modelled on the microbiota-gut-brain axis, which provides the brain with information from the gut not only via the nervous system, but also via a continuous stream of microbial, endocrine, metabolic and immune messages. This communication network offers important clues as to how obesity and diabetes could target the brain to provoke neuropsychiatric disease. There is emerging evidence that the gut microbiota is orchestrating a multiplicity of bodily functions that are intimately related to the immune, metabolic and nervous systems and that gut dysbiosis spoils the homeostasis between these systems. In our article we highlight two groups of molecular links that seem to have a significant bearing on the impact of diabesity on the brain. On the one hand, we focus on microbiota-related metabolites such as short-chain fatty acids, tryptophan metabolites, immune stimulants and endocannabinoids that are likely to play a mediator role. On the other hand, we discuss signalling molecules that operate primarily in the brain, specifically neuropeptide Y, brain-derived neurotrophic factor and γ-amino butyric acid, that are disturbed by microbial factors, obesity and diabetes and are relevant to mental illness. Finally, we address the usefulness of diet-related interventions to suspend the deleterious relationship between diabesity and mood disorders.
Collapse
|
38
|
Cross-species examination of single- and multi-strain probiotic treatment effects on neuropsychiatric outcomes. Neurosci Biobehav Rev 2018; 99:160-197. [PMID: 30471308 DOI: 10.1016/j.neubiorev.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/10/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022]
Abstract
Interest in elucidating gut-brain-behavior mechanisms and advancing neuropsychiatric disorder treatments has led to a recent proliferation of probiotic trials. Yet, a considerable gap remains in our knowledge of probiotic efficacy across populations and experimental contexts. We conducted a cross-species examination of single- and multi-strain combinations of established probiotics. Forty-eight human (seven infant/child, thirty-six young/middle-aged adult, five older adult) and fifty-eight non-human (twenty-five rat, twenty-seven mouse, five zebrafish, one quail) investigations met the inclusion/exclusion criteria. Heterogeneity of probiotic strains, substrains, and study methodologies limited our ability to conduct meta-analyses. Human trials detected variations in anxiety, depression, or emotional regulation (single-strain 55.6%; multi-strain 50.0%) and cognition or social functioning post-probiotic intake (single-strain 25.9%; multi-strain 31.5%). For the non-human studies, single- (60.5%) and multi-strain (45.0%) combinations modified stress, anxiety, or depression behaviors in addition to altering social or cognitive performance (single-strain 57.9%; multi-strain 85.0%). Rigorous trials that confirm existing findings, investigate additional probiotic strain/substrain combinations, and test novel experimental paradigms, are necessary to develop future probiotic treatments that successfully target specific neuropsychiatric outcomes.
Collapse
|
39
|
Kuo PH, Chung YCE. Moody microbiome: Challenges and chances. J Formos Med Assoc 2018; 118 Suppl 1:S42-S54. [PMID: 30262220 DOI: 10.1016/j.jfma.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Growing evidence link gut microbiome to the development and maturation of the central nervous system, which are regulated by microbiota potentially through stress response, neurotransmitter, neuroimmune, and endocrine pathways. The dysfunction of such microbiota-gut-brain axis is implicated in neuropsychiatric disorders, depression, and other stress-related conditions. Using affective disorders as our primary outcomes, we inspect the current evidence of microbiota studies mainly in human clinical samples. Additionally, to restore microbiome equilibrium in bacteria diversity and abundance might represent a novel strategy to prevent or treat mood symptoms. We reviewed findings from clinical trials regarding efficacy of probiotics supplement with or without antidepressant treatment, and adjuvant antimicrobiotics treatment. In microbiota studies, the considerations of host-microbiota interaction and bacteria-bacteria interaction are discussed. In conclusion, the roles of microbiota in depression and mania state are not fully elucidated. One of the challenges is to find reliable targets for functional analyses and experiments. Notwithstanding some inconsistencies and methodological limitations across studies, results from recent clinical trials support for the beneficial effects of probiotics on alleviating depressive symptoms and increasing well-beings. Moreover, modifying the composition of gut microbiota via antibiotics can be a viable adjuvant treatment option for individuals with depressive symptoms.
Collapse
Affiliation(s)
- Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Chu Ella Chung
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|