1
|
Li Z, Zheng G, Fang C, Mei J, Liang H, Yang L. Comparation of brain-targeting chitosan/sodium tripolyphosphate and ovalbumin/sodium carboxymethylcellulose nanoparticles on dihydromyricetin delivery and cognitive impairment in obesity-related Alzheimer's disease. Int J Biol Macromol 2025; 306:141517. [PMID: 40020826 DOI: 10.1016/j.ijbiomac.2025.141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The brain-gut axis plays an important role in regulating cognitive ability in obesity-related Alzheimer's disease (AD). In this study, we aimed to investigate the correlation between the barrier penetration ability of the DMY nanodelivery system in vivo and the regulation of the gut-brain axis to alleviate cognitive impairment. Brain-targeted peptide (TGN: TGNYKALHPHNG) and DMY loaded chitosan (CS)/sodium tripolyphosphate (TPP) nanoparticles (TGN-DMY-CS/TPP-NPs) and ovalbumin (OVA)/sodium carboxymethylcellulose (CMC) nanoparticles (TGN-DMY-OVA/CMC-NPs) were prepared. TGN-DMY-CS/TPP-NPs demonstrated superior mucus penetration and BBB targeting ability compared to TGN-DMY-OVA/CMC-NPs, while the latter showed notable intestinal accumulation. TGN-DMY-CS/TPP-NPs treatment significantly increased the relative abundance of Alistipes and Rikenellaceae_RC9_gut_group, and TGN-DMY-OVA/CMC-NPs treatment obviously enhanced the relative abundance of Lactobacillus. Furthermore, both nanoparticles alleviated lipid metabolism disorder, oxidative stress, and inflammation in the liver, reduced oxidative stress and neuroinflammation in the brain, inhibited neuronal apoptosis, and enhanced mitochondrial biogenesis and synaptic plasticity in obesity-related AD mice. Despite different mucus penetration and biodistribution, their similar efficacy in improving obesity-related AD is attributed to the gut-brain bidirectional connection.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hanji Liang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Padhy DS, Aggarwal P, Velayutham R, Banerjee S. Aerobic exercise and metformin attenuate the cognitive impairment in an experimental model of type 2 diabetes mellitus: focus on neuroinflammation and adult hippocampal neurogenesis. Metab Brain Dis 2025; 40:92. [PMID: 39775196 DOI: 10.1007/s11011-024-01489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that increases the prevalence of cognitive impairment in the geriatric population. Aerobic exercise is an excellent non-pharmacological therapeutic strategy to prevent Alzheimer's disease, the most common form of dementia. The exact molecular mechanism of aerobic exercise (Exe) as an intervention to counter cognitive decline is far from clear. Metformin is a first-line agent against T2DM with neuroprotective properties. The present study assessed the role of treadmill exercise in combination with a low dose of metformin (Met; 70 mg/kg) in cognitive impairment and its associated molecular mechanism in T2DM rats. The experimental model of T2DM-associated cognitive decline was created by administration of a high-fat diet (HFD) with a low dose of streptozotocin (STZ; 35 mg/kg). Neurobehavioral assessments were performed to evaluate spatial recognition and fear-conditioned memory across the groups: control, HFD + STZ, HFD + STZ + Exe, and HFD + STZ + Exe + Met. In addition, we performed immunohistochemistry and western blotting on the rat hippocampal tissue from the above groups for protein expression studies. T2DM rats showed a significant cognitive decline compared to the control group, which improved in the long-term exercise and metformin co-administered animals. The level of neuroinflammation was significantly elevated in the hippocampal tissue of T2DM rats compared to the control and lowered after exercise and metformin treatment. T2DM reduced mature neurons and neurogenesis while increasing astrogliosis and microgliosis, ameliorated by exercise and metformin treatment. Moreover, T2DM impaired hippocampal neurogenesis by reducing the canonical Wnt/β-catenin pathway, which got upregulated in exercise and metformin-co-administered rats. Long-term aerobic exercise with metformin treatment ameliorated neuroinflammation and promoted adult hippocampal neurogenesis via upregulating the canonical Wnt/β-catenin pathway in T2DM rats.
Collapse
Affiliation(s)
- Dibya Sundar Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India
| | - Punita Aggarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India
| | - Ravichandiran Velayutham
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India.
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
4
|
Pan SY, Gu YR, Zhao G, Wang Y, Qin ZH, Tang QY, Qin YY, Li Luo. NADPH mimics the antidepressant effects of exercise in a chronic unpredictable stress rat model. Biochem Biophys Res Commun 2024; 731:150360. [PMID: 39018970 DOI: 10.1016/j.bbrc.2024.150360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/26/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.
Collapse
Affiliation(s)
- Shan-Yao Pan
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yan-Rong Gu
- Changshu Xupu High School, Suzhou, 215513, China
| | - Gang Zhao
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yao Wang
- Department of Rehabilitation Medicine, Nan'ao People's Hospital of Dapeng New District, Shenzhen, 518121, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou, 215123, China.
| | - Qiu-Yue Tang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Yuan-Yuan Qin
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
5
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
6
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
7
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
8
|
Yi W, Chen F, Yuan M, Wang C, Wang S, Wen J, Zou Q, Pu Y, Cai Z. High-fat diet induces cognitive impairment through repression of SIRT1/AMPK-mediated autophagy. Exp Neurol 2024; 371:114591. [PMID: 37898395 DOI: 10.1016/j.expneurol.2023.114591] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
AIMS Recent evidence suggests an association between a high-fat diet (HFD) and cognitive decline. HFD may reduce synaptic plasticity and cause tau hyperphosphorylation, but the mechanisms involved remain unclear. The purpose of this study was to explore whether Sirtuin1 (SIRT1)/AMP-activated protein kinase (AMPK) pathway was involved in this pathogenic effect in the HFD exposed mice. METHODS C57BL/6 mice at 12 months of age were fed a standard (9% kcal fat) or high-fat (60% kcal fat) diet for 22 weeks, and Neuro-2a (N2a) cells were treated with normal culture medium or a palmitic acid (PA) medium (100uM) for 40 h. After that, cognitive function was tested by Morris water maze (MWM). The levels of proteins involved in SIRT1/AMPK pathway and autophagy were measured using western blotting and immunofluorescence. We also assessed the phosphorylation of tau protein and synapse. RESULTS The mice presented impaired learning and memory abilities. We further found decreased levels of synaptophysin (Syn) and brain-derived neurotrophic factor (BDNF), increased tau46 and phosphorylated tau protein, and damaged neurons in mice after HFD or in N2a cells treated with PA medium. Moreover, HFD can also reduce the expression of SIRT1, inhibit AMPK phosphorylation, and block autophagic flow in both mice and cells. After treating the cells with the SIRT1 agonist SRT1720, SIRT1/AMPK pathway and autophagy-related proteins were partially reversed and the number of PA-induced positive cells was alleviated in senescence-associated β-galactosidase (SA-β-gal) staining. CONCLUSIONS HFD may inhibit the expression of SIRT1/AMPK pathway and disrupt autophagy flux, and result in tau hyperphosphorylation and synaptic dysfunction during aging, which ultimately lead to cognitive decline.
Collapse
Affiliation(s)
- Wenmin Yi
- The fifth Clinical College of Chongqing Medical University, Chongqing 402160, China; Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Fei Chen
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Minghao Yuan
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Chuanling Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China
| | - Shengyuan Wang
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China
| | - Jie Wen
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China; Chongqing Medical University, Chongqing 400016, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400799, China.
| |
Collapse
|
9
|
Erichsen J, Craft S. Targeting immunometabolic pathways for combination therapy in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12423. [PMID: 37786483 PMCID: PMC10541802 DOI: 10.1002/trc2.12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023]
Abstract
The recent success of disease-modifying anti-amyloid monoclonal antibodies in slowing Alzheimer's disease (AD) symptoms has been an exciting step forward for the field. Despite successfully clearing amyloid from the brain, however, only modest symptomatic improvement has been demonstrated, and treatment-related side effects such as amyloid-related imaging abnormalities (ARIA) limit use for some. These limitations suggest that fully efficacious AD treatment may require combination therapy regimens, as are used in other complex disorders such as cancer and HIV. One reasonable strategy may be to use agents that address the biological changes that predict future amyloid accumulation, or accompany amyloid accumulation in preclinical disease states. Immunometabolic pathways, including the insulin signaling pathway, are dysregulated at the earliest stages of AD, concomitant with amyloid accumulation. It is plausible that agents that target these pathways may work synergistically with anti-amyloid therapies to halt AD progression. Insulin signaling is integrally involved in innate and adaptive immune systems, with pleiotropic effects that moderate pro- and anti-inflammatory responses. Metabolic modulators that enhance insulin sensitivity and function, such as GLP-1 receptor agonists, SGLT2 inhibitors, and insulin itself have been shown to improve immune function and reduce chronic inflammation. Additional effects of insulin and metabolic modulators demonstrated in preclinical and clinical studies of AD include increased clearance of amyloid-β, slowed tau progression, improved vascular function and lipid metabolism, reduced synaptotoxicity, and improved cognitive and functional outcomes. A large number of compounds that treat metabolic disorders have been extensively characterized with respect to mechanism of action and safety, and thus are readily available to be repurposed for combination therapy protocols. Determining the most successful combination regimens of these agents together with disease-modifying therapies, and the appropriate timing of treatment, are promising next steps in the quest to treat and prevent AD.
Collapse
Affiliation(s)
- Jennifer Erichsen
- Department of Internal MedicineDivision of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal MedicineDivision of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
10
|
Luthra NS, Christou DD, Clow A, Corcos DM. Targeting neuroendocrine abnormalities in Parkinson's disease with exercise. Front Neurosci 2023; 17:1228444. [PMID: 37746149 PMCID: PMC10514367 DOI: 10.3389/fnins.2023.1228444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent and complex age-related neurodegenerative condition for which there are no disease-modifying treatments currently available. The pathophysiological process underlying PD remains incompletely understood but increasing evidence points to multiple system dysfunction. Interestingly, the past decade has produced evidence that exercise not only reduces signs and symptoms of PD but is also potentially neuroprotective. Characterizing the mechanistic pathways that are triggered by exercise and lead to positive outcomes will improve understanding of how to counter disease progression and symptomatology. In this review, we highlight how exercise regulates the neuroendocrine system, whose primary role is to respond to stress, maintain homeostasis and improve resilience to aging. We focus on a group of hormones - cortisol, melatonin, insulin, klotho, and vitamin D - that have been shown to associate with various non-motor symptoms of PD, such as mood, cognition, and sleep/circadian rhythm disorder. These hormones may represent important biomarkers to track in clinical trials evaluating effects of exercise in PD with the aim of providing evidence that patients can exert some behavioral-induced control over their disease.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Demetra D. Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London, United Kingdom
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, McCormick School of Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer's disease and diabetes. Ageing Res Rev 2023; 90:101999. [PMID: 37414154 DOI: 10.1016/j.arr.2023.101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Accumulation of amyloid-β in the central nervous system is a common feature of Alzheimer's disease (AD) and diabetes-related cognitive impairment. Since the insulin-degrading enzyme (IDE) can break down amyloid-β plaques, there is considerable interest in using this enzyme to treat both neurological disorders. In this review, we have summarized the pre-clinical and clinical research on the potential application of IDE for the improvement of cognitive impairment. Furthermore, we have presented an overview of the main pathways that can be targeted to mitigate the progression of AD and the cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
12
|
Prajjwal P, Asharaf S, Makhanasa D, Yamparala A, Tariq H, Aleti S, Gadam S, Vora N. Association of Alzheimer's dementia with oral bacteria, vitamin B12, folate, homocysteine levels, and insulin resistance along with its pathophysiology, genetics, imaging, and biomarkers. Dis Mon 2023; 69:101546. [PMID: 36931946 DOI: 10.1016/j.disamonth.2023.101546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Alzheimer's disease is a prevalent form of dementia, particularly among the elderly population. It is characterized by progressive cognitive decline and neurodegeneration. Despite numerous studies, the exact cause of Alzheimer's disease remains uncertain, and various theories have been proposed, including Aβ amyloid deposition in the brain and tau protein hyper-phosphorylation. This review article explores the potential pathogenesis of Alzheimer's disease, focusing on the effects of derangements in the levels of vitamin B12, folate, and homocysteine, as well as the impact of oral bacteria causing periodontitis and insulin resistance, and their relationship to Alzheimer's. Studies have shown that high levels of homocysteine and low levels of vitamin B12 and folate, are associated with an increased risk of developing Alzheimer's disease. The article also explores the link between Alzheimer's disease and oral bacteria, specifically dental infections and periodontitis, which contribute to the inflammatory processes in the nervous system of Alzheimer's patients. There could be derangement in the insulin signaling further causing disruption in glucose metabolism within the brain, suggesting that Alzheimer's disease may represent a form of type 2 diabetes mellitus associated with the brain, commonly known as type 3 diabetes. Neuroimaging techniques, including MRI, PET, and tau PET, can identify the predictive characteristics of Alzheimer's disease, with amyloid PET being the most useful in ruling out the disease. The article concludes by stressing the importance of understanding genetic and neuroimaging factors in the diagnosing and treating Alzheimer's disease.
Collapse
Affiliation(s)
| | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | | | | | - Halla Tariq
- Internal Medicine, Multan Medical and Dental College, Multan, Pakistan
| | - Soumya Aleti
- Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | - Neel Vora
- Internal Medicine, B. J. Medical College, Ahmedabad, India
| |
Collapse
|
13
|
Wen J, Wang Y, Wang C, Yuan M, Chen F, Zou Q, Cai Z, Zhao B. Dietary High-Fat Promotes Cognitive Impairment by Suppressing Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4822767. [PMID: 36718278 PMCID: PMC9884172 DOI: 10.1155/2023/4822767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Dietary habits contribute to the characteristics of Alzheimer's disease (AD) and cognitive impairment, which are partly induced by the accumulation of hyperphosphorylated Tau, a microtubule-associated protein. In mice, a fat-rich diet facilitates cognitive dysfunction. However, the mechanism by which dietary fat damages the brain remains unclear. In this study, 13-month-old C57BL/6 mice were fed a normal or high-fat diet (HFD) for 6 months. Neuro-2a cells were incubated with the normal medium or palmitic acid (200 μM). Spatial memory was assessed utilizing a behavioral test. Further, western blotting and immunofluorescence techniques were used to determine the levels of mitophagy-related proteins. The synaptic morphology and phosphorylation of Tau proteins were also evaluated. Administration of HFD decreased the expression of synaptophysin and brain-derived neurotrophic factor expression, leading to significant damage to neurons. Tau protein hyperphosphorylation was detected at different loci both in vivo and in vitro. Significantly impaired learning and memory abilities, accompanied by impaired mitophagy-related processes, were observed in mice fed with HFD as compared to mice fed with normal food. In conclusion, high fatty-acid intake hinders mitophagy and upregulates Tau protein phosphorylation, including age-related synaptic dysfunction, which leads to cognitive decline.
Collapse
Affiliation(s)
- Jie Wen
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
- Guangdong Key Laboratory of Aging-Related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
| | - Chuanling Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
- Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Minghao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
- Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Fei Chen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
- Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Yuzhong District, Chongqing 400013, China
- Department of Neurology, Chongqing General Hospital, Yuzhong District, Chongqing 400013, China
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
- Guangdong Key Laboratory of Aging-Related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
14
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
15
|
Hamstra SI, Roy BD, Tiidus P, MacNeil AJ, Klentrou P, MacPherson RE, Fajardo VA. Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Curr Neuropharmacol 2023; 21:891-910. [PMID: 35236261 PMCID: PMC10227915 DOI: 10.2174/1570159x20666220302151224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is most well-known for its mood-stabilizing effects in the treatment of bipolar disorder. Due to its narrow therapeutic window (0.5-1.2 mM serum concentration), there is a stigma associated with lithium treatment and the adverse effects that can occur at therapeutic doses. However, several studies have indicated that doses of lithium under the predetermined therapeutic dose used in bipolar disorder treatment may have beneficial effects not only in the brain but across the body. Currently, literature shows that low-dose lithium (≤0.5 mM) may be beneficial for cardiovascular, musculoskeletal, metabolic, and cognitive function, as well as inflammatory and antioxidant processes of the aging body. There is also some evidence of low-dose lithium exerting a similar and sometimes synergistic effect on these systems. This review summarizes these findings with a focus on low-dose lithium's potential benefits on the aging process and age-related diseases of these systems, such as cardiovascular disease, osteoporosis, sarcopenia, obesity and type 2 diabetes, Alzheimer's disease, and the chronic low-grade inflammatory state known as inflammaging. Although lithium's actions have been widely studied in the brain, the study of the potential benefits of lithium, particularly at a low dose, is still relatively novel. Therefore, this review aims to provide possible mechanistic insights for future research in this field.
Collapse
Affiliation(s)
- Sophie I. Hamstra
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Peter Tiidus
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E.K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
16
|
Hu S, Wan X, Li X, Wang X. Aerobic exercise alleviates pyroptosis-related diseases by regulating NLRP3 inflammasome. Front Physiol 2022; 13:965366. [PMID: 36187801 PMCID: PMC9520335 DOI: 10.3389/fphys.2022.965366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Pyroptosis plays a crucial role in a variety of human diseases, including atherosclerosis, obesity, diabetes, depression, and Alzheimer’s disease, which usually release pyroptosis-related cytokines due to inflammation. Many studies have demonstrated that aerobic exercise is a good option for decreasing the release of pyroptosis-related cytokines. However, the molecular mechanisms of aerobic exercise on pyroptosis-related diseases remain unknown. In this review, the effects of aerobic exercise on pyroptosis in endothelial cells, adipocytes and hippocampal cells, and their potential mechanisms are summarized. In endothelial cells, aerobic exercise could inhibit NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis by improving the endothelial function, while reducing vascular inflammation and oxidative stress. In adipocytes, aerobic exercise has been shown to inhibit pyroptosis by ameliorating inflammation and insulin resistance. Moreover, aerobic exercise could restrict pyroptosis by attenuating microglial activation, neuroinflammation, and amyloid-beta deposition in hippocampal cells. In summary, aerobic exercise alleviates the pyroptosis-related diseases by regulating the NLRP3 inflammation si0067naling.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Education and Physical Education, Yangtze University, Jingzhou, China
- School of Physical Education and Science, Jishou University, Jishou, China
| | - Xingxia Wan
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Xianhui Li
- College of Pharmacy, Jishou University, Jishou, China
| | - Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
- *Correspondence: Xianwang Wang,
| |
Collapse
|
17
|
Dutta BJ, Singh S, Seksaria S, Das Gupta G, Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res 2022; 182:106358. [PMID: 35863719 DOI: 10.1016/j.phrs.2022.106358] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) the most prevalent metabolic disease that has evolved into a major public health issue. Concerning about its secondary complications, a growing body of evidence links T2DM to cognitive impairment and neurodegenerative disorders. The underlying pathology behind this secondary complication disease is yet to be fully known. Nonetheless, they are likely to be associated with poor insulin signaling as a result of insulin resistance. We have combed through a rising body of literature on insulin signaling in the normal and diabetic brains along with various factors like insulin resistance, hyperglycemia, obesity, oxidative stress, neuroinflammation and Aβ plaques which can act independently or synergistically to link T2DM with cognitive impairments. Finally, we explored several pharmacological and non-pharmacological methods in the hopes of accelerating the rational development of medications for cognitive impairment in T2DM by better understanding these shared pathways.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
18
|
Hegazy MA, Abdelmonsif DA, Zeitoun TM, El-Sayed NS, Samy DM. Swimming exercise versus L-carnosine supplementation for Alzheimer's dementia in rats: implication of circulating and hippocampal FNDC5/irisin. J Physiol Biochem 2022; 78:109-124. [PMID: 35091983 DOI: 10.1007/s13105-021-00845-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have suggested that irisin may act as a potential neurokine. Exercise and L-carnosine supplementation showed neuroprotective effects in Alzheimer's disease (AD)-like conditions. However, the regulation of irisin in the hippocampus of streptozotocin (STZ)-induced memory impairment and its relation to insulin signalling remain to be investigated. This study was designed to compare the effect of swimming exercise and L-carnosine intake on serum, CSF and hippocampal irisin in rats received intracerebroventricular (ICV) injection of STZ. Rats were recruited in swimming paradigm, received oral carnosine (100 mg/kg/day) or vehicle treated. After 5 weeks, rats were sacrificed after neurobehavioural testing. CSF and serum irisin were determined. Hippocampal tissues were used to assess expression of FNDC5/irisin, BDNF and proteins related to insulin signalling, in addition to β-amyloid peptide and phosphorylated tau protein levels. We observed decreased hippocampal, but not CSF or serum, irisin in ICV-STZ-injected rats. Exercise and carnosine intake almost normalized hippocampal FNDC5/irisin expression which was associated with reduced soluble β-amyloid peptide and phosphorylated tau protein, improved BDNF and insulin signalling proteins, with corresponding mitigated cognitive impairments. However, hippocampal FNDC5/irisin was not correlated with serum or CSF irisin levels. Histologically, both interventions ameliorated the hippocampal damage in STZ-injected rats. The current study reveals that carnosine is equivalent to exercise in reversing cognitive decline and Alzheimer's biomarkers. In both interventions, enhancement of hippocampal FNDC5/irisin and insulin signalling may be involved in mediating these neuroprotective effects.
Collapse
Affiliation(s)
- Maha A Hegazy
- Department of Medical Physiology, Faculty of Medicine, Al-Mowassat Hospital, University of Alexandria, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Al-Mowassat Hospital, University of Alexandria, Alexandria, Egypt.,Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research & Applications, University of Alexandria, Alexandria, Egypt
| | - Teshreen M Zeitoun
- Department of Histology and Cell Biology, Faculty of Medicine, Al-Mowassat Hospital, University of Alexandria, Alexandria, Egypt
| | - Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Al-Mowassat Hospital, University of Alexandria, Alexandria, Egypt.
| | - Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Al-Mowassat Hospital, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
19
|
De Sousa RAL, Santos LG, Lopes PM, Cavalcante BRR, Improta-Caria AC, Cassilhas RC. Physical exercise consequences on memory in obesity: A systematic review. Obes Rev 2021; 22:e13298. [PMID: 34105227 DOI: 10.1111/obr.13298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Obesity is associated with changes in memory. Thus, the aim of this systematic review was to investigate the physical exercise consequences on memory in obesity. A search was carried out in the PubMed, Lilacs, and Scielo databases with the following descriptors: "physical exercise," "memory," and "obesity." A total of 16 studies were analyzed in this review. Low, moderate, and high intensity exercise training showed positive effects on memory in patients with obesity (100%). The animal models of obesity used in their physical exercise protocols: treadmill (72.7%) or wheel running (27.3%). Most of the animal studies (81.8%) revealed positive effects of the physical exercise protocol on memory in obesity. Mouse was the most commonly used animal (54.5%), and a 60% high-fat diet (HFD) was the most commonly method used to induce obesity (82%). We did not identify any knockout model of obesity that was used to evaluate memory and used physical exercise as the main intervention. Thus, exercise training, independently if it is resistance or endurance training, seems to be an excellent intervention to prevent and inhibit cognitive impairment and memory loss on obese patients and animal models of obesity.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, UFVJM, Diamantina, Brazil
| | - Letícia Gomes Santos
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil
| | - Paulo Maurício Lopes
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, Brazil
| | | | | | - Ricardo Cardoso Cassilhas
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, UFVJM, Diamantina, Brazil.,Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, Brazil
| |
Collapse
|
20
|
Grimm A. Impairments in Brain Bioenergetics in Aging and Tau Pathology: A Chicken and Egg Situation? Cells 2021; 10:2531. [PMID: 34685510 PMCID: PMC8533761 DOI: 10.3390/cells10102531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
The brain is the most energy-consuming organ of the body and impairments in brain energy metabolism will affect neuronal functionality and viability. Brain aging is marked by defects in energetic metabolism. Abnormal tau protein is a hallmark of tauopathies, including Alzheimer's disease (AD). Pathological tau was shown to induce bioenergetic impairments by affecting mitochondrial function. Although it is now clear that mutations in the tau-coding gene lead to tau pathology, the causes of abnormal tau phosphorylation and aggregation in non-familial tauopathies, such as sporadic AD, remain elusive. Strikingly, both tau pathology and brain hypometabolism correlate with cognitive impairments in AD. The aim of this review is to discuss the link between age-related decrease in brain metabolism and tau pathology. In particular, the following points will be discussed: (i) the common bioenergetic features observed during brain aging and tauopathies; (ii) how age-related bioenergetic defects affect tau pathology; (iii) the influence of lifestyle factors known to modulate brain bioenergetics on tau pathology. The findings compiled here suggest that age-related bioenergetic defects may trigger abnormal tau phosphorylation/aggregation and cognitive impairments after passing a pathological threshold. Understanding the effects of aging on brain metabolism may therefore help to identify disease-modifying strategies against tau-induced neurodegeneration.
Collapse
Affiliation(s)
- Amandine Grimm
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland;
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
- Life Sciences Training Facility, University of Basel, 4055 Basel, Switzerland
| |
Collapse
|
21
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
22
|
Olive leaf extract prevents obesity, cognitive decline, and depression and improves exercise capacity in mice. Sci Rep 2021; 11:12495. [PMID: 34127683 PMCID: PMC8203715 DOI: 10.1038/s41598-021-90589-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.
Collapse
|
23
|
Alves JM, Angelo BC, Zink J, Chow T, Yunker AG, Clark K, Luo S, Belcher BR, Herting MM, Dieli-Conwright CM, Xiang AH, Page KA. Child physical activity as a modifier of the relationship between prenatal exposure to maternal overweight/obesity and neurocognitive outcomes in offspring. Int J Obes (Lond) 2021; 45:1310-1320. [PMID: 33731834 PMCID: PMC8164988 DOI: 10.1038/s41366-021-00794-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND/OBJECTIVES With rising obesity rates among pregnant women, more children are exposed in utero to maternal obesity. In prior epidemiological studies, exposure to maternal obesity was associated with lower intelligence quotient (IQ) scores and worse cognitive abilities in offspring. Further studies have shown that offspring exposed to maternal obesity, exhibit differences in the white matter microstructure properties, fractional anisotropy (FA) and mean diffusivity (MD). In contrast, physical activity was shown to improve cognition and white matter microstructure during childhood. We examined if child physical activity levels modify the relationship between prenatal exposure to maternal obesity with IQ and white matter microstructure in offspring. SUBJECTS/METHODS One hundred children (59% girls) age 7-11 years underwent brain magnetic resonance imaging and IQ testing. Maternal pre-pregnancy BMI was abstracted from electronic medical records. White matter was assessed using diffusion tensor imaging with the measures, global FA, MD. The 3-day physical activity recall was used to measure moderate-to-vigorous physical activity and vigorous physical activity (VPA). Linear regression was used to test for interactions between prenatal exposure to maternal overweight/obesity and child PA levels on child IQ and global FA/MD. RESULTS The relationship between prenatal exposure to maternal overweight/obesity and child IQ and global FA varied by child VPA levels. Children exposed to mothers with overweight/obesity who engaged in more VPA had higher IQ scores and global FA compared to exposed children who engaged in less VPA. Associations were independent of child age, sex, BMI Z-score and socioeconomic status. Children born to normal-weight mothers did not differ in either IQ or global FA by time in VPA. CONCLUSIONS Our findings support findings in rodent models and suggest that VPA during childhood modifies the relationship between prenatal exposure to maternal obesity and child IQ and white matter microstructure.
Collapse
Affiliation(s)
- Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brendan C Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jennifer Zink
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Alexandra G Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kristi Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Britni Ryan Belcher
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Christina M Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
24
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
25
|
Wang J, Zhang W, Li M, Li X. The new coumarin compound Bis 3 ameliorates cognitive disorder and suppresses brain-intestine-liver systematic oxidative stress in high-fat diet mice. Biomed Pharmacother 2021; 137:111293. [PMID: 33485120 DOI: 10.1016/j.biopha.2021.111293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
High-fat diet (HFD)-induced systemic oxidative damage is critical to the pathological process of obesity and is associated with energy metabolism and cognitive disorders. In our previous research, the coumarin derivative Bis 3 was shown to improve neurological disorders as a potent free radical scavenger. In this study, a 12-week high-fat diet model was established, and mice were randomly divided into 3 groups: standard diet, high-fat diet, and high-fat diet with Bis 3 treatment. Our results demonstrated that Bis 3 attenuated body weight gain and inhibited the development of insulin resistance in high-fat diet-fed mice. Bis 3 protected against high fat-induced intestinal barrier integrity damage and lipid content disorder. HFD-induced hepatocyte lipid metabolism disorder and hepatocyte damage were also alleviated by Bis 3. Moreover, the results of cognitive tests indicated that Bis 3 attenuated high fat-induced cerebral dysfunction, such as cognitive disorders. Importantly, Bis 3 simultaneously ameliorated oxidative stress in the digestive and central nervous systems. These findings suggest that Bis 3 protects against systematic oxidative stress in HFD-induced obese mice, balancing insulin resistance, lipid metabolic disorders, and cognitive disorders through its antioxidative effects, indicating that Bis 3, a novel free radical scavenger, might represent a new therapeutic strategy for high fat-induced chronic systemic redox imbalance.
Collapse
Affiliation(s)
- Jun Wang
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wentong Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Mingkai Li
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
26
|
Karakilic A, Yuksel O, Kizildag S, Hosgorler F, Topcugil B, Ilgin R, Gumus H, Guvendi G, Koc B, Kandis S, Ates M, Uysal N. Regular aerobic exercise increased VEGF levels in both soleus and gastrocnemius muscles correlated with hippocampal learning and VEGF levels. Acta Neurobiol Exp (Wars) 2021; 81:1-9. [PMID: 33949164 DOI: 10.21307/ane-2021-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/23/2020] [Indexed: 11/11/2022]
Abstract
Physical exercise improves learning and memory abilities by increasing the levels of several growth factors in the hippocampus. One growth factor, vascular endothelial growth factor (VEGF), is primarily produced in the muscles and not only increases in the periphery during exercise but can also cross the blood-brain barrier. The aim of this study is to investigate the effects of regular aerobic chronic exercise on different types of muscle fibers and the relationships between learning/memory and muscle induced-VEGF. Following a one-week adaptation period, male rats underwent treadmill training at a speed of 8 m/min for 30 min daily, 3 days a week for 6 weeks. Memory functions were evaluated using the Morris water maze. VEGF, superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels were measured in type 1 and type 2 muscle fibers and VEGF levels were also measured in the hippocampus. Exercise positively affected both learning and memory and also increased VEGF levels in both muscle fiber types. Muscle VEGF levels positively correlate with hippocampal learning and hippocampal VEGF levels. Exercise reduced both SOD and MDA levels in type 1 and type 2 muscle fibers, whereas GPx levels decreased only in type 2 muscle fibers. Our findings suggest that regular aerobic exercise elevates VEGF levels and diminishes oxidative stress in both fiber types. Exercise-induced VEGF levels in both type 1 and 2 muscle fibers appear to be associated with the positive effect of exercise on learning and memory function and is accompanied by an increase in VEGF levels in the hippocampus. Further research is needed to elucidate the exact mechanism by which fiber type-specific VEGF mediates hippocampal neurogenesis and angiogenesis. Physical exercise improves learning and memory abilities by increasing the levels of several growth factors in the hippocampus. One growth factor, vascular endothelial growth factor (VEGF), is primarily produced in the muscles and not only increases in the periphery during exercise but can also cross the blood-brain barrier. The aim of this study is to investigate the effects of regular aerobic chronic exercise on different types of muscle fibers and the relationships between learning/memory and muscle induced-VEGF. Following a one-week adaptation period, male rats underwent treadmill training at a speed of 8 m/min for 30 min daily, 3 days a week for 6 weeks. Memory functions were evaluated using the Morris water maze. VEGF, superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels were measured in type 1 and type 2 muscle fibers and VEGF levels were also measured in the hippocampus. Exercise positively affected both learning and memory and also increased VEGF levels in both muscle fiber types. Muscle VEGF levels positively correlate with hippocampal learning and hippocampal VEGF levels. Exercise reduced both SOD and MDA levels in type 1 and type 2 muscle fibers, whereas GPx levels decreased only in type 2 muscle fibers. Our findings suggest that regular aerobic exercise elevates VEGF levels and diminishes oxidative stress in both fiber types. Exercise-induced VEGF levels in both type 1 and 2 muscle fibers appear to be associated with the positive effect of exercise on learning and memory function and is accompanied by an increase in VEGF levels in the hippocampus. Further research is needed to elucidate the exact mechanism by which fiber type-specific VEGF mediates hippocampal neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Asli Karakilic
- Department of Physiology , Balıkesir University , School of Medicine , Balıkesir , Turkey
| | - Oguz Yuksel
- Department of Sports Medicine , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Servet Kizildag
- College of Vocational School of Health Services , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Ferda Hosgorler
- Department of Physiology , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Birsu Topcugil
- Department of Sports Medicine , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Rabia Ilgin
- Department of Physiology , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Hikmet Gumus
- Department of Physiology , Dokuz Eylul University , School of Medicine , Izmir , Turkey ; Dokuz Eylul University , School of Sport Sciences and Technology , Izmir , Turkey
| | - Guven Guvendi
- Department of Physiology , Izmir Democracy University , School of Medicine , Izmir , Turkey
| | - Basar Koc
- Department of Physiology , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Sevim Kandis
- Department of Physiology , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Mehmet Ates
- College of Vocational School of Health Services , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| | - Nazan Uysal
- Department of Physiology , Dokuz Eylul University , School of Medicine , Izmir , Turkey
| |
Collapse
|
27
|
Natunen T, Martiskainen H, Marttinen M, Gabbouj S, Koivisto H, Kemppainen S, Kaipainen S, Takalo M, Svobodová H, Leppänen L, Kemiläinen B, Ryhänen S, Kuulasmaa T, Rahunen E, Juutinen S, Mäkinen P, Miettinen P, Rauramaa T, Pihlajamäki J, Haapasalo A, Leinonen V, Tanila H, Hiltunen M. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Mol Neurodegener 2020; 15:66. [PMID: 33168021 PMCID: PMC7653710 DOI: 10.1186/s13024-020-00415-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. Methods Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing β-amyloid pathology. Results TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around β-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per β-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. Conclusions Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to β-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-020-00415-2.
Collapse
Affiliation(s)
- Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Hennariikka Koivisto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Satu Kaipainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Helena Svobodová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Luukas Leppänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Benjam Kemiläinen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Simo Ryhänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Eija Rahunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sisko Juutinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi Miettinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
28
|
Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 2020; 19:758-766. [PMID: 32730766 DOI: 10.1016/s1474-4422(20)30231-3] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
|
29
|
Jang Y, Kwon I, Cosio-Lima L, Wirth C, Vinci DM, Lee Y. Endurance Exercise Prevents Metabolic Distress-induced Senescence in the Hippocampus. Med Sci Sports Exerc 2020; 51:2012-2024. [PMID: 30998584 DOI: 10.1249/mss.0000000000002011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Metabolic disorder such as obesity and type 2 diabetes caused by excess caloric intake is associated with an increased risk of neurodegenerative diseases. Endurance exercise (EXE) has been suggested to exert neuroprotective effects against the metabolic distress. However, the exact underlying molecular mechanisms responsible for the exercise-induced neuroprotection have not been fully elucidated. In this study, we investigated whether EXE-induced neuroprotection is associated with cellular senescence, neuroinflammation, and oxidative stress using a mouse model of obesity induced by a high-fat/high-fructose diet. METHODS C57BL/6 female mice (10 wk old) were randomly divided to three groups: normal chow diet group (CON, n = 11), high-fat diet/high-fructose (HFD/HF) group (n = 11), and high-fat diet/high-fructose + endurance exercise (HFD/HF + EXE) group (n = 11). HFD/HF + EXE mice performed treadmill running exercise for 60 min·d, 5 d·wk for 12 wk. RESULTS Our data showed that EXE ameliorated HFD/HF-induced weight gain, fasting blood glucose levels, and visceral fat gain. More importantly, HFD/HF diet promoted cellular senescence, whereas EXE reversed it, evidenced by a reduction in the levels of p53, p21, p16, beta-galactosidase (SA-β-gal), and lipofuscin. Furthermore, EXE prevented HFD/HF-induced neuroinflammation (e.g., tumor necrosis factor-α and interleukin-1β) by inhibiting toll-like receptor 2 downstream signaling cascades (e.g., tumor necrosis factor receptor-associated factor 6, c-Jun N-terminal kinase, and c-Jun) in parallel with reduced reactive glial cells. This anti-inflammatory effect of EXE was associated with the reversion of HFD/HF-induced cellular oxidative stress. CONCLUSION Our study provides novel evidence that EXE-induced antisenescence against metabolic distress in the hippocampus may be a key neuroprotective mechanism, preventing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL
| | | | | | | | | | | |
Collapse
|
30
|
The Counteracting Effects of Exercise on High-Fat Diet-Induced Memory Impairment: A Systematic Review. Brain Sci 2019; 9:brainsci9060145. [PMID: 31226771 PMCID: PMC6627483 DOI: 10.3390/brainsci9060145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of the present review was to evaluate whether exercise can counteract a potential high-fat diet-induced memory impairment effect. The evaluated databases included: Google Scholar, Sports Discus, Embase/PubMed, Web of Science, and PsychInfo. Studies were included if: (1) an experimental/intervention study was conducted, (2) the experiment/intervention included both a high-fat diet and exercise group, and evaluated whether exercise could counteract the negative effects of a high-fat diet on memory, and (3) evaluated memory function (any type) as the outcome measure. In total, 17 articles met the inclusionary criteria. All 17 studies (conducted in rodents) demonstrated that the high-fat diet protocol impaired memory function and all 17 studies demonstrated a counteracting effect with chronic exercise engagement. Mechanisms of these robust effects are discussed herein.
Collapse
|
31
|
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol 2019; 315:1-8. [DOI: 10.1016/j.expneurol.2019.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
|